ModelSIim® User’'s Manual

Software Version 10.3a

© 1991-2014 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth
in the license agreement provided with the software, except for provisions which are contrary to
applicable mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

Table of Contents

Chapter 1
LNt OdUCTION. . . .o 27
Operational Structureand FIOW. o 27
SIMUIEioN Task OVEIVIEWottt e ettt ettt 28
Basic Stepsfor SImulation. 29
Step 1 — Collect Filesand Map Libraries. i 30
Step2— CompiletheDesign i e 32
Step 3— LoadtheDesignfor Simulation i 32
Step 4 — SimulatetheDesigno 33
Step 5 — Debugthe DESIgNo 33
MOOES Of OPEIaLION o\ ottt e e e e e e 34
Command LINEMOAE. e 34
Batch SImulation. 35
Definitionof an ObJeCt e 38
Standards SUPPOIEdo 39
ASSUMPLIONS. . . . oottt et e e e e e e e 40
TEXt CONVENTIONS. . .. ottt e e e e e e et 40
Installation Directory Pathnames. 40
Deprecated Features, Commands, and Variables 41

Chapter 2
ProtectingYour SoUrceCodeo it e 43
Creating Encryption ENVEIOPES. oo e 43
Configuring the Encryption Envelope i 44
Protection EXPreSSiONSo oot 46
Using the “include Compiler Directive (Verilogonly).......... ... o oo, 48
Compiling With +protect o e 51
TheRuntime EncryptionModel 52
Language-SpecificUsage ModelS. 53
Usage Modelsfor Protecting Verilog SourceCode, 53
Usage Models for Protecting VHDL SourceCode., 58
Proprietary Source Code Encryption TOOIS.o 65
Using Proprietary Compiler DIrectivest e 66
Protecting Source CodeUsing-nodebugt 67
Encryption Reference. 68
Encryptionand Encoding Methods. 69
How Encryption EnvelopesWork 70
Using Public ENCryption KeySot e 71
Using the Mentor Graphics Public EncryptionKey oo, 71

ModelSim User’'s Manual, v10.3a 3

Table of Contents

Chapter 3
PO ECLS. . . o 75
WAt I PrOJEC S 7. . o . ottt e e 75
What arethe Benefitsof Projects? e 75
Project Conversion BetWeen VErSIONSottt et et e e 76
Getting Started With Projects. e 76
Stepl— CreatingaNew Project. 77
Step 2 — Adding ItemstotheProject 78
Step3— CompilingtheFiles. 79
Stepd— Simulating aDesIgNot 82
Other Basic Project Operations.ottt et ettt e 84
The ProjeCt WINdoW e e e e 84
SOrting the Listo 85
Creating aSimulation Configuration. it 85
Organizing Projectswith Folders. e 87
AddingaFolder 87
Specifying File Propertiesand Project Settings. 89
File Compilation Propertiest e e e e 89
ProJeCt SEttiNgS. oo 91
Setting Custom Double-click Behavior i 92
Accessing ProjectsfromtheCommand Line. 92

Chapter 4
DeSigN Libraries 93
Design Library OVerview 93
Design Unit Information. e 93
Working Library VersusResourceLibrarieso ... 93
Workingwith Design Libraries. e 94
Creating alibrary.o e 9
Compiling Libraries o 95
Managing Library COntents . ..ottt et et et 96
Assigning aLogical NametoaDesignLibrary 97
Movingalibrary 98
Setting Up Librariesfor Group Useo e 98
Specifying Resource Libraries. 99
Verilog Resource Libraries. 99
VHDL ResourceLibraries 101
Predefined Libraries 101
Alternate IEEE LibrariesSupplied.o 102
Regenerating Your Design Libraries i 102
Importing FPGA Libraries. 103
Protecting SoUrce Code oot e 104

Chapter 5
VHDL Simulation e 105
BasiC VHDL USage.o e 105
Compilationand Simulationof VHDL i 105
CreatingaDesign Library for VHDL e 105

4 ModelSim User's Manual, v10.3a

Table of Contents

Compiling aVHDL Design—thevcom Commandcoiiiinien... 106
Simulating @aVHDL DeSIgNo ot 110
Naming Behavior of VHDL For Generate Blocks. i, 111
Differences Between Versionsof VHDL e 112
Simulator Resolution Limitfor VHDL. 115
Default Binding.o 115
DeltaDE AYSot 117
UsingtheTexttO Package.t e e e e e e 119
Syntax for File Declaration. 120
Using STD_INPUT and STD_OUTPUT WithinModelSm 120
TextlO Implementation ISSUESot it e 121
Writing Strings and AgQgregateso ottt 121
Reading and Writing Hexadecimal Numbers. 122
Dangling PoINterSot 122
The ENDLINE FUNCLION.ot e e e 123
The ENDFILE FUNCLIONo e 123
Using Alternative Input/Output Files. e 123
Flushingthe TEXTIO BUFfero e 123
Providing SHIMUIUS o 124
VITAL Usageand ComplianCe.oi ittt 124
VITAL SOUrCE COR. . . v vttt et ettt 124
VITAL 1995and 2000 Packageso oo oo e e 124
VITAL ComplianeCeo e e e e e e e 125
Compiling and Simulating with Accelerated VITAL Packages. 125
VHDL UtilitiesPackage (Util)o 126
Ot TESOIULION . . . oot 126
INIt_Signal_driver()o e 126
INIE_SIgNAl_SPY() .« . oo e 127
SIgNal_fOrCe() .. oo e 127
SIgNAl_FEl@aSE() . . . o 127
LCO == 127
10 tIME) ..ot 128
MoOdEliNg MemMOrYo 129
Examples of Different Memory Models. i 130
Affecting Performance by Cancelling Scheduled Events. 139
Chapter 6

Verilog and SystemVerilog Simulation. i 141
Standards, Nomenclature, and Conventions. 141
Basic VerilogUsSageo 143
Verilog Compilation 144
CreatingaWorking Library 144
Invokingthe Verilog Compiler. e 144
Initidizingenum Variables. 147
Incremental Compilation 147
Library Usageo 149
SystemVerilog Multi-File Compilation e 151
Verilog-XL Compatible Compiler Arguments., 152

ModelSim User’'s Manual, v10.3a 5

Table of Contents

Verilog-XL uselib Compiler Directive. 153
Verilog Configurations.ot 156
Verilog Generate Statementst 157
Verlog SImMUlation.o 158
Simulator Resolution Limit (Verilog). 158
Event Orderingin Verilog DeSIgNS. oo e i 161
Debugging Event Order ISSUES.ottt et e 164
Debugging Signal Segmentation Violations., 165
Negative TIming Checks. e e 167
Force and Release StatementsinVerilog. i i 176
Verilog-XL Compatible Simulator Arguments, 176
Using Escaped Identifiers. 177
el Libraries. . .o e 178
SDF TimiNg ANNOtalioNottt e ettt et e 178
Delay MOAES.o 179
System Tasksand FUNCLIONSo e e e 181
IEEE Std 1364 System Tasksand FUNCLIONSo 182
Verilog-XL Compatible System Tasksand Functions. 185
Compiler DIFECHIVES. ottt e e e e e e 188
|EEE Std 1364 Compiler DIreCtiVeS.o et 189
Verilog-XL Compatible Compiler Directives, 189
Verilog PLI/VPI and SystemVerilogDPIl 190
Standards, Nomenclature, and Conventions.ttt 191
Extensionsto SystemVerilog DPl 191
SystemVerilog ClassDebugging. . . .« .o vttt e e 191
EnablingClassDebug. 192
The ClassInstance ldentifier e 192
Logging Class Typesand ClassInStanCes i 193
WorkingWith Class TYPES oot e e e 194
Working with ClassS INStanCes. oot 198
Working with Class Path EXpressions e 203
Conditional BreakpointsinDynamicCode 207
Stepping Through Your DESIgNot e e et e 208
TheRunUntil Here Feature e 208
Command Linelnterfaceo 208
ClassInstance Garbage Collection e 215
Chapter 7

Recording Simulation ResultsWith Datasets. 219
SavingaSimulationto aWLF File. 220
Saving at Intervalswith Dataset Snapshot 221
WLF File Parameter OVEIVIEW.ottt et e et et 223
LimitingtheWLF FIleSize e 224
Multithreadingon Linux Platforms i 225
OpPENiNg DataselS.ot e 225
Viewing Dataset SITUCTUN.ot e e e 226
Structure Tab ColUMNS.o et et e e 227
Managing Multiple Datasetst 228

6 ModelSim User's Manual, v10.3a

Table of Contents

Managing Multiple Datasetsinthe GUI s 228
ComMmMaNd LiNeot 228
Restricting the Dataset Prefix Display 229
Collapsing Timeand DeltaSteps.o e e e 230
Virtual ObJeCtS.o 231
Virtual SIgnalso 231
Virtual FUNCHIONSo e e e e e et et 232
Virtual REJIONS.o 233
VUl Ty DS oottt 233
Chapter 8

Waveform ANalYSiS. . ..o e 235
ObjectSYOU Can ViewW . ..o e 235
Wave WINdow OVEIVIEW.ot e e e e et 235
Wave WINdow Panes e 236
Adding ObjectstotheWave Window e 238
Adding Objectswith MOUSE ACLIONSot 239
Adding Objectswith Menu Selections. i, 239
Adding ObjectswithaCommand. e 239
Adding ObjectswithaWindow FormatFile 239
Inserting SignalsinaSpecificLocation. 240
WOrking With CUIrSOrSo e e 241
AdAING CUISO S, . . vttt e e e e e e 243
Editing Cursor Propertiesot 243
JumpingtoaSignal Transition. ... 243
Measuring Time with CursorsintheWaveWindow, 244
Syncing All ACEIVE CUISOISot e e 244
LiNKiNG CUISOISttt e e e e e e e e e e e e e e e e e 245
Understanding Cursor BENaVIOrot 246
Shortcuts for Workingwith Cursors. e 246
TWO CUIrSOr MOottt e e e e e e 247
Expanded TimeintheWaveWindow. i i 248
Expanded Time Terminologyot e 248
Recording Expanded Time Information. 249
Viewing Expanded Time Information inthe Wave Window. 249
Selecting the Expanded Time Display Mode. i 253
Switching Between TImeModes e 254
Expanding and Collapsing Simulation Time 254
Zooming the Wave Window Display e 255
Zooming withthe Menu, Toolbar and MOUSEt 255
Saving Zoom Range and Scroll Position with Bookmarks. 256
Searching intheWave WIindow e 258
Searching for Valuesor TranSitions.t e et 258
Using the Expression Builder for Expression Searches. 259
Filtering the Wave Window Displayo 262
Formattingthe Wave Window. e 262
Setting Wave Window Display Preferences. 262
Formatting ObjectsintheWave Window, 265

ModelSim User’'s Manual, v10.3a 7

Table of Contents

Dividingthe Wave WIndowot e 268
Splitting Wave Window Panes. e 270
WAV GIOUPS . . vt it ettt e e e e e e e 271
Creating aWave GrOUDottt et e e e 271
Deleting or Ungrouping aWave GroUpo v ittt e e e e e e 274
Adding Itemsto an ExisingWave Groupot 274
Removing Itemsfrom an Existing Wave Group.t 274
Miscellaneous Wave Group FEeatUres.ot et e 275
Composite SIgNalS or BUSESo e 275
SavingtheWindow Format. e 276
Exporting Waveformsfromthe Wavewindow., 277
Exporting the Wave Window asaBitmaplmage. 277
Printing the Wave Window to aPostscript File o i 278
Printing the Wave Window on the Windows Platform 278
Saving Waveforms Between TWO CUISOrS.ot it e e e i ea e 278
Viewing System Verilog Interfaces. i 280
Working with Virtual Interfaces. i 280
Combining ObjectSINtOBUSESo 282
ExtractingaBusS SliCe. 282
Splitting aBusinto Several Smaller Buses ... 284
UsingtheVirtual Signal Builder 284
CreatingaVirtual Signal 286
MisCallanNEoUS TasKsot 288
Examining Waveform Values. 288
Displaying Drivers of the Selected Waveform. 288
Sorting a Group of ObjectsintheWaveWindowccuo... 289
Creating and Managing Breakpoints. e 289
Signal Breakpointsot e 289
File-Line Breakpoints.o e e 291
Saving and Restoring Breakpoints e 293
Chapter 9

Debugging with the Dataflow Window. 295
Dataflow WIindow OVEIVIEWot e et 295
Dataflow Usage Flow o 296
Post-Simulation Debug Flow Details. 297
Common Tasksfor Dataflow Debugging 299
Adding Objectsto the Dataflow Window. 299
Exploring the Connectivity of theDesign e s 301
Exploring Designs with the Embedded Wave Viewer 305
TraCing EVENESo 307
Tracing the Source of anUnknown State (StX)o 307
Finding Objects by Namein the Dataflow Window. 309
Automatically Tracing All PathsBetween TWONets. oou... 309
Dataflow CONCEPLS. . . . oottt e e 311
Symbol Mapping.o 311
Current vs. Post-Simulation Command OUtpUtt 313
Dataflow Window Graphic Interface Reference 314

8 ModelSim User's Manual, v10.3a

Table of Contents

What Can | View inthe Dataflow Window? 314
How isthe Dataflow Window Linked to Other Windows? 314
How Can | Print and SavetheDisplay?. e 315
How Do | Configure Window OptionS?.ot 317
Chapter 10
SOUrCEWINAOW e e e e e 319
Creating and Editing Source Files. 319
Creating New Files. 319
Opening EXisting Files 319
EditiNg FlEeS . ..o 320
Searching for Code. o e e e 320
Navigating Through Your DeSIgNttt e e 322
Dataand Objectsinthe Source Window. e 323
Determining Object Valuesand DesCriptions.t 324
Debugging and Textual CoONNECLIVILYot 326
Hyperlinked Text et et e 326
Highlighted Text inthe Source Window 326
Dragging Source Window Objects Into Other Windows. 327
Breakpointso 327
Setting Individual BreakpointsinaSourceFile. 327
Setting BreakpointswiththebpCommand 328
Editing Breakpoints 328
Saving and Restoring BreakpointSt e 330
Setting Conditional Breakpoints. 331
RUNUNtI HEre . .. 333
Source Window Bookmarks 334
Setting and Removing Bookmarks. 334
Setting Source Window Preferences 334
Chapter 11
SIgNAl SPY . o 335
Signal Spy Formatting Syntaxottt 336
Signal Spy SUPPOred TYPES oo it 336
disable Signal SpY . ..o e 337
enable Signal_SPY 339
NI SIgNal_ArVEr ... 341
NI SIONAl Y . oottt 345
SIgNal fOrCe. 349
SIgNAl TRl EASE . . . ot it e 353
Chapter 12
Generating Stimuluswith Waveform Editor 355
Getting Started withthe Waveform Editor 355
Using Waveform Editor Prior to LoadingaDesign., 355
Using Waveform Editor After LoadingaDesign. ..., 356
Creating Waveformsfrom Patterns. 357
Creating Waveformswith Wave Create Command., 359

ModelSim User’'s Manual, v10.3a 9

Table of Contents

Editing Waveforms 359
Selecting Partsof theWaveform 360
Stretchingand MoVINg EAQES.ot e 362

Simulating Directly from Waveform Editor i 362

Exporting WaveformstoaStimulusFile. i 362

Driving Simulation with the Saved StimulusFile., 364
Signal Mapping and Importing EVCD Files 364

Saving the Waveform Editor Commandst 365

Chapter 13
Standard Delay Format (SDF) Timing Annotation., 367

Specifying SDF Filesfor Simulation. i 367
Instance SPeCifiCalion.o 367
SDF Specificationwiththe GUI e 368
Errors and Warnings.o e 368

VHDL VITAL SDF . . .ot e e e e e e e e 369
SDFto VHDL GenericMatChing.t e e 369
RESOIVING ErTOrS. . .. e e e 370

NV elOg SDF . . o e 370
BsOf ANNOtALEo 371
SDF to Verilog Construct Matching.o e 372
Retain Delay BENAVIOr oo 375
Optional Edge SpeCificalionsottt e 377
Optional ConditioNsot 378
Rounded TiIMING ValUES.t e e e e 378

SDF for Mixed VHDL and VerilogDesigns.ot e 379

INterconnect DelaysS. oo 379

Disabling TIming Checks o 379

Troubleshooting.o 380
Specifyingthe Wrong InstanCe. e 380
MatchingaSingle Timing Check e 381
Mistaking a Component or Module Name for an InstanceLabel. 381
Forgetting to Specify thelnstance s 381
Reporting Unannotated Specify Path Objects. i 382

Chapter 14
ValueChangeDump (VCD) Files.o e 385

CreatingaV CD Fileo e e e e 385
Four-State VCD File. . ..o 385
Extended VCD File. . ..o 386
VECD Case SeNSitiVity . ..o oot 386

Using Extended VCD asStMUIUS. oo 386
Simulating with Input ValuesfromaVCD File. 387
Replacing Instances with Output ValuesfromaVCD File........................ 388

VCD Commandsand VECD TaskS. . ..o vvt ittt et 389
Using VCD Commandswith SystemC. e 391
Compressing FileswithVCD Tasks.o e e 392

VCD Filefrom Sourceto OULPUL. oot e e 392

10 ModelSim User's Manual, v10.3a

Table of Contents

VHDL SOUrCE COUEottt e e e 392
VCD Simulator Commandso vttt e 392
VECD OUIPUL .« .t e ettt e 394
VD IO WL . o 395
Capturing POrt Driver Dataottt e e e e 395
DIV SLaES . . . oottt 395
Driver SIrENgtN . ..o 396
Identifier Codeo 397
ReSOIVING ValUES . . .o e e 397
Chapter 15
Tcland Macros(DO Files). oo e e e 401
TCl FaIUNES . . . o 401
TCl ReferenCeso 401
Tl ComMmMaNGS. e 402
Tcl CommaNd SYNEaXottt e e 402
If Command SYNtaXx e 405
Command SUDSHITULIONot 405
Command SEParatOrot 406
Multiple-Line Commands. 406
Evaluation Order.o 406
Tcl Relational Expression Evaluation. 406
Variable SUDSHITULION 407
SySteM ComMMaANASot 407
Simulator State Variables 407
Referencing Simulator State Variables. i 409
Specia Considerationsforthenow Variable. i . 409
LISt PrOCESSING. . .« . o ettt e e e 410
Simulator Tl ComMmMaNdSot 410
Simulator Tcl TIme CommaNads.ottt e 411
CONVEISIONS. & .\ttt ettt e e e e e e e e e e 412
RE A ONS. . .. 412
ANNMELIC. . . . 413
TCl EXaMPIES . . . o 413
MaCrOS (DO FIlES)ot e e e e 415
Creating DO FIlES. . ..o e e 415
Using ParameterswithDO FIles. e 416
DeletingaFilefroma.do SCript. 416
Making Macro ParametersOptional 417
Error ACtionin DO FIES.o 419
Appendix A
modelsim.ini Variables. 421
Organization of themodelsim.ini File. 421
Making Changestothemodelsim.ini File............ 422
Changing the modelsim.ini Read-Only Attribute. 422
The Runtime OptionsSDIalog oo e e e 422
Editing modelsim.ini Variables 426

ModelSim User’'s Manual, v10.3a 11

Table of Contents

Overriding the Default Initialization File. o i 426
VA S . . 427
AddPragmaPrefiX 427
AMSStaNdard. 427
ArchiveLibCompacto 428
ASSEItFIl e . . 428
BalChM OOo 428
BatchTranscriptFile. o 429
BIiNdALCOMPIlE. 429
BreakONASSEITION.ot 430
CheCkPIUSArgS. . . . oo 430
CheckpointCompressMOode.ot 430
CheckSynthesis. 431
ClasSD UG . . . vt 431
CommandHIStOrYo e 431
CompIl e T EmMPDIr. .. e 432
ConcurrentFleLimit. o 432
CreateDirFOrFI @A CCESS . . . o ottt 432
DatasetSEParatoro 433
DefaultForceKind 433
DefaultLibTyPe. . .o 433
DefaultRadiX.o 434
DefaultRadiXFlags e 434
DefaultRestartOptioNS. oo 435
DelayFIlEOPEN . . o 436
displaymsgmode.o 436
DpiOUtOfTheBIUE.o e e e e 436
DUMPPOISCOlADSE. oot 437
EnUMBaESEINIt 437
< 0 437
] T 438
EXPII It . 438
L=, €= 439
FlatLibPageSizeo 439
FlatLibPageDeletePercentage. e 439
FlatLibPageDeleteThreshold e 440
floatfixXlib. 440
FOrCeSIgNEXTIEr 440
ForceUnsignedinteger TOVHDLINtegEr e e 440
FSMIMpPliCItTranS . . . oo e 441
FSMRESEITraNnSo e 441
FSmMSINgle. . . 441
PO ASSIgN . o 442
GCThreshold. oo e e 442
GCThresholdClassDebug e e e 443
GeNEratEFOIMEL. ottt 443
GenerousldentifierParsing 444
GlobalSharedObjectsList 444
Hazard. e 444

12

ModelSim User's Manual, v10.3a

Table of Contents

= 445
gNO B Or . . . 445
[gnoreFailure. e 445
IgNOrEN O . . . 446
IgnorePragmaPrefiX 446
ignoreStandardRealVECtOr o 446
[gNOrEVItAlEITOrS . . . o 447
[gNOrEWAINING . . oottt e e e 447
IMMediateCoNtiNUOUSASSIONottt ettt et 447
IncludeRecursionDepthMaXot 448
INItOUtCOMPOSItEPAraMot 448
IterationNLimit e 448
LargeOhjectSilento 449
LargeOb eCtSizeo 449
LibrarySearchPath. 449
LI CBNSE . .ttt 450
MaxReportRhSCroSSPrOdUCES.o oot e 450
MeSSagEFOrMELo 451
MessageFormatBreako 451
MessageFormatBreakLinet 452
MeESSagEeFOrMALETOr.o 452
MessageFormatFail. e 452
MessageFormatFatal 453
MessageFormatNOte.o 453
MessageFormatWarning.o oottt e e e 453
MiIXEDANSIPOITS 454
MOdelSIM LD ... 454
MSOMOOE. . . ottt 454
AV . Lt 455
M OV . L 455
MultiFileCompilationUnit 455
NOCASESIALICEITON . . .\ttt et e e e e e e e e e e e e 456
NODEDUG. . ..ot 456
NoDeferSUbpgMChECKo 456
NOINDEXCNECK . . . o 456
NOOThersStatiCEITOr oot e e e e e 457
NORaNGEChECKo 457
10 458
NOVItAICNECK . . . oo 458
NUMENCSIANOWaEININGS.ottt e e e e e ettt 458
OldVHDL ConfigurationVisibility e 459
OldVhdIFOrGenNamMES. oottt e e e e et 459
ONFINISN . . 460
OptiMIZE 1164t e e 460
OSVVIM . ettt et e e e e e e e e e e e 460
PathSEparatlor 461
PedantiCErTOrS. 461
PliCompatDefaulto 462
PresarVECase. . . . o e 463

ModelSim User’'s Manual, v10.3a 13

Table of Contents

PN S MO ALSo 463
PrintSIMSIatSList . .. o 464
QUIBE . . o 464
RequireConfigForAllIDefaultBinding. o i 464
RESOIULION . . . 465
RUNLENGEN. . . o 465
SeparateConfigLibraryo 466
Show_BadOptionWarningco. ittt ettt 466
ShOW LN, . 466
SNOW . SOUICE. . . ottt et e e e e 467
Show_VitalCheckSWarningsot e 467
Show_Warninglo 467
Show_WarningZ 468
SNOW Warning3 . . . o 468
ShoW Warningd 468
ShOW WarningSo 468
SNOWRUNCHIONSo e e e 469
ShUtdOWNFILE . . . e 469
SignalForceFunctionUseDefaultRadix 469
SignalSpyPathSeparator 470
SMAt DS M. . . .o e 470
AU . . oot 470
LS. ottt 471
50 471
Std_developeErSKito 471
StAANTANOWAININGS oo e e e e 472
SUP P S, . o . v vt e e 472
SUPPressHIlETYPERET oo 472
SV St .ot 473
SV X NS ONS . . . ottt et e 473
SV ESUIfIXES . . . et 474
SVIOg . e 475
SVPrettyPrintFlags. o 475
S NMOPISYS .+« v vt e e 476
SyncCompilerFiles e 476
TransCriptRile a77
UnbufferedOUtpUL. a77
UNdef SymS . . o a77
UsSerTimeUnit . . .o e e e 478
UVMECONIOL . . . e e e e 478
VENIOg . . o e 479
N BIUSEY . oottt 479
VHD L OB . . 480
VhdlSeparatePduPackage. 480
VhdiVariableLogging.o oot 480
VItAl2000 . . .o 481
VIOgOSCOMPAL . . . o .ot e 4381
WarnConstantChange.o 482
WAINING .« . e e ettt e e e e e e e e e e e e e 482

14

ModelSim User's Manual, v10.3a

Table of Contents

WaveSignalNameWidth 482
WildeardFIIter. . . .o 483
WildcardSizeThreshold. o 483
WildcardSizeThresholdVerbose. 484
WLEFCAChESIZE. . . oo 484
WLFCOH@PSEMOUE. oo 484
WL FCOMPIESS . . o ettt e e e e e e e 485
WLFDEateONQUILottt e e e e 485
WELFFIELOCK . . . e 486
WL eName. . . . 486
WELFOPDUMIZE. . . ottt e e e e e e 486
WLFSaVEAIIREGIONSo 487
WLFSIMCaChESIZe.o e 487
WELFSIZELIMIt . .o e 488
WELFTIMELIMIt. . .o 488
WLFUpdatelnterval 4388
WLRUSETNIEaAS.ot e e 489
Commonly Used modelsim.ini Variables i 489
Common Environment Variables. 489
Hierarchical Library Mapping e e 490
CreatingaTranscript File. e e 490
UsingaStartup Fileo 491
Turning Off ASSErtiON MESSAgES . . . o« ot ittt et 491
Turning Off Warnings from ArithmeticPackages. 491
ForceCommand Defaults.ot 492
Restart Command Defaults.o 492
VHDL Standard e 492
Opening VHDL FIlEs o e e e e e e 493
Appendix B
LoCation MapPing. . .. v ittt e e e 495
Referencing Source Fileswith LocationMaps i 495
USINg LOCAHON MaPPING . . . oo oo ettt e e e e e e e 495
Pathname SyNtaX.o 496
How Location Mapping WOrKSt e et 496
Appendix C
Error and Warning MESSagesSottt e 497
M ESSagE Sy S I, . . ottt 497
MESSagE FOIMIaL . . . ot 497
Getting More INnformation.t 497
Changing Message Severity Level 498
Suppressing Warning MESSagES oo vttt et e e e 498
Suppressing VCOM Warning MESSAgES . . . oo v v ettt e e e 498
Suppressing VLOG Warning MESSa0ES oo vt i e it e e e e et 499
Suppressing VSIM Warning MESSageso oo i et 499
EXIE COUBS . .o 500
MisCEllaNEOUS MESSAgES oottt e 501

ModelSim User’'s Manual, v10.3a 15

Table of Contents

Enforcing Strict 1076 ComplianCe.o 504
Appendix D
Verilog Interfacesto Co 507
Implementation INformation 507
GCC Compiler Support for usewithCInterfaces. 509
Registering PLI AppliCations.t e e e 509
Registering VPI Applicationst 511
Registering DPl AppliCatioNS oo e 512
DRl USE I OW. . .o 513
DPl andtheviogCommand e 514
When Y our DPI Export FunctionisNot GettingCalled 515
Troubleshooting aMissing DPI Import Function. oL, 515
Simplified Import of Library Functions.. 516
Optimizing DPI Import Call Performance 517
Making Verilog Function Callsfromnon-DPI CModels 517
Calling C/C++ Functions Defined in PLI Shared ObjectsfromDPI Code 518
Compiling and Linking C Applicationsfor Interfaces 518
Windows Platforms — C o 519
Compiling and Linking C++ Applicationsfor Interfaces 520
Windows Platforms — CH+ oo 521
Specifying Application FilestoLoad i 522
PLIand VPl FileLoading.o e e e e et e 522
DPIFileLoading. e 522
L oading Shared Objects with Global Symbol Visibility 523
PLI EXamMPIE . ..ot 523
VP EXaMPlE . . 524
DPI EXamMple . . . 525
ThePLI Callback reason Argumentttt e 526
Thesizetf Callback Function. e 527
PLIObject Handleso 527
Third Party PLI Applications. e e e 528
Support for VHDL OBJeCtSo 529
[EEE Std 1364 ACC ROULINES. . . . o\ ottt et e e ettt ettt 530
I[EEE Std 1364 TF ROULINES.ottt e e e e e e 532
SystemVerilog DPl ACCESSROULINES.ot e e 532
Verilog-XL Compatible ROULINESo 533
64-bit Support for PLI e 533
Using 64-bit Model Sim with 32-bit Applications 533
PLINVPETIACING. . . oottt e e e e e e e e e e e e e e e 533
ThePurposeof TraCing Files e 534
INVOKING @ TTaCE. . . ottt e e et et e e e e 534
Debugging Interface Application Code. 535
Appendix E
System Initialization e 537
FilesAccessed DUNNg Startup. oot e 537
INitialization SEQUENCE. oo 538

16 ModelSim User's Manual, v10.3a

Table of Contents

Environment Variables 540
Environment Variable EXpansion. 540
Setting Environment Variables. 541
Creating Environment VariablesinWindows i, 546
Referencing Environment Variables. 547
Removing TeEmp Files (VSOUT)o e 547

I ndex

Third-Party Information

End-User License Agreement

ModelSim User’'s Manual, v10.3a 17

List of Examples

Example 2-1. Encryption Envelope Contains Verilog IP Codeto be Protected 45
Example 2-2. Encryption Envelope Contains “include Compiler Directives 46
Example 2-3. Results After Compiling with vlog +protect. 51
Example 2-4. Using the Mentor Graphics Public Encryption Key in Verilog/SystemVerilog 72
Example 4-1. Sub-ModuleswiththeSameName. oo, 100
Example 5-1. Memory Model Using VHDL87 and VHDL 93 Architectures............ 131
Example 5-2. Conversions Package.ot 133
Example 5-3. Memory Model Using VHDLO2 Architecture 135
Example 6-1. Invocation of the Verilog Compiler 144
Example 6-2. Incremental Compilation Example 148
Example 6-3. Sub-ModuleswithCommonNames., 151
Example 6-4. Verilog Cell With No Distributed Delay Specified. 179
Example 6-5. Delay Mode DirectivesinaVerilogCell 180
Example 14-1. Verilog Counter.ottt 387
Example 14-2. VHDL Adder. oo 387
Example 14-3. Mixed-HDL DeSigN.ot e 387
Example 14-4. Replacing INStanCes.ot 388
Example 14-5. VCD Output fromved dumpports. 400
Example 15-1. Tcl WhileLoopo e 413
Example 15-2. Tcl forCommand 413
Example 15-3. Tcl foreachCommand., 413
Example 15-4. Tcl break Command 414
Example 15-5. Tcl continueCommand.t 414
Example 15-6. Access and Transfer System Information. 414
Example 15-7. Tcl Used to Specify Compiler Arguments 415
Example 15-8. Tcl Used to Specify Compiler Arguments—Enhanced 415
Example 15-9. Specifying Filesto Compile WithargcMacro 417
Example 15-10. Specifying Compiler ArgumentsWithMacro 417
Example 15-11. Specifying Compiler Arguments With Macro—Enhanced. 417
Example D-1. VPI Application Registration. i 511
Example E-1. Node-Locked LicenseLimit ErrorMessage. 547

18 ModelSim User's Manual, v10.3a

List of Figures

Figure 1-1. Operational Structureand Flow 28
Figure 2-1. Create an Encryption Envelope. i e 44
Figure 2-2. Verilog/SystemVerilog EncryptionUsageFlow 54
Figure 2-3. Delivering IP Code with User-Defined Macros, 56
Figure 2-4. Delivering |P with “protect Compiler Directives 66
Figure 3-1. Create Project Dialogo o oot e 77
Figure 3-2. Project Window Detail 77
Figure 3-3. Add itemstothe Project Didlog oo 78
Figure 3-4. Create Project FileDialog.o e 79
Figure 3-5. Add fileto Project Dialog. oo oo 79
Figure 3-6. Right-click Compile Menu in Project Window 80
Figure 3-7. Click Plus Signto Show DesignHierarchy 80
Figure 3-8. Setting Compile Order 81
Figure 3-9. Grouping FIles. oo 82
Figure 3-10. Start Simulation Dialog.o oo 83
Figure 3-11. Structure WIndow with Projects. oo 83
Figure 3-12. Project Window OVEIVIEWottt et e 84
Figure 3-13. Add Simulation ConfigurationDialog, 86
Figure 3-14. Simulation Configuration in the Project Window. 87
Figure 3-15. Add Folder Dialog. oo oo 87
Figure 3-16. SpecifyingaProject Folder. 88
Figure 3-17. Project Compiler SettingsDialog 89
Figure 3-18. Specifying File Properties. e 90
Figure 3-19. Project SettingsDialogo oo oo i i 91
Figure4-1. CreatingaNew Library. e 95
Figure 4-2. Design Unit InformationintheWorkspace 96
Figure 4-3. Edit Library MappingDialog 97
Figure4-4. Import Library Wizard 104
Figure5-1. VHDL DeltaDelay Process e 117
Figure 6-1. Fatal Signal Segmentation Violation (SIGSEGV) 166
Figure 6-2. Current Process Where Error Occurred 166
Figure 6-3. Blue Arrow Indicating Where Code Stopped Executing 167
Figure 6-4. Null ValuesintheLocalsWindow. 167
Figure 6-5. Classesinthe Class TreeWindow, 196
Figure 6-6. Classinthe ClassGraph Window. 197
Figure 6-7. Classesinthe Structure Window 198
Figure 6-8. The Class InstancesWindowt 199
Figure 6-9. Placing Class InstancesintheWaveWindow 201
Figure 6-10. Class Information Popup intheWaveWindow 202
Figure 6-11. Class Viewing inthe Watch Window 203

ModelSim User’'s Manual, v10.3a 19

List of Figures

Figure 6-12. Class Path Expressionsinthe WaveWindow. 205
Figure 6-13. /top/aCastascland CIprime. oottt e 205
Figure 6-14. Casting CLtO CAPIimMe oottt e et e et 206
Figure 6-15. Extensionsfor aClass Typeot 214
Figure 6-16. Garbage Collector Configuration, 216
Figure 7-1. Displaying Two DatasetsintheWaveWindow 220
Figure 7-2. Dataset Snapshot Dialog.o o 222
Figure 7-3. Open Dataset DialogBOXot e e 226
Figure 7-4. Structure Tabs.o 227
Figure 7-5. The Datasat BrOWSEYottt e et e e 228
Figure 7-6. Virtual Objects Indicated by OrangeDiamond. 231
Figure8-1. TheWave WINndowot e e e 236
Figure 8-2. Wave Window Object PathnamesPane 237
Figure 8-3. Wave Window Object ValuesPane, 237
Figure 8-4. Wave Window WaveformPane 238
Figure 8-5. Wave Window Cursor Pane e 238
Figure 8-6. Wave Window MessagesBar., 238
Figure 8-7. Insertion POINt Barot e 240
Figure 8-8. Grid and Timeline Propertiest e 242
Figure 8-9. Find Previous and Next Transitionlcons., 244
Figure 8-10. Origina Names of Wave Window Cursorsovuivnan.... 244
Figure 8-11. SynCc All ACHIVE CUISOISottt e e 245
Figure8-12. Cursor LinkingMenu e e 245
Figure 8-13. Configure Cursor LinksDialog.o i 246
Figure 8-14. Waveform Pane with Collapsed Event and DeltaTime. 250
Figure 8-15. Waveform Pane with Expanded Time at a SpecificTime 251
Figure 8-16. Waveform PanewithEvent NotLogged 251
Figure 8-17. Waveform Pane with Expanded TimeOver aTimeRange 252
Figure 8-18. Bookmark PropertiesDialog. oo 257
Figure 8-19. Wave Signal Search DiadlogBoOX. 259
Figure 8-20. Expression Builder Dialog BOXt 260
Figure 8-21. Selecting Signalsfor ExpressionBuilder 261
Figure 8-22. Display Tab of the Wave Window PreferencesDialogBox. 263
Figure 8-23. Grid and Timeline Tab of Wave Window Preferences Dialog Box. 264
Figure 8-24. Clock Cyclesin Timelineof WaveWindow 265
Figure 8-25. Wave Format Menu Selections. i 265
Figure 8-26. Format Tab of Wave PropertiesDialog, 266
Figure 8-27. Changing Signal RadiX e 267
Figure 8-28. Global Signal Radix Dialog inWaveWindow. 268
Figure 8-29. Separate Signals with Wave Window Dividers 269
Figure 8-30. Splitting Wave Window Panes. 270
Figure 8-31. Wave Groups Denoted by RedDiamond 272
Figure 8-32. Contributing SIgnalSGroupot e 273
Figure8-33. Save Format Dialog.ot 277
Figure 8-34. Waveform Save Between CUrsors, 279

20 ModelSim User's Manual, v10.3a

List of Figures

Figure 8-35. WaveFilter Dialogo 279
Figure8-36. Wave Filter Dataset 280
Figure 8-37. Virtual Interface Objects Added to WaveWindow 281
Figure 8-38. Signals Combined to Create Virtual Bus, 282
Figure 8-39. Wave Extract/Pad BusDialog BOX.t 283
Figure 8-40. Virtua Signal Builder 285
Figure 8-41. Virtua Signal Builder Help 286
Figure 8-42. Creating aVirtual Signal. e 287
Figure 8-43. Virtual Signal intheWaveWindow. 288
Figure 8-44. Modifying the BreakpointsDialog 290
Figure 8-45. Signal Breakpoint Dialog 291
Figure 8-46. Breakpointsinthe SourceWindow. 292
Figure 8-47. File Breakpoint Dialog BOXt 293
Figure 9-1. The Dataflow Window (undocked) - ModelSim 295
Figure 9-2. Dataflow Debugging Usage Flow 297
Figure 9-3. Dot Indicates Input in Process Sensitivity Lis, 300
Figure 9-4. CurrentTime Label in Dataflow Window 301
Figure 9-5. Controlling Display of Redundant Buffersand Inverters. 303
Figure 9-6. Green Highlighting Shows Y our Path ThroughtheDesign................ 304
Figure 9-7. Highlight Selected Tracewith Custom Color. 305
Figure 9-8. Wave Viewer Displays Inputs and Outputs of Selected Process 306
Figure 9-9. Unknown States Shown as Red Linesin WaveWindow 308
Figure 9-10. Dataflow: Point-to-Point Tracingt 310
Figure 9-11. The Print Postscript Dialog.o o e e 315
Figure 9-12. The Print Dialog oo e e 316
Figure9-13. ThePage Setup Dialogo oo e 316
Figure 9-14. Dataflow OptionsDialogt 317
Figure 10-1. Bookmark All Instancesof aSearch., 322
Figure 10-2. Setting Context from SourceFiles 323
Figure 10-3. ExXamine POp UpP . ..o 324
Figure 10-4. Current Time Label in SourceWindow oo, 325
Figure 10-5. Enteran Event TimeValue. i i 325
Figure 10-6. Breakpoint inthe Source Windowcoo i, 328
Figure 10-7. Editing Existing Breakpoints i 329
Figure 10-8. Source Codefor SOUrCE.SV. . ..ottt e e e 331
Figure 12-1. Waveform Editor: Library Window 356
Figure 12-2. Opening Waveform Editor from Structure or Objects Windows. 357
Figure 12-3. Create Pattern Wizard. i e 358
Figure 12-4. Wave Edit Toolbar s 359
Figure 12-5. Manipulating Waveforms with the Wave Edit Toolbar and Cursors.. 361
Figure 12-6. Export WaveformDialogo 363
Figure 12-7. Evcd Import Dialog.o oo 364
Figure 13-1. SDF Tab in Start Smulation Dialog. 368
Figure A-1. Runtime Options Dialog: DefaultsTab 423
Figure A-2. Runtime Options Dialog Box: Severity Tab 424

ModelSim User’'s Manual, v10.3a 21

List of Figures

Figure A-3. Runtime Options Dialog Box: WLF FilesTab 425

Figure D-1. DPI Use Flow Diagram

22

ModelSim User's Manual, v10.3a

List of Tables

Table 1-1. Simulation Tasks— ModelSIm 29
Table 1-2. Use Modesfor ModelSim e 34
Table 1-3. vaim -batch Output OptionSot e e 36
Table 1-4. Possible Definitions of an Object, by Language 38
Table 1-5. Text CoNVENtioNSottt ettt ettt ee e 40
Table 1-6. Deprecated FEatUresttt e et e 41
Table 1-7. Deprecated COmMmMaNdsottt e 41
Table 1-8. Deprecated Command Argumentsttt 41
Table 1-9. Deprecated modelsim.ini Variables. 41
Table 1-10. Deprecated HDL Attributes. e 41
Table 2-1. Compile Options for the -nodebug Compiling 68
Table 6-1. Evaluation 1 of dwaysStatements, 162
Table 6-2. Evaluation 2 of alwaysStatement 162
Table 6-3. IEEE Std 1364 System Tasksand Functions-1 182
Table 6-4. IEEE Std 1364 System Tasksand Functions-2 182
Table 6-5. IEEE Std 1364 System Tasks . ..o v vt 183
Table6-6. IEEESIA 1364 File /O TasksS . ..o i i e 184
Table 6-7. Stepping Withinthe Current Context., 208
Table 6-8. Garbage Collector Modest e 215
Table 6-9. CLI Garbage Collector Commandsand INI Variables 217
Table 7-1. WLF File Parametersot e e 223
Table7-2. Structure TaAb Columns e e 227
Table 7-3. vaim Arguments for Collapsing Timeand DeltaSteps 230
Table8-1. ACtiONSTOr CUISOIS . . .ottt e e e e 241
Table8-2. TWO CUISOr ZOOMttt e e ettt e et 247
Table 8-3. Recording Deltaand Event Time Information 249
Table 8-4. Menu Selections for Expanded TimeDisplay Modes 253
Table 8-5. Actionsfor Bookmarks 257
Table 8-6. Actionsfor DIVIErst e 269
Table 9-1. Icon and Menu Selections for Exploring Design Connectivity 301
Table 9-2. Dataflow Window Linksto Other WindowsandPanes 314
Table 11-1. Signal Spy Reference Comparisonciiiiiiinnnnnn.n. 335
Table 12-1. Signal Attributesin Create Pattern Wizard 358
Table 12-2. Waveform EditingCommands 359
Table 12-3. Selecting Partsof theWaveform 360
Table 12-4. Wave Editor Mouse/Keyboard Shortcuts ..., 362
Table 12-5. Formatsfor SavingWaveforms. i 363
Table 12-6. Examplesfor LoadingaStimulusFile 364
Table 13-1. Matching SDFtO VHDL GENerics ...t 369
Table 13-2. Matching SDF IOPATH toVerilogcoo . 372

ModelSim User’'s Manual, v10.3a 23

List of Tables

Table 13-3. Matching SDF INTERCONNECT and PORT toVerilog 372
Table 13-4. Matching SDF PATHPUL SE and GLOBALPATHPULSE to Verilog 373
Table 13-5. Matching SDF DEVICEto Verilogciiiiii ... 373
Table 13-6. Matching SDF SETUPto Verilog 373
Table 13-7. Matching SDFHOLD toVerilog ... 373
Table 13-8. Matching SDF SETUPHOLD toVerilog, 374
Table 13-9. Matching SDF RECOVERY to Verilog 374
Table 13-10. Matching SDF REMOVAL toVerilog ..., 374
Table 13-11. Matching SDFRECREM toVerilog 374
Table 13-12. Matching SDF SKEW to Verilog ... 374
Table 13-13. Matching SDFWIDTHtoVerilog 375
Table 13-14. Matching SDF PERIOD toVerilogo 375
Table 13-15. Matching SDF NOCHANGE toVerilogo 375
Table 13-16. RETAIN Delay Usage (default) ..., 376
Table 13-17. RETAIN Delay Usage (with +vlog_retain_same2same on) 376
Table 13-18. Matching Verilog Timing Checksto SDFSETUP 377
Table 13-19. SDF DataMay Be More Accurate ThanModel 377
Table 13-20. Matching Explicit Verilog Edge Transitionsto Verilog 377
Table 13-21. SDF Timing Check Conditionst e 378
Table 13-22. SDF Path Delay Conditions.t e 378
Table 13-23. Disabling Timing Checks i, 379
Table 14-1. VCD Commandsand SystemTasksSo v i e e 389
Table 14-2. VCD Dumpport Commandsand System Tasks 390
Table 14-3. VCD Commands and System Tasks for MultipleVCD Files 390
Table 14-4. SyStemMC TYPES . .ottt e e e 391
Table 14-5. Driver StaleSot 395
Table 14-6. State When DirectionisUnknown iiian... 395
Table14-7. Driver Strength 396
Table 14-8. VCD Vaues When Force CommandisUsed 397
Table 14-9. Valuesfor file_format Argument 399
Table 14-10. Sample Driver Dataot e 400
Table 15-1. Changesto ModelSim Commandscciiiiinennn... 402
Table 15-2. Tcl Backslash SeqUeNnCeSot e e 404
Table15-3. Tcl ListCommandsoii i et 410
Table 15-4. Simulator-Specific Tcl Commandsoion... 410
Table 15-5. Tcl Time ConversionCommands, 412
Table 15-6. Tcl TimeRelationCommands. 412
Table 15-7. Tcl Time ArithmeticCommands e 413
Table 15-8. Commands for Handling Breakpoints and Errorsin Macros 418
Table A-1. Runtime Option Dialog: Defaults Tab Contents 423
Table A-2. Runtime Option Dialog: Severity TabContents. 424
Table A-3. Runtime Option Dialog: WLF FilesTabContents. 425
Table A-4. Commands for Overriding the Default InitializationFile 426
Table A-5. License Variable: LicenseOptionso 450
Table A-6. MessageFormat Variable: AcceptedValues. ... 451

24 ModelSim User's Manual, v10.3a

List of Tables

Table C-1. Severity Level TYPeS e e 497
Table C-2. EXIt COUBS oot 500
Table D-1. VPI Compatibility Considerations, 508
Table D-2. vsim Arguments for DPI Application Using External Compilation Flows 522
Table D-3. Supported VHDL Objects ...t e e 529
Table D-4. Supported ACC ROULINESo e e 530
Table D-5. Supported TE ROULINESottt e e e e 532
Table D-6. Valuesfor action Argument ittt 534
TableE-1. FilesAccessed During Startupo oo i i 537
Table E-2. Add Library Mappingsto modelsm.iniFile 546

ModelSim User’'s Manual, v10.3a 25

List of Tables

26

ModelSim User's Manual, v10.3a

Chapter 1
Introduction

Documentation for ModelSim is intended for users of UNIX, Linux, and Microsoft Windows.

Not all versions of Model Sim are supported on al platforms. For more information on your
platform or operating System, contact your Mentor Graphics sales representative.

Operational Structure and Flow

Figure 1-1 illustrates the structure and general usage flow for verifying a design with
ModelSim.

ModelSim User's Manual, v10.3a 27

Introduction

Simulation Task Overview

Figure 1-1. Operational Structure and Flow

>
VHDL

~N_
< >

Vendor
Libraries

~ N

>

Design
files

~N__

< >
.ini or
.mpf file

Design ,.-
Libraries| V“b

_ vma local work

l_____l

v
viog/
vcom

Analyze/
Compile

~

(. vim)

Interactive Debuggi ng>

activities

Simulation Output
(for example, vcd)

(Post-processing Debug)

Map libraries

Verilog/VHDL

Analyze/
Compile

Simulate

Debug

Simulation Task Overview

The following table provides a reference for the tasks required for compiling, loading, and
simulating a design in ModelSim.

28

ModelSim User's Manual, v10.3a

Introduction

Basic Steps for Simulation

Table 1-1. Simulation Tasks — ModelSim

Task Example Command Line | GUI Menu Pull-down GUI Icons
Entry
Step 1: vlib <library_name> a File>New > Project | N/A
Map libraries | vmap work <library_name> | b. Enter library name
c. Add design filesto
project
Step 2: vliog filel.v file2.v ... a. Compile> Compile | Compileor
Compilethe | (Verilog) or Compile All
design vcom filel.vhd file2.vhd ... | Compile> CompileAll
(VHDL) 22 b
Step 3: vsim <top> a. Simulate > Start Simulateicon:
Load the Simulation
designintothe b. Click on top design ﬁ
simulator module
c. Click OK
This action loads the
design for ssimulation
Step 4: run Simulate > Run Run, or
Run the step Run continue, or
simulation Run -all
B
Step 5: Common debugging N/A N/A
Debug the commands:
design bp
describe
drivers
examine
force
log
show

Basic Steps for Simulation

This section describes the basic procedure for simulating your design using Model Sim.

ModelSim User’'s Manual, v10.3a

29

Introduction
Basic Steps for Simulation

Step 1 — Collect Files and Map Libraries

Files needed to run Model Sim on your design:

¢ designfiles(VHDL and/or Verilog), including stimulus for the design
® libraries, both working and resource
* modelsim.ini file (automatically created by the library mapping command)

For detailed information on the files accessed during system startup (including the modelsim.ini
file), initialization sequences, and system environment variables, see the Appendix entitled
“System Initialization”.

Providing Stimulus to the Design

Y ou can provide stimulus to your design in several ways.

® | anguage-based test bench
® Tcl-based Model Sim interactive command, force
* VCD files/ commands
See Creating aVCD File and Using Extended VCD as Stimulus
® Third-party test bench generation tools

What is a Library?

A library isalocation on your file system where Model Sim stores data to be used for
simulation. Model Sim uses one or more libraries to manage the creation of data beforeit is
needed for usein simulation. A library also helpsto streamline simulation invocation. I nstead of
compiling all design data each time you simulate, Model Sim uses binary pre-compiled data
from itslibraries. For example, if you make changesto asingle Verilog module, ModelSim
recompiles only that module, rather than all modules in the design.

Work and Resource Libraries

Y ou can use design libraries in two ways:

® Asaloca working library that contains the compiled version of your design
®* Asaresourcelibrary

The contents of your working library will change as you update your design and recompile. A
resource library istypically unchanging, and serves as a parts source for your design. Examples
of resource libraries are shared information within your group, vendor libraries, packages, or
previously compiled elements of your own working design. Y ou can create your own resource

30 ModelSim User's Manual, v10.3a

Introduction
Basic Steps for Simulation

libraries, or they may be supplied by another design team or athird party (for example, asilicon
vendor).

For more information on resource libraries and working libraries, refer to Working Library
Versus Resource Libraries, Managing Library Contents, Working with Design Libraries, and
Specifying Resource Libraries.

Creating the Logical Library (vlib)

Before you can compile your source files, you must create alibrary in which to store the
compilation results. Y ou can create thelogical library using the GUI, by choosing File > New >
Library from the main menu (see Creating a Library), or you can use the vlib command. For
example, the following command:

vlib work
creates a library named wor k. By default, compilation results are stored in the work library.
Vlib creates a"flat" library type by default. Flat libraries condense library information into a

small collection of files compared to the legacy library type. This remedies performance and
capacity issues seen with very large libraries.

Since vmake does not support the flat library type, flows requiring vmake can revert to the
legacy library type when you do any of the following:

® Specify "-type directory" in the vlib command.
® Set the DefaultLibType variable in your modelsim.ini file to the value O.
® Set the shell environment variable MTI_DEFAULT_LIB_TY PE to the value 0.

Mapping the Logical Work to the Physical Work Directory
(vmap)

VHDL useslogical library names that can be mapped to Model Sim library directories. If
libraries are not mapped properly, and you invoke your simulation, necessary components will
not be loaded and simulation will fail. Similarly, compilation can also depend on proper library

mapping.

By default, Model Sim can find librariesin your current directory (assuming they have the right
name), but for it to find libraries located el sewhere, you need to map alogical library name to
the pathname of the library.

Y ou can use the GUI (Library Mappings with the GUI), acommand (Library Mapping from the
Command Line), or aproject (Getting Started with Projects) to assign alogical nameto adesign
library.

ModelSim User’'s Manual, v10.3a 31

Introduction
Basic Steps for Simulation

The format for command line entry is:

vmap <logical_name> <directory_pathname>

This command sets the mapping between alogical library name and a directory.

Usebraces ({}) for cases where the path contains multiple items that need to be escaped, such as
spaces in the pathname or backslash characters. For example:

vmap celllib {SLIB_INSTALL_PATH/Documents And Settings/All/celllib}

Step 2 — Compile the Design

To compile adesign, run one of the following Model Sim commands, depending on the
language used to create the design:

® vlog— Verilog
¢ vcom— VHDL

® sccom— SystemC

Compiling Verilog (viog)

The vlog command compiles Verilog modulesin your design. Y ou can compile Verilog filesin
any order, since they are not order dependent. See Verilog Compilation for details.

Compiling VHDL (vcom)

The vcom command compiles VHDL design units. Y ou must compile VHDL filesin the order
necessitate to any design requirements. Projects may assist you in determining the compile
order: for more information, see Auto-Generating Compile Order. See Compilation and
Simulation of VHDL for details on VHDL compilation.

Step 3 — Load the Design for Simulation

Running the vsim Command on the Top Level of the
Design
After you have compiled your design, it isready for simulation. Y ou can then run the vsim
command using the names of any top-level modules (many designs contain only one top-level

module). For example, if your top-level modules are named “testbench” and “globals,” then
invoke the simulator as follows:

vsim testbench globals

32 ModelSim User's Manual, v10.3a

Introduction
Basic Steps for Simulation

After the smulator |oads the top-level modules, it iteratively loads the instantiated modules and
UDPsin the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references.

Using Standard Delay Format Files

Y ou can incorporate actual delay values to the simulation by applying standard delay format
(SDF) back-annotation files to the design. For more information on how SDF isused in the
design, see Specifying SDF Filesfor Simulation.

Step 4 — Simulate the Design

Once you have successfully loaded the design, simulation timeis set to zero, and you must enter
arun command to begin simulation. For more information, see Verilog and SystemVerilog
Simulation, and VHDL Simulation.

The basic commands you use to run simulation are:

®* add wave
° bp
* force

® run

[] Stw

Step 5 — Debug the Design

The ModelSim GUI provides numerous commands, operations, and windows useful in
debugging your design. In addition, you can also use the command line to run the following
basic simulation commands for debugging:

® describe
® drivers
® examine
* force

* log

®* gshow

ModelSim User’'s Manual, v10.3a 33

Introduction
Modes of Operation

Modes of Operation

Many users run Model Sim interactively with the graphical user interface (GUI)—using the
mouse to perform actions from the main menu or in dialog boxes. However, there are redly
three modes of Model Sim operation, as described in Table 1-2.

Table 1-2. Use Modes for ModelSim

M ode Characteristics How Mode Sim isinvoked

GUI interactive; has graphical
windows, push-buttons,
menus, and a command

line in the transcript.

from a desktop icon or from the OS command
shell prompt. Example:

0S> vsim

Default mode
Command-line interactive command with -c argument at the OS command prompt.
line; no GUI Example:

0S> vsim -c

non-interactive batch
script; no windows or
interactive command line

Batch at OS command shell prompt using redirection

of standard input. Example:

C:\ vsim vfiles.v <infile >outfile

The ModelSim User’s Manual focuses primarily on the GUI mode of operation. However, this
section provides an introduction to the Command-line and Batch modes.

Command Line Mode

In command line mode Model Sim executes any startup command specified by the Startup
variable in the modelsim.ini file. If vsim isinvoked with the -do " command_string" option, a
DO file (macro) iscalled. A DO file executed in this manner will override any startup command
in the modelsim.ini file.

During simulation atranscript fileis created containing any messages to stdout. A transcript file
created in command line mode may be used as a DO fileif you invoke the transcript on
command after the design loads (see the example below). The transcript on command writes all
of the commands you invoke to the transcript file.

For example, the following series of commands results in atranscript file that can be used for
command input if top is re-simulated (remove the quit -f command from the transcript file if
you want to remain in the simulator).

vsim -c top
library and design loading messages... then execute:
transcript on

force clk 1 50,
run 500

0 100 -repeat 100

34 ModelSim User's Manual, v10.3a

Introduction
Modes of Operation

run @5000
quit -f

Rename atranscript file that you intend to use asa DO file—if you do not rename it, Model Sim
will overwrite it the next time you run vsim. Also, ssmulator messages are already commented
out, but any messages generated from your design (and subsequently written to the transcript
file) will cause the ssimulator to pause. A transcript file that contains only valid ssmulator
commands will work fine; comment out anything else with a pound sign (#).

Refer to Creating a Transcript File for more information about creating, locating, and saving a
transcript file.

Stand-alone tools pick up project settings in command-line mode if you invoke them in the
project's root directory. If invoked outside the project directory, stand-alone tools pick up
project settings only if you set the MODEL SIM environment variable to the path to the project
file (<Project_Root_Dir>/<Project_Name>.mpf).

Batch Simulation

Batch simulation is an operational mode that provides the user with the ability to perform
simulations without invoking the GUI. The simulations are executed via scripted files from a
Windows command prompt or UNIX terminal and do not provide for interaction with the
design during simulation. Data from the simulation run is typically sent to stdout or redirected
toalogfile.

Y ou have two options for running batch simulations:

1. BatchMode modelsim.ini Variable and vsim -batch — Batch simulations are run using
either the modelsim.ini variable BatchMode or the -batch argument to vsim.

2. Input Output Redirection — Batch simulations can aso run from the Windows or UNIX
command prompt using the “here-document” technique redirecting I/O from one
process to another.

BatchMode modelsim.ini Variable and vsim -batch

The Batch Mode feature yields fast simulation times especially for simulations that generate a
large amount of textual output. Refer to Batch Mode Log Files and stdout for information about
saving transcript data.

There are two options for enabling Batch Mode:

1. Specifying vsim -batch with scripted simulations viathe -do “ <command_string>" |
<macro_file_name> argument. Combining vsim -batch with the -nostdout and -logfile
arguments to vsim yields the best simulation performance.

ModelSim User’'s Manual, v10.3a 35

Introduction
Modes of Operation

2.

Uncommenting the BatchM ode modelsim.ini variable. If thisvariableisset to 1, vaim
runsasif the -batch option were specified. If thisvariableis set to 0 (default), vsim runs
asif the -i option were specified. Transcript datais sent to stdout by default. Y ou can
automatically create alog file by uncommenting the BatchTranscriptFile modelsim.ini
variable.

Note

O

Y ou will receive an error message if you specify vam -batch with the -c, -gui, or the -i
options. The BatchMode variable will be ignored if you specify the -batch, -c, -gui, or -i
optionsto vsim.

Batch Mode Scripts

The commands supported within a-do script are similar to those available when using vsim -c
however, none of the GUI-related commands or command options are supported by vsim
-batch. A command is available to help batch users access commands not available for usein
batch mode. Refer to the batch_mode command in the Model Sim Reference Manual for more
information.

Y ou can use the CTRL-C keyboard interrupt to terminate batch ssmulation in UNIX and
Windows environments.

Batch Mode Log Files and stdout

The default behavior when using vsim -batch or BatchMode is to send transcript data to stdout
and not create alog file. You can save alog file in two ways:

Specify vaim -batch -logfile <file_name>.

Uncomment the BatchTranscriptFile modelsim.ini variable to automatically create alog
file. If BatchTranscriptFileis enabled, you can disable log file creation by specifying
vsim -nolog.

Table 1-3. vsim -batch Output Options

Operating Mode Stdout | Lodfile
vsim -batch or BatchMode = 1 Yes No
vsim -batch -logfile <file_name> Yes Yes
vsim -batch -nostdout -logfile <file_name> No Yes
vsim -batch; BatchTranscriptFile = <file_name> Yes Yes
vsim -batch; TranscriptFile = <filename> Yes No

36

ModelSim User's Manual, v10.3a

Introduction
Modes of Operation

Input Output Redirection

In aWindows environment, you run vsim from a Windows command prompt. Standard input
and output are redirected to and from files. In aUNIX environment, you can invoke vsim in
batch mode by redirecting standard input using the “here-document” technique.

Note
By default, the here-document technique causes vsim to run in command (-c) mode. If

you want to run in batch mode, you need to specify vsim -batch or set BatchModeto 1in
the modelsim.ini file.

The following is an example of the "here-document” technique. This example will open the
GUI in addition to running a batch simulation:

vsim top <<!
log -r *
run 100

do test.do
quit -f

|

Hereis an example of abatch simulation using redirection of std input and output. In this
example, the -batch argument to vsim is included which prevents the GUI opening:

vsim -batch counter <yourfile >outfile

where “yourfile” represents a script containing various Model Sim commands, and the angle
brackets (< >) are redirection indicators.

Y ou can use the CTRL-C keyboard interrupt to terminate batch ssmulation in UNIX and
Windows environments.

A command is available to help batch users access commands not available for use in batch
mode. Refer to the batch_mode command in the Model Sim Reference Manual for more details.

Stdout and Logfile Format

By default the transcript, stdout, and alogfile display the following information for each
command executed:

1. [product name] [mti version] [executable type] [version] [build date]
For example:
ModelSim vliog 10.2c_1 Compiler 2013.08 Aug 16 2013

2. The Start time and date the command was executed

3. The command with arguments.

ModelSim User’'s Manual, v10.3a 37

Introduction
Definition of an Object

4. Execution comments
5. The end time and date the command finished
6. Thetotal number of errors and warnings in the following format:

Errors: [number], Warnings [number], Suppressed Errors. [number], Suppressed
Warnings. [number]. For zero suppressed errors and warnings, the corresponding count

message is not displayed.
Controling Display of Statistics with the Stats Variable
By default Start/End time and Errors/Warnings data are sent to stdout and logfiles. Y ou can
suppress this data with the Stats modelsim.ini variable.
Procedure
Set the Stats variable equal to “0”.

Controling Display of Statistics From the Command Line

By default Start/End time and Errors/Warnings data are sent to stdout and logfiles. Y ou can
enable or suppress this datafrom the command line by specifying the -stats or -nostats argument
with anumber of commands including vcom, vlog,and vsim.

Procedure

Refer to the specific command description in the Command Reference manual for more
information.

Definition of an Object

Because Model Sim supports a variety of design languages (Verilog, VHDL, and
SystemVerilog), the word “object” is used to refer to any valid design element in those
languages, whenever a specific language reference is not needed. Table 1-4 summarizes the
language constructs that an object can refer to.

Table 1-4. Possible Definitions of an Object, by Language

Design Language An object can be

VHDL block statement, component instantiation, constant,
generate statement, generic, package, signal, alias,
variable

Verilog function, module instantiation, named fork, named
begin, net, task, register, variable

38 ModelSim User's Manual, v10.3a

Introduction
Standards Supported

Table 1-4. Possible Definitions of an Object, by Language (cont.)

Design Language An object can be

SystemVerilog In addition to those listed above for Verilog:
class, package, program, interface, array, directive,
property, sequence

Standards Supported

Standards documents are sometimes informally referred to as the Language Reference Manual
(LRM). This standards listed here are the complete name of each manual. Elsewherein this
manual the individual standards are referenced using the |IEEE Std number.

The following standards are supported for the Model Sim products:

* VHDL —
o |EEE Std 1076-2008, |IEEE Standard VHDL Language Reference Manual.

Model Sim supports the VHDL 2008 standard features with afew exceptions. For
detailed standard support information see the vhdl2008 technote available at
<install_dir>/docs/technotes/vhdl2008.note, or from the GUI menu pull-down Help
> Technotes > vhd|2008.

Potential migration issues and mixing use of VHDL 2008 with older VHDL code are
addressed in the vhdl2008migration technote.

o |EEE Std 1164-1993, Sandard Multivalue Logic System for VHDL Model
Interoperability

o |EEE Std 1076.2-1996, Standard VHDL Mathematical Packages

Any design developed with Model Sim will be compatible with any other VHDL system
that is compliant with the 1076 specifications.

* Verilog/SystemVerilog —
o |EEE Std 1364-2005, |EEE Standard for Verilog Hardware Description Language

o |EEE Std 1800-2012. |IEEE Standard for SystemVerilog -- Unified Hardware
Design, Specification, and Verification Language

Both PLI (Programming Language Interface) and VCD (Vaue Change Dump) are
supported for Model Sim users.

e SDFandVITAL —

o SDF - IEEE Std 1497-2001, |[EEE Sandard for Standard Delay Format (SDF) for
the Electronic Design Process

ModelSim User’'s Manual, v10.3a 39

Introduction
Assumptions

o VITAL 2000 - IEEE Std 1076.4-2000, |EEE Sandard for VITAL ASC Modeling
Soecification

Assumptions

Using the Model Sim product and its documentation is based on the following assumptions:

® You are familiar with how to use your operating system and its graphical interface.

® You have aworking knowledge of the design languages. Although ModelSimisan
excellent application to use while learning HDL concepts and practices, thisdocument is
not written to support that goal.

® You have worked through the appropriate lessonsin the ModelSim Tutorial and are
familiar with the basic functionality of Model Sim. Y ou can find the Model Sim Tutorial
by choosing Help from the main menu.

Text Conventions

Table 1-5 lists the text conventions used in this manual.

Table 1-5. Text Conventions

Text Type Description

italic text provides emphasis and sets off filenames,
pathnames, and design unit names

bold text indicates commands, command options, menu
choices, package and library logical names, as
well as variables, dialog box selections, and

language keywords

monospace type monospace type is used for program and
command examples

Theright angle (>) is used to connect menu choices when
traversing menus asin: File > Quit

UPPER CASE denotes file types used by Model Sim (such as

DO, WLF, INI, MPF, PDF.)

Installation Directory Pathnames

When referring to installation paths, this manual uses “<installdir>" as a generic representation
of the installation directory for al versions of Model Sim. The actual installation directory on
your system may contain version information.

40 ModelSim User's Manual, v10.3a

Introduction

Deprecated Features, Commands, and Variables

Deprecated Features, Commands, and

Variables

This section provides tables of features, commands, command arguments, and modelsim.ini
variables that have been superseded by new versions. Although you can still use superseded
features, commands, arguments, or variables, Mentor Graphics deprecates their usage—you
should use the corresponding new version whenever possible or convenient.

The following tables indicate the in which the item was superseded and alink to the new item
that replacesit, where applicable.

Table 1-6. Deprecated Features

Feature

Version

New Feature/ I nfor mation

Source Window Language
Template

10.3

No longer available.

Table 1-8. Deprecated Command Arguments

Argument Version New Argument / Information
Table 1-9. Deprecated modelsim.ini Variables
Variable Version New Variable/ Information
Table 1-10. Deprecated HDL Attributes
Variable Version | Language | New Variable/ Information

ModelSim User’'s Manual, v10.3a

41

Introduction
Deprecated Features, Commands, and Variables

42

ModelSim User's Manual, v10.3a

Chapter 2
Protecting Your Source Code

Astoday’s IC designs increase in complexity, silicon manufacturers are leveraging third-party
intellectual property (1P) to maintain or shorten design cycle times. This third-party IP is often
sourced from several |P authors, each of whom may require different levels of protection in
EDA tool flows. The number of protection/encryption schemes developed by |P authors has
complicated the use of protected IP in design flows made up of tools from different EDA
providers.

Model Sim’ s encryption solution allows | P authors to deliver encrypted | P code for awide range
of EDA tools and design flows. Y ou can, for example, make module ports, parameters, and
specify blocks publicly visible while keeping the implementation private.

Model Sim supports VHDL, Verilog, and SystemVerilog | P code encryption by means of
protected encryption envelopes. VHDL encryption is defined by the IEEE Std 1076-2008,
section 24.1 (titled “Protect tool directives’) and Annex H, section H.3 (titled “Digital
envelopes’). Verilog/SystemVerilog encryption is defined by the IEEE Std 1364-2005, section
28 (titled “Protected envelopes’) and Annex H, section H.3 (titled “ Digital envelopes’). The
protected envel opes usage model, as presented in Annex H section H.3 of both standards, isthe
recommended methodology for users of VHDL’s "protect and Verilog's “pragma protect
compiler directives. We recommend that you obtain these specifications for reference.

In addition, Questa supports the recommendations from the |EEE P1735 working group for
encryption interoperability between different encryption and decryption tools. The current
recommendations are denoted as “version 1” by P1735. They address use model, algorithm
choices, conventions, and minor corrections to the HDL standards to achieve useful
interoperability.

Model Sim also supports encryption using the vcom/vlog -nodebug command.

Creating Encryption Envelopes

Encryption envelopes define aregion of code to be protected with Protection Expressions. The
protection expressions ("protect for VHDL and “pragma protect for Verilog/SystemV erilog)
specify the encryption algorithm used to protect the source code, the encryption key owner, the
key name, and envel ope attributes.

Creating encryption envelopes requires that you:

® identify the region(s) of code to be encrypted,

ModelSim User’'s Manual, v10.3a 43

Protecting Your Source Code
Creating Encryption Envelopes

® enclose the code to be encrypted within protection directives, and

® compileyour code with Model Sim encryption utilities - vencrypt for
Verilog/SystemVerilog or vhencrypt for VHDL - or with the vcom/vlog +pr otect
command.

The flow diagram for creating encryption envelopesis shown in Figure 2-1.

Figure 2-1. Create an Encryption Envelope

ldentify source code to be protected

I

Create encryption envelopes to
pratect regions of code

VerilogiSystem Verilog VYHOL
Compile with Compile with
vencrypt vhencrypt
ar ar
vlog +protect vocom +protect
(creates .vo or 5o file) (creates .vhdpo or .vhdlp file)

!

Deliver encrypted IP code

Symmetric and asymmetric keys can be combined in encryption envelopes to provide the saf ety
of asymmetric keys with the efficiency of symmetric keys (see Encryption and Encoding
Methods). Encryption envel opes can also be used by the IP author to produce encrypted source
filesthat can be safely decrypted by multiple authors. For these reasons, encryption envelopes
are the preferred method of protection.

Configuring the Encryption Envelope

The encryption envelope may be configured two ways:

1. Theencryption envelope may contain the textual design data to be encrypted
(Example 2-1).

44 ModelSim User's Manual, v10.3a

Protecting Your Source Code
Creating Encryption Envelopes

2. The encryption envelope may contain “include compiler directives that point to files
containing the textual design datato be encrypted (Example 2-2). See Using the "include
Compiler Directive (Verilog only).

Example 2-1. Encryption Envelope Contains Verilog IP Code to be Protected

module test_dff4d (output [3:0] g, output err);
parameter WIDTH = 4;
parameter DEBUG = 0;
reg [3:0] d;
reg clk;

dff4 d4 (g, clk, d4d);
assign err = 0;

initial
begin
Sdump_all_vpi;
Sdump_tree_vpi (test_dff4);
Sdump_tree_vpil (test_dff4.d4);
Sdump_tree_vpi ("test_dff4d");
Sdump_tree_vpi("test_dff4.d4");
Sdump_tree_vpi("test_dff4.d", "test_dffd.clk", "test_dffd.qg");
Sdump_tree_vpi ("test_dff4.d4.d40", "test_dff4.d4.d43");
Sdump_tree_vpi("test_dff4.d4.g", "test_dff4.d4d.clk");
end
endmodule

module dff4 (output [3:0] g, input clk, input [3:0] 4d);

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect author = "IP Provider"

‘pragma protect author_info = "Widget 5 version 3.2"

‘pragma protect key_ keyowner = "Mentor Graphics Corporation"
‘pragma protect key_method = "rsa"

‘pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect begin

dff_gate d0(qgl0], clk, d[0]);
dff_gate dl(gll]l, clk, dI[1l]);
dff_gate d2(gl[2], clk, d[2]);
dff_gate d3(ql3]1, clk, d[3]);

endmodule // dff4

module dff_gate(output g, input clk, input d);
wire preset = 1;
wire clear = 1;

nand #5
gl(ll,preset,14,12),
g2(12,11,clear,clk),
g3(13,12,clk,14),
g4 (14,13,clear,d),
g5 (g, preset,12,gbar),
g6 (gbar, g, clear,13);

endmodule
‘pragma protect end

ModelSim User’'s Manual, v10.3a 45

Protecting Your Source Code
Creating Encryption Envelopes

In this example, the Verilog code to be encrypted follows the “pragma protect begin
expression and ends with the "pragma protect end expression. If the code had been written in
VHDL, the code to be protected would follow a "protect BEGIN PROTECTED expression
and would end with a “protect END PROTECTED expression.

Example 2-2. Encryption Envelope Contains ‘include Compiler Directives

‘timescale 1ns / lps
“cell define

module dff (g, d, clear, preset, clock);

output g;

input d, clear, preset, clock;

reg q;

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect author = "IP Provider", author_info = "Widget 5 v3.2"
‘pragma protect key_ keyowner = "Mentor Graphics Corporation"

‘pragma protect key _method = "rsa"

‘pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect begin
“include diff.v
“include prim.v
‘include top.v

‘pragma protect end

always @ (posedge clock)
g = d;

endmodule

“endcelldefine

In Example 2-2, the entire contents of diff.v, prim.v, and top.v will be encrypted.

For amore technical explanation, see How Encryption Envelopes Work.

Protection Expressions

The encryption envelope contains a number of “pragma protect (Verilog/SystemVerilog) or
“protect (VHDL) expressions. The following protection expressions are expected when
creating an encryption envelope:

® data method — defines the encryption algorithm that will be used to encrypt the
designated source text. Model Sim supports the following encryption algorithms: des-
cbc, 3des-cbc, aes128-cbc, aes256-cbc, blowfish-cbc, cast128-cbe, and rsa.

* key keyowner — designates the owner of the encryption key.

46 ModelSim User's Manual, v10.3a

Protecting Your Source Code
Creating Encryption Envelopes

key keyname — specifies the keyowner’s key name.
key method — specifies an encryption algorithm that will be used to encrypt the key.

Note

The combination of key keyowner and key keyname expressions uniquely identify a
key. Thekey method is required with these two expressions to complete the definition of
the key.

begin — designates the beginning of the source code to be encrypted.

end — designates the end of the source code to be encrypted

Note

O

Encryption envel opes cannot be nested. A “pragma protect begin/end pair cannot bracket
another “pragma protect begin/end pair.

Optional "protect (VHDL) or "pragma protect (Verilog/SystemV erilog) expressions that may
be included are as follows:

author — designates the IP provider.
author_info — designates optional author information.

encoding — specifies an encoding method. The default encoding method, if noneis
specified, is“base 64.”

If anumber of protection expressions occur in asingle protection directive, the expressions are
evaluated in sequence from left to right. In addition, the interpretation of protected envelopesis
not dependent on this sequence occurring in a single protection expression or a sequence of
protection expressions. However, the most recent value assigned to a protection expression
keyword will be the one used.

Unsupported Protection Expressions

Optional protection expressions that are not currently supported include:

any digest_* expression
decrypt_license
runtime_license

viewport

ModelSim User’'s Manual, v10.3a 47

Protecting Your Source Code
Creating Encryption Envelopes

Using the ‘include Compiler Directive (Verilog only)

If any “include directives occur within a protected region of Verilog code and you use viog
+protect to compile, the compiler generates a copy of the include file with a*.vp” or a*“.svp”
extension and encrypts the entire contents of the include file. For example, if we have a header
file, header.v, with the following source code:

initial begin
a <= b;
b <= ¢;
end

and the file we want to encrypt, top.v, contains the following source code:

module top;
‘pragma protect begin
“include "header.v"
‘pragma protect end
endmodule

then, when we use the vlog +protect command to compile, the source code of the header file
will be encrypted. If we could decrypt the resulting work/top.vp file it would look like:

module top;
‘pragma protect begin
initial begin
a <= b;
b <= ¢;
end
‘pragma protect end
endmodule

In addition, vlog +protect creates an encrypted version of header.v in work/header.vp.

When using the vencrypt compile utility (see Delivering IP Code with Undefined Macros), any
“include statements will be treated astext just like any other source code and will be encrypted
with the other Verilog/SystemV erilog source code. So, if we used the vencrypt utility on the
top.v file above, the resulting work/top.vp file would look like the following (if we could
decrypt it):

module top;
‘protect
“include "header.v"
“endprotect
endmodule

The vencrypt utility will not create an encrypted version of header.h.

When you use vlog +protect to generate encrypted files, the original source files must all be
complete Verilog or SystemV erilog modules or packages. Compiler errors will result if you

attempt to perform compilation of a set of parameter declarations within a module. (See also
Compiling with +protect.)

48 ModelSim User's Manual, v10.3a

Protecting Your Source Code
Creating Encryption Envelopes

Y ou can avoid such errors by creating a dummy modul e that includes the parameter
declarations. For example, if you have afile that contains your parameter declarations and afile
that uses those parameters, you can do the following:

module dummy;
‘protect
‘include "params.v" // contains various parameters
‘include "tasks.v" // uses parameters defined in params.v
“endprotect

endmodule

Then, compile the dummy module with the +protect switch to generate an encrypted output file
with no compile errors.
vlog +protect dummy.v

After compilation, the work library will contain encrypted versions of params.v and tasks.v,
called params.vp and tasks.vp. Y ou may then copy these encrypted files out of the work
directory to more convenient locations. These encrypted files can be included within your
design files; for example:

module main
'include "params.vp"
'"include "tasks.vp"

Using Portable Encryption for Multiple Tools

An IP author can use the concept of multiple key blocks to produce code that is secure and
portable across any tool that supports Version 1 recommendations from the IEEE P1735
working group. This capability is not language-specific - it can be used for VHDL or Verilog.

To illustrate, suppose the author wants to modify the following VHDL sample file so the
encrypted model can be decrypted and ssmulated by both Model Sim and by a hypothetical
company named XYZ inc.

========== gample file ==========

-- The entity "ipl" is not protected

éﬁéity ipl is

éﬁé ipl;

-- The architecture "a" is protected

-- The internals of "a" are hidden from the user

‘protect data_method "aesl28-cbc"

‘protect encoding = (enctype = "base64")

‘protect key_keyowner = "Mentor Graphics Corporation"
‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

‘protect KEY_BLOCK

ModelSim User’'s Manual, v10.3a 49

Protecting Your Source Code
Creating Encryption Envelopes

‘protect

begin

architecture a of ipl is

end a;
‘protect

end

-- Both the entity "ip2" and its architecture "a" are completely protected

‘protect
‘protect
‘protect
‘protect
‘protect
‘protect
‘protect

data_method = "aesl28-cbc"

encoding = (enctype = "base64")
key_keyowner = "Mentor Graphics Corporation”
key_ keyname = "MGC-VERIF-SIM-RSA-1"
key_method = "rsa"

KEY_ BLOCK

begin

library ieee;

use ieee.

std_logic_1164.all;

entity ip2 is

end 1ip2;

architecture a of ip2 is

end a;
‘protect

end

= end of sample file ==========

The author does this by writing akey block for each decrypting tool. If XY Z publishes a public
key, the two key blocks in the IP source code might look like the following:

‘protect
‘protect
‘protect
‘protect
‘protect
‘protect
‘protect
‘protect
‘protect

key_keyowner = "Mentor Graphics Corporation"
key_method = "rsa"

key_ keyname = "MGC-VERIF-SIM-RSA-1"
KEY_BLOCK

key_keyowner = "XYZ inc"

key_method = "rsa"

key_keyname = "XYZ-keyPublicKey"
key_public_key = <public key of XYZ inc.>
KEY_BLOCK

The encrypted code would look very much like the samplefile, with the addition of another key

block:

‘protect
‘protect
‘protect
‘protect

key_keyowner = "XYZ inc"
key_method = "rsa"

key_keyname = "XYZ-keyPublicKey"
KEY_BLOCK

<encoded encrypted key information for "XYZ inc">

Model Sim uses its key block to determine the encrypted session key and XY Z Incorporated
uses the second key block to determine the same key. Consequently, both implementations
could successfully decrypt the code.

50

ModelSim User's Manual, v10.3a

Protecting Your Source Code
Compiling with +protect

Note
D The IP owner is responsible for obtaining the appropriate key for the specific tool(s)

protected IP isintended for, and should validate the encrypted results with those tools to
insure his IPis protected and will function as intended in those tools.

Compiling with +protect

To encrypt | P code with Model Sim, the +protect argument must be used with either the vcom
command (for VHDL) or the viog command (for Verilog and SystemV erilog). For example, if a
Verilog source code file containing encryption envelopes is named encrypt.v, it would be
compiled as follows:

vlog +protect encrypt.v

When +protect is used with vcom or vlog, encryption envelope expressions are transformed into
decryption envelope expressions and decryption content expressions. Source text within
encryption envelopes is encrypted using the specified key and is recorded in the decryption
envelope within adata_block. The new encrypted file is created with the same name as the
original unencrypted file but with a‘p’ added to the filename extension. For Verilog, the
filename extension for the encrypted fileis .vp; for SystemVerilogitis.svp, and for VHDL itis
vhdp. Thisencrypted file is placed in the current work library directory.

Y ou can designate the name of the encrypted file using the +pr otect=<filename> argument
with vcom or vlog as follows:

vlog +protect=encrypt.vp encrypt.v

Example 2-3 shows the resulting source code when the Verilog I P code used in Example 2-1 is
compiled with vlog +protect.

Example 2-3. Results After Compiling with vlog +protect

module test_dff4d (output [3:0] g, output err);
parameter WIDTH 4;
parameter DEBUG 0;
reg [3:0] d;
reg clk;
dff4 d4 (g, clk, d);
assign err = 0;
initial
begin
Sdump_all_vpi;
Sdump_tree_vpi (test_dff4);
Sdump_tree_vpi (test_dff4.d4);
Sdump_tree_vpil ("test_dff4");
Sdump_tree_vpi ("test_dff4.d4");
(
(
(

Sdump_tree_vpi("test_dff4.d", "test_dffd.clk", "test_dffd.qg");
Sdump_tree_vpi ("test_dff4.d4.d0", "test_dff4.d4.d3");
Sdump_tree_vpi("test_dffd4.d4.qg", "test_dffd4.dd.clk");

end

ModelSim User’'s Manual, v10.3a 51

Protecting Your Source Code
The Runtime Encryption Model

endmodule

module dff4 (output [3:0] g, input clk, input [3:0] 4);
‘pragma protect begin_protected
‘pragma protect version = 1

‘pragma protect encrypt_agent = "Model Technology"

‘pragma protect encrypt_agent_info = "6.6a"

‘pragma protect author = "IP Provider"

‘pragma protect author_info = "Widget 5 version 3.2"

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect key_keyowner = "Mentor Graphics Corporation"

‘pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect key_method = "rsa"

‘pragma protect key_block encoding = (enctype = "base64", line_length =

64, bytes = 128)
SdI6t9ewd9GE4Ava+2BgfnRuBNc45wVwjyPeSD/5gnojnbAHdpjWa/0/TyhwlaglT
NbDGrDg6I5dbzblLs5UQGFtB21gOBMNE4JTpGREVOSEqUAibBHiTpsNrbLppliJLi
714kQhnivnUuCx87GugXIf5Aa0lGBz5rCxKyA47E1QM=

‘pragma protect data_block encoding = (enctype = "base64", line_length =
64, bytes = 496)
efkkPz4gJdS06zZ2fYdr37fgEoxgLZ30Tgu8y34GTYKO0ZZGKkyonE9zDQct5d0dfe
/BZwoHCWng4xqUp2dxF4dx6cwb6gBIcSEL fCPDY1hJASoVX+70wIPGNnLh5U0P/Wohp
LvkfhTuk2FENGZh+y3rWZAC1vFYKXwDakSJI3neSglHkwYr+T8vGviohIPKet+CPC
d/RxX01i2ChI64KaMY2/fKlerXrnXV709ZIrJRHL/CtQ/uxY7aMioR3 /WobFrnuoz
P8fH7x/I30takK25KiL6qvuN0jf7g4LiozSTveT6iTTHXOMBOfZ1C1eREMF835g8D
K51zU+rcbl7Wyt8utm71WSu+2gtwvEP39G6R60fkQAUVGW+xsgtmWyyIOdM+PKW1
sgeoVOsBUHFY3x85F534PQNVIVAT1VZFeioMxmIJWV+pfT301rcIJGgX1AXAG25CkY
M1zF77caF8LAsKbvCTgOVsHb7NEQOVIVIZZydVy23VswClYcrxroOhPzmgNgndpf
zqgCcFpP+yBnt4UELa630s60fsAu7DZ/4kWPAwWExyvaahI2ciWs3HREcCZEO+aveulT
gXEFSmOTvBBsMwLc7Uv] jC0aF1vUWhDxhwQDAjYT89r2h1G7Y0PG1G0024s0/A2+
TjdCcOogiGsTDKx6Bxf91g==

‘pragma protect end_protected

In this example, the “pragma protect data_method expression designates the encryption
algorithm used to encrypt the Verilog I P code. The key for this encryption algorithm is aso
encrypted — in this case, with the RSA public key. The key isrecorded in the key block of the
protected envelope. The encrypted IP code is recorded in the data_block of the envelope.
Model Sim allows more than one key_block to be included so that a single protected envelope
can be encrypted by Model Sim then decrypted by tools from different users.

The Runtime Encryption Model

After you compile with the +protect compile argument, all source text, identifiers, and line
number information are hidden from the end user in the resulting compiled object. Model Sim
cannot locate or display any information of the encrypted regions. Specifically, this means that:

® aSource window will not display the design units' source code
® aStructure window will not display the internal structure
® the Objects window will not display internal signals

® the Processes window will not display internal processes

52

ModelSim User's Manual, v10.3a

Protecting Your Source Code
Language-Specific Usage Models

® theLocalswindow will not display internal variables

® none of the hidden objects may be accessed through the Dataflow window or with
Model Sim commands.

Language-Specific Usage Models

This section includes the following usage models that are language-specific:

® Usage Modelsfor Protecting Verilog Source Code
o Deélivering IP Code with Undefined Macros
o Délivering IP Code with User-Defined Macros
® Usage Modelsfor Protecting VHDL Source Code
o Using the vhencrypt Utility
o Using ModelSim Default Encryption for VHDL
o User-Selected Encryption for VHDL
o Using raw Encryption for VHDL
o Encrypting Several Parts of aVHDL Source File
o Using Portable Encryption for Multiple Tools

Usage Models for Protecting Verilog Source Code

Model Sim’ s encryption capabilities support the following Verilog and SystemV erilog usage
models for | P authors and their customers.

® |Pauthors may use the vencrypt utility to deliver Verilog and SystemV erilog code
containing undefined macros and "directives. The |P user can then define the macros and
“directives and use the code in awide range of EDA tools and design flows. See
Delivering IP Code with Undefined Macros.

® |Pauthors may use "pragma protect directivesto protect Verilog and SystemVerilog
code containing user-defined macros and “directives. The I P code can be delivered to IP
customers for usein awide range of EDA tools and design flows. See Delivering IP
Code with User-Defined Macros.

Delivering IP Code with Undefined Macros

The vencrypt utility enables IP authors to deliver VHDL and Verilog/ SystemVerilog | P code
(respectively) that contains undefined macros and “directives. The resulting encrypted | P code
can then be used in awide range of EDA tools and design flows.

ModelSim User’'s Manual, v10.3a 53

Protecting Your Source Code
Language-Specific Usage Models

The recommended encryption usage flow is shown in Figure 2-2.

Figure 2-2. Verilog/SystemVerilog Encryption Usage Flow

1. Create IP code with undefined macros
2 Create encryption envelopes to protect

) selected regions of code

—— IP Author

3 vencrypt

) (creates .vp or . svp file)
4 Deliver encrypted P

' [.vo or . svp file)
5. Define macros
6. Compile encrypted IP with vilog User
7. Simulate

1. ThelP author creates code that contains undefined macros and “directives.

2. ThelP author creates encryption envel opes (see Creating Encryption Envelopes) to

protect selected regions of code or entire files (see Protection Expressions).

. TheIP author uses Model Sim’ s vencrypt utility to encrypt Verilog and SystemVerilog

code contained within encryption envelopes. Macros are not pre-processed before
encryption so macros and other “directives are unchanged.

The vencrypt utility produces afile with a.vp or a.svp extension to distinguish it from
non-encrypted Verilog and SystemVerilog files, respectively. The file extension may be
changed for use with simulators other than ModelSim. The original file extension is
preserved if the -d <dirname> argument is used with vencrypt, or if a “directive is used
in the file to be encrypted.

With the -h <filename> argument for vencrypt the | P author may specify a header file
that can be used to encrypt alarge number of files that do not contain the “pragma
protect (or proprietary “protect information - see Proprietary Source Code Encryption
Tools) about how to encrypt the file. Instead, encryption information is provided in the

54

ModelSim User's Manual, v10.3a

Protecting Your Source Code
Language-Specific Usage Models

<filename> specified by -h <filename>. This argument essentially concatenates the
header file onto the beginning of each file and saves the user from having to edit
hundreds of filesin order to add in the same “pragma protect to every file. For
example,

vencrypt -h encrypt_head top.v cache.v gates.v memory.v

concatenates the information in the encrypt_head file into each verilog file listed. The
encrypt_head file may look like the following:

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect author = "IP Provider"

‘pragma protect key_keyowner = "Mentor Graphics Corporation"
‘pragma protect key_method = "rsa"

‘pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect encoding = (enctype = "base64")

‘pragma protect begin

Notice, thereis no "pragma protect end expression in the header file, just the header
block that starts the encryption. The “pragma protect end expression isimplied by the
end of thefile.

4. The IP author delivers encrypted IP with undefined macros and "directives.
5.
6
7

The I P user defines macros and “directives.

. TheIP user compiles the design with vlog.

. TheIP user simulates the design with Model Sim or other simulation tools.

Delivering IP Code with User-Defined Macros

| P authors may use "pragma protect expressions to protect proprietary code containing user-
defined macros and “directives. The resulting encrypted IP code can be delivered to customers
for use in awide range of EDA tools and design flows. An example of the recommended usage
flow for Verilog and SystemVerilog IP is shown in Figure 2-3.

ModelSim User’'s Manual, v10.3a 55

Protecting Your Source Code
Language-Specific Usage Models

4.
5.

Figure 2-3. Delivering IP Code with User-Defined Macros

Create Verlog/SystemWerilog IP code
1. with user-defined macros
2 Create enu::rypt_inn envelopes to
. protect regions of code

l — IP Author

vlog +protect
3. (creates vp or . svp file)

!

4 Deliver encrypted IP code
. [.vo or 5o file)
5. Simulate User

The IP author creates proprietary code that contains user-defined macros and “directives.

The I P author creates encryption envel opes with “pragma protect expressionsto protect
regions of code or entire files. See Creating Encryption Envelopes and Protection
Expressions.

The IP author uses the +protect argument for the viog command to encrypt IP code
contained within encryption envelopes. The "pragma protect expressions are ignored
unless the +protect argument is used during compile. (See Compiling with +protect.)

The vlog +protect command produces a .vp or a.svp extension for the encrypted file to
distinguish it from non-encrypted Verilog and SystemVerilog files, respectively. The
file extension may be changed for use with simulators other than ModelSim. The
original file extension is preserved if a "directive is used in the file to be encrypted. For
more information, see Compiling with +protect.

The IP author delivers the encrypted I P.

The IP user simulates the code like any other file.

When encrypting source text, any macros without parameters defined on the command line are
substituted (not expanded) into the encrypted file. This makes certain macros unavailable in the
encrypted source text.

56

ModelSim User's Manual, v10.3a

Protecting Your Source Code
Language-Specific Usage Models

Model Sim takes every simple macro that is defined with the compile command (vlog) and
substitutes it into the encrypted text. This prevents third party users of the encrypted blocks
from having access to or modifying these macros.

Note
Macros not specified with vlog via the +define+ option are unmodified in the encrypted

block.

For example, the code below is an example of an file that might be delivered by an IP provider.
The filename for this module is exampl€00.sv.

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect key_keyowner = "Mentor Graphics Corporation"
‘pragma protect key_method = "rsa"

‘pragma protect key_ keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect author = "Mentor", author_info = "Mentor_author"

‘pragma protect begin
“timescale 1 ps / 1 ps

module example00 () ;
“ifdef IPPROTECT
reg ' IPPROTECT ;
reg otherReg ;
initial begin
"IPPROTECT = 1;
otherReg = 0;

Sdisplay ("ifdef defined as true");

“define FOO O

$display ("FOO is defined as: ", "FOO);
Sdisplay ("reg IPPROTECT has the value: ", “IPPROTECT);
end

“else

initial begin
Sdisplay("ifdef defined as false");
end
“endif
endmodule
‘pragma protect end

We encrypt the example00.sv module with the viog command as follows:

vlog +define+IPPROTECT=ip_value +protect=encrypted00.sv example00.sv

This creates an encrypted file called encrypted00.sv. We can then compile thisfile with amacro
override for the macro “FOQO” asfollows:

vlog +define+F00=99 encrypted00.sv

ModelSim User’'s Manual, v10.3a 57

Protecting Your Source Code
Language-Specific Usage Models

The macro FOO can be overridden by a customer while the macro IPPROTECT retains the
value specified at the time of encryption, and the macro IPPROTECT no longer existsin the
encrypted file.

Usage Models for Protecting VHDL Source Code

Model Sim’ s encryption capabilities support the following VHDL usage models.

® |Pauthors may use protect directivesto create an encryption envelope (see Creating
Encryption Envelopes) for the VHDL code to be protected and use ModelSim’'s
vhencrypt utility to encrypt the code. The encrypted IP code can be delivered to IP
customers for usein awide range of EDA tools and design flows. See Using the
vhencrypt Utility.

® |Pauthors may use protect directivesto create an encryption envelope (see Creating
Encryption Envelopes) for the VHDL code to be protected and use Model Sim'’ s default
encryption and decryption actions. The | P code can be delivered to IP customersfor use
in awide range of EDA tools and design flows. See Using Model Sim Default
Encryption for VHDL.

® |Pauthorsmay use "protect directivesto create an encryption envelope for VHDL code
and select encryption methods and encoding other than Model Sim’ s default methods.
See User-Selected Encryption for VHDL.

® |Pauthors may use“raw” encryption and encoding to aid debugging. See Using raw
Encryption for VHDL.

* |Pauthorsmay encrypt several parts of the sourcefile, choose the encryption method for
encrypting the source (the data_method), and use a key automatically provided by
Model Sim. See Encrypting Several Parts of a VHDL Source File.

® |Pauthors can use the concept of multiple key blocks to produce code that is secure and
portable across different simulators. See Using Portable Encryption for Multiple Tooals.

The usage models areillustrated by examplesin the sections below.

Note
VHDL encryption requires that the KEY_BLOCK (the sequence of key_keyowner,

key keyname, and key_method directives) end with a ‘protect KEY_BLOCK directive.

Using the vhencrypt Utility

The vhencrypt utility enables IP authors to deliver encrypted VHDL |P code to users. The
resulting encrypted | P code can then be used in awide range of EDA tools and design flows.

1. ThelP author creates code.

58 ModelSim User's Manual, v10.3a

Protecting Your Source Code
Language-Specific Usage Models

2. ThelP author creates encryption envel opes (see Creating Encryption Envelopes) to
protect selected regions of code or entire files (see Protection Expressions).

3. ThelP author uses Model Sim'’ s vhencrypt utility to encrypt code contained within
encryption envelopes.

The vhencrypt utility produces afile with a.vhdp or a .vhdlp extension to distinguish it
from non-encrypted VHDL files. The file extension may be changed for use with
simulators other than ModelSim. The original file extension is preserved if the

-d <dirname> argument is used with vhencrypt.

With the -h <filename> argument for vencrypt the | P author may specify a header file
that can be used to encrypt alarge number of files that do not contain the “protect
information about how to encrypt thefile. Instead, encryption information is provided in
the <filename> specified by -h <filename>. This argument essentially concatenates the
header file onto the beginning of each file and saves the user from having to edit
hundreds of filesin order to add in the same “protect to every file. For example,

vhencrypt -h encrypt_head top.vhd cache.vhd gates.vhd memory.vhd

concatenates the information in the encrypt_head file into each VHDL filelisted. The
encrypt_head file may look like the following:

‘protect data_method = "aesl28-cbc"

‘protect author = "IP Provider"

‘protect encoding = (enctype = "base64")

‘protect key_ keyowner = "Mentor Graphics Corporation"
‘protect key_method = "rsa"

‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect KEY_BLOCK
‘protect begin

Notice, thereisno "protect end expression in the header file, just the header block that
starts the encryption. The “protect end expression isimplied by the end of thefile.

4. TheIP author delivers encrypted IP.
5. ThelP user compiles the design with vcom.

6. ThelP user ssimulates the design with Model Sim or other simulation tools.

Using ModelSim Default Encryption for VHDL

Suppose an | P author needs to make a design entity, called IP1, visible to the user so the user
can instantiate the design, but the author wants to hide the architecture implementation from the
user. In addition, suppose that |P1 instantiates entity | P2, which the author wants to hide
completely from the user. The easiest way to accomplish thisis to surround the regions to be
protected with “protect begin and "protect end directives and let Model Sim choose default
actions. For this example, all the source code existsin asingle file, examplel.vhd:

=== ==== file eXamplel.vhd === ====

ModelSim User’'s Manual, v10.3a 59

Protecting Your Source Code
Language-Specific Usage Models

-- The entity "ipl" is not protected

entity ipl is

end ipl;

-- The architecture "a" is protected

-- The internals of "a" are hidden from the user
‘protect begin

architecture a of ipl is

end a;

‘protect end

-- Both the entity "ip2" and its architecture "a" are completely protected
‘protect begin

entity ip2 is

end 1ip2;

architecture a of ip2 is

end a;

‘protect end

=====—===== end Of file eXamplel.Vhd =====—=====

The IP author compiles this file with the vcom +protect command as follows:

vcom +protect=examplel.vhdp examplel.vhd

The compiler produces an encrypted file, examplel.vhdp which looks like the following:

========== file examplel.vhdp ==========

-- The entity "ipl" is not protected

éﬁéity ipl is

éﬁé ipl;

-- The architecture "a" is protected

-- The internals of "a" are hidden from the user

‘protect BEGIN_PROTECTED
‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect key_keyowner = "Mentor Graphics Corporation"

‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

‘protect encoding = (enctype = "base64")

‘protect KEY_BLOCK
<encoded encrypted session key>
‘protect data_method="aesl28-cbc"
‘protect encoding = (enctype = "base64" , bytes = 224)
‘protect DATA_BLOCK
<encoded encrypted IP>
‘protect END_PROTECTED

60

ModelSim User's Manual, v10.3a

Protecting Your Source Code
Language-Specific Usage Models

-- Both the entity "ip2" and its architecture "a" are completely protected
‘protect BEGIN_PROTECTED
‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect key_keyowner = "Mentor Graphics Corporation"

‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

‘protect encoding = (enctype = "base64")

‘protect KEY_BLOCK
<encoded encrypted session key>
‘protect data_method = "aesl28-cbc"
‘protect encoding = (enctype = "base64" , bytes = 224)
‘protect DATA_BLOCK
<encoded encrypted IP>
‘protect END_PROTECTED

========== end of file examplel.vhdp ==========

When the | P author surrounds atext region using only “protect begin and “protect end,
Model Sim uses default values for both encryption and encoding. The first few lines following
the "protect BEGIN_PROTECTED region in file examplel.vhdp contain the key keyowner,
key keyname, key _method and KEY _BLOCK directives. The session key is generated into the
key block and that key block is encrypted using the “rsa” method. The data_method indicates
that the default data encryption method is aes128-cbc and the “ enctype” value shows that the
default encoding is base64.

Alternatively, the | P author can compile file examplel.vhd with the command:

vcom +protect examplel.vhd

Here, the author does not supply the name of the file to contain the protected source. Instead,
Model Sim creates a protected file, givesit the name of the original source file with a'p' placed
at the end of the file extension, and puts the new file in the current work library directory. With
the command described above, Model Sim creates file wor k/examplel.vhdp. (See Compiling
with +protect.)

The IP user compiles the encrypted file wor k/examplel.vhdp the ordinary way. The +protect
switch is not needed and the IP user does not have to treat the .vhdp file in any special manner.
Model Sim automatically decrypts the file internally and keeps track of protected regions.

If the I P author compiles the file examplel.vhd and does not use the +protect argument, then the
fileiscompiled, various "protect directives are checked for correct syntax, but no protected file
is created and no protection is supplied.

Model Sim’ s default encryption methods provide an easy way for |P authors to encrypt VHDL
designs while hiding the architecture implementation from the user. It should be noted that the
results are only usable by Model Sim tools.

ModelSim User’'s Manual, v10.3a 61

Protecting Your Source Code
Language-Specific Usage Models

User-Selected Encryption for VHDL

Suppose that the IP author wants to produce the same code as in the examplel.vhd file used
above, but wants to provide specific values and not use any default values. To do this the author
adds “protect directives for keys, encryption methods, and encoding, and places them before

each “protect begin directive. The input file would look like the following:
========== file example2.vhd ==========
-- The entity "ipl" is not protected
éﬁéity ipl is
end ipl;
-- The architecture "a" is protected
-- The internals of "a" are hidden from the user

‘protect data_method "aesl28-cbc"

‘protect encoding = (enctype = "base64")

‘protect key_keyowner = "Mentor Graphics Corporation"
‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

‘protect KEY_BLOCK
‘protect begin
architecture a of ipl is
end a;

‘protect end

-- Both the entity "ip2" and its architecture "a" are completely protected

‘protect data_method = "aesl28-cbc"

‘protect encoding = (enctype = "base64")

‘protect key_keyowner = "Mentor Graphics Corporation"
‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

‘protect KEY_BLOCK

‘protect begin

library ieee;

use ieee.std_logic_1l164.all;
entity ip2 is

end 1ip2;

architecture a of ip2 is
end a;

‘protect end

========== end of file example2.vhd ==========

The data_method directive indicates that the encryption algorithm *aes128-cbc” should be used
to encrypt the source code (data). The encoding directive selectsthe “ base64” encoding method,
and the various key directives specify that the Mentor Graphic key nhamed “MGC-VERIF-SIM-
RSA-1" and the “RSA” encryption method are to be used to produce a key block containing a

62 ModelSim User's Manual, v10.3a

Protecting Your Source Code
Language-Specific Usage Models

randomly generated session key to be used with the “ aes128-cbc” method to encrypt the source
code. See Using the Mentor Graphics Public Encryption Key.

Using raw Encryption for VHDL

Suppose that the | P author wants to use “raw” encryption and encoding to help with debugging
the following entity:

entity example3_ent is
port (
inl : in bit;

outl : out bit);

end example3_ent;
Then the architecture the author wants to encrypt might be this:
========== File example3_arch.vhd
‘protect data_method = "raw"
‘protect encoding = (enctype = "raw")
‘protect begin
architecture arch of example3_ent is
begin

outl <= inl after 1 ns;

end arch;
‘protect end

========== End of file example3_arch.vhd ==========
If (after compiling the entity) the example3_arch.vhd file were compiled using the command:
vcom +protect example3_arch.vhd
Then the following file would be produced in the work directory
========== File work/example3_arch.vhdp ==========
‘protect data_method = "raw"
‘protect encoding = (enctype = "raw")

‘protect BEGIN_PROTECTED
‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect data_method = "raw"
‘protect encoding = (enctype = "raw", bytes = 81)

“protect DATA_BLOCK
architecture arch of example3_ent is

begin

outl <= inl after 1 ns;

ModelSim User’'s Manual, v10.3a 63

Protecting Your Source Code
Language-Specific Usage Models

end arch;
‘protect END_PROTECTED

========== End of file work/example3_arch.vhdp

Noticethat the protected file is very similar to the original file. The differences are that “protect
begin isreplaced by "protect BEGIN_PROTECTED, protect end isreplaced by "protect
END_PROTECTED, and some additional encryption information is supplied after the BEGIN
PROTECTED directive.

See Encryption and Encoding Methods for more information about raw encryption and
encoding.

Encrypting Several Parts of a VHDL Source File

This example shows the use of symmetric encryption. (See Encryption and Encoding Methods
for more information on symmetric and asymmetric encryption and encoding.) It aso
demonstrates another common use model, in which the IP author encrypts several parts of a
source file, chooses the encryption method for encrypting the source code (the data_method),
and uses akey automatically provided by ModelSim. (Thisisvery similar to the proprietary
“protect method in Verilog - see Proprietary Source Code Encryption Tools.)

========== file example4.vhd —=========
entity ex4_ent is
end ex4_ent;
architecture ex4_arch of ex4_ent is
signal sl: bit;
‘protect data_method = "aesl28-cbc"
‘protect begin
signal s2: bit;
‘protect end
signal s3: bit;
begin -- ex4_arch
‘protect data_method = "aesl28-cbc"
‘protect begin
s2 <= sl after 1 ns;
‘protect end
s3 <= s2 after 1 ns;
end ex4_arch;
========== end of file example4.vhd
If thisfile were compiled using the command:

vcom +protect example4.vhd

64 ModelSim User's Manual, v10.3a

Protecting Your Source Code
Proprietary Source Code Encryption Tools

Then the following file would be produced in the work directory:
========== File work/exampled.vhdp ==========
entity ex4_ent is
end ex4_ent;

architecture ex4_arch of ex4_ent is
signal sl: bit;

‘protect data_method = "aesl28-cbc"

‘protect BEGIN_PROTECTED

‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect data_method = "aesl28-cbc"
‘protect encoding = (enctype = "base64" , bytes = 18)

‘protect DATA_BLOCK
<encoded encrypted declaration of s2>
‘protect END_PROTECTED

signal s3: bit;

begin -- ex4_arch
‘protect data_method = "aesl28-cbc"

‘protect BEGIN_PROTECTED
‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect data_method = "aesl28-cbc"
‘protect encoding = (enctype = "base64" , bytes = 21)

‘protect DATA_BLOCK

<encoded encrypted signal assignment to s2>
‘protect END_PROTECTED

s3 <= s2 after 1 ns;

end ex4_arch;

========== End of file work/exampled.vhdp

The encrypted exampled.vhdp file shows that an | P author can encrypt both declarations and
statements. Also, note that the signal assignment

s3 <= s2 after 1 ns;

is not protected. This assignment compiles and simulates even though signal s2 is protected. In
general, executable VHDL statements and declarations simulate the same whether or not they
refer to protected objects.

Proprietary Source Code Encryption Tools

Mentor Graphics provides two proprietary methods for encrypting source code.

ModelSim User’'s Manual, v10.3a 65

Protecting Your Source Code
Proprietary Source Code Encryption Tools

®* The protect / "endprotect compiler directives allow you to encrypt regions within
Verilog and SystemVerilog files.

® The-nodebug argument for the vcom and vliog compile commands allows you to
encrypt entire VHDL, Verilog, or SystemV erilog source files.

Using Proprietary Compiler Directives

The proprietary “protect viog compiler directive is not compatible with other ssmulators.
Though other smulators have a "protect directive, the algorithm Model Sim uses to encrypt
Verilog and SystemVerilog source filesis different. Therefore, even though an uncompiled
source file with “protect is compatible with another simulator, once the source is compiled in
Model Sim, the resulting .vp or .svp source file is not compatible.

IPauthors and | P users may use the "protect compiler directive to define regions of Verilog and
SystemV erilog code to be protected. The code is then compiled with the vlog +protect
command and simulated with Model Sim. The vencrypt utility may be used if the code contains
undefined macros or “directives, but the code must then be compiled and simulated with
ModelSim.

Note

D While Model Sim supports both “protect and “pragma protect encryption directives,
these two approaches to encryption are incompatible. Code encrypted by one type of
directive cannot be decrypted by another.

The usage flow for delivering IP with the Mentor Graphics proprietary “protect compiler
directiveisasfollows:

Figure 2-4. Delivering IP with "protect Compiler Directives

Protect selected regions of Werilog
or SystemVerilog code with
"protect compiler directives

!

vlog +protect
(creates .vp or .svp file)

!

Simulate

IP Author
or User

66 ModelSim User's Manual, v10.3a

Protecting Your Source Code
Proprietary Source Code Encryption Tools

1. ThelP author protects selected regions of Verilog or SystemVerilog IP with the
“protect / "endprotect directive pair. The code in "protect / “endprotect encryption
envelopes has all debug information stripped out. This behaves exactly as if using

vlog -nodebug=ports+pli
except that it applies to selected regions of code rather than the wholefile.

2. ThelIP author uses the vlog +protect command to encrypt |P code contained within
encryption envelopes. The “protect / “endprotect directives are ignored by default
unless the +protect argument is used with viog.

Once compiled, the original sourcefileis copied to anew filein the current work
directory. The vlog +protect command produces a.vp or a.svp extension to distinguish
it from other non-encrypted Verilog and SystemV erilog files, respectively. For example,
top.v becomes top.vp and cache.sv becomes cache.svp. This new file can be delivered
and used as a replacement for the original source file. (See Compiling with +protect.)

Note
D The vencrypt utility may be used if the code also contains undefined macros or
“directives, but the code must then be compiled and simulated with Model Sim.

Y ou can use vlog +protect=<filename> to create an encrypted output file, with the
designated filename, in the current directory (not in the work directory, asin the default
case where [=<filename>] is not specified). For example:

vlog test.v +protect=test.vp

If the filename is specified in this manner, all source files on the command line will be
concatenated together into asingle output file. Any “include files will also be inserted
into the output file.

Caution
“protect and "endprotect directives cannot be nested.

If errors are detected in a protected region, the error message always reports the first line of the
protected block.

Protecting Source Code Using -nodebug

Verilog/SystemVerilog and VHDL 1P authors and users may use the proprietary vlog -nodebug
or vcom -nodebug command, respectively, to protect entire files. The -nodebug argument for
both vcom and vlog hides internal model data, allowing you to provide pre-compiled libraries
without providing source code and without revealing internal model variables and structure.

ModelSim User’'s Manual, v10.3a 67

Protecting Your Source Code
Encryption Reference

Note

The -nodebug argument encrypts entire files. The "protect compiler directive allowsyou
to encrypt regions within afile. Refer to Compiler Directives for details.

When you compile with -nodebug, all source text, identifiers, and line number information are
stripped from the resulting compiled object, so Model Sim cannot locate or display any
information of the model except for the external pins.

Y ou can access the design units comprising your model viathe library, and you may invoke
vsim directly on any of these design units to see the ports. To restrict even this access in the
lower levels of your design, you can use the following -nodebug options when you compile:

Table 2-1. Compile Options for the -nodebug Compiling

Command and Switch

Result

vcom -nodebug=ports

makes the ports of a VHDL design unit
invisible

vlog -nodebug=ports

makes the ports of a Verilog design unit
invisible

vlog -nodebug=pli

prevents the use of PLI functions to
interrogate the module for information

vlog -nodebug=ports+pli

combines the functions of -nodebug=ports
and -nodebug=pli

Note

D Do not use the =ports option on a design without hierarchy, or on the top level of a
hierarchical design. If you do, no ports will be visible for smulation. Rather, compile al
lower portions of the design with -nodebug=ports first, then compile the top level with

-nodebug alone.

Design units or modules compiled with -nodebug can only instantiate design units or modules

that are also compiled -nodebug.

Do not use -nodebug=ports for mixed language designs, especialy for Verilog modules to be

instantiated inside VHDL.

Encryption Reference

This section includes reference details on:

® Encryption and Encoding Methods

®* How Encryption Envelopes Work

68

ModelSim User's Manual, v10.3a

Protecting Your Source Code
Encryption Reference

® Using Public Encryption Keys
® Using the Mentor Graphics Public Encryption Key

Encryption and Encoding Methods

There are two basic encryption techniques: symmetric and asymmetric.

® Symmetric encryption uses the same key for both encrypting and decrypting the code
region.

® Asymmetric encryption methods use two keys: a public key for encryption, and aprivate
key for decryption.

Symmetric Encryption

For symmetric encryption, security of the key is critical and information about the key must be
supplied to Model Sim. Under certain circumstances, Model Sim will generate arandom key for
use with a symmetric encryption method or will use an interna key.

The symmetric encryption algorithms Model Sim supports are:

® deschc

® 3des-cbc

* aesl28-cbc

® aes192-cbc

® aes256-cbc

* Dblowfish-cbc
® cast128-chc

The default symmetric encryption method Model Sim uses for encrypting IP source codeis
aes128-chc.
Asymmetric Encryption

For asymmetric encryption, the public key is openly available and is published using some form
of key distribution system. The private key is secret and is used by the decrypting tool, such as
Model Sim. Asymmetric methods are more secure than symmetric methods, but take much
longer to encrypt and decrypt data.

The only asymmetric method Model Sim supportsis:

rsa

ModelSim User’'s Manual, v10.3a 69

Protecting Your Source Code
Encryption Reference

Thismethod isonly supported for specifying key information, not for encrypting | P source code
(i.e., only for key methods, not for data methods).

For testing purposes, Model Sim also supports raw encryption, which doesn't change the
protected source code (the simulator still hides information about the protected region).

All encryption algorithms (except raw) produce byte streams that contain non-graphic
characters, so there needs to be an encoding mechanism to transform arbitrary byte streamsinto
portable sequences of graphic characters which can be used to put encrypted text into source
files. The encoding methods supported by ModelSim are:

® uuencode
®* basetd
* raw

Base 64 encoding, which is technically superior to uuencode, is the default encoding used by
ModelSim, and is the recommended encoding for all applications.

Raw encoding must only be used in conjunction with raw encryption for testing purposes.

How Encryption Envelopes Work

Encryption envelopes work as follows:

1. Theencrypting tool generates arandom key for use with a symmetric method, called a
“session key.”

2. ThelP protected source code is encrypted using this session key.

3. Theencrypting tool communicates the session key to the decrypting tool —which could
be Model Sim or some other tool — by means of aKEY_BLOCK.

4. For each potential decrypting tool, information about that tool must be provided in the
encryption envelope. This information includes the owner of the key (key_keyowner),
the name of the key (key_keyname), the asymmetric method for encrypting/decrypting
the key (key_method), and sometimes the key itself (key_public_key).

5. The encrypting tool uses thisinformation to encrypt and encode the session key into a
KEY_BLOCK. The occurrence of aKEY_BLOCK in the source code tells the
encrypting tool to generate an encryption envelope.

6. The decrypting tool reads each KEY _BLOCK until it finds one that specifies akey it
knows about. It then decrypts the associated KEY_BLOCK data to determine the
original session key and uses that session key to decrypt the IP source code.

70 ModelSim User's Manual, v10.3a

Protecting Your Source Code
Encryption Reference

Note
VHDL encryption requires that the KEY_ BLOCK (the sequence of key keyowner,

key keyname, and key method directives) end with a “protect KEY_BLOCK directive.

Using Public Encryption Keys

If IP authors want to encrypt for third party EDA tools, other public keys need to be specified
with the key_public_key directive as follows.

For Verilog and SystemVerilog:

‘pragma protect key_keyowner="Acme"

‘pragma protect key_keyname="AcmeKeyName"

‘pragma protect key_public_key

MIGEMAOGCSOGSIb3DOEBAQUAA4AGNADCBIQKBgQOCNI fQb+LLzTMX3NRARSV7A8+LV5SgMEJCvI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpqUgTTD+mI6grIST+R4AAXXCgVHYUwWOT
80Xs0QgRgkrGYXWI1RUNNBcIm4ZULexYz89720j6rQ99n5elkDa/eBcszMIyOkcGQIDAQAB

For VHDL:

‘protect key_keyowner="Acme"

‘protect key_keyname="AcmeKeyName"

‘protect key_public_key

MIGEMAOGCSOGSIb3DQOEBAQUAA4AGNADCBIQKBgQOCNI fQb+LLZzTMX3NRARSV7A8+LV5SgMEJCvI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpqUgTTD+mI6grIST+R4AAXXCgVHYUwWOT
80Xs0QgRgkrGYXWI1RUNNBcImM4ZULexYz89720j6rQ99n5elkDa/eBcszMIyOkcGQIDAQAB

This defines a new key named “ AcmeKeyName” with a key owner of “Acme.” The data block
following key_public_key directive is an example of a base64 encoded version of a public key
that should be provided by atool vendor.

Using the Mentor Graphics Public Encryption Key

Note
Mentor Graphics supplies this public encryption key without exception to support

interoperability across products.

The Mentor Graphics base64 encoded RSA public key is:

MIGEMAOGCSQGSIb3DQEBAQUAAAGNADCBiQKBgQCNI fQb+LLZzTMX3NRARSV7A8+LV5SgMEJCVI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dca2gIvEIcpqUgTTD+mJI6grJISJT+R4AAXXCgVHYUWOT
80Xs0QgRagkrGYXW1RUNNBcIm4 ZULexYz89720j6rQ99n5elkDa/eBcszMIyOkcGQIDAQAB

For Verilog and SystemVerilog applications, copy and paste the entire Mentor Graphics key
block, asfollows, into your code:

‘pragma protect key_keyowner = "Mentor Graphics Corporation"

ModelSim User’'s Manual, v10.3a 71

Protecting Your Source Code
Encryption Reference

‘pragma protect key_method = "rsa"

‘pragma protect key_ keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect key public_key

MIGEMAOGCSOGSIb3DQEBAQUAAAGNADCBiQKBgQCNI fQb+LLZzTMX3NRARSV7A8+LV5SgMEJCVI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpgUgTTD+mJ6grISTI+R4AAXXCgVHYUWOT
80Xs0QgRgkrGYXWIRUNNBcImM4ZULexYz89720]j6rQ99n5elkDa/eBcszMIyOkcGQIDAQARB

The vencrypt utility will recognize the Mentor Graphics public key. If vencrypt is not used, you
must use the +protect switch with the viog command during compile.

For VHDL applications, copy and paste the entire Mentor Graphics key block, as follows, into
your code:

‘protect key_keyowner = "Mentor Graphics Corporation"
‘protect key_method = "rsa"
‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_ public_key

MIGEMAOGCSOGSIb3DQEBAQUAAAGNADCBiQKBgQCNI fQb+LLZzTMX3NRARSV7A8+LV5SgMEJCVI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpgUgTTD+mJ6grISTI+R4AAXXCgVHYUwWOT
80Xs0QgRgkrGYXWIRUNNBcImM4ZULexYz89720]j6rQ99n5elkDa/eBcszMIyOkcGQIDAQARB

The vhencrypt utility will recognize the Mentor Graphics public key. If vhencrypt is not used,
you must use the +protect switch with the vcom command during compile.

Example 2-4 illustrates the encryption envel ope methodology for using thiskey in
Verilog/SystemVerilog. With this methodol ogy you can collect the public keysfrom the various
compani es whose tools process your | P, then create atemplate that can be included into thefiles
you want encrypted. During the encryption phase anew key is created for the encryption
algorithm each time the source is compiled. These keys are never seen by a human. They are
encrypted using the supplied RSA public keys.

Example 2-4. Using the Mentor Graphics Public Encryption Key in
Verilog/SystemVerilog

//

// Copyright 1991-2009 Mentor Graphics Corporation
//

// All Rights Reserved.

//

// THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF

// MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS SUBJECT TO LICENSE TERMS.
/7

‘timescale 1ns / lps
‘celldefine

module dff (g, d, clear, preset, clock); output g; input d, clear, preset, clock;

reg d;

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect key_ keyowner = "Mentor Graphics Corporation"
‘pragma protect key_method = "rsa"

‘pragma protect key keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect key_ public_key

72 ModelSim User's Manual, v10.3a

Protecting Your Source Code
Encryption Reference

MIGEMAOGCSgGSIb3DQEBAQUAA4AGNADCBiQKBgQCNI fQb+LLZTMX3NRARSV7A8+LV5SgMEJCvILOTif2em
14z0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpqUgTTD+mI6grIST+R4AAXxXCgVHYUwoT80Xs0QgRgkrGYxW1l
RUNNBcIm4ZULexYz8972036rQ99n5elkDa/eBcszMIyOkcGQIDAQAB

‘pragma protect key_ keyowner = "XYZ inc"
‘pragma protect key_method = "rsa"
‘pragma protect key keyname = "XYZ-keyPublicKey"

‘pragma protect key_ public_key
MIGEMAOGCSQGSIb3DOEBAQUAALAGNADCBIQKBgQDZQTI5T5701l0g8yvkyaxVg9B+4V+smyCIGW3 6% ogEGY
6jXHxfgB2VAMIC/jIx4xRxtCaOeBxRpcrnIKTP13Y3ydHapYW0s0+R4h5+cMwCzWgB18Fn0ibSEW+8gW/
/BP4dHzaJApEZz2Ryj+IG3UinvviWNheZd+j0ULHGMgrOQgrwIDAQAB

‘pragma protect begin
always @(clear or preset)
if (!clear)
assign g = 0;
else if (!preset)
assign g = 1;
else
deassign q;
‘pragma protect end
always @ (posedge clock)
q = d;

endmodule

“endcelldefine

ModelSim User’'s Manual, v10.3a 73

Protecting Your Source Code
Encryption Reference

74 ModelSim User's Manual, v10.3a

Chapter 3
Projects

Projects simplify the process of compiling and simulating a design and are a great tool for
getting started with Model Sim.

What are Projects?

Projects are collection entities for designs under specification or test. At a minimum, projects
have aroot directory, awork library, and "metadata’ which are stored in an .mpf file located in
aproject'sroot directory. The metadatainclude compiler switch settings, compile order, and file
mappings. Projects may also include:

® Sourcefilesor references to source files

® other files such as READMES or other project documentation

* Jlocal libraries

* referencesto global libraries

® Simulation Configurations (see Creating a Simulation Configuration)

® Folders (see Organizing Projects with Folders)

Note

D Project metadata are updated and stored only for actions taken within the project itself.
For example, if you have afilein aproject, and you compile that file from the command
line rather than using the project menu commands, the project will not update to reflect
any new compile settings.

What are the Benefits of Projects?

Projects offer benefits to both new and advanced users. Projects

* simplify interaction with Model Sim; you don’t need to understand the intricacies of
compiler switches and library mappings

® eliminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project. Compile order is maintained for HDL-only designs.

® remove the necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to source files

ModelSim User’'s Manual, v10.3a 75

Projects
Getting Started with Projects

® allow usersto sharelibraries without copying filesto alocal directory; you can establish
references to source files that are stored remotely or locally

¢ alow you to changeindividual parameters across multiplefiles; in previous versions
you could only set parameters onefile at atime

® enable"what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

* reload theinitial settings from the project .mpf file every time the project is opened

Project Conversion Between Versions

Projects are generally not backwards compatible for either number or letter releases. When you
open a project created in an earlier version, you will see amessage warning that the project will
be converted to the newer version. Y ou have the option of continuing with the conversion or
cancelling the operation.

As stated in the warning message, a backup of the original project is created before the
conversion occurs. The backup file is named < project name>.mpf.bak and is created in the
same directory in which the original project is located.

Getting Started with Projects

This section describes the four basic steps to working with a project.

® Step 1 — Creating a New Project
This creates an .mpf file and aworking library.
® Step 2— Adding Itemsto the Project

Projects can reference or include source files, folders for organization, simulations, and
any other files you want to associate with the project. Y ou can copy filesinto the project
directory or ssmply create mappings to filesin other locations.

® Step 3— Compiling the Files

This checks syntax and semantics and creates the pseudo machine code Model Sim uses
for simulation.

® Step 4 — Simulating a Design

This specifies the design unit you want to simulate and opens a structure tab in the
Workspace pane.

76 ModelSim User's Manual, v10.3a

Projects
Getting Started with Projects

Step 1 — Creating a New Project

Select File > New > Project to create a new project. This opens the Create Project dialog
where you can specify a project name, location, and default library name. Y ou can generally
leave the Default Library Name set to "work." The name you specify will be used to create a
working library subdirectory within the Project Location. This dialog also allows you to
reference library settings from a selected .ini file or copy them directly into the project.

Figure 3-1. Create Project Dialog

Create Projeck il

— Project Mame
||:|r|:|i1

— Project Location

|C:/Tutarial/examples Browse...

—Default Library Marme
|wu:|rk

— Copy Settingz From

| #madelzim. ini Browse...

& Copy Library Mappings © Reference Librany Mappings

Ok, | Ear‘u:el|

After selecting OK, you will see a blank Project window in the Main window (Figure 3-2)

Figure 3-2. Project Window Detail

Praoject L X
*| Name Statui Type | Orde Modiiec

£y

and the Add Itemsto the Project dialog (Figure 3-3).

ModelSim User’'s Manual, v10.3a 77

Projects
Getting Started with Projects

Figure 3-3. Add items to the Project Dialog
|

— Click on the icon to add items of that type:——

]]

Create Hew File Add E wisting File
Create Simulation Create Mew Folder

Cloze |

The name of the current project is shown at the bottom left corner of the Main window.

Step 2 — Adding Items to the Project

The Add Itemsto the Project dialog includes these options:

® Create New File— Create anew VHDL, Verilog, Tcl, or text file using the Source
editor. See below for details.

® Add Existing File— Add an existing file. See below for details.

® Create Smulation — Create a Simulation Configuration that specifies source files and
simulator options. See Creating a Simulation Configuration for details.

® Create New Folder — Create an organization folder. See Organizing Projects with
Foldersfor details.

Create New File

The File > New > Sour ce menu selections allow you to create anew VHDL, Verilog, Tcl, or
text file using the Source editor.

Y ou can also create anew project file by selecting Project > Add to Project > New File (the
Project tab in the Workspace must be active) or right-clicking in the Project tab and selecting
Add to Project > New File. Thiswill open the Create Project File dialog (Figure 3-4).

78 ModelSim User's Manual, v10.3a

Projects
Getting Started with Projects

Figure 3-4. Create Project File Dialog

Create Project File k|
— File Mame

Ifu:u:u.v Browsze. .. |

—Add file az tupe

Folder
I‘v"erilug ZI FITDp Lewvel 1'

k. Cancel

Specify aname, file type, and folder location for the new file.

When you select OK, thefileislisted in the Project tab. Double-click the name of the new file
and a Source editor window will open, allowing you to create source code.

Add Existing File

Y ou can add an existing file to the project by selecting Project > Add to Project > Existing
File or by right-clicking in the Project tab and selecting Add to Project > Existing File.

Figure 3-5. Add file to Project Dialog

Add file to Project x|
— File Mame
|-:u:uunter.~.-' toaunter v Browse...
— Addfile astype——— Faolder
|default] [Top Level -l
&' Feference from curent location © Copy bo project directary
OF. | Cancel |

When you select OK, the file(s) is added to the Project tab.

Step 3 — Compiling the Files

The question marks in the Status column in the Project tab denote either the files haven’t been
compiled into the project or the source has changed since the last compile. To compile thefiles,
select Compile> Compile All or right click in the Project tab and select Compile > Compile

All (Figure 3-6).

ModelSim User’'s Manual, v10.3a 79

Projects
Getting Started with Projects

Figure 3-6. Right-click Compile Menu in Project Window

Proiect i A
TIName |5I:atus |T3.f|:|e |Or|:|er |I"-’I|:u:|ified | |
;,-[:“] Diesign Files Folder
-H_] HOL

Folder

.
counter.y

L Edit
' Execute
Comnpile

Add ko Project

Femove From Project

Close Project

o712z

0712/07 05:52:15 PM

r Compile Selected

r |
CDmpiIﬁut-nF-Date

Compile Order. ..

J;Il Librarsy |

Update Compile Repart. .
i Compile Summarsy. ..
Propetties. ..
Project Settings... Compile Properties. ..
il 2
43

Once compilation is finished, click the Library window, expand library work by clicking the

"+", and you will see the compiled design units.

Figure 3-7. Click Plus Sign to Show Design Hierarchy

Likarary - "
*|Mame [Tvpe ©|Path -
- wark Library: work
AF[E_] kest_counker Module C:Tutorialfexamplestutorials

/] eounter Module C:fTutorialfexamplesibukorials
+ kg Library $MODEL_TECH]. . /awm
1,{'1 av_shd Library $MODEL_TECH), , Jsv_skd
1,{'1 wikalz000 Library $MODEL_TECH, , wvitalZ000
1,{'1 ieEE Library $MODEL_TECH/. . lieee d
< | [

3]

Changing Compile Order

The Compile Order dialog box is functional for HDL-only designs. When you compile all files
inaproject, Model Sim by default compilesthe filesin the order in which they were added to the
project. Y ou have two alternatives for changing the default compile order: 1) select and compile
each fileindividually; 2) specify a custom compile order.

To specify acustom compile order, follow these steps:

80 ModelSim User's Manual, v10.3a

Projects
Getting Started with Projects

1. Select Compile > Compile Order or select it from the context menu in the Project tab.

Figure 3-8. Setting Compile Order

Compile Order |

— Current Order

] it vhd [

] cachew
;_,'j EMAY. Y
;_,'j proc. v
@ zet.vhd
;_ﬁl top.whd

[T [

Auto Generate| OF. | Eancell

2. Dragthefilesinto the correct order or use the up and down arrow buttons. Note that you
can select multiple files and drag them simultaneously.

Auto-Generating Compile Order

Auto Generate is supported for HDL-only designs. The Auto Gener ate button in the Compile
Order dialog (see above) "determines’ the correct compile order by making multiple passes
over thefiles. It starts compiling from the top; if afile failsto compile due to dependencies, it
moves that file to the bottom and then recompilesit after compiling the rest of thefiles. It
continues in this manner until all files compile successfully or until afile(s) can’t be compiled
for reasons other than dependency.

Files can be displayed in the Project window in alphabetical or compile order (by clicking the
column headings). Keep in mind that the order you see in the Project tab is not necessarily the
order in which the files will be compiled.

Grouping Files

Y ou can group two or more filesin the Compile Order dialog so they are sent to the compiler at
the same time. For example, you might have one file with a bunch of Verilog define statements
and a second file that is a Verilog module. Y ou would want to compile these two files together.

To group files, follow these steps:

ModelSim User’'s Manual, v10.3a 81

Projects
Getting Started with Projects

1. Select thefiles you want to group.

Figure 3-9. Grouping Files
x|

— Current Order

§ ooy
1 kil vhd
1] setvhd
" topvhd

.ﬁ.utDGeneratel Ok, | Eancel|

1. Click the Group button. |
To ungroup files, select the group and click the Ungroup button. |

Step 4 — Simulating a Design
To simulate a design, do one of the following:

double-click the Name of an appropriate design object (such as atest bench module or
entity) in the Library window

® right-click the Name of an appropriate design object and select Simulate from the
popup menu

select Simulate > Start Simulation from the menus to open the Start Simulation dialog
(Figure 3-10). Select adesign unit in the Design tab. Set other optionsin the VHDL,
Verilog, Libraries, SDF, and Otherstabs. Then click OK to start the simulation.

82 ModelSim User's Manual, v10.3a

Projects
Getting Started with Projects

Figure 3-10. Start Simulation Dialog

x
Design | VHDL | Verlog | Libraries | SDF | Others | m
'l"IName |T_l,l|:ue "L_|F'ath 1=
-HML ok Library C:/Tutanial/eramplestutonials vernlogpr

{] counter b odule C:/Tutanial/examplestutonials vernlogpr
tegt_counter b odule C:/Tutanial/examplestutonialzvenlog,pr
1,4]1 sv_std Library $MODEL_TECHA. fav_std
1,{‘1 vikal2000 Library FMODEL_TECH.. Mvital2000
=l ie=e Library $MODEL_TECH/. fieee
1,{'1 modelzim_lib Library FM0ODEL_TECH/.. fmodelzim_lib o
+ ztd Library FMODEL_TECH/.. Astd
'l I'H'I 2bd Aauvalamaral: b | ke = ThAMMEl TECrH /! lebd Aavalamarslir S
1 | i
Design Unit[z] R ezalutian
’l:mk.test_cnunter ’;ault i
Optimization
’T_ Enable aptimization O ptirizatian Dptiu:nns...|
Ok | Cancel |

A new Structure window, named sim, appears that shows the structure of the active simulation
(Figure 3-11).

Figure 3-11. Structure Window with Projects

—————)"
|‘l"| Instance _‘n| Design unit | Design unit bype |\-’i$ihilit_l,l |
aF test_counter ki odule +acc=<fullx
=F dut courter Module +ac=< full:

o increment counker Function +ace=< full:
< | I
¥ Project m Library | ﬁ zim | £ Files | BE Memoaries 43

At this point you are ready to run the simulation and analyze your results. Y ou often do this by
adding signals to the Wave window and running the simulation for a given period of time. See
the ModelSm Tutorial for examples.

ModelSim User’'s Manual, v10.3a 83

Projects
The Project Window

Other Basic Project Operations

Open an Existing Project

If you previously exited Model Sim with a project open, Model Sim automatically will open that
same project upon startup. Y ou can open a different project by selecting File > Open and
choosing Project Files from the Files of type drop-down.

Print the Absolute Pathnames For All Files
You can send alist of al project filenames to the transcript window by entering the command
project filenames. This command only works when a project is open.

Close a Project

Right-click in the Project window and select Close Project. This closes the Project window but
leaves the Library window open. Note that you cannot close a project while asimulationisin
progress.

The Project Window

The Project window contains information about the objects in your project. By default the
window is divided into five columns.

Figure 3-12. Project Window Overview

"IName |Status |T_I,I|:ue |Elr|:|er |M|:n:|ifieu:| |
== YHOL files Folder
adder vhd ? WHDL 3 0BA07 /06 07:35: 45 Phd
testadder vhd ? WHOL 2 0B/07 /06 07 36: 26 Ph
=H] “erlog files Folder
boounber.y v Yerlog 1] 0BA07A06 0F:36: 21 P
courter, Yerlog OBA07 /06 07 35:56 Ph
werilog_sim Simulation

Froject | Librany

®* Name-The name of afile or object.

® Status—ldentifieswhether a source file has been successfully compiled. Appliesonly to
VHDL or Verilog files. A question mark means the file hasn’t been compiled or the
source file has changed since the last successful compile; an X means the compile
failed; a check mark means the compile succeeded; a checkmark with ayellow triangle
behind it means the file compiled but there were warnings generated.

84 ModelSim User's Manual, v10.3a

Projects
Creating a Simulation Configuration

* Type-Thefiletype as determined by registered file types on Windows or the type you
specify when you add the file to the project.

® Order —The order in which the file will be compiled when you execute a Compile All
command.

* Modified — The date and time of the last modification to thefile.

Y ou can hide or show columns by right-clicking on a column title and selecting or deselecting
entries.

Sorting the List

Y ou can sort the list by any of the five columns. Click on a column heading to sort by that
column; click the heading again to invert the sort order. An arrow in the column heading
indicates which field the list is sorted by and whether the sort order is descending (down arrow)
or ascending (up arrow).

Creating a Simulation Configuration

A Simulation Configuration associates a design unit(s) and its ssmulation options. For example,
assume you routinely load a particular design and you also have to specify the simulator
resolution limit, generics, and SDF timing files. Ordinarily you would have to specify those
options each time you load the design. With a Simulation Configuration, you would specify the
design and those options and then save the configuration with aname (for example, top_config).
The nameisthen listed in the Project tab and you can double-click it to load the design along
with its options.

To create a Simulation Configuration, follow these steps:

1. Select Project > Add to Project > Simulation Configuration from the main menu, or
right-click the Project tab and select Add to Project > Simulation Configuration from
the popup context menu in the Project window.

ModelSim User’'s Manual, v10.3a 85

Projects

Creating a Simulation Configuration

Figure 3-13. Add Simulation Configuration Dialog

Add Simulation Configuration x|

— Simulation Configuration Mame Plaze in Folder

|Simu|atiu:un 1 ’?ﬂp Lewel ﬂ Add Falder...
Design] VHDL | Verlog | Libraries | SDF | Others | m
*|Name [Tupe =[Path 1=
1,{'1 ok, Library . /T utonal/examples/tutonals/mized/compareworlk
1,{'1 av_gtd Library FMODEL_TECH/.. /e _std

1,{'1 vital2000 Library FMODEL_TECH/.. Avital2000

1,{'1 == Library FMODEL_TECH/.. fiees

1,{'1 rnodelzim_lib Library $MODEL_TECH/../modelzim_lib

1,{'1 zhd Library $MODEL_TECH/.. Astd

1,{'1 std_developerskit Librany FMODEL_TECHA. /std_developerskit

1,{'1 FPNopays Library FMODEL_TECH.../synopsys -

Al “ . e ——_— “ -~

ol | =
— Dezign Unit[z] — Rezolutian

| default !I

O ptimization
¥ Enable optimization

Cptimization Optionz. .. |

Sac | Cancel |

2. Specify aname in the Simulation Configuration Name field.

3. Specify thefolder in which you want to place the configuration (see Organizing Projects

with Folders).

4. Select one or more design unit(s). Use the Control and/or Shift keys to select more than
one design unit. The design unit names appear in the Simulate field when you select

them.

5. Usethe other tabsin the dialog to specify any required simulation options.

Click OK and the simulation configuration is added to the Project window.

86

ModelSim User's Manual, v10.3a

Projects
Organizing Projects with Folders

Figure 3-14. Simulation Configuration in the Project Window

Project - el 3¢
* Name Status |Type Order | Modified
E-_] YHDL files Folder
adder. vhd ? WYHDL 3 06/07/04 07.35.46 FM
testadder. vhd ? VHDL 2 06/07/04 07.36:26 PM
B-_] Verilog files Folder
tcounter. v v Yerlog 0 06/07/04 07:36:21 P
counter.v Verilog
verilog_sim Simulation
This is the new simulation configuration.

] Project | Library |

Double-click the Simulation Configuration verilog_simto load the design.

Organizing Projects with Folders

The more files you add to a project, the harder it can be to locate the item you need. Y ou can
add "folders' to the project to organize your files. These folders are akin to directories in that
you can have multiple levels of folders and sub-folders. However, no actual directories are
created viathe file system-the folders are present only within the project file.

Adding a Folder

To add afolder to your project, select Project > Add to Project > Folder or right-click in the
Project window and select Add to Project > Folder (Figure 3-15).

Figure 3-15. Add Folder Dialog

Add Folder x|

— Folder Mame

|Design Filez

— Folder Location

|Tn:||:| Level ZI

OF. | Eancell

Specify the Folder Name, the location for the folder, and click OK. The folder will be displayed
in the Project tab.

ModelSim User’'s Manual, v10.3a 87

Projects
Organizing Projects with Folders

Y ou use the folders when you add new objects to the project. For example, when you add afile,
you can select which folder to placeit in.

Figure 3-16. Specifying a Project Folder

Add file to Project x|
— File Name
I counter v tcounter.v Browse
~
—Add file as type Folder
Idefault xl I\;"eruln:rg fites zl rj SPectty a folder here.
="
' Reference from current location ¢ Copy to project directory
ok | Cancel

If you want to move afileinto afolder later on, you can do so using the Properties dialog for the
file. Simply right-click on the filename in the Project window and select Properties from the
context menu that appears. Thiswill open the Project Compiler Settings Dialog (Figure 3-17).

Use the Place in Folder field to specify afolder.

88 ModelSim User's Manual, v10.3a

Projects
Specifying File Properties and Project Settings

Figure 3-17. Project Compiler Settings Dialog

Project Compiler Settings A

General] "-.J'HDL] Enverage]

— General Settings

[~ DoMot Compile Compile to library: |wu:urk
Place in Folder: [VHDL

KRCH

— File Froperties

File: ztimuluz. vhd
Location: C: /examples/ztimulus. vhd
MS-D0S name: C:hexampleshatimulus. vhd

Type: WYHOL Change Type |

Size: 3145 [3KEB]

Modification Time: 13:47:28 Pacific Standard Time
Last Compile: Source haz not been compiled.
File Attributes: Archive

] | Eancell

On Windows platforms, you can aso just drag-and-drop afileinto afolder.

Specifying File Properties and Project Settings

Y ou can set two types of propertiesin a project: file properties and project settings. File
properties affect individual files; project settings affect the entire project.

File Compilation Properties

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options that
affect how adesign is compiled and subsequently simulated. Y ou can customize the settings on
individual files or agroup of files.

Note

D Any changes you make to the compile properties outside of the project, whether from the
command line, the GUI, or the modelsim.ini file, will not affect the properties of files
already in the project.

ModelSim User’'s Manual, v10.3a 89

Projects
Specifying File Properties and Project Settings

To customize specific files, select thefile(s) in the Project window, right click on the file names,
and select Properties. The resulting Project Compiler Settings dialog (Figure 3-18) varies
depending on the number and type of files you have selected. If you select asingle VHDL or
Verilog file, you will see the General tab, Coverage tab, and the VHDL or Verilog tab,
respectively. On the General tab, you will see file properties such as Type, Location, and Size.
If you select multiple files, the file properties on the General tab are not listed. Finally, if you
select both aVHDL fileand a Verilog file, you will see al tabs but no file information on the
General tab.

Figure 3-18. Specifying File Properties

Project Compiler Settings El
General] Werilog] Coverage] ﬂ_ﬂ
— General Seftings
[Do Mot Compile Compile to lbrany: |wu:urk ZI
Place in Folder: |T|:||:| Lewvel ZI
— File Properties
File: .Y
Locatioh: . /examples/coveragedvenlogdzm. v
k5-005 name; C:hexamplesicoveragewenlogham. v
Type: Werilog Chanhge Typel
Size: 2459 [2KR)
Modification Time: Thu Mowv 04 7:35:06 PM Pacific Standard Time
Last Compile: Source haz not been compiled.
File Attribuites: Archive
Ok I Cancel

When setting options on a group of files, keep in mind the following:

® If two or more files have different settings for the same option, the checkbox in the
dialog will be "grayed out." If you change the option, you cannot change it back to a
"multi- state setting” without cancelling out of the dialog. Once you click OK,
Model Sim will set the option the same for all selected files.

* If you select acombination of VHDL and Verilog files, the options you set on the
VHDL and Verilog tabs apply only to those file types.

90 ModelSim User's Manual, v10.3a

Projects
Specifying File Properties and Project Settings

Project Settings

To modify project settings, right-click anywhere within the Project tab and select Pr oj ect
Settings.

Figure 3-19. Project Settings Dialog

Project Settings |

— Compile Sukput

[Display compiler oukput
¥ Save compile report

— Location map

[Convert pathnames ta softnames

—#Additional Properties
[V Restare open source files when opening a project

¥ automatically close all source Files when closing a project

— Double-click Behavior

File Type [wHOL wl
Action |Edit -l
Cuskom |
(04 | Cancel|

Converting Pathnames to Softnames for Location
Mapping
If you are using location mapping, you can convert the following into a soft pathname:
® arelative pathname
* full pathname

® pathname with an environment variable

0 Tip: A softnameisaterm for a pathname that uses location mapping with
MGC_LOCATION_MAP. The soft pathname looks like a pathname containing an
environment variable, it locates the source using the location map rather than the
environment.

To convert the pathname to a softname for projects using location mapping, follow these steps:

1. Right-click anywhere within the Project tab and select Project Settings

ModelSim User’'s Manual, v10.3a 91

Projects
Accessing Projects from the Command Line

2. Enablethe Convert pathnames to softnames within the Location map area of the
Project Settings dialog box (Figure 3-19).

Once enabled, all pathnames currently in the project and any that are added later are then
converted to softnames.

During conversion, if there is no softname in the mgc location map matching the entry, the
pathname is converted in to afull (hardened) pathname. A pathname is hardened by removing
the environment variable or the relative portion of the path. If this happens, any existing
pathnames that are either relative or use environment variables are also changed: either to
softnames if possible, or to hardened pathnamesiif not.

For more information on location mapping and pathnames, see Using L ocation Mapping.

Setting Custom Double-click Behavior
Use the Project Settings dialog box to control the double-click behavior of the Proj ect

window.
Procedure
1. Select the desired File Typein the Double-click Behavior pane.
2. Select Custom from the Action dropdown.

3. Inthe Custom text entry box enter a Tcl command, using %f for filename substitution.

Examples

The following example shows how the Custom text entry box could appear.
notepad %$f

where the double-click behavior will substitute %f with the filename that was clicked, then
execute the string.

Accessing Projects from the Command Line

Generally, projects are used from within the Model Sim GUI. However, standal one tools will
use the project file if they are invoked in the project's root directory. If you want to invoke
outside the project directory, set the MODEL SIM environment variable with the path to the
project file (<Project_Root_Dir>/<Project_ Name>.mpf).

Y ou can aso use the project command from the command line to perform common operations
on projects.

92 ModelSim User's Manual, v10.3a

Chapter 4
Design Libraries

VHDL designs are associated with libraries, which are objects that contain compiled design
units. Verilog and SystemV erilog designs simulated within Model Sim are compiled into

libraries as well.

Design Library Overview

A design library isadirectory or archive that serves as arepository for compiled design units.
The design units contained in adesign library consist of VHDL entities, packages, architectures,
and configurations; Verilog modules and UDPs (user-defined primitives). The design units are

classified asfollows:

®* Primary design units— Consist of entities, package declarations, configuration
declarations, modules and UDPs. Primary design units within agiven library must have
unigue names.

® Secondary design units— Consist of architecture bodies and package bodies.
Secondary design units are associated with a primary design unit. Architectures by the
same name can exist if they are associated with different entities or modules.

Design Unit Information
The information stored for each design unit in adesign library is:
® retargetable, executable code
® debugging information

® dependency information

Working Library Versus Resource Libraries
Design libraries can be used in two ways:
1. asaloca working library that contains the compiled version of your design;

2. asaresourcelibrary.

The contents of your working library will change as you update your design and recompile. A
resource library istypically static and serves as a parts source for your design. Y ou can create

ModelSim User’'s Manual, v10.3a 93

Design Libraries
Working with Design Libraries

your own resource libraries or they may be supplied by another design team or athird party (for
example, asilicon vendor).

Only one library can be the working library.

Any number of libraries can be resource libraries during a compilation. Y ou specify which
resource libraries will be used when the design is compiled, and there are rules to specify in
which order they are searched (refer to Specifying Resource Libraries).

A common example of using both aworking library and aresource library is onein which your
gate-level design and test bench are compiled into the working library and the design references
gate-level modelsin a separate resource library.

The Library Named "work"

The library named "work" has specia attributes within Model Sim — it is predefined in the
compiler and need not be declared explicitly (that is, library work). It is also the library name
used by the compiler as the default destination of compiled design units (that is, it does not need
to be mapped). In other words, the work library is the default working library.

Working with Design Libraries

Theimplementation of adesign library isnot defined within standard VHDL or Verilog. Within
Model Sim, design libraries are implemented as directories and can have any legal name allowed
by the operating system, with one exception: extended identifiers are not supported for library
names.

Creating a Library

When you create a project (refer to Getting Started with Projects), Model Sim automatically
creates aworking design library. If you don’t create a project, you need to create a working
design library before you run the compiler. This can be done from either the command line or
from the Model Sim graphic interface.

From the Model Sim prompt or a UNIX/DOS prompt, use this vlib command:

vlib <directory_pathname>

To create anew library with the graphic interface, select File > New > Library.

94 ModelSim User's Manual, v10.3a

Design Libraries
Working with Design Libraries

Figure 4-1. Creating a New Library

Create a New Library x|

—Create

" anew library
" amap to an existing library

& 3 new library and a logical mapping to it

—Library Name:

|wcrk

—Library Physical Mame:

|wcrk

oK | Can::ell

When you click OK, Model Sim creates the specified library directory and writes a specially-
formatted file named _info into that directory. The _info file must remain in the directory to
distinguishit asaModelSim library.

The new map entry iswritten to the modelsim.ini file in the [Library] section. Refer to
modelsim.ini Variables for more information.

Note

D Remember that adesign library isaspecial kind of directory. The only way to create a
library isto use the Model Sim GUI or the vlib command. Do not try to create libraries
using UNIX, DOS, or Windows commands.

Compiling Libraries

The -smartdbgsym option for the vcom and vliog commands helps to reduce the size of
debugging database symbol files generated at compile time from the design libraries. With
-smartdbgsym, most design-units have their debugging symbol files generated on-demand by
vsim.While using this flow provides significant savings in terms of the number of filesin the
library and the overall size of the library, there are afew limitations: code coverage flows
cannot support this option, and there are limitations to "macro support in refresh flows.

A companion SmartDbgSym variable in modelsm.ini allows you to permanently enable or
disable this function. By default, the function is disabled and a debugging symbol file database
is generated for all design units.

ModelSim User’'s Manual, v10.3a 95

Design Libraries
Working with Design Libraries

Managing Library Contents

Library contents can be viewed, deleted, recompiled, edited and so on using either the graphic

interface or command line.

The Library window provides access to design units (configurations, modules, packages,
entities, and architectures) in alibrary. Various information about the design unitsis displayed

in columnsto the right of the design unit name.

The Library window has a popup menu with various commands that you access by clicking

Figure 4-2. Design Unit Information in the Workspace

Library
1'1 M arne | Tupe | Path |
L ok Library C:/modeltech/eramples/mixedH DL Awark:
1] cache todule C:modeltechexamples‘mizedH DL zach. .
E] cache_set E rtity C:“modeltechexamples'miredH DL zet.....
1] memary Module C:Amodeltechexamples mizedH DL memn. .
1] proc todule C:\modeltechiexamples‘mizedHDLAproc. v
P ghd_logic_util Package C:‘modeltech'examplezimimedHDLAbL....
EHE] top E ritity C:Amodeltechexamples mizedHDL op. ..
1A anly Architecture
Wy} wital2000 Library $PMODEL_TECHA. Avital2000
| REEE Libirary $MODEL_TECH!. fieee
[l rnodelsim_lib Library $MODEL_TECH/.. /modelzim_lib

Library |

your right mouse button.

The context menu includes the following commands:

Update — Updates the display of available libraries and design units.

Simulate — L oads the selected design unit(s) and opens Structure (sim) and Files
windows. Related command line command isvsim.

Edit — Opens the selected design unit(s) in the Source window; or, if alibrary is
selected, opens the Edit Library Mapping dialog (refer to Library Mappings with the
GUI).

Refresh — Rebuilds the library image of the selected library without using source code.
Related command line command is vcom or vlog with the -refresh argument.

Recompile — Recompiles the selected design unit(s). Related command line command
isvcom or vlog.

96

ModelSim User's Manual, v10.3a

Design Libraries
Working with Design Libraries

Assigning a Logical Name to a Design Library

VHDL useslogical library names that can be mapped to Model Sim library directories. By
default, Model Sim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located el sewhere, you need to map alogical library name to
the pathname of the library.

Y ou can use the GUI, acommand, or a project to assign alogical nameto adesign library.

Library Mappings with the GUI

To associate alogical name with alibrary, select the library in the Library window, right-click
your mouse, and select Edit from the context menu that appears. This brings up a dialog box
that allows you to edit the mapping.

Figure 4-3. Edit Library Mapping Dialog

Edit Library Mapping o]
— Library M apping Mame

|simprim

— Libramy Pathname

Browsze...

k. | Eancell

The dialog box includes these options:

® Library Mapping Name— Thelogical name of the library.
® Library Pathname — The pathnameto the library.

Library Mapping from the Command Line

Y ou can set the mapping between alogical library name and a directory with the vmap
command using the following syntax:

vmap <logical_name> <directory_pathname>

Y ou may invoke this command from either a UNIX/DOS prompt or from the command line
within Model Sim.

The vmap command adds the mapping to the library section of the modelsim.ini file. You can
also modify modelsim.ini manually by adding a mapping line. To do this, use atext editor and
add aline under the [Library] section heading using the syntax:

ModelSim User’'s Manual, v10.3a 97

Design Libraries
Working with Design Libraries

<logical_name> = <directory_pathname>

More than one logical name can be mapped to a single directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Library]
work = /usr/rick/design
my_asic = /usr/rick/design

Thiswould allow you to use either the logical namework or my_asicinalibrary or use clause
to refer to the same design library.

Unix Symbolic Links

Y ou can also create a UNIX symbolic link to the library using the host platform command:

In -s <directory_pathname> <logical_name>

The vmap command can also be used to display the mapping of alogical library nameto a
directory. To do this, enter the shortened form of the command:

vmap <logical_name>

Verilog Library Mapping

The system searches for the mapping of alogical name in the following order:

® First the system looks for amodelsim.ini file.

® |f the system doesn’'t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error is generated by the compiler if you specify alogical name that does not resolve to an
existing directory.

Moving a Library

Individual design unitsin adesign library cannot be moved. An entire design library can be
moved, however, by using standard operating system commands for moving a directory or an
archive.

Setting Up Libraries for Group Use

By adding an “others’ clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the tool does not find a mapping in the modelsim.ini file, then it will search the
[library] section of theinitialization file specified by the “others’ clause. For example:

98 ModelSim User's Manual, v10.3a

Design Libraries
Specifying Resource Libraries

[library]

asic_1lib = /cae/asic_1lib

work = my_work

others = /usr/modeltech/modelsim.ini

Y ou can specify only one "others' clausein the library section of a given modelsim.ini file.

The“others’ clause only instructs the tool to ook in the specified modelsim.ini filefor alibrary.
It does not load any other part of the specified file.

If there are two libraries with the same name mapped to two different locations — one in the
current modelsim.ini file and the other specified by the "others' clause — the mapping specified
in the current .ini file will take effect.

Specifying Resource Libraries

Verilog Resource Libraries

All modules and UDPsin a Verilog design must be compiled into one or more libraries. One
library isusually sufficient for asimple design, but you may want to organize your modulesinto
various libraries for a complex design. If your design uses different modules having the same
name, then you need to put those modules in different libraries because design unit names must
be unique within alibrary.

The following is an example of how to organize your ASIC cellsinto one library and the rest of
your design into another:

% vlib work

% vlib asiclib

% vlog -work asiclib and2.v or2.v
-- Compiling module and2

-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v

-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to place
theresultsin the asiclib library rather than the default work library.

Library Search Rules and the viog Command

Because instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are loaded

ModelSim User’'s Manual, v10.3a 99

Design Libraries
Specifying Resource Libraries

from the library named wor k unless you prefix the modules with the <library>. option. All
other Verilog instantiations are resolved in the following order:

® Search libraries specified with -Lf arguments in the order they appear on the command
line.

® Search thelibrary specified in the Verilog-XL uselib Compiler Directive section.

® Search libraries specified with -L argumentsin the order they appear on the command
line.

® Searchthework library.
® Search the library explicitly named in the special escaped identifier instance name.

For more information, refer to SystemV erilog Multi-File Compilation.

Handling Sub-Modules with the Same Name

Sometimes in one design you need to reference two different modules that have the same name.
This situation can occur if you have hierarchical modules organized into separate libraries, and
you have commonly-named sub-modules in the libraries that have different definitions. This
may happen if you are using vendor-supplied libraries.

For example, say you have the following design configuration:

Example 4-1. Sub-Modules with the Same Name

top
modA| |modB

4

libl: lib2:
modA modB

The normal library search rulesfail in this situation. For example, if you load the design as
follows:

vsim -L lib1 -L lib2 top
both instantiations of cellX resolveto the lib1 version of cellX. On the other hand, if you specify
-L 1ib2 -L lib1, both instantiations of cellX resolve to the lib2 version of cellX.

To handle this situation, Model Sim implements a specia interpretation of the expression -L
work. When you specify -L work first in the search library arguments you are directing vsim to

100 ModelSim User's Manual, v10.3a

Design Libraries
Specifying Resource Libraries

search for the instantiated module or UDP in the library that contains the module that does the
instantiation.

In the example above you would invoke vsim as follows:

vsim -L work -L lib1 -L lib2 top

The LibrarySearchPath Variable

The LibrarySearchPath variable in the modelsim.ini file (in the [vlog] section) can be used to
define a space-separated list of resource library paths and/or library path variables. This
behavior isidentical with the -L argument for the viog command.

LibrarySearchPath = <path>/1ibl <path>/1ib2 <path>/11ib3

The default for LibrarySearchPath is:

LibrarySearchPath = mtiAvm mtiOvm mtiUvm mtiUPF

VHDL Resource Libraries

Within aVHDL sourcefile, you use the VHDL library clause to specify logical names of one
or more resource libraries to be referenced in the subsequent design unit. The scope of alibrary
clauseincludesthe text region that startsimmediately after thelibrary clause and extendsto the
end of the declarative region of the associated design unit. It does not extend to the next design
unit in thefile.

Note that the library clauseis not used to specify the working library into which the design unit
is placed after compilation. The vcom command adds compiled design units to the current
working library. By default, thisisthe library named wor k. To change the current working
library, you can use vcom -wor k and specify the name of the desired target library.

Predefined Libraries

Certain resource libraries are predefined in standard VHDL. The library named std contains the
packages standar d, env, and textio, which should not be modified. The contents of these
packages and other aspects of the predefined language environment are documented in the IEEE
Sandard VHDL Language Reference Manual, Sd 1076. Refer also to, Using the TextlO
Package.

A VHDL use clause can be specified to select particular declarationsin alibrary or package that
are to be visible within adesign unit during compilation. A use clause references the compiled
version of the package—not the source.

By default, every VHDL design unit is assumed to contain the following declarations:

ModelSim User’s Manual, v10.3a 101

Design Libraries
Specifying Resource Libraries

LIBRARY std, work;
USE std.standard.all

To specify that al declarationsin alibrary or package can be referenced, add the suffix .all to
the library/package name. For example, the use clause above specifiesthat all declarationsin
the package standard, in the design library named std, are to be visible to the VHDL design unit
immediately following the use clause. Other libraries or packages are not visible unlessthey are
explicitly specified using alibrary or use clause.

Another predefined library iswork, the library where a design unit is stored after it is compiled
as described earlier. Thereis no limit to the number of libraries that can be referenced, but only
one library is modified during compilation.

Alternate IEEE Libraries Supplied

The installation directory may contain two or more versions of the |IEEE library:

® jeeepure— Contains only |EEE approved packages (accelerated for Model Sim).

® jeee— Contains precompiled Synopsys and | EEE arithmetic packages which have been
accelerated for Model Sim including math_complex, math_real, numeric_bit,
numeric_std, std logic 1164, std logic_misc, std _logic_textio, std logic_arith,
std_logic_signed, std logic_unsigned, vital_primitives, and vital_timing.

Y ou can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini filein the installation directory defaults to the ieee library.

Regenerating Your Design Libraries

Depending on your current Model Sim version, you may need to regenerate your design libraries
before running asimulation. Check the installation README fileto seeif your librariesrequire
an update. Y ou can regenerate your design libraries using the Refresh command from the
Library tab context menu (refer to Managing Library Contents), or by using the -refresh
argument to vcom and vlog.

From the command line, you would use vcom with the -refresh argument to update VHDL
design unitsin alibrary, and vliog with the -refresh argument to update Verilog design units. By
default, the work library is updated. Use either vcom or vliog with the -work <library>
argument to update a different library. For example, if you have alibrary named mylib that
contains both VHDL and Verilog design units:

vcom -work mylib -refresh

vlog -work mylib -refresh

102 ModelSim User's Manual, v10.3a

Design Libraries
Importing FPGA Libraries

Note
D Y ou may specify a specific design unit name with the -refresh argument to vcom and

vlog in order to regenerate alibrary image for only that design, but you may not specify a
file name.

An important feature of -refresh isthat it rebuilds the library image without using source code.
This means that models delivered as compiled libraries without source code can be rebuilt for a
specific release of ModelSim. In general, this works for moving forwards or backwards on a
release. Moving backwards on arelease may not work if the models used compiler switches,
directives, language constructs, or features that do not exist in the older release.

Note
Y ou don't need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you

cannot use the -r efr esh option to update libraries that were built before the 4.6 release.

Importing FPGA Libraries

Model Sim includes an import wizard for referencing and using vendor FPGA libraries. The
wizard scansfor and enforces dependenciesin the libraries and determines the correct mappings
and target directories.

Note
The FPGA libraries you import must be pre-compiled. Most FPGA vendors supply pre-

compiled libraries configured for use with Model Sim.

To import an FPGA library, select File> Import > Library.

ModelSim User’s Manual, v10.3a 103

Design Libraries
Protecting Source Code

Figure 4-4. Import Library Wizard

Import Library Wizard

The Import Library Wizard will step you
through the tasks necessary to reference and

use a library.

L library can be either an existing Model
Technology library or an FPGA library that you
received from an FPGA wendor. If the library
was received from an FPGA wendor, it must be a

precompiled library.

Please enter the location of the library to be

imported below.

X

Import Library Pathname

Browse...

Previous

Mext E:

@ Cancel |

Follow the instructions in the wizard to complete the import.

Protecting Source Code

The Protecting Y our Source Code chapter provides details about protecting your internal model
data. Thisallows amodel supplier to provide pre-compiled libraries without providing source
code and without revealing internal model variables and structure.

104

ModelSim User's Manual, v10.3a

Chapter 5
VHDL Simulation

This chapter covers the following topics related to using VHDL in aModel Sim design:

Basic VHDL Usage — A brief outline of the stepsfor using VHDL inaModelSim
design.

Compilation and Simulation of VHDL — How to compile, optimize, and ssmulate a
VHDL design

Using the Textl O Package — Using the TextlO package provided with ModelSim

VITAL Usage and Compliance — Implementation of the VITAL (VHDL Initiative
Towards ASIC Libraries) specification for ASIC modeling

VHDL Utilities Package (util) — Using the special built-in utilities package (Util
Package) provided with ModelSim

Modeling Memory — The advantages of using VHDL variables or protected types
instead of signals for memory designs.

Basic VHDL Usage

Simulating VHDL designs with Model Sim consists of the following general steps:

1

Compileyour VHDL code into one or more libraries using the vcom command. Refer to
Compiling aVHDL Design—the vcom Command for more information.

Load your design with the vsim command. Refer to Simulating a VHDL Design.
Simulate the loaded design, then debug as needed.

Compilation and Simulation of VHDL

Creating a Design Library for VHDL

Before you can compile your VHDL source files, you must create alibrary in which to store the
compilation results. Use vlib to create a new library. For example:

vlib work

This creates alibrary named work. By default, compilation results are stored in the work library.

ModelSim User’s Manual, v10.3a 105

VHDL Simulation
Compilation and Simulation of VHDL

The work library is actually a subdirectory named work. This subdirectory contains a special
file named _info. Do not create a VHDL library as adirectory by using a UNIX, Linux,
Windows, or DOS command—always use the vlib command.

See Design Libraries for additional information on working with VHDL libraries.

Compiling a VHDL Design—the vcom Command

Model Sim compiles one or more VHDL design units with a single invocation of the vcom
command, the VHDL compiler. The design units are compiled in the order that they appear on
the command line. For VHDL, the order of compilation isimportant—you must compile any
entities or configurations before an architecture that references them.

Y ou can simulate a design written with the following versions of VHDL.:

* 1076-1987
* 1076-1993
* 1076-2002
* 1076-2008

To do so you need to compile units from each VHDL version separately.

The vcom command compiles using 1076 -2002 rules by default; use the -87, -93, or -2008
arguments to vcom to compile units written with version 1076-1987, 1076 -1993, or 1076-2008
respectively. You can also change the default by modifying the VHDL93 variable in the
modelsim.ini file (see modelsim.ini Variables for more information).

Note
D Only alimited number of VHDL 1076-2008 constructs are currently supported.

Dependency Checking

Y ou must re-analyze dependent design units when you change the design units they depend on
in the library. The vcom command determines whether or not the compilation results have
changed.

For example, if you keep an entity and its architectures in the same source file and you modify
only an architecture and recompile the source file, the entity compilation results will remain
unchanged. This means you do not have to recompile design units that depend on the entity.

106 ModelSim User's Manual, v10.3a

VHDL Simulation
Compilation and Simulation of VHDL

VHDL Case Sensitivity

VHDL is acase-insensitive language for al basic identifiers. For example, c1x and c1.x are
regarded as the same name for a given signal or variable. This differs from Verilog and
SystemVerilog, which are case-sensitive.

The vcom command preserves both uppercase and lowercase letters of all user-defined object
namesin a VHDL sourcefile.

Usage Notes

Y ou can make the vcom command convert uppercase letters to lowercase by either of
the following methods:

o Usethe-lower argument with the vcom command.
o Set the PreserveCase variable to 0 in your modelsim.ini file.

The supplied precompiled packagesin STD and | EEE have their case preserved. This
resultsin dlightly different version numbers for these packages. As aresult, you may
receive out-of-date reference messages when refreshing to the current release. To
resolve this, use vcom -force_refresh instead of vcom -refresh.

Mixed language interactions

o Design unit names— Because VHDL and Verilog design units are mixed in the
same library, VHDL design units are treated as if they are lowercase. Thisisfor
compatibility with previous releases. This also to provide consistent filenamesin the
file system for make files and scripts.

o Verilog packages compiled with -mixedsvvh — not affected by VHDL uppercase
conversion.

o VHDL packages compiled with -mixedsvvh — not affected by VHDL uppercase
conversion; VHDL basic identifiersare still converted to lowercase for compatibility
with previous releases.

o FLI — Functions that return names of an object will not have the original case
unless the source is compiled using vcom -lower. Port and Generic hamesin the
mitilnterfaceListT structure are converted to lowercase to provide compatibility with
programs doing case sensitive comparisons (strcmp) on the generic and port names.

How Case Affects Default Binding

The following rules describe how Model Sim handles uppercase and lowercase namesin default
bindings.

1. All VHDL names are case-insensitive, so Model Sim always storesthem in the library in

lowercase to be consistent and compatible with older releases.

ModelSim User’s Manual, v10.3a 107

VHDL Simulation
Compilation and Simulation of VHDL

2. Whenlooking for adesign unitin alibrary, Model Sim ignoresthe VHDL case and looks
first for the namein lowercase. If present, Model Sim uses it.

3. If nolowercase version of the design unit name existsin the library, then ModelSim
checks the library, ignoring case.

a. If ONE match isfound this way, Model Sim selects that design unit.

b. If NO matches or TWO or more matches are found, Model Sim does not select
anything.

The following examples demonstrate these rules. Here, the VHDL compiler needs to find a
design unit named Test. Because VHDL is case-insensitive, Model Sim looks for "test” because
previous rel eases always converted identifiers to lowercase.

Example 1

Consider the following library:

work
entity test
Module TEST

The VHDL entity test is selected because it is stored in the library in lowercase. The origina
VHDL could have contained TEST, Test, or TeSt, but the library always has the entity as "test.”

Example 2

Consider the following library:

work
Module Test

No design unit named "test" exists, but "Test" matches when case isignored, so ModelSim
selectsit.

Example 3
Consider the following library:

work
Module Test
Module TEST

No design unit named "test" exists, but both "Test" and "TEST" match when case isignored, so
Model Sim does not select either one.

108 ModelSim User's Manual, v10.3a

VHDL Simulation
Compilation and Simulation of VHDL

Range and Index Checking

A range check verifies that a scalar value defined to be of a subtype with arange is aways
assigned a value within itsrange. An index check verifies that whenever an array subscript
expression is evaluated, the subscript will be within the array's range.

Range and index checks are performed by default when you compile your design. Y ou can
disable range checks (potentially offering a performance advantage) using arguments to the
vcom command. Or, you can use the NoRangeCheck and NolndexCheck variablesin the
[vcom] section of the modelsim.ini file to specify whether or not they are performed. Refer to
modelsim.ini Variables for more information.

Generally, these checks are disabled only after the design is known to be error-free. If you run a
simulation with range checking disabled, any scalar values that are out of range are indicated by
showing the value in the following format: 2(N) where N is the current value. For example, the
range constraint for STD_ULOGIC is'U' to '-'; if the valueis reported as 2(25), the value is out
of range because the type STD_ULOGIC value internally is between 0 and 8 (inclusive). A
similar thing will arise for integer subtypes and floating point subtypes. This generally
indicates that there is an error in the design that is not being caught because range checking was
disabled.

Range checksin Model Sim are slightly more restrictive than those specified by the VHDL
Language Reference Manua (LRM). Model Sim requires any assignment to asignal to also be
in range whereas the LRM requires only that range checks be done whenever asignal is
updated. Most assignments to signals update the signal anyway, and the more restrictive
requirement allows Model Sim to generate better error messages.

Subprogram Inlining

Model Sim attempts to inline subprograms at compile time to improve simulation performance.
This happens automatically and should be largely transparent. However, you can disable
automatic inlining two ways.

® |nvoke vcom with the -O0 or -O1 argument
® Usethenti_inhibit_inline attribute as described below

Single-stepping through a simulation varies slightly, depending on whether inlining occurred.
When single-stepping to a subprogram call that has not been inlined, the simulator stops first at
the line of the call, and then proceeds to the line of the first executable statement in the called
subprogram. If the called subprogram has been inlined, the smulator does not first stop at the
subprogram call, but stops immediately at the line of the first executable statement.

mti_inhibit_inline Attribute

You can disable inlining for individual design units (a package, architecture, or entity) or
subprograms with the mti_inhibit_inline attribute. Follow these rulesto use the attribute:

ModelSim User’s Manual, v10.3a 109

VHDL Simulation
Compilation and Simulation of VHDL

® Declare the attribute within the design unit's scope as follows:

attribute mti_inhibit_inline : boolean;

® Assign the value true to the attribute for the appropriate scope. For example, to inhibit
inlining for a particular function (for example, "foo"), add the following attribute
assignment:

attribute mti_inhibit_inline of foo : procedure is true;

To inhibit inlining for a particular package (for example, "pack™), add the following
attribute assignment:

attribute mti_inhibit_inline of pack : package is true;

Do similarly for entities and architectures.

Simulating a VHDL Design

A VHDL designisready for simulation after it has been compiled with vcom. Y ou can then use
the vaim command to invoke the simulator with the name(s) of the configuration or
entity/architecture pair.

Note
D This section discusses simulation from the UNIX or Windows/DOS command line. Y ou

can also use a project to simulate (see Getting Started with Projects) or the Start

Simulation dialog box (open with Simulate > Start Simulation menu selection).

This example begins simulation on a design unit with an entity named my_asic and an
architecture named structure:

vsim my_asic structure

Timing Specification

The vsim command can annotate a design using VITAL-compliant models with timing data
from an SDF file. Y ou can specify delay by invoking vsim with the -sdfmin, -sdftyp, or -sdfmax
arguments. The following example uses an SDF file named f1.sdf in the current work directory,
and an invocation of vsim annotating maximum timing values for the design unit my_asic:

vsim -sdfmax /my_asic=fl.sdf my asic

By default, the timing checkswithin VITAL models are enabled. Y ou can disable them with the
+notimingchecks argument. For example:

vsim +notimingchecks topmod

110 ModelSim User's Manual, v10.3a

VHDL Simulation
Compilation and Simulation of VHDL

If you specify vsim +notimingchecks, the generic TimingChecksOn is set to FALSE for all
VITAL modelswith the Vital _levelO or Vital _levell attribute (refer to VITAL Usage and
Compliance). Setting this generic to FAL SE disables the actual calls to the timing checks along
with anything else that is present in the model's timing check block. In addition, if these models
use the generic TimingChecksOn to control behavior beyond timing checks, this behavior will
not occur. This can cause designs to ssmulate differently and provide different results.

Naming Behavior of VHDL For Generate Blocks

A VHDL for ... generate statement, when elaborated in a design, places a given number of
for ... generate equivaent blocks into the scope in which the statement exists; either an
architecture, ablock, or another generate block. The ssimulator constructs a design path namefor
each of thesefor ... generate equivalent blocks based on the original generate statement's |abel
and the value of the generate parameter for that particular iteration. For example, given the
following code:

gl: for I in 1 to Depth generate
L: BLK port map (A(I), B(I+1));
end generate gl

the default names of the blocks in the design hierarchy would be:

gl(l), g1(2), ...

This name appearsin the GUI to identify the blocks. Y ou should use this name with any
commands when referencing a block that is part of the simulation environment. The format of
the name is based on the VHDL Language Reference Manual P1076-2008 section 16.2.5
Predefined Attributes of Named Entities.

If the type of the generate parameter is an enumeration type, the value within the parenthesis
will be an enumeration literal of that type; such as: gl(red).

For mixed-language designs, in which a Verilog hierarchical reference is used to reference
something inside aVHDL for ... generate equivalent block, the parentheses are replaced with
brackets ([]) to match Verilog syntax. If the name is dependent upon enumeration literals, the
literal will be replaced with its position number because V erilog does not support using
enumerated literalsinitsfor ... generate equivalent block.

In releases prior to the 6.6 series, this default name was controlled by the GenerateFormat
modelsim.ini file variable would have appeared as:

gl 1, gl_ 2,

All previously-generated scripts using this old format should work by default. However, if not,
you can use the GenerateFormat and OldV hdl ForGenNames modelsim.ini variables to ensure
that the old and current names are mapped correctly.

ModelSim User’s Manual, v10.3a 111

VHDL Simulation
Compilation and Simulation of VHDL

Differences Between Versions of VHDL

There are four versions of the VHDL standard (IEEE Std 1076): 1076-1987, 1076-1993,
1076-2002, and 1076-2008. The default language version supported for ModelSim is 1076-
2002.

If your code was written according to the 1987, 1993, or 2008 version, you may need to update
your code or instruct Model Sim to use rules for different version.

To select a specific language version, do one of the following:

® Select the appropriate version from the compiler options menu in the GUI
® Invoke vcom using the argument -87, -93, -2002, or -2008.

® Setthe VHDL93 variable in the [vcom] section of the modelsim.ini file to one of the
following values:

- 0, 87, or 1987 for 1076-1987
- 1, 93, or 1993 for 1076-1993
- 2,02, or 2002 for 1076-2002
- 3, 08, or 2008 for 1076-2008

Thefollowingisalist of language incompatibilities that may cause problems when compiling a
design.

Tip: Please refer to Model Sim Release Notes for the most current and comprehensive
description of differences between supported versions of the VHDL standard.

® VHDL-93 and VHDL-2002 — The only mgjor problem between VHDL-93 and
VHDL-2002 is the addition of the keyword "PROTECTED". VHDL-93 programs
which use this as an identifier should choose a different name.

All other incompatibilities are between VHDL-87 and VHDL-93.

®* VITAL and SDF — It isimportant to use the correct language version for VITAL.
VITAL 2000 must be compiled with VHDL-93 or VHDL-2002. VITAL95 must be
compiled with VHDL-87. A typical error message that indicates the need to compile
under language version VHDL-87 is:

"VITALPathDelay DefaultDelay parameter must be locally static"

® Purity of NOW — In VHDL-93 the function "now" isimpure. Consequently, any
function that invokes "now" must aso be declared to be impure. Such callsto "now"
occur in VITAL. A typical error message:

112 ModelSim User's Manual, v10.3a

VHDL Simulation
Compilation and Simulation of VHDL

"Cannot call impure function 'now' from inside pure function
'<name>""

®* Files— File syntax and usage changed between VHDL-87 and VHDL-93. In many
cases vcom issues a warning and continues:

"Using 1076-1987 syntax for file declaration."

In addition, when files are passed as parameters, the following warning message is
produced:

"Subprogram parameter name is declared using VHDL 1987 syntax."
This message often involves calls to endfile(<name>) where <name> is afile parameter.

* Filesand packages — Each package header and body should be compiled with the
same language version. Common problemsin this areainvolve files as parameters and
the size of type CHARACTER. For example, consider a package header and body with
aprocedure that has afile parameter:

procedure procl (out_file : out std.textio.text)

If you compile the package header with VHDL-87 and the body with VHDL-93 or
VHDL-2002, you will get an error message such as.

"** Error: mixed_package_b.vhd(4): Parameter kinds do not conform
between declarations in package header and body: 'out_file'."

® Direction of concatenation — To solve some technical problems, the rules for
direction and bounds of concatenation were changed from VHDL-87 to VHDL-93. You
won't see any difference in simple variable/signal assignments such as:

vl := a & b;

But if you (1) have a function that takes an unconstrained array as a parameter, (2) pass
a concatenation expression as aformal argument to this parameter, and (3) the body of
the function makes assumptions about the direction or bounds of the parameter, then you
will get unexpected results. This may be a problem in environments that assume all
arrays have "downto" direction.

® xnor — "xnor" isareserved word in VHDL-93. If you declare an xnor function in
VHDL-87 (without quotes) and compile it under VHDL-2002, you will get an error
message like the following:

** Error: xnor.vhd(3): near "xnor": expecting: STRING IDENTIFIER

®* 'FOREIGN attribute— In VHDL-93 package STANDARD declares an attribute
'FOREIGN. If you declare your own attribute with that name in another package, then
Model Sim issues a warning such as the following:

-- Compiling package foopack

ModelSim User’s Manual, v10.3a 113

VHDL Simulation
Compilation and Simulation of VHDL

** Warning: foreign.vhd(9): (vcom-1140) VHDL-1993 added a definition
of the attribute foreign to package std.standard. The attribute is
also defined in package 'standard'. Using the definition from
package 'standard'.

Size of CHARACTER type— In VHDL-87 type CHARACTER has 128 values; in
VHDL-93 it has 256 values. Code which depends on this size will behave incorrectly.
This situation occurs most commonly in test suites that check VHDL functionality. It's
unlikely to occur in practical designs. A typical instance is the replacement of warning
message:

"range nul downto del is null"

by

"range nul downto 'y' is null" -- range is nul downto y(umlaut)

bit string literals— In VHDL-87 bit string literals are of type bit_vector. In VHDL-93
they can aso be of type STRING or STD_LOGIC_VECTOR. Thisimplies that some
expressions that are unambiguousin VHDL-87 now become ambiguousisVHDL-93. A
typical error messageis:

** Error: bit_string literal.vhd(5): Subprogram '=' is ambiguous.
Suitable definitions exist in packages 'std_logic_1164' and
'standard’.

Sub-element association — In VHDL-87 when using individual sub-element
association in an association list, associating individual sub-elementswith NULL is
discouraged. In VHDL-93 such association is forbidden. A typical messageis:

"Formal '<name>' must not be associated with OPEN when subelements
are associated individually."

VHDL -2008 packages — Model Sim does not provide VHDL source for VHDL-2008
| EEE-defined standard packages because of copyright restrictions. Y ou can obtain
VHDL source from http://standards.ieee.org//downl oads/1076/1076-2008/ for the
following packages:

IEEE.fixed_float_types
IEEE. fixed_generic_pkg
IEEE. fixed_pkg

IEEE. float_generic_pkg
IEEE. float_pkg
IEEE.MATH_REAL
IEEE.MATH_COMPLEX
IEEE.NUMERIC_BIT
IEEE.NUMERIC_BIT_ UNSIGNED
IEEE.NUMERIC_STD
IEEE.NUMERIC_STD UNSIGNED
IEEE.std_logic_1164
IEEE.std_logic_textio

114

ModelSim User's Manual, v10.3a

http://standards.ieee.org//downloads/1076/1076-2008/
http://standards.ieee.org//downloads/1076/1076-2008/

VHDL Simulation
Compilation and Simulation of VHDL

Simulator Resolution Limit for VHDL

The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time, also known as the simulator resolution limit. The default resolution
limit is set to the value specified by the Resolution variable in the modelsim.ini file. Y ou can
view the current resolution by invoking the report command with the simulator state argument.

Note
D In Verilog, this representation of time unitsis referred to as precision or timescale.

Overriding the Resolution

To override the default resolution of Model Sim, specify avalue for the -t argument of the vsim
command line or select a different Simulator Resolution in the Simulate dialog box. Available
values of simulator resolution are:

1fs, 10fs, 100 fs

1 ps, 10 ps, 100 ps
1ns, 10ns, 100 ns
1us, 10 us, 100 us

1 ms, 10 ms, 100 ms
1s,10s,100s

For example, the following command sets resolution to 10 ps:

vsim -t 10ps topmod

Note that you need to take care in specifying aresolution value larger than adelay value in your
design—delay valuesin that design unit are rounded to the closest multiple of the resolution. In
the example above, adelay of 4 pswould be rounded down to O ps.

Choosing the Resolution for VHDL

Y ou should specify the coarsest value for time resolution that does not result in undesired
rounding of your delay times. The resolution value should not be unnecessarily small because it
decreases the maximum simulation time limit and can cause longer simulations.

Default Binding

By default, Model Sim performs binding when you load the design with vsim. The advantage of
this default binding at load time is that it provides more flexibility for compile order. Namely,
VHDL entities don't necessarily have to be compiled before other entities/architectures that
instantiate them.

ModelSim User’s Manual, v10.3a 115

VHDL Simulation
Compilation and Simulation of VHDL

However, you can force Model Sim to perform default binding at compile time instead. This
may allow you to catch design errors (for example, entities with incorrect port lists) earlier in
the flow. Use one of these two methods to change when default binding occurs:

® Specify the -bindAtCompile argument to vcom

® Set the BindAtCompile variable in the modelsim.ini to 1 (true)

Default Binding Rules

When searching for aVHDL entity with which to bind, Model Sim searches the currently visible
libraries for an entity with the same name as the component. Model Sim does this because |EEE
Std 1076-1987 contained a flaw that made it amost impossible for an entity to be directly
visibleif it had the same name as the component. This meant if acomponent was declared in an
architecture, any entity with the same name above that declaration would be hidden because
component/entity names cannot be overloaded. As aresult, Model Sim observes the following
rules for determining default binding:

* |f performing default binding at load time, search the libraries specified with the -L
argument to vsim.

* |f adirectly visible entity has the same name as the component, useit.
* |f an entity would be directly visible in the absence of the component declaration, useit.

* If the component is declared in a package, search the library that contained the package
for an entity with the same name.

® If aconfiguration declaration contains library and use clauses, use them.

If none of these methods are successful, Model Sim then does the following:

® Search thework library.
® Search all other libraries that are currently visible by means of the library clause.

* |f performing default binding at load time, search the libraries specified with the -L
argument to vsim.

Note that these last three searches are an extension to the 1076 standard.

Disabling Default Binding

If an appropriate binding cannot be made between an entity and an architecture, default port,
and generic maps, Model Sim will issue an error or warning. Y ou can disable normal default
binding methods and require a user specified binding by setting the
RequireConfigForAllDefaultBinding variable in the modelsim.ini file to 1 (true) or by
specifying the -ignor edefaultbind argument to vcom.

116 ModelSim User's Manual, v10.3a

VHDL Simulation
Compilation and Simulation of VHDL

When you specify the RequireConfigForAllDefaultBinding, Model Sim requires the user to
provide a configuration specification or component configuration in order to bind an entity with
an architecture. You must explicitly bind all componentsin the design through either
configuration specifications or configurations. If an explicit binding is not fully specified,
defaults for the architecture, port maps, and generic maps will be used as needed.

Delta Delays

Event-based simulators such as Model Sim may process many events at agiven simulation time.
Multiple signals may need updating, statements that are sensitive to these signals must be
executed, and any new events that result from these statements must then be queued and
executed as well. The steps taken to evaluate the design without advancing simulation time are
referred to as "deltatimes” or just "deltas.”

The diagram below represents the process for VHDL designs. This process continues until the
end of simulation time.

Figure 5-1. VHDL Delta Delay Process

Execute concurrent :
__pp-|Statements at — ppAdvance deltatime |q—
current time i

Advance simulation No |Any transactions to
time ~®—— process?
¢Yes

Any events to No
process?

wes

Execute concurrent
statements that are
sensitive to events

This mechanism in event-based simulators may cause unexpected results. Consider the
following code fragment:

ModelSim User’s Manual, v10.3a 117

VHDL Simulation
Compilation and Simulation of VHDL

clk2 <= clk;

process (rst, clk)
begin
if(rst = '0')then
sO0O <= '0';
elsif (clk'event and clk='1l') then
s0 <= inp;
end if;
end process;

process (rst, clk2)

begin
if(rst = '0')then
sl <= '0';
elsif (clk2'event and clk2='1') then
sl <= s0;
end if;

end process;

In this example you have two synchronous processes, one triggered with clk and the other with
clk2. To your surprise, the signals change in the clk2 process on the same edge asthey are set in
the clk process. As aresult, the value of inp appears at sl rather than sO.

During simulation an event on clk occurs (from the test bench). From this event Model Sim
performs the "clk2 <= clk" assignment and the process which is sensitive to clk. Before
advancing the simulation time, Model Sim finds that the process sensitive to clk2 can also be
run. Since there are no delays present, the effect is that the value of inp appears at sl in the same
simulation cycle.

In order to get the expected results, you must do one of the following:

® |nsert adelay at every output
® Make certain to use the same clock
® Insert adeltadelay
To insert adelta delay, you would modify the code like this:

process (rst, clk)
begin
if(rst = '0’)then
sO0O <= '0’";
elsif(clk’event and clk='1’) then
s0 <= inp;
end 1if;
end process;
s0_delayed <= s0;
process (rst, clk2)
begin
if(rst = '0’)then
sl <= '0";
elsif (clk2’event and clk2='1') then

118 ModelSim User's Manual, v10.3a

VHDL Simulation
Using the TextlO Package

sl <= s0_delayed;
end if;
end process;

The best way to debug delta delay problems is observe your signalsin the Wave Window or
List Window. There you can see how values change at each deltatime.

Detecting Infinite Zero-Delay Loops

If alarge number of deltas occur without advancing time, it is usually a symptom of an infinite
zero-delay loop in the design. In order to detect the presence of these loops, Model Sim defines a
limit, the “iteration limit", on the number of successive deltas that can occur. When Model Sim
reaches the iteration limit, it issues a warning message.

The iteration limit default value is 1000. If you receive an iteration limit warning, first increase
theiteration limit and try to continue ssimulation. Y ou can set the iteration limit from the
Simulate > Runtime Options menu or by modifying the IterationLimit variable in the
modelsim.ini. See modelsim.ini Variables for more information on modifying the modelsim.ini
file.

If the problem persists, look for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which signals
or variables are continuoudly oscillating. Two common causes are a loop that has no exit, or a
series of gates with zero delay where the outputs are connected back to the inputs.

Using the TextlO Package

The Textl O package is defined within the |EEE Std 1076-2002, |EEE Sandard VHDL
Language Reference Manual. This package allows human-readable text input from a declared
source within a VHDL file during simulation.

To access the routines in Textl O, include the following statement in your VHDL source code:

USE std.textio.all;

A simple example using the package TextlO is:

ModelSim User’s Manual, v10.3a 119

VHDL Simulation
Using the TextlO Package

USE std.textio.all;
ENTITY simple_textio IS
END;

ARCHITECTURE simple_behavior OF simple_textio IS
BEGIN
PROCESS
VARIABLE i: INTEGER:= 42;
VARIABLE LLL: LINE;
BEGIN
WRITE (LLL, 1);
WRITELINE (OUTPUT, LLL) ;
WAIT;
END PROCESS;
END simple_behavior;

Syntax for File Declaration
The VHDL 1987 syntax for afile declaration is:
file identifier : subtype_indicationis [mode] file_logical_name ;
where "file_logical_name" must be a string expression.
In newer versions of the 1076 spec, syntax for afile declaration is:
file identifier_1list : subtype_indication [file_open_information] ;
where "file_open_information" is:
[open file_open_kind_expression] is file_logical_name

Y ou can specify afull or relative path asthe file_logica_name; for example (VHDL 1987):

Normally if afileisdeclared within an architecture, process, or package, thefileis opened when
you start the simulator and is closed when you exit fromit. If afileis declared in a subprogram,
the file is opened when the subprogram is called and closed when execution RETURNS from
the subprogram. Alternatively, the opening of files can be delayed until the first read or write by
setting the DelayFileOpen variable in the modelsim.ini file. Also, the number of concurrently
open files can be controlled by the ConcurrentFileLimit variable. These variables help you
manage alarge number of files during simulation. See modelsim.ini Variables for more details.

Using STD _INPUT and STD_OUTPUT Within
ModelSim

The standard VHDL 1987 Textl O package contains the following file declarations:

file input: TEXT is in "STD_INPUT";
file output: TEXT is out "STD_OUTPUT";

120 ModelSim User's Manual, v10.3a

VHDL Simulation
Using the TextlO Package

Updated versions of the TextlO package contain these file declarations:

file input: TEXT open read_mode is "STD_INPUT";
file output: TEXT open write_mode is "STD_OUTPUT";

STD_INPUT isafile logical_name that refers to characters that are entered interactively from
the keyboard, and STD_OUTPUT refers to text that is displayed on the screen.

In ModelSim, reading from the STD_INPUT file allows you to enter text into the current buffer
from a prompt in the Transcript pane. The lines written to the STD_OUTPUT file appear in the
Transcript.

TextlO Implementation Issues

Writing Strings and Aggregates

A common error in VHDL source code occurs when a call to a WRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the VHDL
procedure;

WRITE (L, "hello");
will cause the following error:

ERROR: Subprogram "WRITE" is ambiguous.

In the Textl O package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRITE(L: inout LINE; VALUE: in BIT_VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE(L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

The error occurs because the argument "hello” could be interpreted as a string or a bit vector,
but the compiler is not allowed to determine the argument type until it knows which functionis
being called.

The following procedure call also generates an error:
WRITE (L, "010101");

Thiscall iseven more ambiguous, because the compiler could not determine, even if allowed to,
whether the argument "010101" should be interpreted as a string or a bit vector.

There are two possible solutions to this problem:

* Useagqualified expression to specify the type, asin:

ModelSim User’s Manual, v10.3a 121

VHDL Simulation
Using the TextlO Package

WRITE (L, string’ ("hello"));

¢ Cadl aprocedure that is not overloaded, asin:

WRITE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedureintheio_utils
package, which islocated in thefile
<install_dir>/modeltech/examples/vhdl/io_utils/io_utils.vhd.

Reading and Writing Hexadecimal Numbers

The reading and writing of hexadecimal numbersis not specified in standard VHDL. The I ssues
Screening and Analysis Committee of the VHDL Analysis and Standardization Group (ISAC-
VASG) has specified that the TextlO package reads and writes only decimal numbers.

To expand this functionality, Model Sim supplies hexadecimal routinesin the packageio_utils,
whichislocated in thefile <install_dir>/modeltech/examples/gui/io_utils.vhd. To use these
routines, compiletheio_utils package and then include the following use clausesin your VHDL
source code:

use std.textio.all;
use work.io_utils.all;

Dangling Pointers

Dangling pointers are easily created when using the TextlO package, because WRITELINE de-
allocates the access type (pointer) that is passed to it. Following are examples of good and bad
VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLINE (infile, L1); -- Read and allocate buffer
L2 := L1; -- Copy pointers
WRITELINE (outfile, Ll); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and allocate buffer
L2 := new string’(Ll.all); -- Copy contents
WRITELINE (outfile, L1); -- Deallocate buffer

122 ModelSim User's Manual, v10.3a

VHDL Simulation
Using the TextlO Package

The ENDLINE Function

The ENDLINE function — described in the IEEE Std 1076-2002, |EEE Sandard VHDL
Language Reference Manual — contains invalid VHDL syntax and cannot be implemented in
VHDL. Thisis because access values must be passed as variables, but functions do not allow
variable parameters.

Based on an ISAC-V A SG recommendation the ENDLINE function has been removed from the
TextlO package. The following test may be substituted for this function:

(L = NULL) OR (L’LENGTH = 0)

The ENDFILE Function
In the VHDL Language Reference Manuals, the ENDFILE function islisted as:
-- function ENDFILE (L: in TEXT) return BOOLEAN;

Asyou can see, thisfunction is commented out of the standard TextlO package. Thisis because
the ENDFILE function isimplicitly declared, so it can be used with files of any type, not just
files of type TEXT.

Using Alternative Input/Output Files

Y ou can use the Textl O package to read and write to your own files. To do this, just declare an
input or output file of type TEXT. For example, for an input file:

The VHDL1987 declaration is:

file myinput : TEXT is in "pathname.dat";

The VHDL1993 declaration is:

file myinput : TEXT open read_mode is "pathname.dat";

Then include the identifier for thisfile ("myinput” in this example) in the READLINE or
WRITELINE procedure call.

Flushing the TEXTIO Buffer

Flushing of the TEXTIO buffer is controlled by the UnbufferedOutput variable in the
modelsim.ini file.

ModelSim User’s Manual, v10.3a 123

VHDL Simulation
VITAL Usage and Compliance

Providing Stimulus

Y ou can provide an input stimulusto a design by reading data vectors from afile and assigning
their valuesto signals. Y ou can then verify the results of thisinput. A VHDL test bench has
been included with the Model Sim install files as an example. Check for thisfile:

<install_dir>/examples/gui/stimulus.vhd

VITAL Usage and Compliance

TheVITAL (VHDL Initiative Towards ASIC Libraries) modeling specification is sponsored by
the |EEE to promote the development of highly accurate, efficient simulation models for ASIC
(Application-Specific Integrated Circuit) componentsin VHDL.

The |EEE Std 1076.4-2000, | EEE Standard for VITAL AS C Modeling Specification isavailable
from the Institute of Electrical and Electronics Engineers, Inc.

|EEE Customer Service
445 Hoes Lane
Piscataway, NJ 08854-1331

Tel: (732) 981-0060
Fax: (732) 981-1721

http://www.ieee.org

VITAL Source Code

The source code for VITAL packagesis provided in the following Model Sim installation
directories:

/<install_dir>/vhdl_src/vital22b
/vital9s
/vital2000

VITAL 1995 and 2000 Packages

VITAL 2000 accelerated packages are pre-compiled into the ieee library in the installation
directory. VITAL 1995 accelerated packages are pre-compiled into the vital 1995 library. If you
need to use the older library, you either need to change the ieee library mapping or add a use
clause to your VHDL code to accessthe VITAL 1995 packages.

To change the ieee library mapping, issue the following command:

vmap ieee <modeltech>/vitall995

Or, alternatively, add use clauses to your code:

124 ModelSim User's Manual, v10.3a

http://www.ieee.org

VHDL Simulation
VITAL Usage and Compliance

LIBRARY vitall995;

USE vitall995.vital_primitives.all;
USE vitall995.vital_timing.all;

USE vitall995.vital_ memory.all;

Note that if your design uses two libraries—one that depends on vital 95 and one that depends
on vital2000—then you will have to change the references in the source code to vital 2000.
Changing the library mapping will not work.

ModelSim VITAL built-ins are generally updated as new releases of the VITAL packages
become available.

VITAL Compliance

A ssmulator isVITAL-compliant if it implements the SDF mapping and if it correctly simulates
designs using the VITAL packages—as outlined in the VITAL Model Development
Specification. Model Sim is compliant with |EEE Std 1076.4-2002, IEEE Sandard for VITAL
ASIC Modeling Specification. In addition, Model Sim accelerates the VITAL_Timing,
VITAL_Primitives, and VITAL_memory packages. The optimized procedures are functionally
equivalent to the IEEE Std 1076.4 VITAL ASIC Modeling Specification (VITAL 1995 and
2000).

VITAL Compliance Checking

If you areusing VITAL 2.2b, you must turn off the compliance checking either by not setting
the attributes, or by invoking vcom with the argument -novitalcheck.

Compiling and Simulating with Accelerated VITAL
Packages

The vcom command automatically recognizesthat a VITAL function is being referenced from
theieee library and generates code to call the optimized built-in routines.

Invoke vcom with the -novital argument if you do not want to use the built-in VITAL routines
(when debugging for instance). To exclude all VITAL functions, use -novita all:
vcom -novital all design.vhd

To exclude selected VITAL functions, use one or more -novital <fhname> arguments:

vcom -novital VitalTimingCheck -novital VitalAND design.vhd

The -novital switch only affects callsto VITAL functions from the design units currently being
compiled. Pre-compiled design units referenced from the current design units will still call the
built-in functions unless they too are compiled with the -novital argument.

ModelSim User’s Manual, v10.3a 125

VHDL Simulation
VHDL Utilities Package (util)

VHDL Utilities Package (util)

The util package contains various VHDL utilities that you can run as commands. The packageis
part of the modelsim_lib library, which islocated in the /modeltech tree and is mapped in the
default modelsim.ini file.

To include the utilities in this package, add the following lines similar to your VHDL code:

library modelsim_lib;
use modelsim lib.util.all;

get _resolution

The get_resolution utility returns the current simulator resolution as areal number. For
example, aresolution of 1 femtosecond (1 fs) corresponds to 1e-15.

Syntax
resval := get_resolution;
Returns
Name Type Description
resval rea The ssimulator resolution represented as a
real
Arguments
None

Related functions
* to_red()
® to time()
Example

If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution;

the value returned to resval would be 1e-11.

Init_signal_driver()

Theinit_signal_driver() utility drivesthe value of aVHDL signal or Verilog net onto an
existing VHDL signal or Verilog net. Thisalowsyou to drive signals or nets at any level of the
design hierarchy from within aVVHDL architecture (such as atest bench).

126 ModelSim User's Manual, v10.3a

VHDL Simulation
VHDL Utilities Package (util)

Seeinit_signa_driver for complete details.

init_signal_spy()

Theinit_signal_spy() utility mirrorsthe value of aVHDL signal or Verilog register/net onto an
existing VHDL signal or Verilog register. Thisalowsyou to reference signals, registers, or nets
at any level of hierarchy from within aVHDL architecture (such as atest bench).

Seeinit_signal_spy for complete details.

signal_force()

The signal_force() utility forces the value specified onto an existing VHDL signal or Verilog
register or net. This alows you to force signals, registers, or nets at any level of the design
hierarchy from within aVHDL architecture (such as atest bench). A signal_force works the
same as the force command when you set the modelsim.ini variable named ForceSigNextlter to
1. The variable ForceSigNextlter in the modelsim.ini file can be set to honor the signal update
event in next iteration for al force types. Note that the signal_force utility cannot issue a
repeating force.

See signal_force for complete details.

sighal_release()

The signal_release() utility releases any force that was applied to an existing VHDL signal or
Verilog register or net. This alows you to release signals, registers, or nets at any level of the
design hierarchy from within a VHDL architecture (such as atest bench). A signa_release
works the same as the noforce command.

See signal_release for compl ete details.

to_real()

Theto real() utility converts the physical type time value into areal value with respect to the
current value of simulator resolution. The precision of the converted value is determined by the
simulator resolution. For example, if you were converting 1900 fsto area and the simulator
resolution was ps, then the real value would be rounded to 2.0 (that is, 2 ps).

Syntax

realval :=to_real(timeval);

ModelSim User’s Manual, v10.3a 127

VHDL Simulation
VHDL Utilities Package (util)

Returns
Name Type
realval real
Arguments
Name Type
timeval time

Related functions
® et resolution

® to time()

Example

Description

Description

The time value represented as areal with
respect to the simulator resolution

The value of the physical typetime

If the simulator resolution is set to ps, and you enter the following function:

realval :=to_real(12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to bein
units of nanoseconds (ns) instead, you would use the get_resolution function to recalcul ate the

value:

realval ;= 1e+9 * (to_real(12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the

function this way:

realval := 1e+15 * (to_real(12.99 ns)) * get_resolution();

to_time()

Theto_time() utility convertsarea value into atime value with respect to the current simulator
resolution. The precision of the converted value is determined by the smulator resolution. For
example, if you converted 5.9 to atime and the simulator resolution was 1 ps, then the time

value would be rounded to 6 ps.

Syntax

timeval :=to_time(realval);

128

ModelSim User's Manual, v10.3a

VHDL Simulation
Modeling Memory

Returns
Name Type Description
timeval time Thereal value represented as a physical
type time with respect to the simulator
resolution
Arguments
Name Type Description
realval real The value of the type real

Related functions
® get resolution

* to_red()
Example
If the ssimulator resolution is set to 1 ps, and you enter the following function:
timeval :=to_time(72.49);

then the value returned to timeval would be 72 ps.

Modeling Memory

If you want to model a memory with VHDL using signals, you may encounter either of the
following common problems with simulation:

®* Memory alocation error, which typically means the simulator ran out of memory and
failed to allocate enough storage.

* Very longtimesto load, elaborate, or run.

These problems usually result from the fact that signals consume a substantial amount of
memory (many dozens of bytes per bit), all of which must be loaded or initialized before your
simulation starts.

Asan alternative, you can model amemory design using variables or protected types instead of
signals, which provides the following performance benefits:

® Reduced storage required to model the memory, by as much as one or two orders of
magnitude

® Reduced startup and run times

® Elimination of associated memory alocation errors

ModelSim User’s Manual, v10.3a 129

VHDL Simulation
Modeling Memory

Examples of Different Memory Models

Example 5-1 shown below uses different VHDL architectures for the entity named memory to
provide the following models for storing RAM:

® bad style 87 — usesaVHDL signa
* gyle 87 — usesvariablesin the memory process
® style 93 — usesvariablesin the architecture

For large memories, the run time for architecture bad_style 87 is many times longer than the
other two and uses much more memory. Because of this, you should avoid using VHDL signals
to model memory.

To implement this model, you will need functions that convert vectorsto integers. To useit, you
will probably need to convert integersto vectors.

Converting an Integer Into a bit_vector

The following code shows how to convert an integer variable into a bit_vector.

library ieee;
use ieee.numeric_bit.ALL;

entity test is
end test;

architecture only of test is
signal sl : bit_vector (7 downto 0);
signal int : integer := 45;
begin
p:process
begin
wait for 10 ns;
sl <= bit_vector(to_signed(int,8)) ;
end process p;
end only;

Examples Using VHDL1987, VHDL1993, VHDL2002
Architectures
® Example 5-1 containstwo VHDL architectures that demonstrate recommended memory

models: style 93 uses shared variables as part of a process, style 87 uses For
comparison, athird architecture, bad_style 87, showsthe use of signals.

130 ModelSim User's Manual, v10.3a

VHDL Simulation
Modeling Memory

The style_87 and style_93 architectures work with equal efficiency for this example.
However, VHDL 1993 offers additional flexibility because the RAM storage can be
shared among multiple processes. In the example, a second process is shown that
initializes the memory; you could add other processes to create a multi-ported memory.

* Example 5-2 isapackage (named conversions) that isincluded by the memory model in
Example 5-1.

® For completeness, Example 5-3 shows protected types using VHDL 2002. Note that
using protected types offers no advantage over shared variables.

Example 5-1. Memory Model Using VHDL87 and VHDL93 Architectures

Example functions are provided below in package “ conversions.”

-- Source: memory .vhd
-- Component: VHDL synchronous, single-port RAM
-- Remarks: Provides three different architectures

library ieee;
use ieee.std_logic_1164.all;
use work.conversions.all;

entity memory is
generic(add_bits : integer := 12;
data_bits : integer := 32);
port(add_in : in std_ulogic_vector (add_bits-1 downto 0);
data_in : in std_ulogic_vector (data_bits-1 downto 0);
data_out : out std_ulogic_vector(data_bits-1 downto O0);

cs, mwrite : in std_ulogic;

do_init : in std_ulogic);
subtype word is std_ulogic_vector (data_bits-1 downto 0);
constant nwords : integer := 2 ** add_bits;

type ram_type is array (0 to nwords-1) of word;
end;

ModelSim User’s Manual, v10.3a 131

VHDL Simulation
Modeling Memory

architecture style_93 of memory is

shared variable ram ram_type;
begin
memory:
process (cs)
variable address natural;
begin
if rising edge(cs) then
address := sulv_to_natural (add_in) ;
if (mwrite = '1l') then
ram(address) := data_in;
end if;
data_out <= ram(address) ;
end if;

end process memory;

-- i1llustrates a second process using the shared variable

initialize:
process (do_init)
variable address natural;
begin
if rising edge(do_init) then
for address in 0 to nwords-1 loop
ram(address) := data_in;
end loop;
end if;
end process initialize;
end architecture style_93;
architecture style_87 of memory is
begin
memory:
process (cs)
variable ram ram_type;
variable address natural;
begin
if rising edge(cs) then
address := sulv_to_natural (add_in) ;
if (mwrite = '1l') then
ram(address) := data_in;
end if;
data_out <= ram(address) ;
end if;

end process;
end style_87;

132 ModelSim User's Manual, v10.3a

VHDL Simulation
Modeling Memory

architecture bad_style_87 of memory is

begin
memory:
process (cs)
variable address : natural := 0;
begin
if rising edge(cs) then
address := sulv_to_natural (add_in) ;
if (mwrite = '1l') then
ram(address) <= data_in;
data_out <= data_in;
else
data_out <= ram(address) ;
end if;
end if;
end process;
end bad_style_87;

Example 5-2. Conversions Package

library ieee;
use ieee.std_logic_1l164.all;

package conversions 1is
function sulv_to_natural(x : std_ulogic_vector) return
natural;
function natural_to_sulv(n, bits : natural) return
std_ulogic_vector;
end conversions;

package body conversions is

function sulv_to_natural (x : std_ulogic_vector) return
natural is

variable n : natural := 0;
variable failure : boolean := false;
begin

assert (x'high - x'low + 1) <= 31
report "Range of sulv_to_natural argument exceeds
natural range"
severity error;
for i in x'range loop

n :=n * 2;
case x(i) is
when 'l' | 'H' =>n :=n + 1;
when '0' | 'L' => null;
when others => failure := true;
end case;
end loop;

ModelSim User’s Manual, v10.3a 133

VHDL Simulation
Modeling Memory

assert not failure
report "sulv_to_natural cannot convert indefinite
std_ulogic_vector"
severity error;

if failure then
return 0;
else
return n;
end if;
end sulv_to_natural;

function natural to_sulv(n, bits : natural) return
std_ulogic_vector is
variable x : std_ulogic_vector (bits-1 downto 0) :=
(others => '0');

variable tempn : natural := n;
begin

for i in x'reverse_range loop

if (tempn mod 2) = 1 then
x(1) := '1';

end if;
tempn := tempn / 2;

end loop;

return x;
end natural_to_sulv;

end conversions;

134 ModelSim User's Manual, v10.3a

VHDL Simulation
Modeling Memory

Example 5-3. Memory Model Using VHDLO2 Architecture

-- Source: sp_syn_ram_protected.vhd
-- Component: VHDL synchronous, single-port RAM
-- Remarks: Various VHDL examples: random access memory (RAM)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY sp_syn_ram_protected IS
GENERIC (

data_width : positive := 8;
addr_width : positive := 3
)
PORT (
inclk : IN std_logic;
outclk : IN std_logic;
we : IN std_logic;
addr : IN unsigned(addr_width-1 DOWNTO O0) ;
data_in : IN std_logic_vector (data_width-1 DOWNTO O0) ;

data_out : OUT std_logic_vector (data_width-1 DOWNTO O0)
) ;

END sp_syn_ram_protected;

ARCHITECTURE intarch OF sp_syn_ram protected IS

TYPE mem_type IS PROTECTED
PROCEDURE write (data : IN std_logic_vector (data_width-1 downto 0);
addr : IN unsigned(addr_width-1 DOWNTO 0)) ;
IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO O0))
RETURN
std_logic_vector;
END PROTECTED mem_type;

TYPE mem_type IS PROTECTED BODY
TYPE mem_array IS ARRAY (0 TO 2**addr_width-1) OF
std_logic_vector (data_width-1 DOWNTO O0) ;
VARIABLE mem : mem_array;

PROCEDURE write (data : IN std_logic_vector (data_width-1 downto 0);
addr : IN unsigned(addr_width-1 DOWNTO 0)) IS

BEGIN
mem (to_integer (addr)) := data;
END;
IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO 0))
RETURN
std_logic_vector IS
BEGIN
return mem(to_integer (addr)) ;
END;

END PROTECTED BODY mem_type;

ModelSim User’s Manual, v10.3a 135

VHDL Simulation
Modeling Memory

SHARED VARIABLE memory

BEGIN

ASSERT data_width <= 32

mem_type;

REPORT "### Illegal data width detected"
SEVERITY failure;

control_proc : PROCESS

(inclk, outclk)

BEGIN

IF (inclk'event AND inclk = '1l') THEN

IF (we = '1l') THEN
memory.write(data_in, addr);

END IF;

END IF;

IF (outclk'event AND outclk = 'l') THEN
data_out <= memory.read(addr) ;

END IF;

END PROCESS;

END intarch;

-— Source: ram_tb.vhd
-- Component: VHDL test bench for RAM memory example
-- Remarks: Simple VHDL example: random access memory (RAM)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ram _tb IS
END ram_tb;

ARCHITECTURE testbench OF ram_tb IS

COMPONENT sp_syn_ram_protected

GENERIC (
data_width : positive := 8;
addr_width : positive := 3
)
PORT (
inclk : IN std_logic;
outclk : IN std_logic;
we : IN std_logic;
addr : IN wunsigned(addr_width-1 DOWNTO O0) ;
data_in : IN std_logic_vector (data_width-1 DOWNTO O) ;

data_out : OUT std_logic_vector (data_width-1 DOWNTO O0)

)
END COMPONENT;

136

ModelSim User's Manual, v10.3a

VHDL Simulation
Modeling Memory

-- Intermediate signals and constants

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
CONSTANT

addr
inaddr
outaddr
data_in
data_inl
data_spl
we

clk
clk_pd

unsigned (19 DOWNTO 0) ;
unsigned (3 DOWNTO O0) ;
unsigned (3 DOWNTO O0) ;
unsigned (31 DOWNTO 0) ;
std_logic_vector (7 DOWNTO 0) ;
std_logic_vector (7 DOWNTO 0) ;
std_logic;

std_logic;

time := 100 ns;

-- instantiations of single-port RAM architectures.
-- All architectures behave equivalently, but they
-- have different implementations. The signal-based

-- architecture (rtl) is not a recommended style.
spraml entity work.sp_syn_ram_ protected
GENERIC MAP (
data_width => 8,
addr_width => 12)
PORT MAP (
inclk => clk,
outclk => clk,
we => we,
addr => addr (11 downto 0),
data_in => data_inl,
data_out => data_spl);
-- clock generator
clock_driver PROCESS
BEGIN
clk <= '0';
WAIT FOR clk_pd / 2;
LOOP
clk <= '1', '0' AFTER clk pd / 2;

END

WAIT FOR clk_pd;

LOOP;

END PROCESS;

datain_drivers

BEGIN

PROCESS (data_in)

data_inl <= std_logic_vector(data_in (7 downto 0));
END PROCESS;

ctrl_sim : PROCESS

ModelSim User’'s Manual, v10.3a

137

VHDL Simulation
Modeling Memory

BEGIN

FOR i IN O TO 1023 LOOP

we <= '1l";

data_in <= to_unsigned (9000 +
addr <= to_unsigned(i,
inaddr <= to_unsigned(i,
outaddr <= to_unsigned(1i,

WAIT UNTIL clk'EVENT AND clk =
WAIT UNTIL clk'EVENT AND clk

data_in <= to_unsigned(7 + 1,
addr <= to_unsigned(l + i,
inaddr <= to_unsigned (1l + 1

I~

WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk

data_in <= to_unsigned(3,
addr <= to_unsigned(2 + i,
inaddr <= to_unsigned(2 + 1,

WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk

data_in <= to_unsigned (30330,
addr <= to_unsigned(3 + i,
inaddr <= to_unsigned(3 + 1

I~

WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk =

we <= '0";
addr <= to_unsigned (i,
outaddr <= to_unsigned(1i,

WAIT UNTIL clk'EVENT AND clk =
WAIT UNTIL clk'EVENT AND clk =

addr <= to_unsigned(l + 1,
outaddr <= to_unsigned(l + i,
WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk =

addr <= to_unsigned(2 + 1,
outaddr <= to_unsigned(2 + i,
WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk

addr <= to_unsigned(3 + 1,
outaddr <= to_unsigned(3 + i,
WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk

END LOOP;
ASSERT false

REPORT "### End of Simulation!"
SEVERITY failure;

END PROCESS;

END testbench;

i, data_in'length);

addr'length) ;
inaddr'length) ;
outaddr'length) ;

IOI;
IOI;

data_in'length) ;
addr'length) ;
inaddr'length) ;
IOI;

IOI;

data_in'length) ;

addr'length) ;
inaddr'length) ;
IOI;

IOI;

data_in'length) ;
addr'length) ;
inaddr'length) ;
IOI;

IOI;

addr'length) ;
outaddr'length) ;

IOI;
IOI;

addr'length) ;
outaddr'length) ;
IOI;

IOI;

addr'length) ;
outaddr'length) ;
IOI;

IOI;

addr'length) ;
outaddr'length) ;
IOII.

lol;

138

ModelSim User's Manual, v10.3a

VHDL Simulation
Modeling Memory

Affecting Performance by Cancelling Scheduled
Events

Simulation performanceislikely to get worse if events are scheduled far into the future but then
cancelled before they take effect. This situation acts like a memory leak and slows down
simulation.

In VHDL, this situation can occur several ways. The most common are waits with time-out
clauses and projected waveformsin signal assignments.

The following shows await with atime-out:

signals synch : bit := '0';

p: process
begin

wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

At time 0, process p makes an event for time 10ms. When synch goesto 1 at 10 ns, the event at
10 msis marked as cancelled but not deleted, and anew event is scheduled at 10ms + 10ns. The
cancelled events are not reclaimed until time 10msis reached and the cancelled event is
processed. As aresult, there will be 500000 (10ms/20ns) cancelled but un-deleted events. Once
10msis reached, memory will no longer increase because the simulator will be reclaiming
events as fast as they are added.

For projected waveforms, the following would behave the same way:
signals synch : bit := '0';
p: process (synch)
begin
output <= '0', 'l' after 10ms;

end process;

synch <= not synch after 10 ns;

ModelSim User’s Manual, v10.3a 139

VHDL Simulation
Modeling Memory

140 ModelSim User's Manual, v10.3a

Chapter 6
Verilog and SystemVerilog Simulation

This chapter describes how to compile and simulate Verilog and SystemVerilog designs with
ModelSim. This chapter covers the following topics:

® Basic Verilog Usage — A brief outline of the stepsfor using VeriloginaModelSim
design.

* Verilog Compilation — Information on the requirements for compiling Verilog designs
and libraries.

® Verilog Simulation — Information on the requirements for running simulation.

® Cdl Libraries— Criteriafor using Verilog cell libraries from ASIC and FPGA vendors
that are compatible with Model Sim.

® System Tasks and Functions — System tasks and functions that are built into the
simulator.

® Compiler Directives— Verilog compiler directives supported for Model Sim.

®* Veilog PLI/VPI and SystemVerilog DPI — Verilog and SystemVerilog interfaces that
you can use to define tasks and functions that communicate with the simulator through a
C procedura interface.

* SystemVerilog Class Debugging — Information on debugging SV Class objects.

Standards, Nomenclature, and Conventions

Model Sim implements the Verilog and SystemV erilog languages as defined by the following
standards:

e |EEE 1364-2005 and 1364-1995 (Verilog)
* |EEE 1800-2012, 1800-2009 and 1800-2005 (SystemVerilog)

Note
D Model Sim supports partial implementation of SystemVerilog IEEE Std 1800-2012.

For release-specific information on currently supported implementation, refer to the
following text file located in the Model Sim installation directory:

<install_dir>/docs/technotes/sysvlog.note

ModelSim User’s Manual, v10.3a 141

Verilog and SystemVerilog Simulation

SystemVerilog isbuilt “on top of” IEEE Std 1364 for the Verilog HDL and improves the
productivity, readability, and reusability of Verilog-based code. The language enhancementsin
SystemVerilog provide more concise hardware descriptions, while still providing an easy route
with existing design and verification products into current hardware implementation flows. The
enhancements al so provide extensive support for directed and constrained random testbench
development, coverage-driven verification, and assertion-based verification.

The standard for SystemV erilog specifies extensions for a higher level of abstraction for
modeling and verification with the Verilog hardware description language (HDL). This
standard includes design specification methods, embedded assertions language, testbench
language including coverage and assertions application programming interface (API), and a
direct programming interface (DPI).

In this chapter, the following terms apply:

* “Verilog” refersto IEEE Std 1364 for the Verilog HDL.

* “Verilog-1995" refersto IEEE Std 1364-1995 for the Verilog HDL.
* “Verilog-2001" refersto IEEE Std 1364-2001 for the Verilog HDL.
* “Verilog-2005" refersto IEEE Std 1364-2005 for the Verilog HDL.

* “SystemVerilog” refersto the extensions to the Verilog standard (IEEE Std 1364) as
defined in IEEE Std 1800-2012.

Note
Theterm “Language Reference Manual” (or LRM) is often used informally to refer to the

current | EEE standard for Verilog or SystemVerilog.

Supported Variations in Source Code

It is possible to use syntax variations of constructs that are not explicitly defined as being
supported in the Verilog LRM (such as “shortcuts” supported for similar constructs in another

language).

for Loops

Model Sim allows using Verilog syntax that omits any or all three specifications of afor loop:
initialization, termination, increment. Thisis similar to allowed usage in C and is shown in the
following examples.

Note
If you use this variation, a suppressible warning (2252) is displayed, which you can
changeto an error if you use the vlog -pedanticerrors command.

® Missinginitializer (in order to continue where you left off):

142 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Basic Verilog Usage

for (; incr < foo; incr++) begin ... end

®* Missing incrementer (in order to increment in the loop body):

for (ii = 0; ii <= foo;) begin ... end

® Missinginitializer and terminator (in order to implement awhile loop):

for (; goo < foo;) begin ... end

® Missing al specifications (in order to create an infinite loop):

for (;;) begin ... end

Naming Macros with Integers

The vliog command will compile macros named with integers in addition to identifiers. For
example:

‘define 11 22
‘define g(s) " s "
module defineIdent;
string s2 = “g("11);
int 1 = “11;
initial begin
Sdisplay("i: %d\n", 1);
#10;
Sdisplay("s2: %$s\n", s2);
end
endmodule

Also, the following compiler directives accept integer names as well as |EEE-1800 Language
Reference Manual macro names:

‘define
‘else
‘elsif
‘endif
‘fdef
‘undefine

Y ou can disable this functionality with vlog -pedanticerrors.

Basic Verilog Usage

Simulating V erilog designs with Model Sim consists of the following general steps:

1. Compileyour Verilog code into one or more libraries using the viog command. See
Verilog Compilation for details.

ModelSim User’s Manual, v10.3a 143

Verilog and SystemVerilog Simulation
Verilog Compilation

2. Load your design with the vsim command. Refer to Verilog Simulation.
3. Simulate the loaded design and debug as needed.

Verilog Compilation

The first time you compile a design there is a two-step process:

1. Create aworking library with vlib or select File> New > Library.

2. Compile the design using vlog or select Compile > Compile.

Creating a Working Library

Before you can compile your design, you must create alibrary in which to store the compilation
results. Use the vlib command or select File > New > Library to create anew library. For
example:

vlib work

This creates alibrary named work. By default compilation results are stored in the work
library.

Thework library is actually a subdirectory named work. This subdirectory contains a special
file named _info. Do not create libraries using UNIX commands — always use the vlib
command.

See Design Libraries for additional information on working with libraries.

Invoking the Verilog Compiler

The viog command invokes the Verilog compiler, which compiles Verilog source code into
retargetable, executable code. Y ou can simulate your design on any supported platform without
having to recompile your design; the library format is also compatible across all platforms.

As the design compiles, the resulting object code for modules and user-defined primitives
(UDPs) is generated into alibrary. As noted above, the compiler places results into the work
library by default. Y ou can specify an alternate library with the -work argument of the viog
command.

Example 6-1. Invocation of the Verilog Compiler

The following example shows how to use the viog command to invoke the Verilog compiler:

vliog top.v +libext+.v+.u -y vlog_lib

144 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Compilation

After compiling top.v, vlog searches the viog_lib library for files with modules with the same
name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u implies
filenames with a.v or .u suffix (any combination of suffixes may be used). Only referenced
definitions are compiled.

Verilog Case Sensitivity

Note that Verilog and SystemV erilog are case-sensitive languages. For example, c1k and cL.k
are regarded as different names that you can apply to different signals or variables. This differs
from VHDL, which is case-insensitive.

Parsing SystemVerilog Keywords

With standard Verilog files (<filename>.v), viog does not automatically parse SystemVerilog
keywords. SystemV erilog keywords are parsed when either of the following situations exists:

* Any filewithin the design contains the .sv file extension
® You usethe-sv argument with the viog command

The following examples of the vlog command show how to enable SystemVerilog features and
keywordsin Model Sim:

vlog testbench.sv top.v memory.v cache.v

vlog -sv testbench.v proc.v

In the first example, the .sv extension for testbench automatically causes Model Sim to parse
SystemVerilog keywords. In the second example, the -sv argument enables SystemVerilog
features and keywords.

Keyword Compatibility

One of the primary goals of SystemV erilog standardization has been to ensure full backward
compatibility with the Verilog standard. Questa recognizes all reserved keywordslisted in
Table B-1in Annex B of IEEE Std 1800-2012.

The following reserved keywords have been added since | EEE Std 1800-20009:

implements Interconnect nettype
soft

If you use or produce SystemV erilog code that uses any identifiers from a previousrelease in
which they were not considered reserved keywords, you can do either of the following to avoid
acompilation error:

ModelSim User’s Manual, v10.3a 145

Verilog and SystemVerilog Simulation
Verilog Compilation

® Useadifferent set of stringsin your design. Y ou can add one or more charactersas a
prefix or suffix (such as an underscore,) to the string, which will cause the string to be
read in as an identifier and not as areserved keyword.

® Usethe SystemVerilog pragmas *begin_keywords and * end_keywords to define
regions where only the older keywords are recognized.

Recognizing SystemVerilog Files by File Name Extension

If you use the -sv argument with the viog command, then Model Sim assumes that all input files
are SystemVerilog, regardless of their respective filename extensions.

If you do not use the -sv argument with the viog command, then Model Sim assumes that only
files with the extension .sv, .svh, or .svp are SystemV erilog.
File extensions of include files

Similarly, if you do not use the -sv argument while reading in afile that uses an “include
statement to specify an include file, then the file extension of the include fileisignored and the
language is assumed to be the same as the file containing the “include. For example, if you do
not use the -sv argument:

If av included b.sv, then b.sv would be read as a Verilog file.
If c.svincluded d.v, then d.v would be read as a SystemVerilog file.
File extension settings in modelsim.ini

Y ou can define which file extensions indicate SystemV erilog files with the SV FileExtensions
variable in the modelsim.ini file. By default, this variableis defined in modelsim.ini asfollows:

; SVFileExtensions = sv svp svh
For example, the following command:

vlog a.v b.sv c.svh d.v

readsinav and d.v asa Verilog files and reads in b.sv and c.svh as SystemVerilog files.

File types affecting compilation units

Note that whether afileis Verilog or SystemVerilog can affect when Model Sim changes from
one compilation unit to another.

By default, Model Sim instructs the compiler to treat all files within acompilation command line
as separate compilation units (single-file compilation unit mode, which is the equivalent of
using vlog -sfcu).

vlog a.v aa.v b.sv c.svh d.v

146 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Compilation

Model Sim would group these source files into three compilation units:

Filesin first unit — av, aa.v, b.sv
Filein second unit — c.svh
Filein third unit — d.v

This behavior is governed by two basic rules:

® Anything read in is added to the current compilation unit.

* A compilation unit ends at the close of a SystemVerilog file.

Initializing enum Variables

By default, Model Sim initializes enum variables using the default value of the base type instead
of the leftmost value. However, you can change this so that Model Sim sets the initial value of
an enum variable to the left most value in the following ways:

® Run vlog -enumfirstinit when compiling and run vsim -enumfirstinit when simulating.

® Set EnumBaselnit = 0 in the modelsim.ini file.

Incremental Compilation

Model Sim supports incremental compilation of Verilog designs—there is no requirement to
compile an entire design in one invocation of the compiler.

Y ou are not required to compile your design in any particular order (unless you are using
SystemV erilog packages; see Note below) because all module and UDP instantiations and
external hierarchical references are resolved when the design is loaded by the simulator.

Note
D Compilation order may matter when using SystemVerilog packages. As stated in the

section Referencing data in packages of |EEE Std 1800-2005: “Packages must exist in
order for the items they define to be recognized by the scopesin which they are
imported.”

Incremental compilation is made possible by deferring these bindings, and as a result some
errors cannot be detected during compilation. Commonly, these errors include: modules that
were referenced but not compiled, incorrect port connections, and incorrect hierarchical
references.

ModelSim User’s Manual, v10.3a 147

Verilog and SystemVerilog Simulation
Verilog Compilation

Example 6-2. Incremental Compilation Example

Contents of testbench.sv

module testbench;
timeunit 1ns;
timeprecision 10ps;
bit d=1, clk = 0;
wire q;
initial
for (int cycles=0; cycles < 100; cycles++)
#100 clk = !clk;

design dut(q, d, clk);
endmodule

Contents of design.v:

module design(output bit g, input bit 4, clk);
timeunit 1ns;
timeprecision 10ps;
always @ (posedge clk)
q = d;
endmodule

Compile the design incrementally as follows:

ModelSim> vlog testbench.sv

Top level modules:
testbench
ModelSim> vlog -sv testl.v

#Top level modules:
dut

Note that the compiler lists each module as atop-level module, athough, ultimately, only

testbench is atop-level module. If amodule is not referenced by another module compiled in

the same invocation of the compiler, then it islisted as atop-level module. Thisisjust an
informative message that you can ignore during incremental compilation.

The message is more useful when you compile an entire design in one invocation of the
compiler and need to know the top-level module names for the simulator. For example,

% vlog top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

148 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Compilation

Automatic Incremental Compilation with -incr

The most efficient method of incremental compilation isto manually compile only the modules
that have changed. However, thisis not always convenient, especialy if your source files have
compiler directive interdependencies (such as macros). In this case, you may prefer to compile
your entire design along with the -incr argument. This causes the compiler to automatically
determine which modules have changed and generate code only for those modules.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v
-- Compiling module top

-- Compiling module and2

-- Compiling module or2

Top level modules:
top

Now, suppose that you modify the functionality of the or2 module:

% vlog -incr top.v and2.v or2.v
-- Skipping module top

-- Skipping module and2

-- Compiling module or2

Top level modules:
top

The compiler informs you that it skipped the modules top and and2, and compiled or2.

Automatic incremental compilation is intelligent about when to compile a module. For
example, changing a comment in your source code does not result in arecompile; however,
changing the compiler command line arguments results in a recompile of all modules.

Note
D Changes to your source code that do not change functionality but that do affect source

code line numbers (such as adding a comment line) will cause all affected modules to be
recompiled. This happens because debug information must be kept current so that
Model Sim can trace back to the correct areas of the source code.

Library Usage

All modules and UDPsin a Verilog design must be compiled into one or more libraries. One
library isusually sufficient for asimple design, but you may want to organize your modulesinto
various libraries for a complex design. If your design uses different modules having the same
name, then you need to put those modules in different libraries because design unit names must
be unique within alibrary.

ModelSim User’s Manual, v10.3a 149

Verilog and SystemVerilog Simulation
Verilog Compilation

Thefollowing is an example of how to organize your ASIC cellsinto one library and the rest of
your design into another:

% vlib work

% vlib asiclib

% vlog -work asiclib and2.v or2.v
-- Compiling module and2

-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v

-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -wor k asiclib argument to instruct the compiler to place
theresultsin the asiclib library rather than the default work library.

Library Search Rules for the vlog Command

Because instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are loaded
from the library named wor k unless you prefix the modules with the <library>. option. All
other Verilog instantiations are resolved in the following order:

® Search libraries specified with -Lf argumentsin the order they appear on the command
line.

® Search thelibrary specified in the Verilog-XL uselib Compiler Directive section.

® Search libraries specified with -L arguments in the order they appear on the command
line.

® Search thework library.
® Search thelibrary explicitly named in the special escaped identifier instance name.

Handling Sub-Modules with Common Names

Sometimes in one design you need to reference two different modules that have the same name.
This situation can occur if you have hierarchical modules organized into separate libraries, and
you have commonly-named sub-modules in the libraries that have different definitions. This
may happen if you are using vendor-supplied libraries.

For example, say you have the following design configuration:

150

ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Compilation

Example 6-3. Sub-Modules with Common Names

top
modA| |modB

4

libl: lib2:
modA modB

The normal library search rules fail in this situation. For example, if you load the design as
follows:

vsim -L lib1 -L lib2 top

both instantiations of cellX resolveto thelibl version of cellX. On the other hand, if you specify
-L lib2 -L lib1, both instantiations of cellX resolve to the lib2 version of cellX.

To handle this situation, Model Sim implements a special interpretation of the expression -L
work. When you specify -L work first in the search library arguments you are directing vsim to
search for the instantiated module or UDP in the library that contains the module that does the
instantiation.

In the exampl e above you would invoke vsim as follows:

vsim -L work -L lib1 -L lib2 top
SystemVerilog Multi-File Compilation

Declarations in Compilation Unit Scope

SystemVerilog allows the declaration of types, variables, functions, tasks, and other constructs
in compilation unit scope ($unit). The visibility of declarationsin $unit scope does not extend
outside the current compilation unit. Thus, it is important to understand how compilation units
are defined by the ssmulator during compilation.

By default, vliog operates in Single File Compilation Unit mode (SFCU). This means the
visibility of declarationsin $unit scope terminates at the end of each sourcefile. Visibility does
not carry forward from one file to another, except when a module, interface, or package
declaration begins in one file and ends in another file. In that case, the compilation unit spans
from the file containing the beginning of the declaration to the file containing the end of the
declaration.

ModelSim User’s Manual, v10.3a 151

Verilog and SystemVerilog Simulation
Verilog Compilation

The viog command also supports a non-default mode called Multi File Compilation Unit
(MFCU). In MFCU mode, vlog compiles all files on the command line into one compilation
unit. You can invoke viog in MFCU mode as follows:

® For aspecific, one-time compilation: viog -mfcu.

® For al compilations: set the variable M ultiFileCompilationUnit = 1 in the
modelsim.ini file.

By using either of these methods, you allow declarations in $unit scope to remain in effect
throughout the compilation of all files.

If you have made MFCU the default behavior by setting M ultiFileCompilationUnit = 1in
your modelsim.ini file, you can override this default behavior on a specific compilation by
using vlog -sfcu.

Macro Definitions and Compiler Directives in Compilation
Unit Scope

According to the IEEE Std 1800-2005, the visibility of macro definitions and compiler
directives span the lifetime of asingle compilation unit. By default, this means the definitions of
macros and settings of compiler directives terminate at the end of each sourcefile. They do not
carry forward from one file to another, except when amodule, interface, or package declaration
beginsin one file and ends in another file. In that case, the compilation unit spans from the file
containing the beginning of the definition to the file containing the end of the definition.

See Declarations in Compilation Unit Scope for instructions on how to control vliog's handling
of compilation units.

Note
Compiler directives revert to their default values at the end of a compilation unit.

If acompiler directiveis specified as an option to the compiler, this setting is used for all
compilation units present in the current compilation.

Verilog-XL Compatible Compiler Arguments

The compiler arguments listed below are equivalent to Verilog-XL arguments and may ease the
porting of a design to Model Sim. See the viog command for a description of each argument.

152 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Compilation

+define+<macro_name> [=<macro_text>]
+delay_mode_distributed
+delay_mode_path
+delay_mode_unit
+delay_mode_zero

-f <filename>
+incdir+<directory>
+mindelays

+maxdelays
+nowarn<mnemonic>
+typdelays

-u

Arguments Supporting Source Libraries

The compiler arguments listed below support source libraries in the same manner as Verilog-
XL. See the vlog command for a description of each argument.

Note that these source libraries are very different from the libraries that the Model Sim compiler
uses to store compilation results. Y ou may find it convenient to use these argumentsif you are
porting adesign to ModelSim or if you are familiar with these arguments and prefer to use
them.

Source libraries are searched after the source files on the command line are compiled. If there
are any unresolved references to modules or UDPs, then the compiler searches the source
libraries to satisfy them. The modules compiled from source libraries may in turn have
additional unresolved references that cause the source libraries to be searched again. This
process is repeated until al references are resolved or until no new unresolved references are
found. Source libraries are searched in the order they appear on the command line.

-v <filename>

-y <directory>
+libext+<suffix>
+librescan
+nolibcell

-R [<simargs>]

Verilog-XL uselib Compiler Directive

The "uselib compiler directive is an aternative source library management schemeto the -v, -y,
and +libext compiler arguments. It has the advantage that a design may reference different
modules having the same name. Y ou compile designs that contain “uselib directive statements
using the -compile_uselibs argument (described below) to viog.

The syntax for the "uselib directiveis:

‘uselib <library reference>...

where <library_reference> can be one or more of the following:

ModelSim User’s Manual, v10.3a 153

Verilog and SystemVerilog Simulation
Verilog Compilation

¢ dir=<library_directory>, which is equivalent to the command line argument:
-y <library_ directory>

* file=<library_file>, whichis equivalent to the command line argument:
~v <library_file>

* libext=<file_extension>, which is equivalent to the command line argument:

+libext+<file_extension>

® lib=<library_name>, which references alibrary for instantiated objects, specifically
modules, interfaces and program blocks, but not packages. Y ou must ensure the correct
mappings are set up if the library does not exist in the current working directory. The
-compile_uselibs argument does not affect this usage of "uselib.

For example, the following directive
‘"uselib dir=/h/vendorA libext=.v
Is equivalent to the following command line arguments:

-y /h/vendorA +libext+.v

Since the "usdlib directives are embedded in the Verilog source code, thereis more flexibility in
defining the source libraries for the instantiations in the design. The appearance of a "uselib
directive in the source code explicitly defines how instantiations that follow it are resolved,
completely overriding any previous "uselib directives.

An important feature of ‘uselib isto allow a design to reference multiple modules having the
same name, therefore independent compilation of the source libraries referenced by the "uselib
directivesisrequired.

Each source library should be compiled into its own object library. The compilation of the code
containing the "uselib directives only records which object libraries to search for each module
instantiation when the design isloaded by the simulator.

Because the "uselib directive isintended to reference source libraries, the simulator must infer
the object libraries from the library references. The rule isto assume an object library named
work in the directory defined in the library reference:

dir=<library_directory>
or the directory containing the filein the library reference

file=<library file>

The simulator will ignore alibrary reference libext=<file_extension>. For example, the
following "uselib directivesinfer the same object library:

154 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Compilation

‘uselib dir=/h/vendorA
‘uselib file=/h/vendorA/libcells.v

In both cases the ssmulator assumes that the library source is compiled into the object library:

/h/vendorA/work

The simulator also extends the "uselib directive to explicitly specify the object library with the
library reference lib=<library_name>. For example:

‘uselib lib=/h/vendorA/work

The library name can be a complete path to alibrary, or it can be alogical library name defined
with the vmap command.

-compile_uselibs Argument

Use the -compile_uselibs argument to vlog to reference "uselib directives. The argument finds
the source files referenced in the directive, compiles them into automatically created object
libraries, and updates the modelsim.ini file with the logical mappings to the libraries.

When using -compile_uselibs, Model Sim determinesinto which directory to compile the object
libraries by choosing, in order, from the following three values:

® Thedirectory name specified by the -compile_uselibs argument. For example,
—-compile_uselibs=./mydir

® Thedirectory specified by the MTI_USELIB_DIR environment variable (see
Environment Variables)

® A directory named mti_uselibsthat is created in the current working directory

The following code fragment and compiler invocation show how two different modules that
have the same name can be instantiated within the same design:

module top;
‘uselib dir=/h/vendorA libext=.v
NAND2 ul(nl, n2, n3);
‘uselib dir=/h/vendorB libext=.v
NAND2 u2(n4, n5, né6);

endmodule

vlog -compile_uselibs top

This allows the NAND2 module to have different definitions in the vendorA and vendorB
libraries.

ModelSim User’s Manual, v10.3a 155

Verilog and SystemVerilog Simulation
Verilog Compilation

uselib is Persistent

As mentioned above, the appearance of a "uselib directive in the source code explicitly defines
how instantiations that follow it are resolved. This may result in unexpected consequences. For
example, consider the following compile command:

vlog -compile_uselibs dut.v srtr.v

Assume that dut.v contains a "uselib directive. Since srtr.v is compiled after dut.v, the "uselib
directiveisstill in effect. When srtr isloaded it is using the "uselib directive from dut.v to
decide where to locate modules. If thisis not what you intend, then you need to put an empty
“uselib at the end of dut.vto “close” the previous "uselib statement.

Verilog Configurations

The Verilog 2001 specification added configurations. Configurations specify how adesignis
“assembled” during the elaboration phase of simulation. Configurations actually consist of two
pieces:. the library mapping and the configuration itself. The library mapping is used at compile
time to determine into which libraries the source files are to be compiled. Here is an example of
asimplelibrary map file:

library work ../top.v;

library rtlLib 1lrm_ex_top.v;

library gateLib lrm_ex_adder.vg;
library aLib lrm_ex_adder.v;

Hereis an example of alibrary map file that uses -incdir :
library 1libl src_dir/*.v -incdir ../include_dir2, ../, my_incdir;

The name of the library map fileis arbitrary. Y ou specify the library map file using the -libmap
argument to the viog command. Alternatively, you can specify the file name as the first item on
the viog command line, and the compiler readsit as alibrary map file.

The library map file must be compiled along with the Verilog source files. Multiple map files
are alowed but each must be preceded by the -libmap argument.

The library map file and the configuration can exist in the same or different files. If they are
separate, only the map file needs the -libmap argument. The configuration is treated as any
other Verilog sourcefile.

Configurations and the Library Named work

Thelibrary named “work” istreated specialy by Model Sim (see The Library Named "work" for
details) for Verilog configurations.

Consider the following code example:

156 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Compilation

config cfg;

design top;

instance top.ul use work.ul;
endconfig

In this case, work.ul indicates to load ul from the current library.

To create a configuration that loads an instance from alibrary other than the default work
library, do the following:
1. Make surethelibrary has been created using the vlib command. For example:

vlib mylib

2. Definethislibrary (mylib) asthe new current (working) library:

vliog -work mylib

3. Load instance ul from the current library, which is now mylib:

config cfg;

design top;

instance top.ul use mylib.ul;
endconfig

Verilog Generate Statements

Model Sim implements the rules adopted for Verilog 2005, because the Verilog 2001 rules for
generate statements had numerous inconsi stencies and ambiguities. Most of the 2005 rules are
backwards compatible, but there is one key difference related to name visibility.

Name Visibility in Generate Statements

Consider the following code example:

module m;
parameter p = 1;

generate
if (p)

integer x = 1;
else

real x = 2.0;
endgenerate

initial $display(Xx);
endmodule

Thisexampleislega under 2001 rules. However, it isillegal under the 2005 rules and causes an
error in Model Sim. Under the new rules, you cannot hierarchically reference anamein an

ModelSim User’s Manual, v10.3a 157

Verilog and SystemVerilog Simulation
Verilog Simulation

anonymous scope from outside that scope. In the example above, x does not propagate its
visibility upwards, and each condition alternative is considered to be an anonymous scope.

For this example to ssmulate properly in Model Sim, change it to the following:

module m;
parameter p = 1;

if (p) begin:s
integer x = 1;

end

else begin:s
real x = 2.0;

end

initial S$display(s.x);
endmodule

Because the scope is named in this example (begin:s), normal hierarchical resolution rules
apply and the code runs without error.

In addition, note that the keyword pair generate - endgenerate iSoptiona under the 2005
rules and are excluded in the second example.

Verilog Simulation

A Verilog design isready for simulation after it has been compiled with vliog. The simulator
may then be invoked with the names of the top-level modules (many designs contain only one
top-level module). For example, if your top-level modules are “testbench” and “globals’, then
invoke the simulator as follows:

vsim testbench globals

After the simulator loads the top-level modules, it iteratively loads the instantiated modul es and
UDPsin the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references. By default all modules and UDPs are |oaded from the library named
wor k. Modules and UDPs from other libraries can be specified using the-L or -Lf argumentsto
vsim (see Library Usage for details).

On successful loading of the design, the ssmulation timeis set to zero, and you must enter arun
command to begin simulation. Commonly, you enter run -all to run until there are no more
simulation events or until $finish is executed in the Verilog code. Y ou can also run for specific
time periods (for example, run 100 ns). Enter the quit command to exit the simulator.

Simulator Resolution Limit (Verilog)

The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time (also known as the simulator resolution limit). The resolution limit

158 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

defaults to the smallest time units that you specify among all of the “timescale compiler
directivesin the design.

Here is an example of a "timescale directive:
“timescale 1 ns / 100 ps

The first number (1 ns) is the time units; the second number (100 ps) is the time precision,
which isthe rounding factor for the specified time units. The directive above causes time values
to be read as nanoseconds and rounded to the nearest 100 picoseconds.

Time units and precision can also be specified with SystemV erilog keywords as follows:

timeunit 1 ns
timeprecision 100 ps

Modules Without Timescale Directives

Unexpected behavior may occur if your design contains some modules with timescale directives
and others without. An elaboration error isissued in this situation and it is highly recommended
that all modules having delays also have timescal e directives to make sure that the timing of the
design operates as intended.

Timescal e elaboration errors may be suppressed or reduced to warnings however, thereisarisk
of improper design behavior and reduced performance. The vsim +nowarnTSCALE or
-suppress options may be used to ignore the error, while the -warning option may be used to
reduce the severity to awarning.

-timescale Option

The -timescale option can be used with the viog command to specify the default timescale in
effect during compilation for modules that do not have an explicit “timescale directive. The
format of the -timescale argument is the same as that of the "timescale directive:

-timescale <time_units>/<time_precision>

where <time_units> is<n> <units>. The value of <n> must be 1, 10, or 100. The value of
<units> must befs, ps, ns, us, ms, or s. In addition, the <time_units> must be greater than or
equal to the <time_precision>.

For example:

-timescale "lns / 1lps"

The argument above needs quotes because it contains white space.

ModelSim User’s Manual, v10.3a 159

Verilog and SystemVerilog Simulation
Verilog Simulation

Multiple Timescale Directives

Asalluded to above, your design can have multiple timescale directives. Thetimescale directive
takes effect where it appears in a source file and appliesto all source files which follow in the
same vlog command. Separately compiled modules can aso have different timescales. The
simulator determines the smallest timescale of all the modulesin adesign and uses that as the
simulator resolution.

timescale, -t, and Rounding

The optional vsim argument -t sets the simulator resolution limit for the overall simulation. If
the resolution set by -t islarger than the precision set in a module, the time values in that
module are rounded up. If the resolution set by -t issmaller than the precision of the module, the
precision of that module remains whatever is specified by the "timescale directive. Consider the
following code:

“timescale 1 ns / 100 ps
module foo;

initial
#12.536 S$display

The list below shows three possibilities for -t and how the delays in the module are handled in
each case:

® -t not set
The delay is rounded to 12.5 as directed by the modul€e’ s *timescale directive.
® -tissettolfs

The delay isrounded to 12.5. Again, the modul€' s precision is determined by the
‘timescale directive. Model Sim does not override the modul€' s precision.

® -tissettolns

The delay will be rounded to 13. The modul€’s precision is determined by the -t setting.
Model Sim can only round the modul €' s time values because the entire smulation is
operating at 1 ns.

Choosing the Resolution for Verilog

Y ou should choose the coarsest simulator resolution limit possible that does not result in
undesired rounding of your delays. For example, values smaller than the current Time Scale
will be truncated to zero (0) and awarning issued. However, the time precision should also not
be set unnecessarily small, because in some cases performance will be degraded.

160 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

Event Ordering in Verilog Designs

Event-based simulators such as Model Sim may process multiple events at a given simulation
time. The Verilog language is defined such that you cannot explicitly control the order in which
simultaneous events are processed. Unfortunately, some designs rely on a particular event
order, and these designs may behave differently than you expect.

Event Queues

Section 11 of IEEE Std 1364-2005 defines several event queues that determine the order in
which events are evaluated. At the current simulation time, the simulator has the following
pending events:

active events

inactive events

non-blocking assignment update events
monitor events

future events

o inactive events

o non-blocking assignment update events

The Standard (LRM) dictates that events are processed as follows:

1. All active events are processed.

2. Inactive events are moved to the active event queue and then processed.
3.
4
5

Non-blocking events are moved to the active event queue and then processed.

. Monitor events are moved to the active queue and then processed.

. Simulation advances to the next time where there is an inactive event or a non-blocking

assignment update event.

Within the active event queue, the events can be processed in any order, and new active events
can be added to the queue in any order. In other words, you cannot control event order within
the active queue. The example below illustrates potential ramifications of this situation.

Assume that you have these four statements:

aways@(q) p = q;
aways @(q) p2=not q;
aways @(p or p2) clk = p and p2;

ModelSim User’s Manual, v10.3a 161

Verilog and SystemVerilog Simulation
Verilog Simulation

with current variable values: g =0, p=0, p2=1

always @(posedge clk)

The tables bel ow show two of the many valid evaluations of these statements. Evaluation events
are denoted by a number where the number is the statement to be evaluated. Update events are
denoted <name>(old->new) where <name> indicates the reg being updated and new is the

updated value.\

Table 6-1. Evaluation 1 of always Statements

Event being processed Active event queue
q(0->1)

g(0->1) 1,2

1 p(0->1),2

p(0->1) 3,2

3 clk(0->1),2

clk(0->1) 4,2

4 2

2 p2(1->0)

p2(1 -> 0) 3

3 clk(1->0)

clk(1->0) <empty>

Table 6-2. Evaluation 2 of always Statement

Event being processed Active event queue
g(0->1)
g(0->1) 1,2
1 p(0->1),2
2 p2(1->0), p(0->1)
p(0->1) 3, p2(1->0)
p2(1—>0) 3
3 <empty> (clk does not change)

Again, both evaluations are valid. However, in Evaluation 1, clk hasaglitch onit; in Evaluation
2, clk does not. Thisindicates that the design has a zero-delay race condition on clk.

162

ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

Controlling Event Queues with Blocking or Non-Blocking
Assignments

The only control you have over event order isto assign an event to a particular queue. Y ou do
this by using blocking or non-blocking assignments.

Blocking Assignments

Blocking assignments place an event in the active, inactive, or future queues depending on what
type of delay they have:

® ablocking assignment without a delay goes in the active queue
® ablocking assignment with an explicit delay of O goesin the inactive queue

® ablocking assignment with a nonzero delay goes in the future queue

Non-Blocking Assignments

A non-blocking assignment goes into either the non-blocking assignment update event queue or
the future non-blocking assignment update event queue. (Non-blocking assignments with no
delays and those with explicit zero delays are treated the same.)

Non-blocking assignments should be used only for outputs of flip-flops. Thisinsures that all
outputs of flip-flops do not change until after all flip-flops have been evaluated. Attempting to
use non-blocking assignments in combinational logic paths to remove race conditions may only
cause more problems. (In the preceding example, changing all statements to non-blocking
assignments would not remove the race condition.) This includes using non-blocking
assignments in the generation of gated clocks.

Thefollowing is an example of how to properly use non-blocking assignments.

genl: always @ (master)
clkl = master;

gen2: always @(clkl)
clk2 = clkl;

fl1 : always @ (posedge clkl)
begin
gl <= di1;
end

f2: always @ (posedge clk2)
begin
gz <= ql;
end

ModelSim User’s Manual, v10.3a 163

Verilog and SystemVerilog Simulation
Verilog Simulation

If written thisway, avalue on d1 always takes two clock cyclesto get from d1 to g2.
If you change clkl = master and clk2 = clkl to non-blocking assignments or g2 <= gl and g1
<= d1 to blocking assignments, then d1 may get to g2 isless than two clock cycles.

Debugging Event Order Issues

Since many models have been developed on Verilog-XL, Model Sim tries to duplicate Verilog-
XL event ordering to ease the porting of those modelsto Model Sim. However, Model Sim does
not match Verilog-XL event ordering in al cases, and if amodel ported to Model Sim does not

behave as expected, then you should suspect that there are event order dependencies.

Model Sim helps you track down event order dependencies with the following compiler
arguments: -compat, -hazards, and -keep_delta.

See the viog command for descriptions of -compat and -hazards.

Hazard Detection

The -hazards argument to vsim detects event order hazards involving simultaneous reading and
writing of the same register in concurrently executing processes. vsim detects the following
kinds of hazards:

* WRITE/WRITE — Two processes writing to the same variable at the same time.

* READ/WRITE — One process reading a variable at the sametime it is being written to
by another process. Model Sim calls thisa READ/WRITE hazard if it executed the read
first.

* WRITE/READ — Same asa READ/WRITE hazard except that Model Sim executed the
write first.

vsim issues an error message when it detects a hazard. The message pinpoints the variable and
the two processes involved. Y ou can have the ssimulator break on the statement where the
hazard is detected by setting the break on assertion level to Error.

To enable hazard detection you must invoke vlog with the -hazards argument when you compile
your source code and you must aso invoke vsim with the -hazards argument when you
simulate.

Note
D Enabling -hazards implicitly enables the -compat argument. As aresult, using this
argument may affect your ssmulation results.

164 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

Hazard Detection and Optimization Levels

In certain cases hazard detection results are affected by the optimization level used in the
simulation. Some optimizations change the read/write operations performed on avariable if the
transformation is determined to yield equivalent results. Because the hazard detection algorithm
cannot determine whether the read/write operations can affect the simulation results, the
optimizations can result in different hazard detection results. Generally, the optimizations
reduce the number of false hazards by eliminating unnecessary reads and writes, but there are
also optimizations that can produce additional false hazards.

Limitations of Hazard Detection

® Reads and writesinvolving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selectsistoo
high.

* A WRITE/WRITE hazard isflagged even if the same value is written by both processes.

* A WRITE/READ or READ/WRITE hazard is flagged even if the write does not modify
the variable's value.

® Glitches on nets caused by non-guaranteed event ordering are not detected.

® A non-blocking assignment is not treated as a WRITE for hazard detection purposes.
Thisis because non-blocking assignments are not normally involved in hazards. (In fact,
they should be used to avoid hazards.)

® Hazards caused by simultaneous forces are not detected.

Debugging Signal Segmentation Violations

If you attempt to access a SystemV erilog object that has not been constructed with the new
operator, you will receive afatal error called a signal segmentation violation (SIGSEGV). For
example, the following code produces a SIGSEGYV fatal error:

class C;
int x;
endclass

C obj;
initial obj.x = 5;

This attemptsto initialize a property of obj, but obj has not been constructed. The codeis
missing the following:

C obj = new;

The new operator performs three distinct operations:

ModelSim User’s Manual, v10.3a 165

Verilog and SystemVerilog Simulation
Verilog Simulation

® Allocates storage for an object of type C

®* Cadlsthe“new” method in the class or uses a default method if the class does not define
113 naN”

® Assignsthe handle of the newly constructed object to “obj”

If the object handle obj isnot initialized with new, there will be nothing to reference. Model Sim
sets the variable to the value null and the SIGSEGV fata error will occur.

To debug a SIGSEGV error, first look in the transcript. Figure 6-1 shows an example of a
SIGSEGV error message in the Transcript window.

Figure 6-1. Fatal Signal Segmentation Violation (SIGSEGV)

Transcripk

Loading wark, bop o
WSIM 11> run -all

** Fakal; (SIGSEG'-.-']Ibad pointer access,
_ Time: 0ns Trerafion: 0 Process: fropf#IMITIAL#19 File: C:fTuborial/SIGSEGY exampleftop, sv

Fatal error in Module kop ak C:fTutorial/SIGSEGY exampletop,sy line 19
»

| Filename and line numher
WRIM 12 where SIGSEGY occurred. EI

F-1 Transcript I 43|

The Fatal error message identifies the filename and line number where the code violation
occurred (in this example, the file istop.sv and the line number is 19).

Model Sim sets the active scope to the location where the error occurred. In the Processes
window, the current process is highlighted (Figure 6-2).

Figure 6-2. Current Process Where Error Occurred

Kl o

Double-click the highlighted process to open a Source window. A blue arrow will point to the
statement where the simulation stopped executing (Figure 6-3).

166 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

Figure 6-3. Blue Arrow Indicating Where Code Stopped Executing

BY :/Tutorial/SIGSEGY example/top.sv

BF | 1n # -
12 module top;
13
14 class C;
i5 int =:
16 endc lass;
17
15 C aobj:
19 8p | initial obj .x = 5;
z0
21 endmodule ;I

kil I
| Lop.sw | ﬂ_ﬂ

Next, look for null valuesin the ModelSim Locals window (Figure 6-4), which displays data
objects declared in the local (current) scope of the active process.

Figure 6-4. Null Values in the Locals Window

The null value in Figure 6-4 indicates that the object handle for obj was not properly
constructed with the new operator.

Negative Timing Checks

Model Sim automatically detects cells with negative timing checks and causes timing checks to
be performed on the delayed versions of input ports (used when there are negative timing check
limits). Thisisthe equivalent of applying the +delayed timing_checks switch with the vsim
command.

vsim +delayed_timing_checks

Appropriately applying +delayed timing_checks will significantly improve simulation
performance.

To turn off thisfeature, specify +no_autodtc with vsim.

ModelSim User’s Manual, v10.3a 167

Verilog and SystemVerilog Simulation
Verilog Simulation

Negative Timing Check Limits

By default, Model Sim supports negative timing check limitsin Verilog $setuphold and $recrem
system tasks. Using the +no_neg_tcheck argument with the vsim command causes all negative
timing check limitsto be set to zero.

Models that support negative timing check limits must be written properly if they are to be
evaluated correctly. These timing checks specify delayed versions of the input ports, which are
used for functional evaluation. The correct syntax for $setuphold and $recrem is as follows.

$setuphold

Syntax

$setuphold(clk_event, data_event, setup_limit, hold_limit, [notifier], [tstamp_cond],
[tcheck_cond], [delayed clk], [delayed data])

Arguments

Theclk_event argument isrequired. Itisatransition in aclock signal that establishesthe
reference time for tracking timing violations on the data_event. Since $setuphold
combines the functionality of the $setup and $hold system tasks, the clk_event setsthe
lower bound event for $hold and the upper bound event for $setup.

The data_event argument isrequired. It isatransition of adatasignal that initiates the
timing check. The data_event sets the upper bound event for $hold and the lower bound
limit for $setup.

The setup_limit argument is required. It is a constant expression or specparam that
specifies the minimum interval between the data_event and the clk_event. Any change
to the data signal within thisinterval resultsin atiming violation.

The hold_limit argument isrequired. It is a constant expression or specparam that
specifiesthe interval between the clk_event and the data_event. Any change to the data
signal within thisinterval resultsin atiming violation.

The notifier argument isoptional. It is aregister whose value is updated whenever a
timing violation occurs. The notifier can be used to define responses to timing
violations.

The tstamp_cond argument is optional. It conditions the data_event for the setup check
and the clk_event for the hold check. This alternate method of conditioning precludes
specifying conditionsin the clk_event and data_event arguments.

The tcheck _cond argument is optional. It conditions the data_event for the hold check
and the clk_event for the setup check. This aternate method of conditioning precludes
specifying conditionsin the clk_event and data_event arguments.

168

ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

®* Thedelayed clk argument isoptional. It isanet that is continuously assigned the value
of the net specified in the clk_event. The delay is determined by the simulator and may
be nonzero depending on al the timing check limits.

®* Thedelayed dataargument isoptional. It isanet that is continuously assigned the value
of the net specified in the data_event. The delay is determined by the simulator and may
be nonzero depending on all the timing check limits.

Y ou can specify negative times for either the setup_limit or the hold_limit, but the sum of the
two arguments must be zero or greater. If this condition is not met, Model Sim zeroes the
negative limit during elaboration or SDF annotation. To see messages about this kind of
problem, use the +ntc_war n argument with the vsim command. A typical warning looks like
the following:

** Warning: (vsim-3616) cells.v(x): Instance 'dff0' - Bad S$setuphold
constraints: 5 ns and -6 ns. Negative limit(s) set to zero.

The delayed_clk and delayed_data arguments are provided to ease the modeling of devices that
may have negative timing constraints. The model's logic should reference the delayed clk and
delayed data nets in place of the normal clk and data nets. This ensures that the correct datais
latched in the presence of negative constraints. The simulator automatically calculates the
delaysfor delayed clk and delayed data such that the correct dataislatched aslong as atiming
constraint has not been violated. See Using Delayed Inputs for Timing Checks for more
information.

Optional arguments not included in the task must be indicated as null arguments by using
commas. For example:

$setuphold(posedge CLK, D, 2, 4, , , tcheck_cond);

The $setuphold task does not specify notifier or tstamp_cond but does include atcheck cond
argument. Notice that there are no commas after the tcheck _cond argument. Using one or more
commas after the last argument resultsin an error.

Note
D Do not condition a $setuphold timing check using the tstamp_cond or tcheck _cond

arguments and a conditioned event. If thisis attempted, only the parametersin the
tstamp_cond or tcheck cond arguments will be effective, and awarning will be issued.

$recrem

Syntax

$recrem(control_event, data_event, recovery_limit, removal_limit, [notifier], [tstamp_cond],
[tcheck cond], [delayed ctrl, [delayed data])

ModelSim User’s Manual, v10.3a 169

Verilog and SystemVerilog Simulation
Verilog Simulation

Arguments

The control_event argument is required. It is an asynchronous control signal with an
edge identifier to indicate the release from an active state.

The data_event argument isrequired. It is clock or gate signal with an edge identifier to
indicate the active edge of the clock or the closing edge of the gate.

Therecovery limit argument isrequired. It isthe minimum interval between the release
of the asynchronous control signal and the active edge of the clock event. Any changeto
asignal within thisinterval resultsin atiming violation.

The removal_limit argument isrequired. It is the minimum interval between the active
edge of the clock event and the release of the asynchronous control signal. Any change
to asignal within thisinterval resultsin atiming violation.

The notifier argument isoptional. It is aregister whose value is updated whenever a
timing violation occurs. The notifier can be used to define responses to timing
violations.

The tstamp_cond argument is optional. It conditions the data_event for the removal
check and the control_event for the recovery check. This alternate method of
conditioning precludes specifying conditions in the control_event and data_event
arguments.

The tcheck_cond argument is optional. It conditions the data_event for the recovery
check and the clk_event for the removal check. This aternate method of conditioning
precludes specifying conditions in the control _event and data_event arguments.

The delayed_ctrl argument is optional. It isanet that is continuously assigned the value
of the net specified in the control_event. The delay is determined by the simulator and
may be nonzero depending on all the timing check limits.

Thedelayed data argument isoptional. Itisanet that is continuously assigned the value
of the net specified in the data_event. The delay is determined by the smulator and may
be nonzero depending on all the timing check limits.

Y ou can specify negative times for either the recovery_limit or the removal _limit, but the sum
of the two arguments must be zero or greater. If this condition is not met, Model Sim zeroes the
negative limit during elaboration or SDF annotation. To see messages about this kind of
problem, use the +ntc_war n argument with the vsim command.

The delayed_clk and delayed data arguments are provided to ease the modeling of devices that
may have negative timing constraints. The model's logic should reference the delayed _clk and
delayed_data netsin place of the normal control and data nets. This ensures that the correct
dataislatched in the presence of negative constraints. The simulator automatically calculates
the delays for delayed clk and delayed_data such that the correct dataislatched aslong asa
timing constraint has not been violated.

170

ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

Optiona arguments not included in the task must be indicated as null arguments by using
commas. For example:

$recrem(posedge CLK, D, 2, 4, , , tcheck_cond);

The $recrem task does not specify notifier or tstamp_cond but does include atcheck cond
argument. Notice that there are no commas after the tcheck _cond argument. Using one or more
commas after the last argument resultsin an error.

Negative Timing Constraint Algorithm

The Model Sim negative timing constraint algorithm attempts to find a set of delays such that
the data net is valid when the clock or control nets transition and the timing checks are satisfied.
The algorithm is iterative because a set of delays that satisfies al timing checks for a pair of
inputs can cause mis-ordering of another pair (where both pairs of inputs share acommon
input). When a set of delaysthat satisfies all timing checksisfound, the delays are said to
converge.

When none of the delay sets cause convergence, the algorithm pessimistically changes the
timing check limits to force convergence. Basically, the algorithm zeroes the smallest negative
$setup/$recovery limit. If anegative $setup/$recovery doesn't exist, then the algorithm zeros the
smallest negative $hold/$removal limit. After zeroing a negative limit, the delay calculation
procedure is repeated. If the delays do not converge, the algorithm zeros another negative limit,
repeating the process until convergence is found.

For example, in this timing check,

$setuphold(posedge CLK, D, -10, 20, notifier,,, dCLK, dD);

dCLK isthe delayed version of the input CLK and dD isthe delayed version of D. By defaullt,
the timing checks are performed on the inputs while the model's functional evaluation uses the
delayed versions of the inputs. This posedge D-Flipflop modul e has a negative setup limit of -10
time units, which allows posedge CLK to occur up to 10 time units before the stable value of D
Is latched.

D violation -10 20
region XXXXXXXXXX

CLK 7‘

Without delaying CLK by 11, an old value for D could be latched. Note that an additional time
unit of delay is added to prevent race conditions.

ModelSim User’s Manual, v10.3a 171

Verilog and SystemVerilog Simulation
Verilog Simulation

The inputs look like this:

CLK ‘

... resulting in delayed inputs of . ..

db

dCLK |

Because the posedge CLK transition is delayed by the amount of the negative setup limit (plus
one time unit to prevent race conditions) no timing violation is reported and the new value of D
is latched.

However, the effect of this delay could also affect other inputs with a specified timing
relationship to CLK. The simulator is responsible for calculating the delay between al inputs
and their delayed versions. The complete set of delays (delay solution convergence) must
consider al timing check limitstogether so that whenever timing is met the correct datavalueis
latched.

Consider the following timing checks specified relative to CLK:

$setuphold(posedge CLK, D, -10, 20, notifier,,, dCLK, dD);
$setuphold(posedge CLK, negedge RST, -40, 50, notifier,,, dCLK, dRST);

0 -10 20 -30 40
RST violation AL
D violation XXXXXXXXXX

CLK

To solve the timing checks specified relative to CLK the following delay values are necessary:

Rising Falling
dCLK 31 31
dD 20 20
dRST 0 0

172 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

The simulator's intermediate delay solution shifts the violation regions to overlap the reference
events.

0 -10 20 -30 40 45
dRST violation ALV
dD violation XXXXXXXXXX

dcLK ‘

Notice that no timing is specified relative to negedge CLK, but the dCLK falling delay is set to
the dCLK rising delay to minimize pulse rejection on dCLK. Pulse rejection that occurs due to
delayed input delays is reported by:

"WARNING[3819] : Scheduled event on delay net dCLK was cancelled"

Now, consider the following case where a new timing check is added between D and RST and
the ssimulator cannot find a delay solution. Some timing checks are set to zero. In this case, the
new timing check is not annotated from an SDF file and a default $setuphold limit of 1, 1is
used:

$setuphold(posedge CLK, D, -10, 20, notifier,,, dCLK, dD);

$setuphold(posedge CLK, negedge RST, -40, 50, notifier,,, dCLK, dRST);

$setuphold(negedge RST, D, 1, 1, notifier,,, dRST, dD);

0 -10 20 -30 40 45
RST violation ALV
D violation XXXXXXXXXX
CLK

11
D violation XX

RST ‘

Asillustrated earlier, to solve timing checks on CLK, delays of 20 and 31 time units were
necessary on dD and dCLK, respectively.

Rising Falling
dCLK 31 31
dD 20 20
dRST 0 0

ModelSim User’s Manual, v10.3a 173

Verilog and SystemVerilog Simulation
Verilog Simulation

The simulator's intermediate delay solution is:

0 -10 2123 -30 40 45
RST violation ALV

D violation XXXXXXXXXX

CLK \

D violation XX

RST

But thisis not consistent with the timing check specified between RST and D. The falling RST
signal can be delayed by additional 10, but that is still not enough for the delay solution to
converge.

Rising Falling

dCLK 31 31

dD 20 20

dRST 0 10

0 -10 21 23 -30 40 55

RST violation AV
D violation XXXXXXXXXX
CLK |
D violation XX

RST

As stated above, if adelay solution cannot be determined with the specified timing check limits
the smallest negative $setup/$recovery limit is zeroed and the calculation of delays repeated. If
no negative $setup/$recovery limits exist, then the smallest negative $hold/$removal limit is
zeroed. This processis repeated until adelay solution is found.

If atiming check in the design was zeroed because a delay solution was not found, a summary
message like the following will be issued:

** Warning: (vsim-3316) No solution possible for some delayed timing
check nets. 1 negative limits were zeroed. Use +ntc_warn for more info.

Invoking vsim with the +ntc_war n option identifies the timing check that is being zeroed.

174 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

Finally consider the case where the RST and D timing check is specified on the posedge RST.

$setuphold(posedge CLK, D, -10, 20, notifier,,, dCLK, dD);
$setuphold(posedge CLK, negedge RST, -40, 50, notifier,,, dCLK, dRST);
$setuphold(posedge RST, D, 1, 1, notifier,,, dRST, dD);

0 -10 20 -30 45
RST violation ALV
D violation XXXXXXXXXX
CLK

11
D violation XX

RST ‘

In this case the delay solution converges when an rising delay on dRST is used.

Rising Falling

dCLK 31 31

dD 20 20

dRST 20 10

0 -10 2123 -30 40 45

RST violation ALY
D violation XXXXXXXXXX
CLK |
D violation XX

RST ‘

Using Delayed Inputs for Timing Checks

By default Model Sim performs timing checks on inputs specified in the timing check. If you
want timing checks performed on the delayed inputs, use the +delayed_timing_checks
argument to vsim.

Consider an example. Thistiming check:

$setuphold(posedge clk, posedge t, 20, -12, NOTIFIER,,, clk_dly, t_dly);

ModelSim User’s Manual, v10.3a 175

Verilog and SystemVerilog Simulation
Verilog Simulation

reports atiming violation when posedge t occurs in the violation region:

20 -12
t /17777777

clk ‘

With the +delayed_timing_checks argument, the violation region between the delayed inputs
is:

7 1

t_dly Vv yyyi
0

clk_dly ‘

Although the check is performed on the delayed inputs, the timing check violation message is
adjusted to reference the undelayed inputs. Only the report time of the violation message is
noticeably different between the delayed and undelayed timing checks.

By far the greatest difference between these modes is evident when there are conditions on a
delayed check event because the condition is not implicitly delayed. Also, timing checks
specified without explicit delayed signals are delayed, if necessary, when they reference an
input that is delayed for a negative timing check limit.

Other simulators perform timing checks on the delayed inputs. To be compatible, ModelSim
supports both methods.

Force and Release Statements in Verilog

The Verilog Language Reference Manual |EEE Std 1800-2009. section 10.6.2, states that the
left-hand side of aforce statement cannot be a bit-select or part-sel ect. Questa deviates from the
LRM standard by supporting forcing of bit-selects, part-selects, and field-selectsin your source
code. Theright-hand side of these force statements may not be a variable. Refer to the force
command for more information.

Verilog-XL Compatible Simulator Arguments

The simulator arguments listed below are equivalent to Verilog-XL arguments and may ease the
porting of a design to Model Sim. See the vsim command for a description of each argument.

+alt_path_delays

-1 <filename>
+maxdelays

+mindelays
+multisource_int_delays
+no_cancelled_e_msg
+no_neg_tchk

176 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Verilog Simulation

+no_notifier
+no_path_edge
+no_pulse_msg
-no_risefall_delaynets
+no_show_cancelled_e
+nosdfwarn
+nowarn<mnemonic>
+ntc_warn
+pulse_e/<percent>
+pulse_e_style_ondetect
+pulse_e_style_onevent
+pulse_int_e/<percent>
+pulse_int_r/<percent>
+pulse_r/<percent>
+sdf_nocheck_celltype
+sdf_verbose
+show_cancelled_e
+transport_int_delays
+transport_path_delays
+typdelays

Using Escaped Identifiers

Model Sim recognizes and maintains Verilog escaped identifier syntax. Prior to version 6.3,
Verilog escaped identifiers were converted to VHDL -style extended identifiers with a backslash
at the end of the identifier. Verilog escaped identifiers then appeared as VHDL extended
identifiersin simulation output and in command line interface (CL1) commands. For example, a
Verilog escaped identifier like the following:

\/top/dut/03
had to be displayed as follows:

\/top/dut/03\

Starting in version 6.3, all object names inside the simulator appear identical to their namesin
original HDL source files.

Sometimes, in mixed language designs, hierarchical identifiers might refer to both VHDL
extended identifiers and Verilog escaped identifiersin the same fullpath. For example,
top/\VHDL* ext\/\Vlog* ext /bottom (assuming the PathSeparator variable is set to /"), or
top.\VHDL*ext\.\VIog* ext .bottom (assuming the PathSeparator variableis set to'.") Any
fullpath that appears as user input to the simulator (such as on the vsim command line, in a.do
file) should be composed of components with valid escaped identifier syntax.

A modelsim.ini variable called Generousl dentifierParsing can control parsing of identifiers. If
thisvariableison (the variable is on by default: value = 1), either VHDL extended identifiers or
Verilog escaped identifier syntax may be used for objects of either language kind. This provides
backward compatibility with older .do files, which often contain pure VHDL extended identifier
syntax, even for escaped identifiersin Verilog design regions.

ModelSim User’s Manual, v10.3a 177

Verilog and SystemVerilog Simulation
Cell Libraries

Note that SDF files are always parsed in “generous mode.” Signal Spy function arguments are
also parsed in “ generous mode.”

Tcl and Escaped Identifiers

In Tcl, the backslash is one of a number of characters that have a special meaning. For example,
\n

creates anew line.

When a Tcl command is used in the command line interface, the TCL backsash should be
escaped by adding another backslash. For example:

force -freeze /top/ix/iy/\\yw\[1\]1\\ 10 0, 01 {50 ns} -r 100

The Verilog identifier, in this example, is\yw[1]. Here, backslashes are used to escape the
square brackets ([]), which have a special meaning in Tcl.

For amore detailed description of special charactersin Tcl and how backslashes should be used
with those characters, click Help > Tcl Syntax in the menu bar, or smply open the
docs/tcl_help_html/TclCmd directory in your QuestaSim installation.

Cell Libraries

Mentor Graphics has passed the Verilog test bench from the ASIC Council and achieved the
“Library Tested and Approved” designation from Si2 Labs. Thistest bench is designed to
ensure Verilog timing accuracy and functionality and is the first significant hurdle to complete
on the way to achieving full ASIC vendor support. As a consequence, many ASIC and FPGA
vendors' Verilog cell libraries are compatible with Model Sim Verilog.

The cell models generally contain Verilog “ specify blocks’ that describe the path delays and
timing constraints for the cells. See Section 14 in the IEEE Std 1364-2005 for details on specify
blocks, and Section 15 for details on timing constraints. Model Sim Verilog fully implements
specify blocks and timing constraints as defined in |EEE Std 1364 along with some Verilog-XL
compatible extensions.

SDF Timing Annotation

Model Sim Verilog supports timing annotation from Standard Delay Format (SDF) files. See
Standard Delay Format (SDF) Timing Annotation for details.

178 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Cell Libraries

Delay Modes

Verilog models may contain both distributed delays and path delays. Distributed delays appear
on primitives, UDPs, and continuous assignments; path delays are the port-to-port delays
specified in specify blocks. These delays interact to determine the actual delay observed. Most
Verilog cells use path delays exclusively, with no distributed delays specified. Example 6-4
shows a simple two-input AND gate cell, where no distributed delay is specified for the AND
primitive.

Example 6-4. Verilog Cell With No Distributed Delay Specified

module and2(y, a, b);
input a, b;
output vy;
and(y, a, b);
specify
(a => vy)
(b => vy)
endspecify
endmodule

For cells such asthis, the actual delays observed on the module ports are taken from the path
delays. Thisistypical for most cells, though more complex cells may require nonzero
distributed delays to work properly.

Delay Modes and the Verilog Standard

The Verilog standard (LRM, |EEE Std 1364-2005) states that if a module contains both path
delays and distributed delays, then the larger of the two delays for each path shall be used
(Section 14.4).

Thisisthe default behavior; however, you can specify alternate delay modes using compiler
directives and arguments to the viog command:

® Distributed Delay Mode
® Path Delay Mode
® Unit Delay Mode
® Zero Delay Mode

Delay mode arguments to the viog command take precedence over delay mode directives
in the source code.

Note that these directives and arguments are compatible with Verilog-X L. However, using these
modes resultsin behavior that is not clearly defined by the Verilog standard—the delaysthat are
set to zero can vary from one simulator to another (some simulators zero out only some delays).

ModelSim User’s Manual, v10.3a 179

Verilog and SystemVerilog Simulation

Cell Libraries

Example 6-5 shows the 2-input AND gate cell using adifferent compiler directiveto apply each

delay mode. In particular, Model Sim does the following:

®* The delay_mode zero directive sets both the continuous assignment delay (assign #2 ¢

= b) and the primitive delay (and #3 (y, a,c)) to zero.

®* The delay_mode _unit directive converts both of these nonzero delays (continuous

assignment and primitive) to 1.

Example 6-5. Delay Mode Directives in a Verilog Cell

The following instances of a 2-input AND gate cell (and2_1, and2_2, and2_3, and2_4) use

compiler directivesto apply each delay mode.

“delay_mode_zero

module and2_1(y, a,

input a, b;
output vy;

wire c;

assign #2 ¢ = b;

and #3(y, a, c);
specify

(a => vy)

(b => vy)

endspecify
endmodule

5;
5;

“delay_mode_unit
module and2_2(y, a,
input a, b;
output vy;
wire c;
assign #2 ¢ = Db;

and #3(y, a, c);

specify
(a =>vy) = 5;
(b =>vy) =5;
endspecify
endmodule

‘delay_mode_distributed

module and2_3(y, a,
input a, b;
output y;
wire c;
assign #2 ¢ = Db;

and #3(y, a, c);
specify

(a =>vy)

(b => vy)

endspecify
endmodule

5;
5;

b);

b);

180

ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
System Tasks and Functions

“delay_mode_path
module and2_4(y, a, b);
input a, b;
output y;
wire c;
assign #2 ¢ = b;

and #3(y, a, c);
specify

(a => vy)

(b =>vy)

endspecify
endmodule

5;
5;

Distributed Delay Mode

In distributed delay mode, the specify path delays are ignored in favor of the distributed delays.
Y ou can specify this delay mode with the +delay_mode_distributed compiler argument or the
“delay_mode_distributed compiler directive.

Path Delay Mode

In path delay mode, the distributed delays are set to zero in any module that contains a path
delay. Y ou can specify this delay mode with the +delay_mode_path compiler argument or the
"delay_mode _path compiler directive.

Unit Delay Mode

In unit delay mode, the nonzero distributed delays are set to one unit of simulation resolution
(determined by the minimum time_precision argument in all ‘timescale directivesin your
design or the value specified with the -t argument to vsim), and the specify path delays and
timing constraints are ignored. Y ou can specify this delay mode with the +delay_mode_unit
compiler argument or the "delay_mode_unit compiler directive.

Zero Delay Mode

In zero delay mode, the distributed delays are set to zero, and the specify path delays and timing
constraints areignored. Y ou can specify this delay mode with the +delay_mode_zer o compiler
argument or the "delay_mode_zero compiler directive.

System Tasks and Functions

Model Sim supports system tasks and functions as follows:

ModelSim User’s Manual, v10.3a 181

Verilog and SystemVerilog Simulation
System Tasks and Functions

® All system tasks and functions defined in IEEE Std 1364

® Some system tasks and functions defined in SystemVerilog |EEE Std 1800-2005
® Severa system tasks and functions that are specific to ModelSim

® Severa non-standard, Verilog-XL system tasks

The system tasks and functions listed in this section are built into the simulator, although some
designs depend on user-defined system tasks implemented with the Programming Language
Interface (PLI), Verilog Procedural Interface (VPI), or the SystemVerilog DPI (Direct
Programming Interface). If the simulator issues warnings regarding undefined system tasks or
functions, then it islikely that these tasks or functions are defined by a PL1/VPI application that
must be loaded by the simulator.

IEEE Std 1364 System Tasks and Functions

The following supported system tasks and functions are described in detail in the IEEE Std
1364.

Note
Y ou can use the change command to modify local variablesin Verilog and

SystemVerilog tasks and functions.

Table 6-3. IEEE Std 1364 System Tasks and Functions - 1

Timescaletasks Simulator control Simulation time Command lineinput
tasks functions
$printtimescale $finish Prealtime $test$plusargs
$timeformat $stop $stime $vaueplusargs
$time

Table 6-4. IEEE Std 1364 System Tasks and Functions - 2

Probabilistic Conversion Stochasticanalysis ~ Timing check tasks
distribution functions tasks

functions

$dist_chi_sguare $bitstoreal $q_add $hold

$dist_erlang Sitor $q_exam $nochange
$dist_exponential Preatobits $q_full $period
$dist_normal $rtoi $q_initialize $recovery

182 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
System Tasks and Functions

Table 6-4. IEEE Std 1364 System Tasks and Functions - 2 (cont.)

Probabilistic Conversion Stochasticanalysis ~ Timing check tasks
distribution functions tasks
functions
$dist_poisson $signed $q_remove $setup
$dist_t $unsigned $setuphold
$dist_uniform $skew
$random $width?
$removal
$recrem

1. Verilog-XL ignores the threshold argument even though it is part of the Verilog spec. Model Sim does not
ignorethis argument. Be careful that you do not set the threshold argument greater-than-or-equal to the limit
argument as that essentially disables the $width check. Also, note that you cannot override the threshold
argument by using SDF annotation.

Table 6-5. IEEE Std 1364 System Tasks

Display tasks PL A modeling tasks Value change dump
(VCD) file tasks

$display $asyncsandParray $dumpall

$displayb $asyncSnandSarray $dumpfile

$displayh $async$or$array $dumpflush

$displayo $asyncsnorSarray $dumplimit

$monitor $asyncsand$plane $dumpoff

$monitorb $async$nand$plane $dumpon

$monitorh $asyncsordplane $dumpvars

$monitoro $asyncsnor$plane

$monitoroff $sync$andsarray

$monitoron $syncSnand$array

$strobe $sync$orarray

$strobeb $syncsnorSarray

$strobeh $syncsand$plane

$strobeo $sync$nand$plane

Pwrite $syncor$plane

ModelSim User’'s Manual, v10.3a

183

Verilog and SystemVerilog Simulation

System Tasks and Functions

Table 6-5. IEEE Std 1364 System Tasks (cont.)

Display tasks

$writeb
$writeh
$writeo

PLA modeling tasks

$sync$nor$plane

Value change dump
(VCD) filetasks

Table 6-6. IEEE Std 1364 File 1/0 Tasks

Filel/O tasks
$fclose
$fdisplay
$fdisplayb
$fdisplayh
$fdisplayo
$feof
$ferror
$fflush
$fgetc
$fgets
$fmonitor
$fmonitorb
$fmonitorh

$fmonitoro
$fopen
$fread
$fscanf
Pfseek
$fstrobe
$fstrobeb
$fstrobeh
$fstrobeo
$ftell
$fwrite
Sfwriteb

$fwriteh
$fwriteo
$readmemb
$readmemh
$rewind
$sdf _annotate
$sformat
$sscanf
Pswrite
Pswriteb
$swriteh
Pswriteo
$ungetc

Task and Function Names Without Round Braces ()’

Strict compliance with the Language Reference Manual |EEE Std 1364 requires that all
hierarchical task and function names have round braces “()” following the name to call the task
or function. In ModelSim 10.3 and later you may use hierarchical task and function names
without round braces. The compiler will use the following rules for interpreting task and
function names without round braces:

1. Non classtasks/functions (static or non static) will be interpreted as a search in the scope

of the function and not a function call.

2. Non-static class methods will be treated as afunction call.

3. Static class methods will be treated as alookup in the function scope.

184

ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
System Tasks and Functions

4. Onceafunction call ismadefor ahierarchical name, all subsequent function nameswill
be treated as function calls whether the type of function is static or non-static.

Examples

module top;
class CTestl ;
string s;
static function CTestl gi();
static CTestl s = new();
CTestl t = new();
Sdisplay ("hello_static")
return t;
endfunction
function CTestl £();
static string s;
CTestl t = new();
Sdisplay ("hello_auto")
return t;
endfunction
endclass;
CTestl tl = new();

initial tl.g.s.f.g.s="hello";
endmodule

In the above code, the dotted name:

tl.g.s.f.g.s

isinterpreted by the fourth rule above as:

tl.g.s.f().g().s

Thefirst g istreated as a scope lookup, sinceit isastatic function. Since f is an automatic
function, it istreated as afunction call. The next g istreated as afunction call g() since
according to rule 4, once an automatic function gets called, all subsequent namesin the list
which are Function names, whether static or automatic, are treated as function calls.

Verilog-XL Compatible System Tasks and
Functions

Model Sim supports a number of Verilog-XL specific system tasks and functions.

Supported Tasks and Functions Mentioned in IEEE Std
1364

The following supported system tasks and functions, though not part of the |EEE standard, are
described in an annex of the IEEE Std 1364.

ModelSim User’s Manual, v10.3a 185

Verilog and SystemVerilog Simulation
System Tasks and Functions

$countdrivers
$getpattern
$sreadmemb
$sreadmemh

Supported Tasks and Functions Not Described in IEEE
Std 1364

The following system tasks are also provided for compatibility with Verilog-XL, though they
are not described in the IEEE Std 1364.

Note

$deposit(variable, value);

This system task sets a Verilog net to the specified value. variable is the net to be
changed; valueisthe new value for the net. The value remains until thereisa
subsequent driver transaction or another $deposit task for the same net. This system task
operates identically to the Model Sim for ce -deposit command.

$disable_warnings("<keyword>"[,<module_instance>...]);

This system task instructs Model Sim to disable warnings about timing check violations
or triregs that acquire avalue of ‘X’ due to charge decay. <keyword> may be decay or
timing. Y ou can specify one or more module instance names. If you do not specify a
module instance, Model Sim disables warnings for the entire simulation.

$enable_warnings("<keyword>"[,<module_instance>...]);

This system task enableswarnings about timing check violations or triregsthat acquire a
value of ‘X’ dueto charge decay. <keyword> may be decay or timing. Y ou can specify
one or more module instance names. If you do not specify amodule_instance,

Model Sim enables warnings for the entire simulation.

$system("command");

This system function takes aliteral string argument, executes the specified operating
system command, and displays the status of the underlying OS process. Double quotes
are required for the OS command. For example, to list the contents of the working
directory on Unix:

Ssystem("ls -1");

Return value of the $system function is a 32-bit integer that is set to the exit status code
of the underlying OS process.

Thereisaknown issue in the return value of this system function on the win32 platform.
If the OS command is built with a cygwin compiler, the exit status code may not be
reported correctly when an exception is thrown, and thus the return code may be wrong.
The workaround is to avoid building the application using cygwin or to use the switch
-mno-cygwin in cygwin on the gcc command line.

186

ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
System Tasks and Functions

$systemf(list_of_args)

This system function can take any number of arguments. Thelist_of argsistreated
exactly the same as with the $display() function. The OS command that runsis the final
output from $display() given the samelist_of args. Return value of the $systemf
function is a 32-bit integer that is set to the exit status code of the underlying OS
process.

Note

D There is aknown issue in the return value of this system function on the win32 platform.
If the OS command is built with a cygwin compiler, the exit status code may not be
reported correctly when an exception is thrown, and thus the return code may be wrong.
The workaround is to avoid building the application using cygwin or to use the switch
-mno-cygwin in cygwin on the gcc command line.

Extensions to Supported System Tasks
Additional functionality has been added to the $fopen, $setuphold, and $recrem system tasks.

New Directory Path With $fopen

The $fopen systemtask has been extended to create a new directory path if the path does not
currently exist. You must set the CreateDirForFileAccess modelsim.ini variable to '1' to enable
this feature. For example: your current directory contains the directory “dir_1 with no other
directories below it and the CreateDirForFileAccess variable is set to “1”. Executing the
following line of code:

fileno = Sfopen("dir_1/nodir_2/nodir_3/testfile", "w");

creates the directory path nodir_2/nodir_3 and opens the file “testfile” in write mode.

Negative Timing Checks With $setuphold and $recrem

The $setuphold and $recrem system tasks have been extended to provide additional
functionality for negative timing constraints and an aternate method of conditioning, asin
Verilog-XL. Refer to Negative Timing Check Limits for more information.

Unsupported Verilog-XL System Tasks

Thefollowing system tasks are Verilog-XL system tasksthat are not implemented in Model Sim
Verilog, but have equivalent simulator commands.

Sinput("filename")

This system task reads commands from the specified filename. The equivalent simulator
command is do <filename>.

$list[(hierarchical_name)]

ModelSim User’s Manual, v10.3a 187

Verilog and SystemVerilog Simulation
Compiler Directives

This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the Structure (sim) window. The
corresponding source code is displayed in a Source window.

Preset

This system task resets the simulation back to its time O state. The equivalent simulator
command isrestart.

$restart("filename")

This system task sets the ssmulation to the state specified by filename, saved in a
previous call to $save. The equivalent smulator command isrestor e <filename>.

$save("filename")

This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hierarchical_name)

This system task sets the interactive scope to the scope specified by hierarchical _name.
The equivalent simulator command is environment <pathname>.

$showscopes

This system task displays alist of scopes defined in the current interactive scope. The
equivalent ssimulator command is show.

$showvars

This system task displays alist of registers and nets defined in the current interactive
scope. The equivalent simulator command is show.

Compiler Directives

Model Sim Verilog supports all of the compiler directives defined in the IEEE Std 1364, some
Verilog-XL compiler directives, and some that are proprietary.

Many of the compiler directives (such as "timescale) take effect at the point they are defined in
the source code and stay in effect until the directive is redefined or until it isreset to its default
by a ‘resetall directive. The effect of compiler directives spans source files, so the order of
source files on the compilation command line could be significant. For example, if you have a
file that defines some common macros for the entire design, then you might need to place it first
in thelist of filesto be compiled.

The "resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the IEEE Std 1364):

188 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
Compiler Directives

“celldefine
‘default_decay_time
“default_nettype
‘delay_mode_distributed
‘delay_mode_path
“delay_mode_unit
‘delay_mode_zero
‘protect

‘timescale
‘unconnected_drive
‘uselib

ModelSim Verilog implicitly defines the following macro:

“define QUESTA

IEEE Std 1364 Compiler Directives
The following compiler directives are described in detail in the IEEE Std 1364.

“celldefine
“default_nettype
‘define

‘else

“elsif

“endcelldefine
“endif

‘ifdef

‘ifndef

‘include

‘line
‘nounconnected_drive
‘resetall

‘timescale
‘unconnected_drive
‘undef

Verilog-XL Compatible Compiler Directives
The following compiler directives are provided for compatibility with Verilog-XL.

‘default_decay_time <time>

This directive specifies the default decay time to be used in trireg net declarations that
do not explicitly declare a decay time. The decay time can be expressed asareal or
integer number, or as “infinite” to specify that the charge never decays.

‘delay_mode_distributed

This directive disables path delays in favor of distributed delays. See Delay Modes for
details.

‘delay_mode_path

ModelSim User’s Manual, v10.3a 189

Verilog and SystemVerilog Simulation
Verilog PLI/VPI and SystemVerilog DPI

This directive sets distributed delays to zero in favor of path delays. See Delay Modes
for details.

‘delay_mode_unit

This directive sets path delays to zero and nonzero distributed delays to one time unit.
See Delay Modes for details.

“delay_mode_zero

This directive sets path delays and distributed delays to zero. See Delay Modes for
details.

‘uselib

Thisdirective is an aternative to the -v, -y, and +libext source library compiler
arguments. See Verilog-XL uselib Compiler Directive for details.

Thefollowing Verilog-XL compiler directives are silently ignored by Model Sim Verilog. Many
of these directives are irrelevant to Model Sim Verilog, but may appear in code being ported
from Verilog-XL.

‘accelerate
‘autoexpand_vectornets
‘disable_portfaults
“enable_portfaults
“expand_vectornets
‘noaccelerate
‘noexpand_vectornets
‘noremove_gatenames
‘noremove_netnames
‘nosuppress_faults
‘remove_gatenames
‘remove_netnames
‘suppress_faults

The following Verilog-XL compiler directives produce warning messages in ModelSim
Verilog. These are not implemented in Model Sim Verilog, and any code containing these
directives may behave differently in ModelSim Verilog than in Verilog-XL.

“default_trireg_strength
‘signed
‘unsigned

Verilog PLI/VPI and SystemVerilog DPI

Model Sim supports the use of the Verilog PLI (Programming Language Interface) and VP
(Verilog Procedural Interface) and the SystemVerilog DPI (Direct Programming Interface).
These interfaces provide a mechanism for defining tasks and functions that communicate with
the simulator through a C procedural interface. For more information on the Model Sim
implementation, refer to Verilog Interfacesto C.

190 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Standards, Nomenclature, and Conventions
The product’ s implementation of the Verilog VPI is based on the following standards:

* |EEE 1364-2005 and 1364-2001 (Verilog)
* |EEE 1800-2005 (SystemVerilog)

Model Sim supports partial implementation of the Verilog VPI. For release-specific information
on currently supported implementation, refer to the following text file located in the ModelSim
installation directory:

<install_dir>/docs/technotes/Verilog_VPIl.note

Extensions to SystemVerilog DPI
This section describes extensions to the SystemVerilog DPI for Model Sim.

* SystemVerilog DPI extension to support automatic DPI import tasks and functions.

Y ou can specify the automatic lifetime qualifier to a DPI import declaration in order to
specify that the DPI import task or function can be reentrant.

Model Sim supports the following addition to the SystemVerilog DPI import tasks and
functions (additional support isin bold):

dpi_function_proto ::= function_prototype

function_prototype ::= function [lifetime] data_type_or_void
function_identifier ([tf_port_list])

dpi_task_proto ::= task_prototype

task_prototype ::= task [lifetime] task identifier
([tf_port_list 1)

lifetime ::= static | automatic

The following are a couple of examples:

import DPI-C cfoo = task automatic foo(input int pl);
import DPI-C context function automatic int foo (input int pl);

SystemVerilog Class Debugging

Debugging your design starts with an understanding of how the design is put together, the
hierarchy, the environments, the class types. Model Sim gives you a number of avenues for
exploring your design, finding the areas of the design that are causing trouble, pinpointing the
specific part of the code that is at fault, making the changes necessary to fix the code, then
running the simulation again.

ModelSim User’s Manual, v10.3a 191

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

This section describes the steps you take to enable the class debugging features and the
windows and commands that display information about the classesin your design.

Enabling Class Debug

Y ou can enable visibility of classinstances in your design in two ways:

1. Usethevsim -classdebug option.
2. Set the ClassDebug modelsim.ini variable to 1.

The Class Instance ldentifier

The Class Instance Identifier (CIID or Handle) isaunique name for every classinstance created
during asimulation. The ClIID format is @< class-type> @<n> where <class_type> isthe name
of the class and <n> is the nth instance of that class. For example: @packet@134 is the 134th
instance of the class type packet.

The class type name alone may be used in the CIID if the class type nameis uniquein the
design. However, if the class type nameis not unique the full path to the type declaration is
necessary.

The CIID may be used in commands such as examine, describe, add wave, add list.

Note

D A CIID isuniquefor agiven simulation. Modifying adesign, or running the same design
with different parameters, randomization seeds, or other configurations that change the
order of operations, may result in a classinstance changing. For example, @packet@134
in one simulation run may not be the same @packet@2134 in another ssmulation run if the
design has changed.

Obtaining the CIID with the examine Command

Y ou can use the examine -handle command or return the CIID to the transcript. For example,
entering:

examine -handle /top/var

Returns:

@myclass@l

192 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Obtaining the CIID With a System Function

The built in system function $get_id_from_handle(class ref) may be used to obtain the string
representing the class instance id for the specified class reference. For example, the following
code snippet will display the CIID of the class item referenced by var.
myclass var;
initial begin
#10
var = new();
$display("%t : var = %s", $time, $get_id_from_handle(var));
end

Returns:

10 : var = @myclass@l

Logging Class Types and Class Instances

Y ou must log class variables, class types, or class instances in order to view them in the Wave
and List windows, and to view them post-simulation. The data recorded depends on the type of
class abject you log.

1. Logtheclassvariableto create arecord of al class objects the variable references from
the time they are assigned to the variable to when they are destroyed. For example:
log sim:/top/simple

Y ou can find the correct syntax for the class variable by dragging and dropping the class
variable from the Objects window into the Transcript.

2. Logaclasstypeto create acontiguous record of each instance of that classtype from the
time the instance first comes into existence to the time the instance is destroyed with the
log -class command. For example:

log -class sim:/mem_agent_pkg::mem_item
Refer to Finding the Class Type Syntax for more information.

3. Log aspecificinstance of aclass until it is destroyed by specifying the classidentifier
for the specific class instance. For example:

log @myclass@7

Refer to The Class Instance | dentifier for more information about finding and specifying
aclassinstance identifier.

4. Log acClass Path Expression. Refer to Working with Class Path Expressions for more
information.

ModelSim User’s Manual, v10.3a 193

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Working with Class Types

Y ou can view the class typesin your design in the Class Tree, Class Graph, Structure, and other
windows.

Authoritative and Descriptive Class Type Names

Model Sim maintains two representations for class names: the authoritative class type name and
the descriptive class type name. This name mapping is specifically to support parameterized
class speciaizations.

Authoritative Class Type Names

Authoritative namesend with"__n" where'n' isan integer. For example: /pkg::mypclass 6.
Authoritative names offer ashorter, well-formed name, for a parameterized class specialization.
Authoritative names are used in most placesin the user interface. They are also used asinput to
commands that take a class type argument.

Descriptive Class Type Names

Descriptive names more closely resemble the class definition, but are longer (sometimes much
longer) and are sometimes difficult to read and parse. For example: /pkg:: mypclass #(class
inputclass, 128, classreport__ 2). Descriptive names are used in error messages and are shown
in some places in the GUI such asin the class tree window.

The classinfo descriptive command will tranglate an authoritative name to a descriptive name.
For example:

VSIM> classinfo descriptive /pkg::mypclass__ 6

Class /pkg::mypclass_ 6 maps to /pkg::mypclass #(class inputclass, 128,
class report_ 2)

In this example, one of the parameters in the descriptive name is also a specialization of a
parameterized class.

Finding the Class Type Syntax

The <class_type> may be specified using the specific class type name or any path that resolves
to the class type. For example: @packet@134 may aso be specified as
@ltest_pkg: : packet@134 assuming the class packet is defined in /test_pkg.

Y ou can use the classinfo types -n command to determine whether or not atype name is unique
and return the requisite full class type name to the transcript. For example, the following
command returns all the shortest usable names for all class type names containing the string
"foo" :

194 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

VSIM> classinfo types -n *foo*

my foo

foo2

/top/modl/foo
/top/mod2/foo

In the output, my_foo and foo2 are unique class types. However, the last two entries show that
there are two distinct class types with the name 'foo’; one defined in modl1 and the other in
mod2. To specify an instance of type 'foo', the full path of the specific “foo” is required, for
example @/top/mod2/foo@19.

Y ou can also find the correct syntax for a class type by dragging and dropping the classtype
from the Structure window into the Transcript window.

Viewing Class Types in the GUI

Y ou can view class typesin several windows, including the Structure, Class Tree, and Class
Graph windows.

The Class Tree Window

The Class Tree window displays the class inheritance tree in various forms. Y ou can expand
objects to see parent/child relationships, properties, and methods. Y ou can organize by extended
class (default) or base class. It can help with an overview of your environment and architecture.
It also helps you view information about an object that is both a base and extended class.
(Figure 6-5)

ModelSim User’s Manual, v10.3a 195

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-5. Classes in the Class Tree Window

Type i Unigue Id
;rDE' semaphore Class std.sv semaphore
- Methods
—ﬁ,\;] new Function
—ﬁ,\;] post_randomize Function
—ﬁ,\;] pre_randomize Function
—ﬁ,\;] constraint_mode Function
=} Rroperties
—x= pl chandle
L= keyCount int
- std /mailbox Param Class
j—EE' mailbox #(dass Packet) Class std.sv mailbox__1
+ Methods
=} Rroperties
X= items Queue
X= maxItems int
X= read_awaiting chandle
X= write_awaiting chandle
X= qtd chandle
TSE read_semaphore semaphore std.sv semaphore o
+ write_semaphore semaphore std.sv semaphore d
< | | |

Refer to the Class Tree Window section for more information.

The Class Graph Window

The Class Graph window displays interactive relationships between SystemVerilog classesin a
graphical form and includes extensions of other classes and related methods and properties. Y ou
can organize by extended class (default) or by base class. Useit to show all of the relationships
between the classes in your design.

196 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-6. Class in the Class Graph Window

Class Graph

—_— lr_,_.—-—'—'_

J uvm_segquencer_base T _
K J

Vim sequeneer _param_bhase #{class uvm sequence item, class uvm_sequence_item)
Q uvm_sequencer_param_base #{elass uvm_req_item, elass uvm_req_item) }

uvim_sequencer_param | hase #({class mem |tem class mem_item})

| T O

uvm_sequencer #(class mem_item, class mem_item})

uvm_sequencer #(class uvm_req_item, class uvm_reg_item)

uvim_seqguencer #(class uvim_sequence_item, class uvm_sequence_item)

| [|

Refer to the Class Graph Window section for more information.

The Structure Window

The Structure window displays the class typesin your design. Y ou must select aclasstypein
the Structure window to view that class type’ sinstances in the Class Instances window.

ModelSim User’s Manual, v10.3a 197

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-7. Classes in the Structure Window

& sim - Default w2

Design unit Design unit type =
+-5 top top(fast) Module
j—‘— tb_pkg tb_pkg(fast) VIPackage
+ gl my_print_accessors tb_pkg(fast) Function
' my_print_resources tb_pkg(fast) Function
+ ol go tb_pkg(fast) Function
B mode_t tb_pkg(fast) VITypedef
=} 3l transaction transaction SVClass
— o new tb_pkg(fast) Function
— ol type_id tb_pkg(fast) VITypedef
— il get_type tb_pkg(fast) Function | |
— ol get_object_type tb_pkg(fast) Function
— g create tb_pkg(fast) Function
— o get_type_name tb_pkg(fast) Function
=F ‘_ __m_uvm_field_automation tb_pkg(fast) Function
= { #ublk#128475951231 th_pkg(fast) Statement
o _ local_type_ tb_pkg(fast) VITypedef
— @ convert2siring tb_pkg(fast) Function
— 3 do_record tb_pkg(fast) Function
+ @l config_object config_object SWClass
Eiy Bl driver driver SVClass d
«| | |

Working with Class Instances

Viewing classinstances is helpful for finding class, OVM, and UVM components or subtypes
that have been instantiated. Y ou can see how many of the instances have been created in the
Class Instances window or with the classinfo report and classinfo instances commands. Y ou can
search through the list of components or transactions for an object with a specific value in the
Objects window.

The Class Instances Window

The Class Instances window displays information about all instances of a selected class type
that exist at the current ssmulation time. Y ou can open the Class I nstances window by selecting
View > Class Browser > Class I nstances or by specifying view classinstances on the
command line. (Figure 6-8)

198 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-8. The Class Instances Window

Class Instances (Beta) e —
|B-sEc& i 2800 0-AE||q- 2.0 F- 3|
¥ Mame |Value |Kind =
;|-~§ Emem_item@n 9 fmem_item} 305 @uvm_object_string_pool_... Class Instance
_—_r-Q super {mem_itam} 305 @uvm_ohject_string_pool_... 3V Class{uvm_sed...
_ﬂ.‘ super {mem_item} 305 @uvm_ohject_string_pool_... 3V Class{uym_tran...
+- m_sequence_id -1 Int
Q m_use_sequence_inf.. 1 Protected Bit
P tr_tepth -1 Protected Int
_ﬂ.‘ m_sequencer {m_sequencer} 632 @uvm_report_handler@.. Class Instance
_+_r" m_parent_sequence {m_mem_seq} 439 @uvm_ohject_string_poo... Class Instance
-« print_sequence_infa 0 Bit
g _client_str Protected String
-} m_client null Class Instance
-‘ m_rh rull Class Instance
g issuedl 0 Static Bit
g izsued2 0 Static Bit
g repart_id RAER_ITEM atring
-~ instruction READ Enum
++ address oooooaoo Packed Array
_+_r-§ data_to_dut 0000o000o000a00000 Packed Array
g data_to_dut_valid 0 Bit
_+_r--0 latency oooooaoo Packed Array
_+_r-§ data_from_dut Qooooaoooogaoooa Packed Array
.TJ" choose_read_address 0 Int
_tt" addresses_written_list {0:0000000000000000% y1:00000000171007... Static Associative ...
_+_r-0 instructions_sent 2 Static Int
-Q type_name mem_item Static String B
11«) @metn_iteméd {m_out_item} 901 @uvm_ohject_string_pool... Class Instance
+ @mem itemE@h fmem monitor item? 595 @uvm nhiect strin Class Instance F
| sim:mem_agent_pko:mem_item (fi-ed) i

Prerequisites:

The class debug feature must be enabled to use the Class Instances window. Refer to
Enabling Class Debug for more information.

The Class Instances window is dynamically populated by selecting SystemVerilog classesin
the Structure (sim) window. All currently active instances of the selected class are displayed in
the Class Instances window. Class instances that have not yet come into existence or have been
destroyed are not displayed. Refer to The classinfo Commands for more information about
verifying the current state of a class instance.

ModelSim User’s Manual, v10.3a 199

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Once you have chosen the design unit you want to observe, you can lock the Class Instances
window on that design unit by selecting File > Environment > Fix to Current Context when
the Class Instances window is active.

Viewing Class Instances in the Wave Window

The suggested workflow for logging SystemV erilog class objects in the Wave window is as
follows.

1. Log the class objects you areinterested in viewing (refer to Logging Class Types and
Class Instances for more information)

2. Select adesign unit or testbench System Verilog classtypein the Structure Window that
contains the class instances you want to see. The class type will be identified asa
System Verilog class object in the Design Unit column. All currently existing class
instances associated with that class type or testbench item are displayed in the Class
Instances window. (Open the Class Instances window by selecting View > Class
Browser > Class I nstances from the menus or use the view class instances command.)

3. Place the class objects in the Wave window once they exist by doing one of the
following:

® Drag aclassinstance from the Class Instances window or the Objects window and
drop it into the Wave window (refer to Figure 6-9).

® Select multiple objects in the Class Instances window, click and hold the Add
Selected to Window button in the Standar d toolbar, then select the position of the
placement; the top of the Wave window, the end of the Wave window, or above the
anchor location. The group of classinstances are arranged with the most recently
created instance at the top. Y ou can change the order of the class instances to show
the first instance at the top of the window by selecting View > Sort > Ascending.

200 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-9. Placing Class Instances in the Wave Window

& sim - Default
*|Instance

Desj

¥ Mame |Walue

=g mem_agent_pk mem_agent_...
b instruct fype mem adent .

YIFackage

ﬂ-’ @mem_item@9 {mem_item} 305 @uvm_f

Y Typedef g @merm_item@d [m_out_item} 907 @uwm,
{r}--j mem_iter'n mem_agent_... SUCIassj 1]«) @mem_itemi b em_monitar_item} 893
+m mem_item_laten. . mem_agent_. SYClass +-~) E&mem_itemiad _out_item} 855 @uwm,
_+_rj mem_item_laten... mem_agent_... 5V Class /
il

|
I Cibrary | & sim - |

g Wave - Default

> + & x|

e
(-

'.._ .._.. PP
wne... dmerm mo...
L mem ite... Jme.. |

dme... Jme...

|

F-1 Transcript

| mm| Wave |

Y ou can hover the mouse over any class waveform to display information about the class

variable (Figure 6-10).

ModelSim User’'s Manual, v10.3a

201

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-10. Class Information Popup in the Wave Window

14!
g @test @1

o4 @eny :
o sim: Btest trEil
m_ leaf _name
T_ 1n3t id
events
begin_event
end_ewvent

m_transaction id :
begin time :

end time
accept _time
initiator
stream_handle
tr_handle
record_enable
m_recorder

test
Qoonns3a3

: Buvm_object string pool 3a74

Buvm_ewventil
Buvm_ewentRZ

i
0aoogooooooaoaao

: 0000agoo0aooaoan

EEfEEFFEFFEfeFfeer

:ormll
D FCTTTTOOT

: 00o0oaoon

o

© rmll

Cursor 1

1066 ns

IIIIIIIIIIIII trrrrrrrrbrrrnened
1500 ns

1600 ns

1= T

| 1359 ns to 1632 ns

il

. I

The Locals Window

The Locals window displays data objects that are immediately visible at the current execution
point of the selected context. Clicking in the objects window or Structure window might make
you lose the current context. The Locals window is synchronized with the Call-Stack window
and the contents are updated as you move through the design. Refer to the L ocals Window
section for more information.

The Watch Window

The Watch window displays signal or variable values at the current simulation time. It helps
with looking at a subset of local or class variables when stopped on a breakpoint (Figure 6-11).
Use the Watch window when the Locals window is crowded. Y ou can drag and drop objects

from the Locals window into the Watch window.

202

ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-11. Class Viewing in the Watch Window

&} sim - Default i + & x| |§a Objects W
¥|Instance \Diesign unit
[+-g uwm_root Lwm_pkgifast) =4 top_levels
[+]-dl testbench testhenchifast) B4 [0
=gl uwm_pkg Ly m_pkgifast) B4 super
----- A uvm_hdl_data_... uvm_pkgfast) 4 suUper
----- A uvm_hdl_chec... uvm_pkgfast) 4 repart_id
----- A uvem_hdi_depo.. uvm_pkg(fast) 4 fi_tren_cfig
----- A uvm_hdi_force uvm_pkgifast) 4l m_eny
di Cibrary |) sim

ool watch

SUper.n_eny.m_mem_agent (@mem_agent@@ 1)
_sequencer = ..}
_moanitor = {3
m_trans_recorder = null
—p| PO

Teport_id = EMWIROMMERNT m_mon_out_ap ={.}
_mem_agent = £} _dry_out_ap ={.}
_analysis = £} _men_cfg = 1.}

type_name = environment : type_name = mem_agent

| | | B
L T

1 Transcript | B Watch I | 3

Refer to the Watch Window section for more information.

The Call Stack Window

The Call Stack window is useful for viewing your design when you are stopped at a breakpoint.
Y ou can go up the call stack to see the locals context at each stage of your design. Refer to the
Call Stack Window section for more information.

Working with Class Path Expressions
A class path expression is a hierarchical path through aclass hierarchy.
Class path expressions:

* alow you to view class properties in the Wave and Watch windows, and return data
about class properties with the examine command. Y ou can see how the class properties
change over time even when class references within the path expression change values.

* may be added to the Wave window even when they do not exist.

ModelSim User's Manual, v10.3a 203

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

* may be expanded inline in the Wave window without having to add class objects to the
Wave window individually.

®* may be cast to the legal types for the expression. In the Wave window, the casting
options are restricted to the set of types of objects actually assigned to the references.

® areautomatically logged once the expression is added to the Wave window.

Class Path Expression Syntax
An example path expression:
/top/myref.xarray[2] .prop

where

myref isaclass variable
xarray isan array of class references
prop is aproperty in the xarray element class type

In this case the expression allows you to watch the value of prop even if myref changes to point
to adifferent class object, or if the reference in element [2] of xarray changes.

Adding a Class Path Expression to the Wave Window

Y ou can add a class path expression to the Wave window with the add wave command. For
example:

add wave /top/myref.ref_array[0].prop

Class Path Expression Values

A class path expression may have one of several possible values:

1. The expression may have a standard value of the type of the leaf element in the
expression.

2. Theexpression may have avalue of ‘Null’ if the leaf element isa class reference and its
valueisnull.

3. Theexpression may have avaue of ‘Does Not Exist’ in the case that an early part of the
expression hasanull value. In the earlier example, /top/myref.xarray[2] .prop, if myrefis
null then prop does not exist.

204 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-12. Class Path Expressions in the Wave Window

m Wave - Default

32h0000000...

3Zh00000000
BEc2E@3

Mo Data-

Mo Data-
Does Mot Exist
Does Mot Exist

32h00000000...

Mo Data-
Mo Data-

32h0000. ..

e ey

Casting a Class Variable to a Specific Type

Y ou can cast aclass variable to any of the class types that have been assigned to that class
variable. the default is the declared type of the class variable. (Figure 6-13)

[T Wave - Default

Figure 6-13. /top/a Cast as c1 and clprime

— Casttocl

— Cast to clprime
B [topfa

4 super
B4 foo
B b
B4 ar
w)

bar

ﬁ—" buxton

@cl@l
3Z'h00000000
@Ec2@3

Mo Data-

Mo Data-
Does Mot Exist
Does Mot Exist

3Zh00000000. ..

@cl@l

32h0000000. ..

32h00000000
MC2@3

32h00000000...

Mo Data-
Mo Data-

b, TSI Dol I, o 0

hQooa...

281

(L=

hO000.. . 32'h00000

e e ey

ModelSim User’'s Manual, v10.3a

205

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Procedure
* Right-click (RMB) the class variable waveform and select Cast to.

®* RMB over the name/value of the class reference in the Pathnames or the V alues Pane of
the Wave window to open a popup menu. Select Cast to > <class _type>. The current
value will have check mark next toit. (Figure 6-14)

Figure 6-14. Casting c1 to clprime

— Casttocl

Add
Edit
View

LIPF
RGN Radix 37ha000...
Format

Combine Signals. .. clprime
Group...

Class Objects vs Class Path Expressions

By default, a path that includes a class reference will be interpreted in the user interface as a
path expression. There are cases where the interpreted object iswhat is desired and not the path
expression.

For example,

add wave /top/myref.prop

will add the class path expression to the wave window. The expression will be evaluated
regardless of what class object is referenced by myref.

Using the -obj argument to the add wave command will cause the command to interpret the
expression immediately and add the specific class object to the Wave window instead of the
class path expression. For example:

add wave -obj /top/myref.prop

will add the currently class object and property to the Wave window, in this case,
@myref@19.prop. @myref @19 is the specific object at the time the command was executed.

206 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Disabling Class Path Expressions

Setting the MT1_DISABLE_PATHEXPR environment variable will disable the interpretations
of all class path expressions. Thisis equivalent to the behavior in 10.2 and earlier.

Conditional Breakpoints in Dynamic Code

Y ou can set a breakpoint or a conditional breakpoint at any place in your source code.

examples:

® Conditional breakpoint in dynamic code
bp mem_driver.svh 60 -cond {this.id == 9}
® Stop on a specific instance ID.
a. Enter the command:
examine -handle

b. Drag and drop the object from the Objects window into the Transcript window.
Model Sim adds the full path to the command.

examine —handle
{sim:/luvm_pkg::uvm_top.top_levels[0].super.m_env.m_mem_agent.m_driver}

C. PressEnter

Returns the classinstance ID in the form @<class_type>@<n>:
@mem_driver@l

d. Enter the classinstance ID as the condone in the breakpoint.

bp mem_driver.svh 60 -cond {this == @mem_driver@1}

® Stop on amore complex condition:
bp bfm.svh 50 {
set handle [examine -handle this];
set x_en_val [examine this.x_en_val];
if {($handle != @my_bfm@7) || ($x_en_val I= 1)K
continue
}
}

Refer to Setting Conditional Breakpoints or more information about conditional breakpoints.

ModelSim User’s Manual, v10.3a 207

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Stepping Through Your Design

Stepping through your design is helpful once you have pinpointed the area of the design where
you think there’s a problem. In addition to stepping to the next line, statement, function or
procedure, you have the ability to step within the current context (process or thread). Thisis
hel pful when debugging class based code since the next step may take you to a different thread
or section of your code rather than to the next instance of a class type. For example:

Table 6-7. Stepping Within the Current Context.

Step the simulation into the next statement,

- remaining within the current context.

Step the simulation over a function or

s procedure remaining Withir_1 the current
context. Executes the function or procedure
call without stepping into it.

Step the simulation out of the current function
T or procedure, remaining within the current
context.

Refer to the Step Toolbar section for a complete description of the stepping features.

The Run Until Here Feature

To quickly and easily run to a specific line of code, you can use the ‘Run Until Here' feature.
When you invoke Run Until Here, the simulation will run from the current simulation time and
stop on the specified line of code unless

®* The simulator encounters a breakpoint.
®* TheRun Length preference variable causes the simulation run to stop.
® The simulation encounters a bug.

To specify Run Until Here, right-click on the line where you want the simulation to stop and
select Run Until Here from the pop up context menu. The simulation starts running the
moment the right mouse button releases.

Refer to Run Until Here for more information.

Command Line Interface

The following commands are entered on the vsim command line in the transcript. Y ou can work
with data about class types, their scopes, paths, names, and so forth. Y ou can call
SystemVerilog static functions and class functions with the call command. The commands also
help you find the proper name syntax for referencing class based objects in the GUI.

208 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Displaying Class Instance Values

The examine command returns current values for classes or variables to the transcript while
debugging. The examine command can help you debug by displaying the name of aclass
instance or the field values for a class instance before setting a conditional breakpoint.
Examples:
® Print the current values of a class instance.
examine /ovm_pkg::ovm_test_top
® Print the values when stopped at a breakpoint within aclass.
examine this
® Print the unique ID of a specific classinstance using the full path to the object.
examine —handle /ovm_pkg::ovm_test_top.i_btn_env
® Print the unique handle of the class object located at the current breakpoint.
examine —handle this
® Print the value of a specific classinstance.

examine @mem_item@9

Displaying Class Instance Properties

Y ou can use the describe command to display data members, properties, methods, tasks,
inheritance, and other information about class instances, and print it in the transcript window.

® Display datafor the class instance @questa_messagelogger _report_server @1
describe @questa_messagelogger_report_server@1
Returns:

class /questa_uvm_pkg::questa_messagelogger_report_server extends
/uvm_pkg: :uvm_report_server

static /questa_uvm_pkg::questa_messagelogger_report_server
m_g;

function new;

static function message_logger;

function compose_message;

function process_report;

static function get;

static function init;

endclass

* Display datafor the classtype mailbox 1
describe mailbox__1

Returns:

ModelSim User’s Manual, v10.3a 209

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

class /std::mailbox::mailbox_ 1

Queue items;

int maxItems;

chandle read_awaiting;
chandle write_awaiting;
chandle gtd;

/std: :semaphore read_semaphore;
/std: :semaphore write_semaphore;
function new;

task put;

function try put;
task get;

function try_get;

task peek;

function try_ peek;

function post_randomize;
function pre_randomize;

function constraint_mode;
endclass

Calling Functions

The call command calls SystemVerilog static functions, class functions directly from the vaim
command linein live simulation mode and PL1 and VPI system tasks and system functions,.
Tasks are not supported.

Function return values are returned to the vsim shell asa Tcl string. Returns the class instance
ID when a function returns a class reference.

Cadll astatic function or a static 0 time task from the command line.
Examples:

call /ovm_pkg::ovm_top.find my_comp

call @ovm_root@1.find my_comp

call @ovm_root@1.print_topology
call luvm_pkg::factory.print

The classinfo Commands

The classinfo commands give you high level information about the class types and class
instances in your design.

Prerequisites
Specify the -classdebug argument to vsim.

Finding the Full Path and Name of a Class Type

The classinfo descriptive command returns the descriptive class type name given the
authoritative class type name. Refer to Authoritative and Descriptive Class Type Names for
more information.

210 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

The authoritative class type name (e.g. mypclass 9) has a corresponding descriptive name
that may be more useful in determining the actual classtype and the details of it's specialization.
This command allows you to see the mapping from the authoritative name to the descriptive
name.

Examples
® Display the descriptive class type name for /std::mailbox::mailbox_ 1
classinfo descriptive /std::mailbox::mailbox__1

Returns:

Class /std::mailbox::mailbox_1 maps to mailbox #(class uvm_phase)

Determining the Current State of a Class Instance

The classinfo find command searches the currently active dataset for the state of the specified
Class Instance Identifier, whether it exists, has not yet been created, or has been destroyed. Y ou
can specify an alternate dataset for the search and save the results of the search to atext file or to
the transcript as atcl string.

* Verify the existence of the class instance @mem _item@87
classinfo find @mem_item@87
Returns:
@mem_item@87 exists
or
@mem_item@87 not yet created
or

@mem_item@87 has been destroyed

Finding All Instances of a Class Type

The classinfo instances command reports the list of existing class instances for a specific class
type. This could be useful in determining what class instances to log or examine. It may also
help in debugging problems where class instances are not being cleaned up as they should be
resulting in run-away memory usage.
Usage
classinfo instances <classname>

® List the currently active instances of the class type mem item.

classinfo instances mem_item

ModelSim User’s Manual, v10.3a 211

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Returns:

@mem_item@140
@mem_item@139
@mem_item@138
@mem_1item@80
@mem_item@76
@mem_1tem@72
@mem_item@68
@mem_item@64

HH H FH H HH HHF

Reporting Statistics for All Class Instances

The classinfo report command prints detailed statistics about class instances:

e full relative path
® classinstance name
® total number of instances of the named class

* maximum number of instances of a named class that existed simultaneously at any time
in the ssimulation

® current number of instances of the named class

The columns may be arranged, sorted, or eliminated using the command arguments.

® Createareport of al classinstancesin descending order in the Total column. Print the
Class Names, Total, Peak, and Current columns. List only the first six lines of that

report.
classinfo report -s dt -c ntpc -m 6

Returns:
Class Name Total Peak Current
uvm_pool_ 11 318 315 315
uvm_event 286 55 52
uvin_callback_iter_ 1 273 3 2
uvm_queue__ 3 197 13 10
uvm_object_string pool_ 1 175 60 58
mem_item 140 25 23

Reporting Class Instance Statistics for a Simulation Run
The classinfo stats command reports statistics about the total number of class types and total,
peak, and current class instance counts during the simulation.

Examples

* Display the current number of class types, the maximum number, peak number and
current number of all class instances.

212 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

classinfo stats

Returns:
class type count 451
class instance count (total) 2070
class instance count (peak) 1075
class instance count (current) 1058

Reporting Active References to a Class Instance

The classinfo trace command displays the active references to the specified class instance. This
isvery useful in debugging situations where class instances are not being destroyed as expected
because something in the design is still referencing the class instance. Finding those references
may lead to uncovering bugs in managing these class references which often lead to large
memory savings.
Examples
® Return thefirst active referenceto @my_report_server@1

classinfo trace @my_report_server@1

Returns:

top.test.t_env.m_rh.m_srvr

Finding Class Type Inheritance

The classinfo ancestry command shows the inheritance of a specific class type. With some
designs and methodol ogies class hierarchy can become quite deep. Thiscommand will show all
of the super classes of a classtype back to it's base class.

Examples
® Return the inheritance for mem item.

classinfo ancestry mem_item

Returns:

class /mem_agent_pkg::mem_item extends /uvm_pkg::uvi_sequence_item

class /uvm_pkg: :uvm_sequence_item extends /uvm_pkg::uvm_transaction
class /uvm_pkg: :uvm_transaction extends /uvm_pkg::uvm_object

class /uvm_pkg: :uvm_object extends /uvm_pkg::uvm_void

class /uvm_pkg: :uvm_void

Listing Classes Derived or Extended From a Class Type

The classinfo isa command lists the classes derived from the specified classtype. When one
class (X) extends another class (YY), class X inherits the characteristics of classY. Class X,
therefore, 'isa class Y. Class X isalso aclass X, of course. Class Y, however, isnot aclass X.

ModelSim User’s Manual, v10.3a 213

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Consider asimple example of aclass called Fruit (Figure 6-15Extensions for a Class Type).
Class Apple extends Fruit, and class Pear extends Fruit. Further, classes HoneyCrisp,
GoldenDelicious, and Gravenstein extend Apple. The classes Bosc and and Bartlett extend
Pear.

Figure 6-15. Extensions for a Class Type

class fruit extends fruit extends apple

. HoneyCrisp

class apple P GoldenDelicious

: Gravenstein

class fruit I _____________________
extends pear

Bosc

class pear

Bartlett

Asking the question [classinfo isa Apple] would return Apple, HoneyCrisp, GoldenDelicious,
and Gravenstein. Asking [classinfo isaPear] would return Pear, Bosc, and Bartlett. And finaly,
[classinfo isa Fruit] would return Fruit, Apple, Pear, HoneyCrisp, GoldenDelicious,
Gravenstein, Bosc, and Bartlett. This command could be useful for determining all the types
extended from a particular methodology sequencer, for example.

Examples
* Find al extensionsfor the class type mem_item.
classinfo isa mem_item
Returns:
/mem_agent_pkg: :mem_item
/mem_agent_pkg: :mem_item_latency4_change_c
/mem_agent_pkg: :mem_item_latency2_change_c

/mem_agent_pkg: :mem_item_latency6_change_c
/mem_agent_pkg: :mem_item_latency_random_c

HH H FH H FHF

214 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Analyzing Class Types

The classinfo types command searches for and analyses class types by matching aregular
expression. Returns the inheritance hierarchy for classes, class extensions, and determines the
full path of class types.

Examples

® Listthefull path of the class typesthat do not match the pattern *uvm*. The scope and
instance name returned are in the format required for logging classes and when setting
some types of breakpoints,

classinfo types -x *uvm*
Returns:

/environment_pkg::test_predictor
/environment_pkg: :threaded_scoreboard
/mem_agent_pkg: :mem_agent
/mem_agent_pkg: :mem_config
/mem_agent_pkg: :mem_driver

HH #H FH H FF

Class Instance Garbage Collection

Asyour simulation run progresses, class instances are created and destroyed and the data stored
in memory. Though a class instance ceases to be referenced, the data for that instance is retained
in memory. The garbage collector (GC) deletes al un-referenced class objects from memory.

Default Garbage Collector Settings

Automatic execution of the garbage collector is dependent upon how your design is simulated:

Table 6-8. Garbage Collector Modes

Mode Modelsim.ini Variable vsim argument

Class debug disabled ClassDebug =0 vsim -noclassdebug
(default)

Class debug enabled ClassDebug =1 vsim -classdebug

The default settings for execution of the garbage collector are optimized to balance performance
and memory usage for either mode. The garbage collector executes when one of the following
events occurs depending on the mode:

® After thetotal of al class objectsin memory reaches a specified size in Megabytes.
® At theend of each run command.

® After each step operation.

ModelSim User’s Manual, v10.3a 215

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

GC Settings in Class Debug Disbled Mode
®* Memory threshold = 100 megabytes
® At theend of each run command: Off

® Attheend of each step command: Off

GC Settings in Class Debug Enabled Mode
®* Memory threshold = 5 megabytes
® Attheend of each run command: On

® At the end of each step command: Off

Changing the Garbage Collector Configuration

Y ou can change the default garbage collector settings for the current simulation in the Garbage
Collector Configuration dialog box, on the command line, viamodelsim.ini variables, or with
vsim command arguments.

To open the Garbage Collector Configuration dialog, select Tools > Garbage Collector >
Configureto open the dialog box.

Figure 6-16. Garbage Collector Configuration

Garbage Collector Configuration x|

—Run System Verilog garbage collector:

[~ At the end of each run command.

[~ After each step operation.

—Also run garbage collector when:

Accumulated dass objects consume 100 Meagabytes (must be non-zero)

The default settings are loaded automatically and set based on whether you have specified the
-classdebug or the -noclassdebug argument with the vsim command.

216 ModelSim User's Manual, v10.3a

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Refer to CL1 Garbage Collector Commands and INI Variablesfor garbage collector commands,
modelsim.ini variables and vsim command arguments.

Table 6-9. CLI Garbage Collector Commands and INI Variables

Action Commands INI Variable vsim Arguments
Set memory || gc configure GCThreshold or vsim

threshold -threshold <value> GCThresholdClassDebug | -gcthreshold <value>
Executeafter || gc configure vsim -gconrun/

each run -onrun 0 |1 -nogconrun
command

Executeafter | gc configure vsim -gconstep/

each step -onstep 0| 1 -nogconstep
command

To view the current garbage collector settings, enter gc configur e without arguments.

Running the Garbage Collector

Y ou can run the garbage collector at any time by entering gc run on the command line.

Ln#]@ 4= 10river| & o | i
21 endclass
32
33 E
34 [cless a3 extends uvm test:

35 {Eﬂ cocmponent utila({al)

|
38 II‘de:‘ine uvm_component utils (T)

37 bli ‘I UvVIm_component registry internal (T,T)
38 b1i] ‘m_uvm_get_type name func(T)

25

40 my

Expanded Macro:

41

42

43 = fun typedef uvm component registry #(a3,"a3™) type_id;
a4 static function type_id get_type():

45 end return type_id::get();

endfunction
virtual function uvm_cbject wrapper get_object_type():
return type_ id::get():

ModelSim User’s Manual, v10.3a 217

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

218 ModelSim User's Manual, v10.3a

Chapter 7
Recording Simulation Results With Datasets

This chapter describes how to save the results of a Model Sim simulation and use them in your
simulation flow. In general, any recorded simulation data that has been loaded into ModelSimis
called a dataset.

One common example of a dataset isawave log format (WLF) file. In particular, you can save
any ModelSim simulation to awave log format (WLF) file for future viewing or comparison to
acurrent simulation. You can also view awave log format file during the currently running
simulation.

A WLFfileisarecording of asimulation run that iswritten as an archive file in binary format
and used to drive the debug windows at a later time. The files contain data from logged objects
(such as signals and variables) and the design hierarchy in which the logged objects are found.
Y ou can record the entire design or choose specific objects.

A WLF file provides you with precise in-simulation and post-simulation debugging capability.
Y ou can reload any number of WLF filesfor viewing or comparing to the active simulation.

Y ou can also create virtual signalsthat are ssmple logical combinations or functions of signals
from different datasets. Each dataset has alogical name to indicate the dataset to which a
command applies. Thislogical nameis displayed as a prefix. The current, active simulation is
prefixed by “sim:” WLF datasets are prefixed by the name of the WLF file by default.

Figure 7-1 shows two datasets in the Wave window. The current simulation is shown in the top
pane along the left side and isindicated by the “sim” prefix. A dataset from a previous
simulation is shown in the bottom pane and isindicated by the “gold” prefix.

ModelSim User’s Manual, v10.3a 219

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

Figure 7-1. Displaying Two Datasets in the Wave Window

Current
Simulation
(sim) :
data
pfaddr_r

-[o Data-

Previous Mo Data-

Simulation Mo Data-

{gold) gold:ftopfmfres |-No Data-

gold:/ strb |-Mo Data-

Mo Data-

The simulator resolution (see Simulator Resolution Limit (Verilog) or Simulator Resolution
Limit for VHDL) must be the same for all datasets you are comparing, including the current
simulation. If you have aWLF filethat isin adifferent resolution, you can use the wlfman
command to changeit.

Saving a Simulation to a WLF File

If you add objects to the Dataflow, , List, or Wave windows, or log objects with the log
command, the results of each simulation run are automatically saved to aWLF file called
vsim.wif in the current directory. If you then run anew simulation in the same directory, the
vsim.wif file is overwritten with the new results.

If you want to save the WLF file and not have it be overwritten, select the Structure tab and then
select File > Save. Or, you can use the -wlf <filename> argument to the vsim command or the
dataset save command.

Also, datasets can be saved at intervals, each with unique filenames, with the dataset snapshot
command. See “Saving at Intervals with Dataset Snapshot” for GUI instructions.

220 ModelSim User's Manual, v10.3a

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

Note
D If you do not use either the dataset save or dataset snapshot command, you must end a

simulation session with aquit or quit -sim command in order to produce avalid WLF
file. If you do not end the simulation in this manner, the WLF file will not close properly,
and Model Sim may issue the error message "bad magic number" when you try to open an
incompl ete dataset in subsequent sessions. If you end up with a damaged WLF file, you
can try to repair it using the wifrecover command.

Saving at Intervals with Dataset Snapshot

Dataset Snapshot lets you periodically copy datafrom the current simulation WLF file to
another file. Thisisuseful for taking periodic "snapshots’ of your simulation or for clearing the
current simulation WLF file based on size or elapsed time.

Once you have logged the appropriate objects, select Tools > Dataset Snapshot (Wave
window).

ModelSim User’s Manual, v10.3a 221

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

Figure 7-2. Dataset Snapshot Dialog

Dataset Snapshot i H

— Dataset Snapshot State

{* Enabled " Digabled
— Snapzhot Tepe
& Simulation Time | 1000000 [rs | w]

£~ WLF File Size I 100 Megabytes

— Snapzhot Contentz

" Snapshot containg only data since previous snapshat,

¥ Snapshot containg all previous data.

— Snapzhot Directony and File

— Directary File Prefix
|E:.-’dataf|u:uw Browse. . | ’rvsim_snapshnt

— Owenarite I ncrement

&+ Always replace snapshot file.

" Use incrementing suffis on shapzhat files.

— Selected Snapzhot Filename

: Adataflowvezim_snapshob, wif

ok Cancel

Y ou can customize the datasets either to contain all previous data, or only the data since the
previous snapshot. Y ou can also set the dataset to overwrite previous snapshot files, or
increment the names of the files with a suffix.

Saving Memories to the WLF

By default, memories are not saved in the WLF file when you issuea"log -r /*" command. To
get memoriesinto the WLF file you will need to explicitly log them. For example:

log /top/dut/i0/mem

It you want to use wildcards, then you will need to remove memories from the WildcardFilter
list. To see what is currently in the WildcardFilter list, use the following command:

set WildcardFilter

222 ModelSim User's Manual, v10.3a

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

If "Memories' isin thelist, reissue the set WildcardFilter command with all itemsin the list
except "Memories." For details, see Using the WildcardFilter Preference Variable.

Note

For post-process debug, you can add the memoriesinto the Wave or List windows but the
Memory List window is not available.

WLF File Parameter Overview

There are anumber of WLF file parameters that you can control viathe modelsim.ini file or a
simulator argument. This section summarizes the various parameters.

Table 7-1. WLF File Parameters

Feature modelsm.ini modelsim.ini vsim argument
Default
WLF Cache Size® | WLFCacheSize = <n> 0 (no reader cache)
WLF Collapse WLFCollapseModel = 0|1]2 | 1 (-wlfcollapsedelta) | -nowlfcollapse
Mode -wlfcollapsedelta
-wlfcollapsetime
WLF Compression | WLFCompress = 0|1 1 (-wlfcompress) -wlfcompress

-nowlfcompress

WLF Delete on WLFDeleteOnQuit = 0|1 0 (-wlfdeleteonquit) | -wlfdeleteonquit

Quit? -nowlfdel eteonquit

WLF File Lock WLFFileLock = 0[1 0 (-nowlflock) -wlflock
-nowlflock

WLF File Name WL FFilename=<filename> | vsim.wlif -wlif <filename>

WLF Index WLFIndex 0|1 1 (-wifindex)

WLF Optimizati ont | WL FOptimize = 0|1 1 (-wlifopt) -wifopt
-nowlfopt

WLF Sim Cache WLFSimCacheSize=<n> | 0 (no reader cache)

Size

WLF Size Limit WLFSizeLimit = <n> no limit -wlfdim <n>

WLF Time Limit WLFTimeLimit = <t> no limit -wliftlim <t>

1. These parameters can a so be set using the dataset config command.

® WLF Cache Size — Specify the size in megabytes of the WLF reader cache. WLF
reader cache sizeis zero by default. Thisfeature caches blocks of the WLF fileto reduce
redundant file 1/0O. If the cache is made smaller or disabled, least recently used data will
be freed to reduce the cache to the specified size.

ModelSim User’'s Manual, v10.3a

223

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

WLF Collapse Mode —WLF event collapsing has three settings: disabled, delta, time:
o Whendisabled, all events and event order are preserved.

o Deltamode records an object's value at the end of asimulation delta (iteration) only.
Default.

o Time mode records an object's value at the end of a simulation time step only.
WLF Compression — Compress the datain the WLF file.

WLF Delete on Quit — Delete the WLF file automatically when the simulation exits.
Valid for current simulation dataset (vsim.wif) only.

WLF File Lock — Control overwrite permission for the WLF file.
WLF Filename — Specify the name of the WLF file.

WLF Indexing — Write additional datato the WLF fileto enablefast seeking to specific
times. Indexing makes viewing wave data faster, however performance during
optimization will be slower because indexing and optimization require significant
memory and CPU resources. Disabling indexing makes viewing wave data slow unless
the display is near the start of the WLF file. Disabling indexing also disables
optimization of the WLF file but may provide a significant performance boost when
archiving WLF files. Indexing and optimization information can be added back to the
file using wifman optimize. Defaults to on.

WLF Optimization — Write additional datato the WLF file to improve draw
performance at large zoom ranges. Optimization results in approximately 15% larger
WLFfiles.

WLFSImCacheSize — Specify the size in megabytes of the WLF reader cache for the
current simulation dataset only. This makesit easier to set different sizes for the WLF
reader cache used during simulation and those used during post-simulation debug. If
WLFSImCacheSize is not specified, the WLFCacheSize settings will be used.

WLF Size Limit — Limit the size of aWLF file to <n> megabytes by truncating from
the front of the file as necessary.

WLF Time Limit — Limit the size of aWLF file to <t> time by truncating from the
front of the file as necessary.

Limiting the WLF File Size

The WLF file size can be limited with the WLFSizeLimit simulation control variable in the
modelsim.ini file or with the -wlIfslim switch for the vsim command. Either method specifiesthe
number of megabytes for WLF file recording. A WLF file contains event, header, and symbol
portions. The size restriction is placed on the event portion only. When Model Sim exits, the
entire header and symbol portion of the WLF fileiswritten. Consequently, the resulting file will

224

ModelSim User's Manual, v10.3a

Recording Simulation Results With Datasets
Opening Datasets

be larger than the size specified with -wlfslim. If used in conjunction with -wlftlim, the more
restrictive of the limits takes precedence.

The WLF file can be limited by time with the WLFTimeLimit simulation control variablein the
modelsim.ini file or with the -wliftlim switch for the vsim command. Either method specifiesthe
duration of simulation time for WLF file recording. The duration specified should be an integer
of ssimulation time at the current resolution; however, you can specify adifferent resolution if
you place curly braces around the specification. For example,

vsim -wlftlim {5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

The time range begins at the current simulation time and moves back in simulation time for the
specified duration. In the example above, the last 5000ns of the current simulation is written to
the WLFfile.

If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.

The -wlifslim and -wlftlim switches were designed to help userslimit WLF file sizesfor long or
heavily logged simulations. When small values are used for these switches, the values may be
overridden by the internal granularity limits of the WLF file format. The WLF file saves datain
arecord-like format. The start of the record (checkpoint) contains the values and is followed by
transition data. This continues until the next checkpoint iswritten. When the WLF fileislimited
with the -wlIfdiim and -wlftlim switches, only whole records are truncated. So if, for example,
you are were logging only a couple of signals and the amount of datais so small thereisonly
one record in the WLF file, the record cannot be truncated; and the datafor the entirerunis
saved in the WLF file.

Multithreading on Linux Platforms

Multithreading enables the logging of information on a secondary processor while the
simulation and other tasks are performed on the primary processor. Multithreading is on by
default on multi-core or multi-processor Linux platforms.

If you are running a simulation on a Windows system or a single-core or -processor Linux
system this functionality, of course, is not enabled.

Y ou can disable this functionality with the vsim -nowlfopt switch, which you may want to do if
you are performing several simulations with logging at the same time.Y ou can aso control this
behavior with the WLFUseThreads variable in the modelsim.ini file.

Opening Datasets

To open adataset, do one of the following:

ModelSim User’s Manual, v10.3a 225

Recording Simulation Results With Datasets
Viewing Dataset Structure

® Select File> Open to open the Open File dialog and set the “Files of type” field to Log
Files (*.wif). Then select the .wif file you want and click the Open button.

® Select File> Datasets to open the Dataset Browser; then click the Open button to open
the Open Dataset dialog (Figure 7-3).

Figure 7-3. Open Dataset Dialog Box

Dataset Browser x|

"IDaIﬁset |Context |Mode |Paﬂ1name | |
|] gold ftop View C:fguestasim_10. 2b/examplesftutorials fverilog/d. ..
I e S x
~Dataset Pathname
| 1’ Browse...
rLogical Mame for Dataset
oK Cancel
= Open... | [saveas... | “Z Reload | ¥ Close | &l Make Activel L' Rename... | - Done |

® Usethe dataset open command to open either a saved dataset or to view arunning
simulation dataset: vsim.wif. Running simulation datasets are automatically updated.

The Open Dataset dialog includes the following options:

® Dataset Pathname — Identifies the path and filename of the WLF file you want to
open.

® Logical Namefor Dataset — Thisisthe name by which the dataset will be referred. By
default thisis the name of the WLF file.

Viewing Dataset Structure

Each dataset you open creates a structure tab in the Main window. The tab is|abeled with the
name of the dataset and displays a hierarchy of the design unitsin that dataset.

The graphic below shows three structure tabs: one for the active simulation (sim) and one each
for two datasets (test and gold).

226 ModelSim User's Manual, v10.3a

Recording Simulation Results With Datasets
Viewing Dataset Structure

Figure 7-4. Structure Tabs

"1 Instance |Design Liriit |Design urit bype |"»-’isi|:ui|it_l,l |
E-ml test_ringbuf test_ringbuf Schodule acc=<fullx
‘ clock zc_clock SchModule acc=<fullz
= ring_IMST ririgbif SchModule acc=<fullx
block1 control(it] Architecture +acC=<naner
o block2 share Module +acc=<fullz
g blocka retrieve Madule +ace=<fullz
B standard standard Package +ACC=Y
W std logic 1164 ztd_logic_1... Package +aco=y
Wl std_logic_arith ztd_logic_arith Package +aco=y
B std_logic_unsigned std_logic_un.. Package +acc=Y
| reset_generatar test_nngbuf Schethod
| generate_data tezt_ringbuf Schethod
| compare_data tezt_ringbuf Schethod
| print_ermrar test_nngbuf Schethod
L print_restare test_ringbuf Schethod

‘| | +]
J;IlLiI:urary &Elsim | EiFiles | Eltest | ioold | 43

If you have too many tabsto display in the available space, you can scroll the tabs left or right
by clicking the arrow icons at the bottom right-hand corner of the window.

Structure Tab Columns
Table 7-2 lists the columns displayed in each structure tab by default.

Table 7-2. Structure Tab Columns

Column name Description

Instance the name of the instance

Design unit the name of the design unit

Design unit type the type (for example, Module, Entity, and so
forth) of the design unit

Y ou can hide or show columns by right-clicking a column name and sel ecting the name on the
list.

ModelSim User’s Manual, v10.3a 227

Recording Simulation Results With Datasets
Managing Multiple Datasets

Managing Multiple Datasets

Managing Multiple Datasets in the GUI

When you have one or more datasets open, you can manage them using the Dataset Browser .
To open the browser, select File > Datasets.

Figure 7-5. The Dataset Browser

x|
| Dataset [Context [Mode |Pathname | |
gold ftop View Cifouestasim_10. 2b/examples)tutorials fverilogfd, ...

Jtopfp/ £ASSIGN#24Simulation vam, wif

& Open... | [savess... “, Reload X Close | & MakeActve | ' Rename... . Done

Command Line

Y ou can open multiple datasets when the simulator is invoked by specifying more than one
vsim -view <filename> option. By default the dataset prefix will be the filename of the WLF
file. You can specify a different dataset name as an optional qualifier to the vsim -view switch
on the command line using the following syntax:

-view <dataset>=<filename>

For example:

vsim -view foo=vsim.wlf

Model Sim designates one of the datasets to be the active dataset, and refers all names without
dataset prefixesto that dataset. The active dataset is displayed in the context path at the bottom
of the Main window. When you select adesign unit in adataset’ s Structure window, that dataset
becomes active automatically. Alternatively, you can use the Dataset Browser or the
environment command to change the active dataset.

Design regions and signal names can be fully specified over multiple WLF files by using the
dataset name as a prefix in the path. For example:

228 ModelSim User's Manual, v10.3a

Recording Simulation Results With Datasets
Managing Multiple Datasets

sim:/top/alu/out
view:/top/alu/out
golden:.top.alu.out

Dataset prefixes are not required unless more than one dataset is open, and you want to refer to
something outside the active dataset. When more than one dataset is open, Model Sim will
automatically prefix namesin the Wave and List windows with the dataset name. Y ou can
change this default by selecting:

® List Window active: List > List Preferences, Window Properties tab > Dataset Prefix
pane

* Wave Window active: Wave > Wave Preferences; Display tab > Dataset Prefix Display
pane

Model Sim also remembers a " current context” within each open dataset. Y ou can toggle
between the current context of each dataset using the environment command, specifying the
dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo. The
context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to asjust "current context™) is used
for finding objects specified without a path.

Y ou can lock the Objects window to a specific context of a dataset. Being locked to a dataset
means that the pane updates only when the content of that dataset changes. If locked to both a
dataset and a context (such as test: /top/foo), the pane will update only when that specific
context changes. Y ou specify the dataset to which the pane islocked by selecting File >
Environment.

Restricting the Dataset Prefix Display

Y ou can turn dataset prefix viewing on or off by setting the value of apreference variable called
DisplayDatasetPrefix. Setting the variable value to 1 displays the prefix, setting it to 0 does not.
Itisset to 1 by default. To change the value of this variable, do the following:

1. Choose Tools > Edit Preferences... from the main menu.
2. Inthe Preferences dialog box, click the By Name tab.

3. Scroll to find the Preference Item labeled Main and click [+] to expand the listing of
preference variables.

4. Select the DisplayDatasetPrefix variable then click the Change Value... button.
5. Inthe Change Preference Value dialog box, type avalue of O or 1, where

ModelSim User’s Manual, v10.3a 229

Recording Simulation Results With Datasets
Collapsing Time and Delta Steps

o O=turnsoff prefix display
o l=turnson prefix display (default)
6. Click OK; click OK.

Additionally, you can prevent display of the dataset prefix by using the environment -nodataset
command to view a dataset. To enable display of the prefix, use the environment -dataset
command (note that you do not need to specify this command argument if the
DisplayDatasetPrefix variable is set to 1). These arguments of the environment command
override the value of the DisplayDatasetPrefix variable.

Collapsing Time and Delta Steps

By default Model Sim collapses delta steps. This means each logged signal that has events
during asimulation deltahasitsfinal value recorded to the WLF file when the delta has expired.
The event order in the WLF file matches the order of the first events of each signal.

Y ou can configure how Model Sim collapses time and delta steps using arguments to the vsim
command or by setting the WLFCollapseM ode variable in the modelsim.ini file. The table
below summarizes the arguments and how they affect event recording.

Table 7-3. vsim Arguments for Collapsing Time and Delta Steps

vsim argument effect modelsim.ini setting

-nowlfcollapse All eventsfor each logged signal are WLFCollapseMode=0
recorded to the WLF file in the exact order
they occur in the simulation.

-wlifcollapsedelta | Eachlogged signal which has eventsduring a | WLFCollapseMode = 1
simulation delta has its final value recorded
to the WLF file when the delta has expired.
Default.

-wlifcollapsetime | Same as delta collapsing but at the timestep | WLFCollapseMode = 2
granularity.

When a run completes that includes single stepping or hitting a breakpoint, all events are

flushed to the WLF file regardless of the time collapse mode. It’s possible that single stepping
through part of asimulation may yield a slightly different WLF file than just running over that
piece of code. If particular detail isrequired in debugging, you should disable time collapsing.

230 ModelSim User's Manual, v10.3a

Recording Simulation Results With Datasets
Virtual Objects

Virtual Objects

Virtual objects are signal-like or region-like objects created in the GUI that do not exist in the
Model Sim simulation kernel. Model Sim supports the following kinds of virtual objects:

® Virtual Signals
® Virtual Functions
® Virtual Regions
® Virtual Types
Virtual objects are indicated by an orange diamond as illustrated by Busl in Figure 7-6:

Figure 7-6. Virtual Objects Indicated by Orange Diamond

_sm/rsk
Jtest_smBusl o0zl
FirT '

F
F
#

A

4. frest_smfclk
- 1 41000 ps
e Cursor 1 26100 ps

< 3 I [T o 5]

_ [[

Virtual Signals

Virtual signalsare aliasesfor combinations or subelements of signalswritten to the WLF file by
the ssimulation kernel. They can be displayed in the Objects, List, Watch, and Wave windows,
accessed by the examine command, and set using the for ce command. Y ou can create virtual
signalsusing the Wave or List > Combine Signals menu selections or by using the virtual
signal command. Once created, virtual signals can be dragged and dropped from the Objects
pane to the Wave, Watch, and List windows. In addition, you can create virtual signalsfor the
Wave window using the Virtual Signal Builder (refer to Using the Virtual Signal Builder).

Virtual signals are automatically attached to the design region in the hierarchy that corresponds
to the nearest common ancestor of all the elements of the virtual signal. The virtual signal
command has an -install <region> option to specify where the virtual signal should be
installed. This can be used to install the virtual signal in a user-defined region in order to

ModelSim User’s Manual, v10.3a 231

Recording Simulation Results With Datasets
Virtual Objects

reconstruct the original RTL hierarchy when simulating and driving a post-synthesis, gate-level
implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. The virtual hide command can be used to hide the display of the broken-down
bits if you don't want them cluttering up the Objects window.

If the virtual signal has elements from more than one WLFfile, it will be automatically installed
in the virtua region virtuals:/Sgnals.

Virtual signals are not hierarchical —if two virtual signals are concatenated to become a third
virtual signal, the resulting virtual signal will be a concatenation of all the scalar elements of the
first two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command. By
default, when quitting, Model Sim will append any newly-created virtuals (that have not been
saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave or
List format, you will need to execute the virtuals.do file (or some other equivalent) to restore
the virtual signal definitions before you re-load the Wave or List format during alater run.
There is one exception: "implicit virtuals' are automatically saved with the Wave or List
format.

Implicit and Explicit Virtuals

Animplicit virtual isavirtua signal that was automatically created by Model Sim without your
knowledge and without you providing a name for it. An example would be if you expand a bus
in the Wave window, then drag one bit out of the busto display it separately. That action creates
aone-bit virtual signal whose definition is stored in a special location, and is not visiblein the
Objects pane or to the normal virtual commands.

All other virtual signals are considered "explicit virtuas'.

Virtual Functions

Virtual functions behave in the GUI like signals but are not aliases of combinations or elements
of signalslogged by the kernel. They consist of logical operations on logged signals and can be
dependent on simulation time. They can be displayed in the Objects, Wave, and List windows
and accessed by the examine command, but cannot be set by the force command.

Examples of virtual functionsinclude the following:

¢ afunction defined asthe inverse of agiven signal

® afunction defined as the exclusive-OR of two signals

232 ModelSim User's Manual, v10.3a

Recording Simulation Results With Datasets
Virtual Objects

® afunction defined as a repetitive clock
® afunction defined as "the rising edge of CLK delayed by 1.34 ns’

Y ou can also use virtual functionsto convert signal types and map signal values.

The result type of avirtual function can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these types.
Verilog types are converted to VHDL 9-state std_logic equivalents and Verilog net strengths
are ignored.

To create avirtual function, use the virtua function command.

Virtual functions are also implicitly created by Model Sim when referencing bit-sel ects or part-
selects of Verilog registersin the GUI, or when expanding Verilog registers in the Objects,
Wave, or List window. Thisis necessary because referencing Verilog register elements requires
an intermediate step of shifting and masking of the Verilog "vreg" data structure.

Virtual Regions

User-defined design hierarchy regions can be defined and attached to any existing design region
or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in agate-level
design and to locate virtual signals. Thus, virtual signals and virtual regions can beused in a
gate-level design to allow you to use the RTL test bench.

To create and attach a virtual region, use the virtual region command.

Virtual Types

User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual type is then used in atype conversion expression
to convert asignal to values of the new type. When the converted signal is displayed in any of
the windows, the value will be displayed as the enumeration string corresponding to the value of
the original signal.

To create avirtual type, use the virtual type command.

ModelSim User’s Manual, v10.3a 233

Recording Simulation Results With Datasets
Virtual Objects

234 ModelSim User's Manual, v10.3a

Chapter 8
Waveform Analysis

When your simulation finishes, you typically use the Wave window to analyze the graphical
display of waveforms to assess and debug your design. To analyze waveformsin Model Sim,
follow these steps:

1. Compileyour files.
2. Load your design.
3. Add objectsto the Wave window.

add wave <object_name>

4. Runthe design.

Objects You Can View

Thelist below identifies the types of objects that can be viewed in the Wave window. Refer to
the section “Using the WildcardFilter Preference Variable” for information on controlling the
information that is added to the Wave window when using wild cards.

®* VHDL objects— (indicated by a dark blue diamond in the Wave window)
signals, aliases, process variables, and shared variables

®* Veilogand SystemVerilog objects— (indicated by alight blue diamond in the Wave
window)

nets, registers, variables, named events, interfaces, and classes
® Virtual objects— (indicated by an orange diamond in the Wave window)

virtual signals, buses, and functions, refer to Virtual Objects for more information

Wave Window Overview

The Wave window opens in the Main window as shown Figure 8-1.

ModelSim User’s Manual, v10.3a 235

Waveform Analysis
Wave Window Overview

Ite :.r||I|-'r||:|-.| oukaf [Frue
ftest_smfdutfinto | 0000000000 DDDDDDDDDDDDDDDDDDDDDDD 'lCDF‘ 5
ftest srmfduEiSUESE | DODRRRGENG] oo JooooooaooJoooaaD, o, EEM I o, Sjoo,...

Ly gk =ta e o] (TR TR R ARl T] i : A test_smidut/inta @ 715 n= Q000
sfdutfrd_n |1 oooooooooooo0oooooon0o0oo0oo0nn

smydutiincreg joseaneoney ¥ ¥ 1 T LT O P T C P P T Ty L oo,

Figure 8-1. The Wave Window

Y v 1 v |°¥
Bl OOy OO OO Oy aa...

---------- il [|::|::|::I'_| e [i ¥ II_|' [
""""" T - - (- f f f ._l' -

[—
ooo

Oo001 10i |i| | @:ﬁ:ﬁ:ﬁ:@@@@,__ 0

Falze

fdutfer n |1 l

=l
Mow | 10000 ns
Cursar 2 G55 ns 655 ns I
I [T T o

The window can be undocked from the main window by clicking the Undock button in the
window header. When the Wave window is docked in the Main window, all menus and icons
that were in the undocked Wave window move into the Main window menu bar and tool bar

tabs.

Wave Window Panes

The Wave window is divided into a number of window panes. The Object Pathnames Pane
displays object paths. Click the left mouse button when the cursor isin the white bar on the | eft
of the Pathnames Pane to set the location of the insertion pointer. The insertion pointer specifies
where objects will be added to the Wave window. Refer to Adding Objectsto the Wave
Window for more information.

236

ModelSim User's Manual, v10.3a

Waveform Analysis
Wave Window Overview

Figure 8-2. Wave Window Object Pathnames Pane

B“. dout
4, fifo_rd
J.u dval

dk
rst

enable

din

dnow

ddly

diff

shifted

delta
present_state

next_state

enl

enl

The Object Vaues Pane displays the value of each object in the pathnames pane at the time of
the selected cursor.

Figure 8-3. Wave Window Object Values Pane

The Waveform Pane displays the object waveforms over the time of the simulation.

ModelSim User's Manual, v10.3a 237

Waveform Analysis
Adding Objects to the Wave Window

Figure 8-4. Wave Window Waveform Pane

] ; 0 ; 0 I_I I_I I_I ; 0 ;] ; 0. ¢
. Iy 1S LA LY R L 1 1 ...

The Cursor Pane displays cursor names, cursor values and the cursor locations on the timeline.
This pane also includes atoolbox that gives you quick accessto cursor and timeline features and
configurations.

Figure 8-5. Wave Window Cursor Pane

i trrrrrbrrrrerrergrrerrrrrebrrrrrrrrnbrrerrrerrbrrrern trrrrernnhd

Mow 500 ns £00 ns 00
Cursor 1 — 200 ns FEl ns
Cursor £ 550 ns

All of these panes can be resized by clicking and dragging the bar between any two panes.

In addition to these panes, the Wave window also contains a Messages bar at the top of the
window. The Messages bar contains indicators pointing to the times at which a message was
output from the simulator. By default, the indicators are not displayed. To turn on message
indicators, use the -msgmode argument with the vsim command or use the msgmode variablein
the modelsim.ini file.

Figure 8-6. Wave Window Messages Bar

For more information, refer to Wave Window Panes.

Adding Objects to the Wave Window

Y ou can add objects to the Wave window with mouse actions, menu sel ections, commands, and
with awindow formet file.

238 ModelSim User's Manual, v10.3a

Waveform Analysis
Adding Objects to the Wave Window

Adding Objects with Mouse Actions

® Drag and drop objects into the Wave window from the Structure, Processes, Memory,
List, Objects, Source, or Locals windows. When objects are dragged into the Wave
window, the add wave command is echoed in the Transcript window. Depending on
what you select, all objects or any portion of the design can be added.

® Placethe cursor over an individual object or selected objects in the Objects or Locals
windows, then click the middle mouse button to place the object(s) in the Wave
window.

Adding Objects with Menu Selections

® Add > window — Add objects to the Wave window or Log file.

® Add Selected to Window Button — Add objects to the Wave, Dataflow, List, or
Watch windows.

Y ou can also add objects using right-click popup menus. For example, if you want to add all
signalsin adesign to the Wave window you can do one of the following:

® Right-click adesign unit in a Structure (sim) window and select Add > To Wave > All
Itemsin Design from the popup context menu.

* Right-click anywhere in the Objects window and select Add > To Wave > Signalsin
Design from the popup context menu.

* Right-click on aVerilog virtual interface waveform and select Add Wave >
<interface_name/*> from the popup menu.

Adding Objects with a Command

Use the add wave command to add objects from the command line. For example:

VSIM> add wave /proc/a
Adds signal /proc/ato the Wave window.

VSIM> add wave -r /*
Adds all objects in the design to the Wave window.

Refer to the section “Using the WildcardFilter Preference Variable” for information on
controlling the information that is added to the Wave window when using wild cards.

Adding Objects with a Window Format File

Select File > L oad and specify a previoudly saved format file. Refer to Saving the Window
Format for details on how to create aformat file.

ModelSim User’s Manual, v10.3a 239

Waveform Analysis
Adding Objects to the Wave Window

Inserting Signals in a Specific Location

New signals are inserted above the Insertion Point Bar located at the bottom of the Pathname
Pane. Y ou can change the location of the Insertion Point Bar by using the Insertion Point
Column of the Pathname Pane.

Prerequisites

There must be at least one signal in the Wave window.

Procedure

1. Click onthevertical white bar on the left-hand side of the active Wave window to select
where signals should be added. (Figure 8-7)

2. Your cursor will change to adouble-tail arrow and a green bar will appear. Clicking in
the vertical white bar next to a signal places the Insertion Point Bar below the indicated
signal. Alternatively, you can Ctrl+click in the white bar to place the Insertion Point Bar
below the indicated signal.

Figure 8-7. Insertion Point Bar

B4 ftop/p/data
B4 jtopfpfaddr_r
B [topfpfdata_r

Jtop/fpfrw_r

Jtopfpfstrb_r
Jtop/pfverbose
Jtop/p/ft_out
Jtop/pft_set

e

3. Select an instance in the Structure (ssim) window or an object in the Objects window.

4. Usethe hot key Ctrl+w to add all signals of the instance or the specific object to the
Wave window in the location of the Insertion Point Bar.

Setting Default Insertion Point Behavior

By default, new signals are added above the Insertion Point Bar. Y ou can change the default
location for insertion by setting the PrefWave(l nsertM ode) preference variable to one of the
following:

® insert — (default) Places new object(s) above the Insertion Pointer Bar.
® append — Places new object(s) below the Insertion Pointer Bar.

® top — Places new object(s) at the top of the Wave window.

240 ModelSim User's Manual, v10.3a

Waveform Analysis
Working with Cursors

® end — Places new object(s) at the bottom of the Wave window.

Working with Cursors

Cursors mark ssmulation time in the Wave window. When Model Sim first draws the Wave
window, it places one cursor at time zero. Clicking anywhere in the waveform display brings
the nearest cursor to the mouse location. Y ou can use cursorsto find transitions, arising or
falling edge, and to measure time intervals.

The Cursor and Timeline Toolbox on the left side of the cursor pane gives you quick accessto

cursor and timeline settings.

Table 8-1 summarizes common cursor actions you can perform with the iconsin the toolbox, or

with menu selections.

Table 8-1. Actions for Cursors

Action

Menu path or command
(Wave window docked)

Menu path or command
(Wave window undocked)

Toggle leaf names
<-> full names

Wave > Wave Preferences >
Display Tab

Tools> Wave Preferences >
Display Tab

Edit grid and
timeline properties

Wave > Wave Preferences >
Grid and Timeline Tab

Tools> Wave Preferences >
Grid and Timeline Tab

Add cursor Add > To Wave > Cursor Add > Cursor

Edit cursor Wave > Edit Cursor Edit > Edit Cursor
Delete cursor Wave > Delete Cur sor Edit > Delete Cur sor
Lock cursor Wave > Edit Cursor Edit > Edit Cursor

Select a cursor

Wave > Cursors

View > Cursors

Zoom Inon Active

Wave > Zoom > Zoom

View > Zoom > Zoom Cur sor

Cursor Cursor

NA | Zoom between Debug Toolbar Tab only Debug Toolbar Tab only.
Cursors

NA | Two Cursor Mode | Wave > Mouse Mode> Two | Wave> Mouse Mode > Two

Cursor Mode

Cursor Mode

ModelSim User’'s Manual, v10.3a

241

Waveform Analysis
Working with Cursors

The Toggle leaf names <-> full namesicon allows you to switch from displaying full
pathnames (the default) to displaying leaf or short names in the Pathnames Pane. Y ou can also
control the number of path elementsin the Wave Window Preferences dialog. Refer to
Hiding/Showing Path Hierarchy.

The Edit grid and timeline propertiesicon opens the Wave Window Properties dialog box to
the Grid & Timeline tab (Figure 8-8).

Figure 8-8. Grid and Timeline Properties
x|

Display Grid & Timeline I

&

— ¥ Grid Configuration

—Grid Offset———— ~Minimum Grid Spacing
0 ns ’V 40 (pixels)
—Grid Period
™ Auto Period Reset to Default
1l ns

~Timeline Configuration
¥ Digplay simulation time in timeline area

" Display grid period count (cyde count)
Time units (na ﬂ
[T Use commas in time values

[Show frequency in curser delta

The Grid Configuration selections allow you to set grid offset, minimum grid spacing,
and grid period. You can also reset these grid configuration settings to their default
values.

The Timeline Configuration selections give you change the time scale. Y ou can display
simulation time on atimeline or a clock cycle count. If you select Display simulation
timein timeline area, use the Time Units dropdown list to select one of the following as
the timeline unit:

fs, ps, ns, us, ms, sec, min, hr

242

ModelSim User's Manual, v10.3a

Waveform Analysis
Working with Cursors

Note
The time unit displayed in the Wave window (default: ns) does not reflect the ssmulation

timethat is currently defined.

The current configuration is saved with the wave format file so you can restore it later.

®* The Show frequency in cursor delta box causes the timeline to display the difference
(delta) between adjacent cursors as frequency. By default, the timeline displays the delta
between adjacent cursors astime.

Adding Cursors

To add cursors when the Wave window is active you can:

® click the Insert Cursor icon
®* choose Add > To Wave > Cursor from the menu bar
® pressthe“A” key while the mouse pointer islocated in the cursor pane

® right click inthe cursor pane and select New Cursor @ <time> nsto place anew cursor
at a specific time.

Editing Cursor Properties

After adding a cursor, you can alter its properties by using the Cursor Properties dialog box.

1. Right-click the cursor you want to edit and select Cursor Properties. (You can also use
the Edit this cursor icon in the cursor toolbox)

2. From the Cursor Properties dialog box, alter any of the following properties:
o Cursor Name — the name that appears in the Wave window.
o Cursor Time — the time location of the cursor.
o Cursor Color — the color of the cursor.

o Locked Cursor Color — the color of the cursor when it is locked to a specific time
location.

o Lock cursor to specified time — disables relocation of the cursor.

Jumping to a Signal Transition

Y ou can move the active (selected) cursor to the next or previous transition on the selected
signal using these two toolbar icons located in the Debug Toolbar Tab and shown in Figure 8-9.

ModelSim User’s Manual, v10.3a 243

Waveform Analysis
Working with Cursors

Figure 8-9. Find Previous and Next Transition Icons

Find Previous Transition
s locate the previous signal value
change for the selected signal

Find Next Transition
il locate the next signal value
change for the selected signal

These actions will not work on locked cursors.

Measuring Time with Cursors in the Wave Window

M odel Sim uses cursors to measure time in the Wave window. Cursors extend avertical line
over the waveform display and identify a specific ssmulation time.

When the Wave window isfirst drawn it contains two cursors — the Now cursor, and Cursor 1
(Figure 8-10).

Figure 8-10. Original Names of Wave Window Cursors

1
o 390335000 ps

M 1

The Now cursor is always locked to the current smulation time and it is not manifested as a
graphical object (vertical cursor bar) in the Wave window.

Cursor lislocated at time zero. Clicking anywhere in the waveform display movesthe Cur sor
1 vertical cursor bar to the mouse location and makes this cursor the selected cursor. The
selected cursor isdrawn as abold solid line; all other cursors are drawn with thin lines.

Syncing All Active Cursors

Y ou can synchronize the active cursors within all open Wave windows and the Wave viewersin
the Dataflow and Schematic windows. Simply right-click the time value of the active cursor in
any window and select Sync All Active Cursors from the popup menu (Figure 8-11).

244 ModelSim User's Manual, v10.3a

Waveform Analysis
Working with Cursors

Figure 8-11. Sync All Active Cursors

aoka Cursar 1
Ackivate Cursor 1
Lock Cursaor 1
Delete Cursor 1

Mew Cursor @ 810 ns

Cursar Properties. ..
arid & Timeline Properties, .,
Filter Waseform, ..

Sync All Active Cursors

When all active cursors are synced, moving acursor in one window will automatically move the
active cursorsin al opened Wave windows to the same time location. This option is also
available by selecting Wave > Cursors > Sync All Active Cursorsin the menu bar when a
Wave window is active.

Linking Cursors

Cursors within the Wave window can be linked together, allowing you to move two or more
cursors together across the simulation timeline. Y ou ssimply click one of the linked cursors and
drag it left or right on the timeline. The other linked cursors will move by the same amount of
time. You can link all displayed cursors by right-clicking the time value of any cursor in the
timeline, as shown in Figure 8-12, and selecting Cursor Linking > Link All.

Figure 8-12. Cursor Linking Menu

Goko Cursor 2
Ackivake Cursar 2
Lock Cursor 2
Delete Cursor 2

Mewy Cursor @ 776 ns

Cursor Propetties., ..
arid & Timeline Properties. ..

Filker \Waveform...
Sync All Ackive Cursors

Cursor Linking [rlimk: Cursar 2

LInlimk, &l g

Configure. ..

Y ou can link and unlink selected cursors by selecting the time value of any cursor and selecting
Cursor Linking > Configure to open the Configure Cursor Linksdialog (Figure 8-13).

ModelSim User’s Manual, v10.3a 245

Waveform Analysis
Working with Cursors

Figure 8-13. Configure Cursor Links Dialog

Configure Cursor Links | x|

Cursor: Cursor 3

Unlinked Linked

Cursor 1 @ 171 ns |Cursor 2 @ 812 ns
Cursor 4 @ 1339 ns

Link =3 | Unlink. =+ |
itern counk: 2 ibern counk: 1
Ik Cancel

Understanding Cursor Behavior

The following list describes how cursors behave when you click in various panes of the Wave
window unless you are in Two Cursor Mode:

If you click in the waveform pane, the closest unlocked cursor to the mouse position is
selected and then moved to the mouse position.

Clicking in ahorizontal track in the cursor pane selects that cursor and movesit to the
mouse position.

Cursors snap to the nearest waveform edge to the left if you click or drag a cursor along
the selected waveform to within ten pixels of awaveform edge. Y ou can set the snap
distancein the Display tab of the Window Preferences dialog. Select Tools> Options >
Wave Pr efer ences when the Wave window is docked in the Main window MDI frame.
Select Tools > Window Prefer ences when the Wave window is a stand-alone,
undocked window.

Y ou can position a cursor without snapping by dragging a cursor in the cursor pane
below the waveforms.

Shortcuts for Working with Cursors

There are a number of useful keyboard and mouse shortcuts related to the actions listed above:

Select a cursor by clicking the cursor name.
Jump to a hidden cursor (one that is out of view) by double-clicking the cursor name.

Name a cursor by right-clicking the cursor name and entering a new value. Press
<Enter> on your keyboard after you have typed the new name.

Move alocked cursor by holding down the <shift> key and then clicking-and-dragging
the cursor.

246

ModelSim User's Manual, v10.3a

Waveform Analysis
Working with Cursors

®* Moveacursor to aparticular time by right-clicking the cursor value and typing the value
to which you want to scroll. Press <Enter> on your keyboard after you have typed the
new value.

Two Cursor Mode

Two Cursor Mode places two active cursors in the Wave window. Where default Wave window
cursor behavior isfor the closest cursor to snap to the location of the mouse when the left mouse
button is pressed, in Two Cursor Mode the left mouse button controls movement of the first
cursor and the middle mouse button controls the second cursor regardless of the proximity of
the pointer to the closest cursor. Additional cursors may be added but are locked upon insertion.

Enabling Two Cursor Mode

Y ou can enable Two Cursor Mode by selecting Wave > M ouse Mode > Two Cur sor
M ode, or by selecting the Two Cursor Mode button in the Debug Toolbar Tab. .L .L |

Y ou can return to standard Wave Window behavior by selecting Wave > Mouse Mode > and
choosing one of the other menu picks or by selecting a different button in the Debug Tool bar
Tab.

Additional Mouse Actions

Both cursors snap to the position of the mouse pointer when the mouse button controling the
cursor is released. Holding down a button and dragging changes the action from cursor
placement to zooming in or out in the waveform pane:

Table 8-2. Two Cursor Zoom

Mouse Action

Down-Right or Down-Left | Zoom Area (In)
Up- Right Zoom Out
Up-Left Zoom to Fit

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than 10
pixelsto activate.

To zoom with the scroll-wheel of your mouse, hold down the Ctrl key at the same time to scroll
in and out. The waveform pane will zoom in and out, centering on your mouse cursor.

ModelSim User’s Manual, v10.3a 247

Waveform Analysis
Expanded Time in the Wave Window

Expanded Time in the Wave Window

When analyzing a design using Model Sim, you can see avalue for each object at any time step
in the ssimulation. If logged in the .wif file, the values at any time step prior to and including the
current simulation time are displayed in the Wave window or by using the examine command.

Some objects can change values more than once in agiven time step. These intermediate values
are of interest when debugging glitches on clocked objects or race conditions. With afew
exceptions (viewing delta time steps with the examine command), the values prior to the final
value in a given time step cannot be observed.

The expanded time function makes these intermediate values visible in the Wave window.
Expanded time shows the actual order in which objects change values and shows all transitions
of each object within a given time step.

Expanded Time Terminology

Simulation Time — the basic time step of the ssmulation. Thefinal value of each object
at each simulation time iswhat is displayed by default in the Wave window.

Delta Time— thetime intervals or stepstaken to evaluate the design without advancing
simulation time. Object values at each delta time step are viewed by using the -delta
argument of the examine command. Refer to Delta Delays for more information.

Event Time— thetimeintervals that show each object value change as a separate event
and that shows the relative order in which these changes occur

During asimulation, events on different objectsin adesign occur in a particular order or
sequence. Typically, this order is not important and only the final value of each object
for each simulation time step isimportant. However, in situations like debugging
glitches on clocked objects or race conditions, the order of eventsisimportant. Unlike
simulation time steps and delta time steps, only one object can have asingle value
change at any one event time. Object values and the exact order which they change can
be saved in the .wif file.

Expanded Time — the Wave window feature that expands single simulation time steps
to make them wider, allowing you to see object values at the end of each deltacycle or at
each event time within the smulation time.

Expand — causes the normal simulation time view in the Wave window to show
additional detailed information about when events occurred during a simulation.

Collapse — hides the additional detailed information in the Wave window about when
events occurred during a simulation.

248

ModelSim User's Manual, v10.3a

Waveform Analysis
Expanded Time in the Wave Window

Recording Expanded Time Information

Y ou can use the vsim command, or the WL FCollpseMode variable in the modelsim.ini file, to
control recording of expanded time information in the .wif file.

Table 8-3. Recording Delta and Event Time Information

vsim command argument | modelsim.ini setting effect

-nowlfcollapse WLFCollapseMode =0 | All eventsfor each logged signal are
recorded to the .wif file in the exact
order they occur in the simulation.

-wlfcollapsedelta WLFCollapseMode=1 | Each logged signal that has events
(Default) during asimulation delta hasitsfinal
value recorded in the .wif file when
the delta has expired.
-wlfcollapsetime WLFCollapseMode=2 | Similar to delta collapsing but at the

simulation time step granularity.

Recording Delta Time

Deltatimeinformation isrecorded in the .wif file using the -wlifcollapsedelta argument of vsim
or by setting the WLFCollapseMode modelsim.ini variable to 1. Thisis the default behavior.

Recording Event Time

To save multiple value changes of an object during a single time step or single deltacycle, use
the -nowlfcollapse argument with vaim, or set WLFCollapseMode to 0. Unlike delta times
(which are explicitly saved in the .wif file), event time information exists implicitly in the .wif
file. That is, the order in which events occur in the simulation is the same order in which they
are logged to the .wif file, but explicit event time values are not logged.

Choosing Not to Record Delta or Event Time

Y ou can choose not to record event time or delta time information to the .wif file by using the
-wlfcollapsetime argument with vsim, or by setting WLFCollapseMode to 2. Thiswill prevent
detailed debugging but may reduce the size of the .wif file and speed up the simulation.

Viewing Expanded Time Information in the Wave
Window

Expanded time information is displayed in the Debug Toolbar Tab, the right portion of the
M essages bar, the Waveform pane, the time axis portion of the Cursor pane, and the Waveform
pane horizontal scroll bar as described below.

ModelSim User’s Manual, v10.3a 249

Waveform Analysis
Expanded Time in the Wave Window

Expanded Time Buttons— The Expanded Time buttons are displayed in the Debug
Toolbar Tab in both the undocked Wave window the Main window when the Wave
window is docked. It contains three exclusive toggle buttons for selecting the Expanded
Time mode (see Toolbar Selections for Expanded Time Modes) and four buttons for
expanding and collapsing simulation time.

M essages Bar — The right portion of the Messages Bar is scaled horizontally to align
properly with the Waveform pane and the time axis portion of the Cursor pane.

Waveform Pane Horizontal Scroll Bar — The position and size of the thumb in the
Waveform pane horizontal scroll bar is adjusted to correctly reflect the current state of
the Waveform pane and the time axis portion of the Cursor pane.

Waveform Pane and the Time Axis Portion of the Cursor Pane — By default, the
Expanded Time is off and simulation time is collapsed for the entire time range in the
Waveform pane. When the Delta Time mode is selected (see Recording Delta Time),
simulation time remains collapsed for the entire time range in the Waveform pane. A red
dot is displayed in the middle of all waveforms at any simulation time where multiple
value changes were logged for that object.

Figure 8-14 illustrates the appearance of the Waveform pane when viewing collapsed event
time or deltatime. It shows a simulation with three signals, s, s2, and s3. The red dots indicate
multiple transitions for s1 and s2 at simulation time 3ns.

Figure 8-14. Waveform Pane with Collapsed Event and Delta Time

B

-

Cursar 1 Ons || I

q v] « 3 (T | Ol |

Figure 8-15 shows the Waveform pane and the timescal e from the Cursors pane after expanding
simulation time at time 3ns. The background color is blue for expanded sectionsin Delta Time
mode and green for expanded sections in Event Time mode.

250

ModelSim User's Manual, v10.3a

Waveform Analysis
Expanded Time in the Wave Window

Figure 8-15. Waveform Pane with Expanded Time at a Specific Time

=)

-

Cursar 1 Ons || I

4 L2 IR k |_4| | _"”.

In Delta Time mode, more than one object may have an event at the same deltatime step. The
labels on the time axis in the expanded section indicate the delta time steps within the given
simulation time.

In Event Time mode, only one object may have an event at agiven event time. The exception to
thisisfor objects that are treated atomically in the simulator and logged atomically. The
individual bits of a SystemC vector, for example, could change at the same event time.

Labels on the time axis in the expanded section indicate the order of events from all of the
objects added to the Wave window. If an object that had an event at a particular time but it is not
in the viewable area of the Waveform panes, then there will appear to be no events at that time.

Depending on which objects have been added to the Wave window, a specific event may
happen at adifferent event time. For example, if s3 shown in Figure 8-15, had not been added to
the Wave window, the result would be as shown in Figure 8-16.

Figure 8-16. Waveform Pane with Event Not Logged

Lpe
EJ":' Cursor 1

| |

Now thefirst event on s2 occurs at event time 3ns + 2 instead of event time 3ns + 3. If s3 had
been added to the Wave window (whether shown in the viewable part of the window or not) but
was not visible, the event on s2 would still be at 3ns + 3, with no event visible at 3ns + 2.

ModelSim User’s Manual, v10.3a 251

Waveform Analysis
Expanded Time in the Wave Window

Figure 8-17 shows an example of expanded time over the range from 3nsto 5ns. The expanded
time range displays deltatimes as indicated by the blue background color. (If Event Time mode
is selected, a green background is displayed.)

Figure 8-17. Waveform Pane with Expanded Time Over a Time Range

Ol |

When scrolling horizontally, expanded sections remain expanded until you collapse them, even
when scrolled out of the visible area. The left or right edges of the Waveform pane are viewed
in either expanded or collapsed sections.

Expanded event order or deltatime sections appear in all panes when multiple Waveform panes
exist for aWave window. When multiple Wave windows are used, sections of expanded event
or deltatime are specific to the Wave window where they were created.

For expanded event order time sections when multiple datasets are |loaded, the event order time
of an event will indicate the order of that event relative to all other events for objects added to
that Wave window for that object’ s dataset only. That means, for example, that signal sim:sl
and gold:s2 could both have events at time 1ns+3.

Note

D The order of eventsfor agiven design will differ for optimized versus unoptimized
simulations, and between different versions of ModelSim. The order of events will be
consistent between the Wave window and the List window for a given simulation of a
particular design, but the event numbering may differ. See Expanded Time Viewing in
the List Window.

Y ou may display any number of digoint expanded times or expanded ranges of times.

Customizing the Expanded Time Wave Window Display

As noted above, the Wave window background color is blue instead of black for expanded
sections in Delta Time mode and green for expanded sectionsin Event Time mode.

The background colors for sections of expanded event time are changed as follows:

252 ModelSim User's Manual, v10.3a

Waveform Analysis
Expanded Time in the Wave Window

Select Tools > Edit Preferences from the menus. This opens the Preferences dialog.
Select the By Name tab.

Scroll down to the Wave selection and click the plus sign (+) for Wave.

A W DN P

Change the values of the Wave Window variables waveDeltaBackground and
waveEventBackground.

Selecting the Expanded Time Display Mode

There are three Wave window expanded time display modes: Event Time mode, Delta Time
mode, and Expanded Time off. These display modes are initiated by menu selections, toolbar
selections, or viathe command line.

Menu Selections for Expanded Time Display Modes
Table 8-4 shows the menu selections for initiating expanded time display modes.

Table 8-4. Menu Selections for Expanded Time Display Modes

action menu selection with Wave window docked or undocked

select Delta Time mode docked: Wave > Expanded Time > Delta Time Mode
undocked: View > Expanded Time > Delta Time Mode

select Event Time mode docked: Wave > Expanded Time > Event Time Mode
undocked: View > Expanded Time > Event Time Mode

disable Expanded Time docked: Wave > Expanded Time > Expanded Time Off
undocked: View > Expanded Time > Expanded Time Off

Select Delta Time Mode or Event Time Mode from the appropriate menu according to Table 8-
4 to have expanded simulation time in the Wave window show delta time steps or event time
steps respectively. Select Expanded Time Off for standard behavior (which is the default).

Toolbar Selections for Expanded Time Modes

There are three exclusive toggle buttons in the Debug Toolbar Tab for selecting the time mode
used to display expanded simulation time in the Wave window.

* The"Expanded Time Deltas Mode" button displays delta time steps.
* The"Expanded Time Events Mode" button displays event time steps.

®* The"Expanded Time Off" button turns off the expanded time display in the Wave
window.

Clicking any one of these buttons on toggles the other buttons off. This serves as an immediate
visual indication about which of the three modes is currently being used. Choosing one of these

ModelSim User’s Manual, v10.3a 253

Waveform Analysis
Expanded Time in the Wave Window

modes from the menu bar or command line a so results in the appropriate resetting of these
three buttons. The "Expanded Time Off" button is selected by default.

In addition, there are four buttons in the Debug Toolbar Tab for expanding and collapsing
simulation time.

* The"Expand All Time” button expands simulation time over the entire ssimulation time
range, from time O to the current simulation time.

®* The"Expand Time At Active Cursor” button expands simulation time at the simulation
time of the active cursor.

®* The"Collapse All Time” button collapses simulation time over entire simulation time
range.

®* The"Collapse Time At Active Cursor” button collapses simulation time at the
simulation time of the active cursor.

Command Selection of Expanded Time Mode

The command syntax for selecting the time mode used to display objectsin the Wave window
Is:

wave expand mode [-window <win>] none | deltas | events

Use the wave expand mode command to select which mode is used to display expanded timein
the wave window. This command also results in the appropriate resetting of the three toolbar
buttons.

Switching Between Time Modes

If one or more simulation time steps have aready been expanded to view event time or delta
time, then toggling the Time mode by any means will cause all of those time stepsto be
redisplayed in the newly selected mode.

Expanding and Collapsing Simulation Time

Simulation time may be expanded to view delta time steps or event time steps at asingle
simulation time or over arange of simulation times. Simulation time may be collapsed to hide
delta time steps or event time steps at a single simulation time or over arange of simulation
times. Y ou can expand or collapse the simulation time with menu selections, toolbar selections,
viacommands, or with the mouse cursor.

® Expanding/Collapsing Simulation Time with Menu Selections — Select Wave >
Expanded Time when the Wave window is docked, and View > Expanded Time when
the Wave window is undocked. Y ou can expand/collapse over the full simulation time
range, over a specified time range, or at the time of the active cursor,.

254 ModelSim User's Manual, v10.3a

Waveform Analysis
Zooming the Wave Window Display

Expanding/Collapsing Simulation Time with Toolbar Selections — There are four
buttons in the Debug Toolbar Tab for expanding and collapsing simulation time in the
Wave window: Expand Full, Expand Cursor, Collapse Full, and Collapse Cursor.

Expanding/Collapsing Simulation Time with Commands— There are six commandsfor
expanding and collapsing simulation time in the Wave window.

wave expand all
wave expand range
wave expand cursor
wave collapse all
wave collapse range
wave collapse cursor

These commands have the same behavior as the corresponding menu and tool bar
selections. If valid times are not specified, for wave expand range or wave collapse
range, no action is taken. These commands effect all Waveform panesin the Wave
window to which the command applies.

Zooming the Wave Window Display

Zooming lets you change the simulation range in the waveform pane. Y ou can zoom using the
context menu, toolbar buttons, mouse, keyboard, or commands.

Zooming with the Menu, Toolbar and Mouse

Y ou can access Zoom commands in any of the following ways:

From the Wave > Zoom menu selections in the Main window when the Wave window
is docked

From the View menu in the Wave window when the Wave window is undocked

Right-clicking in the waveform pane of the Wave window

These zoom buttons are available on the Debug Toolbar Tab:

Zoom In 2x
(ﬂ zoom in by afactor of two from the current view

Zoom In on Active Cursor
{ﬂ centers the active cursor in the waveform display and
zoomsin

ModelSim User’s Manual, v10.3a 255

Waveform Analysis
Zooming the Wave Window Display

Zoom between Cursors
% zoom window in or out to show the range between the last
|J_-| two active cursors

Zoom Mode
o, change mouse pointer to zoom mode; see below

Zoom Out 2x
Q zoom out by afactor of two from current view

Zoom Full
Q zoom out to view the full range of the simulation from
time O to the current time

To zoom with the mousg, first enter zoom mode by selecting View > Zoom > M ouse M ode >
Zoom Mode. The left mouse button then offers 3 zoom options by clicking and dragging in
different directions:

. Down-Right or Down-Left: Zoom Area (In)
o Up-Right: Zoom Out
° Up-Left: Zoom Fit
Also note the following about zooming with the mouse:
® The zoom amount is displayed at the mouse cursor. A zoom operation must be more
than 10 pixelsto activate.

® You can enter zoom mode temporarily by holding the <Ctrl> key down while in select
mode.

® With the mouse in the Select Mode, the middle mouse button will perform the above
zoom operations.

To zoom with the scroll-wheel of your mouse, hold down the Ctrl key at the same time to scroll
in and out. The waveform pane will zoom in and out, centering on your mouse cursor.

Saving Zoom Range and Scroll Position with
Bookmarks

Bookmarks save a particular zoom range and scroll position. Thisletsyou return easily to a
specific view later. You save the bookmark with a name and then access the named bookmark
from the Bookmark menu. Bookmarks are saved in the Wave format file (see Adding Objects
with aWindow Format File) and are restored when the format file is read.

256 ModelSim User's Manual, v10.3a

Waveform Analysis
Zooming the Wave Window Display

Managing Bookmarks
The table below summarizes actions you can take with bookmarks.

Table 8-5. Actions for Bookmarks

Action M enu commands Menu commands Command
(Wave window (Wave window
docked) undocked)

Add bookmark | Add > ToWave > Add > Bookmark bookmark add wave
Bookmark

View bookmark | Wave > Bookmarks> | View > Bookmarks> | bookmark goto wave
<bookmark_name> <bookmark _name>

Delete bookmark | Wave > Bookmarks> | View > Bookmarks > bookmark delete wave
Bookmarks > <select Bookmarks > <select
bookmark then Delete> | bookmark then Delete>

Adding Bookmarks
To add a bookmark, follow these steps:

1. Zoom the Wave window as you see fit using one of the techniques discussed in
Zooming the Wave Window Display.

2. If the Wave window is docked, select Add > Wave > Bookmark. If the Wave window
is undocked, select Add > Bookmark.

Figure 8-18. Bookmark Properties Dialog

Bookmark Properties {.wa'-re}'i' k|

— Bookmark Mame

Ibuukmarkﬂ

— £oom R ange

Top Index—
|EI nz kol 315 nz ’70

¥ Save zoom range with bookmark:

¥ {Save scmoll location with bookmark:

Ok | Cancel

3. Givethe bookmark aname and click OK.

ModelSim User’s Manual, v10.3a 257

Waveform Analysis
Searching in the Wave Window

Editing Bookmarks

Once a bookmark exists, you can change its properties by selecting Wave > Bookmarks >
Bookmarksif the Wave window is docked; or by selecting Tools > Bookmarksif the Wave
window is undocked.

Searching in the Wave Window

The Wave window provides two methods for locating objects:

1. Finding signal names:
o Select Edit > Find

o click the Find toolbar button (binocularsicon) in the Home Toolbar Tab when the
Wave window is active

o usethefind command

Thefirst two of these options will open a Find mode toolbar at the bottom of the Wave
window. By default, the “ Search For” option is set to “Name.” For more information,
see Find and Filter Functions.

2. Search for values or transitions:
o Select Edit > Signal Search

o click the Find toolbar button (binocularsicon) and select Search For > Value from
the Find toolbar that appears at the bottom of the Wave window.

Wave window searches can be stopped by clicking the “ Stop Drawing” or “Break” toolbar
buttons.

Searching for Values or Transitions

The search command lets you search for transitions or values on selected signals. When you
select Edit > Signal Sear ch, the Wave Signa Search dialog (Figure 8-19) appears.

258 ModelSim User's Manual, v10.3a

Waveform Analysis
Searching in the Wave Window

Figure 8-19. Wave Signal Search Dialog Box

Wave Signal Search (window Wawve) El

—Signal Name(s)

Mo Signals Selected

—Search Type

¥ Any Transition

" Rising Edge

™ Falling Edge

" Search for Signal Value Value: |

™ Search for Expression Expression: | Builder...
—Search and Match Count Options

Search Forward
% Search until END of data. Stop after ll— match(s) TR
" search until time: ﬂ 42 Stop Search

¥ Move active cursor to location of match

—Search Results

Status: (Mo matches between start/end times)

Time: Close | g

One option of noteis Search for Expression. The expression can involve more than one signal
but islimited to signals currently in the window. Expressions can include constants, variables,
and DO files. Refer to Expression Syntax for more information.

Any search terms or settings you enter are saved from one search to the next in the current
simulation. To clear the search settings during debugging click the Reset To Initial Settings
button. The search terms and settings are cleared when you close Model Sim.

Using the Expression Builder for Expression
Searches

The Expression Builder is afeature of the Wave Signal Search dialog box. You can useit to
create a search expression that follows the GUI_expression_format.

To display the Expression Builder dialog box, do the following:

1. Choose Edit > Signal Search... from the main menu. This displays the Wave Signal
Search dialog box.

2. Select Search for Expression.

ModelSim User’s Manual, v10.3a 259

Waveform Analysis
Searching in the Wave Window

3. Click the Builder button. This displays the Expression Builder dialog box shown in

Figure 8-20

Expression Builder x|

|

Figure 8-20. Expression Builder Dialog Box

Expression

~Expression Builder

Selected Signal

'eventl 'risingl 'Fallingl

anp| oR | 0|
#0R| SLL| % | +
srL| sral H | 1] o
Clear | Save | Test | Ok Cancel

Y ou click the buttons in the Expression Builder dialog box to create a GUI expression. Each
button generates a corresponding element of Expression Syntax and is displayed in the
Expression field. In addition, you can use the Selected Signal button to create an expression
from signals you select from the associated Wave window.

For example, instead of typing in asigna name, you can select signalsin a Wave window and
then click Selected Signal in the Expression Builder. This displays the Select Signal for
Expression dialog box shown in Figure 8-21.

260

ModelSim User's Manual, v10.3a

Waveform Analysis
Searching in the Wave Window

Figure 8-21. Selecting Signals for Expression Builder

Select Signal for Expression x|

Signials

% List only Select Signals

™ List &ll Signals

kirn: ftop)clk,
i ftopfprw
kim; ftop/pstrb
ki ftop/prdy

Note that the buttonsin this dialog box allow you to determine the display of signals you want
to put into an expression:

® Listonly Select Signals— list only those signals that are currently selected in the parent
window.

® List All Signals— list al signals currently available in the parent window.
Once you have selected the signals you want displayed in the Expression Builder, click OK.

Saving an Expression to a Tcl Variable

Clicking the Save button will save the expression to a Tcl variable. Once saved this variable can
be used in place of the expression. For example, say you save an expression to the variable
"fo0." Here are some operations you could do with the saved variable:

® Read the value of foo with the set command:

set foo
* Put $foo in the Expression: entry box for the Search for Expression selection.
® [ssue asearchlog command using foo:

searchlog -expr $foo 0

Searching for when a Signal Reaches a Particular Value

Select the signal in the Wave window and click Insert Selected Signal and ==. Then, click the
value buttons or type avalue.

ModelSim User’s Manual, v10.3a 261

Waveform Analysis
Filtering the Wave Window Display

Evaluating Only on Clock Edges

Click the & & button to AND this condition with the rest of the expression. Then select the
clock inthe Wave window and click Insert Selected Signal and 'rising. Y ou can aso select the
falling edge or both edges.

Operators
Other buttons will add operators of various kinds (see Expression Syntax), or you can type them

in.

Filtering the Wave Window Display

The Wave window includes afiltering function that allows you to filter the display to show only
the desired signals and waveforms. To activate the filtering function:

1. Select Edit > Find in the menu bar (with the Wave window active) or click the i
Find icon in the Home Toolbar Tab. Thisopensa“Find” toolbar at the bottom of
the Wave window.

2. Click the binocularsicon in the Find field to open a popup menu and select Contains.
This enables the filtering function.

For more information, see Find and Filter Functions.

Formatting the Wave Window

Setting Wave Window Display Preferences

Y ou can set Wave window display preferences by selecting Wave > Wave Pr efer ences (when
the window is docked) or Tools > Window Prefer ences (when the window is undocked).
These commands open the Wave Window Preferences dialog (Figure 8-22).

262 ModelSim User's Manual, v10.3a

Waveform Analysis
Formatting the Wave Window

Figure 8-22. Display Tab of the Wave Window Preferences Dialog Box

Wave Window Preferences x|

Display I arid & Timeline] 3
—Display Signal Path——— —anap Diskance
0 [# elements) 10 (pixels)
—Raw Margin
Tse 0 for full path
4 [pixels)
—Juskify Yalue —Child R Margin
i Left © Right 2 [pixels)
~Enable/Cisable

v waveform popup showing data walue

[wawveform selection highlighting

Iw Scroll to end when run completes

[on close, ask about saving window contents

¥ on close, ask about saving editable wave commands

Couble-click, will: Find &ctive Driver —

—Dakaset Prefix Display
£ Abways show
f* Show if 2 or maore

" Mever show

Hiding/Showing Path Hierarchy

Y ou can set how many elements of the object path display by changing the Display Signal Path
value in the Wave Window Preferences dialog (Figure 8-22). Zero specifies the full path, 1
specifies the leaf name, and any other positive number specifies the number of path elementsto

be displayed.

Double-Click Behavior in the Wave Window

Y ou can set the default behavior for double-clicking asignal in the wave window. In the
Display Tab of the Wave Window Preferences dialog box, select the Display tab, choose the
Enable/Disable pane, click on the Find Active Driver button and choose one of the following

from the popup menu:

ModelSim User’s Manual, v10.3a 263

Waveform Analysis
Formatting the Wave Window

1. Do Nothing — Double-clicking on awave form signal does nothing.

2. Show Driversin Dataflow — Double-clicking on asignal in the wave window tracesthe
event for the specified signal and time back to the process causing the event. The results
of the trace are placed in a Dataflow Window that includes awaveform viewer below.

3. Find Active Driver — Double-clicking on asignal in the wave window traces the event
for the specified signal and time back to the process causing the event. The sourcefile
containing the line of code is opened and the driving signal code is highlighted.

Setting the Timeline to Count Clock Cycles

Y ou can set the timeline of the Wave window to count clock cycles rather than elapsed time. If
the Wave window is docked, open the Wave Window Preferences dialog by selecting Wave >
Wave Pr efer ences from the Main window menus. If the Wave window is undocked, select
Tools > Window Prefer ences from the Wave window menus. This opens the Wave Window
Preferences dialog. In the dialog, select the Grid & Timeline tab (Figure 8-23).

Figure 8-23. Grid and Timeline Tab of Wave Window Preferences Dialog Box
x|

Display Grid & Timeline] ﬂﬂ

- I¥ Grid Configuration

—Grid Offset———— ~Minimum Grid Spacing
| 0 n=a ’7 40 (pixels)
—Grid Period

™ Auto Period Reset to Default
| 1l mn=

~Timeline Configuration
% Display simulation time in timeline area

™ Display grid period count (cyde count)

Time units |n=s j

|_ Ilse commas in time values

™ Show frequency in cursor delta

| Cancel | Apply

264 ModelSim User's Manual, v10.3a

Waveform Analysis
Formatting the Wave Window

Enter the period of your clock in the Grid Period field and select “Display grid period count

(cycle count).” The timeline will now show the number of clock cycles, as shown in Figure 8-
24.

Figure 8-24. Clock Cycles in Timeline of Wave Window

4 3 K 3K | |

-
| =
Cursar 1 100 ns I

Formatting Objects in the Wave Window

Y ou can adjust various object propertiesto create the view you find most useful. Select one or
more objectsin the Wave window pathnames pane and then select Wave > Format from the
menu bar (Figure 8-25).

Figure 8-25. Wave Format Menu Selections
Y“Wave Tools Lavout ‘Windo

Radx ¥ |
Literal
Wave Editar » W =
= Analogksy k Liogic
Edit Cursar. .. Color,.. Exent
Delete Cursar Height. ..

Combine Signals. ..

Graup... J
B T T LI L R

Lol s

Or, you can right-click the selected object(s) and select For mat from the popup menu.

If you right-click the and selected object(s) and select Properties from the popup menu, you
can use the Format tab of the Wave Properties dialog to format selected objects (Figure 8-26).

ModelSim User’s Manual, v10.3a 265

Waveform Analysis
Formatting the Wave Window

Figure 8-26. Format Tab of Wave Properties Dialog
Wave Properties 5'
dignal: zim: ftop/pst ont
Yiew | Farmat I Campare] ﬂ_;,|
Farrmak
" Literal * Logic " Event ¢ Analog
—fnalag Display
o " Analog Step Max: ||:|
< € Analog Interpolated
Il? " Analog Backstep Min: |':I
[T Clamp waveform within row
(04 | Cancel | Apply

Changing Radix (base) for the Wave Window

One common adjustment is changing the radix (base) of selected objects in the Wave window.
When you right-click a selected object, or objects, and select Properties from the popup menu,
the Wave Properties dialog appears. Y ou can change the radix of the selected object(s) in the

View tab (Figure 8-27).

266

ModelSim User's Manual, v10.3a

Waveform Analysis
Formatting the Wave Window

Figure 8-27. Changing Signal Radix

Wave Properties El

Signal: |sim: Jtest_counter/clk

Wi I Format] Compare] FE

~Display Mame

—Radix Wave Colar

|de fault v | Calors. ..

symbolic
~Radiqbinary ————~Mame Calor
octal
Edecimal | Calors...
rzigned
hexadecimal
ascii
—_—lrime

The default radix is hexadecimal, which means the value pane lists the hexadecimal values of
the object. For the other radices - binary, octal, decimal, unsigned, hexadecimal, or ASCII - the
object value is converted to an appropriate representation in that radix.

K Cancel| Apply |

Note
D When the symbolic radix is chosen for SystemVerilog reg and integer types, the values

aretreated as binary. When the symbolic radix is chosen for SystemVerilog bit and int
types, the values are considered to be decimal.

Aside from the Wave Properties dialog, there are three other ways to change the radix:

® Changethe default radix for al objectsin the current smulation using Simulate >
Runtime Options (Main window menu).

® Changethe default radix for the current simulation using the radix command.
® Changethe default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.
Setting the Global Signal Radix for Selected Objects

The Global Signal Radix feature allows you to change the radix for a selected object or objects
in the Wave window and in every other window where the object appears.

1. Select an object or objects in the Wave window.

2. Right-click to open a popup menu.

ModelSim User’s Manual, v10.3a 267

Waveform Analysis
Formatting the Wave Window

3. Select Radix > Global Signal Radix from the popup menu. This opens the Global
Signal Radix dialog, where you can set the radix for the Wave window and other
windows where the selected object(s) appears.

Figure 8-28. Global Signal Radix Dialog in Wave Window

Global signal Radixc x|

Signal: ftop/p/data

Specify a radix to apply to the selected signal.
It will be used for this signal in all windows:

¥ MNone (use session default)
" Symbaolic
i Binary
" Octal

" Decmal
" Unsigned
~
~

Hexadecimal

[T Show Base

oK | Can::el| -"'-F'i:'h"|

Dividing the Wave Window

Dividers serve as avisual aid for debugging, alowing you to separate signals and waveforms
for easier viewing. In the graphic below, abusis separated from the two signals above it with a
divider called "Bus."

268 ModelSim User's Manual, v10.3a

Waveform Analysis
Formatting the Wave Window

Figure 8-29. Separate Signals with Wave Window Dividers

Cursor 2 472 ns

« S >l | D

| [[

To insert adivider, follow these steps:

1. Select the signal above which you want to place the divider.

2. If the Wave paneis docked, select Add > To Wave > Divider from the Main window
menu bar. If the Wave window stands alone, undocked from the Main window, select
Add > Divider from the Wave window menu bar.

3. Specify the divider name in the Wave Divider Properties dialog. The default nameis
New Divider. Unnamed dividers are permitted. Simply delete "New Divider" in the
Divider Name field to create an unnamed divider.

4. Specify the divider height (default height is 17 pixels) and then click OK.

Y ou can aso insert dividers with the -divider argument to the add wave command.

Working with Dividers
The table below summarizes several actions you can take with dividers:

Table 8-6. Actions for Dividers
Action Method
Move adivider Click-and-drag the divider to the desired location

Change adivider's | Right-click the divider and select Divider Properties
name or size

ModelSim User’s Manual, v10.3a 269

Waveform Analysis
Formatting the Wave Window

Table 8-6. Actions for Dividers (cont.)
Action M ethod
Delete adivider Right-click the divider and select Delete

Splitting Wave Window Panes

The pathnames, values, and waveform panes of the Wave window display can be split to
accommodate signals from one or more datasets. For more information on viewing multiple
simulations, see Recording Simulation Results With Datasets.

To split the window, select Add > Window Pane.

In theillustration below, the top split shows the current active simulation with the prefix "sim,"
and the bottom split shows a second dataset with the prefix "gold."

Figure 8-30. Splitting Wave Window Panes
m Wave

sirm: feapfp/clk

Current sirn: ftop
Simulation sim: |

{sim)

o Dak
-Mo Daka-

Previous -Mo Data-

Simulation
{gold)

The Active Split

The active split is denoted with a solid white bar to the left of the signal names. The active split
becomes the target for objects added to the Wave window.

270 ModelSim User's Manual, v10.3a

Waveform Analysis
Wave Groups

Wave Groups

Y ou can create a wave group to collect arbitrary groups of itemsin the Wave window. Wave
groups have the following characteristics:

* A wave group may contain 0, 1, or many items.

® You can add or remove items from groups either by using acommand or by dragging
and dropping.

® You can drag agroup around the Wave window or to another Wave window.

® You can nest multiple wave groups, either from the command line or by dragging and
dropping. Nested groups are saved or restored from awave.do format file, restart and
checkpoint/restore.

® You can create agroup that contains the input signals to the process that drives a
specified signal.

Creating a Wave Group

There are three ways to create a wave group:

® Grouping Signals through Menu Selection
® Grouping Signals with the add wave Command
® Grouping Signals with a Keyboard Shortcut

Grouping Signals through Menu Selection

If you've already added some signals to the Wave window, you can create a group of signals
using the following procedure.

Procedure
1. Select aset of signalsin the Wave window.

2. Select the Wave > Group menu item.
The Wave Group Create dialog appears.
3. Complete the Wave Group Create dialog box:

® Group Name — specify a name for the group. This nameis used in the wave
window.

® Group Height — specify an integer, in pixels, for the height of the space used for the
group label.

4. Ok

ModelSim User’s Manual, v10.3a 271

Waveform Analysis
Wave Groups

Results

The selected signals become a group denoted by ared diamond in the Wave window pathnames
pane (Figure 8-31), with the name specified in the dialog box.

Figure 8-31. Wave Groups Denoted by Red Diamond

[T wave - Default e
- Msgs
£ Jjtop/p/data_r 16bZZ...
4 [topfpfrw_r 1
Jtopjpfstrb_r 1
ftop/pfverbose TRUE
Jtop/p/ft_out u
Jtop/pjt_set u
Custom Group [Custom Group)
4 ftop/fpftest U
4 fop/fpftest2 U
0
U

4 [top/p/bar_rw

“ [top/pftest_in

hd|
S @ Mow | 2840 ns
Wl Cursar 1 0ns

1 2 KA (KT |

Adding a Group of Contributing Signals

Y ou can select asignal and create a group that contains the input signals to the process that
drives the selected signal.
Procedure
1. Select asignal for which you want to view the contributing signals.

2. Click the Add Contributing Signals button in the Wave toolbar. -

Results

A group with the name Contributors.<signal_name> is placed below the selected signal in the
Wave window pathnames pane (Figure 8-32).

272 ModelSim User's Manual, v10.3a

Waveform Analysis
Wave Groups

Figure 8-32. Contributing Signals Group

m Wave - Default

4. /top/p/data
[+ ftopfpfaddr_r Q0001001
=} 4 Contributors: addr_r
00001010
£ ftopfpfdk 5t1
- ftopfpid 0000000000001001 0. 0. 0. 0.
L+ fopipjverbose |1
Y jtop/pidata_r ZITLIITTTLIIZITE
4 [topfpfrw_r 1

Msgs

gl 2 BE

Grouping Signals with the add wave Command
Add grouped signals to the Wave window from the command line use the following procedure.

Procedure

1. Determine the names of the signals you want to add and the name you want to assign to
the group.

2. From the command line, use the add wave and the -group argument.
Examples
® Create agroup named mygroup containing three items:
add wave -group mygroup sigl sig2 sig3
® Create an empty group named mygroup:

add wave -group mygroup

Grouping Signals with a Keyboard Shortcut

If you've already added some signalsto the Wave window, you can create a group of signals
using the following procedure.

Procedure
1. Select the signals you want to group.

2. Ctrl-g

ModelSim User's Manual, v10.3a 273

Waveform Analysis
Wave Groups

Results

The selected signals become a group with a name that references the dataset and common
region, for example: sim:/top/p.

If you use Ctrl-g to group any other signals, they will be placed into any existing group for their
region, rather than creating a new group of only those signals.

Deleting or Ungrouping a Wave Group

If awave group is selected and cut or deleted the entire group and all its contents will be
removed from the Wave window. Likewise, the del ete wave command will remove the entire
group if the group name is specified.

If awave group is selected and the Wave > Ungroup menu item is selected the group will be
removed and all of its contents will remain in the Wave window in existing order.

Adding Items to an Existing Wave Group

There are three ways to add items to an existing wave group.

1. Using the drag and drop capability to move items outside of the group or from other
windows into the group. The insertion indicator will show the position the item will be
dropped into the group. If the cursor is moved over the lower portion of the group item
name a box will be drawn around the group name indicating the item will be dropped
into the last position in the group.

2. After selecting an insertion point within a group, place the cursor over the object to be
inserted into the group, then click the middle mouse button.

3. After selecting an insertion point within a group, select multiple objects to be inserted
into the group, then click the Add Selected to Window button in the Standard
Toolbar.

4. The cut/copy/paste functions may be used to paste items into a group.
5. Usethe add wave -group command.
The following example adds two more signals to an existing group called mygroup.

add wave -group mygroup sig4d sigb

Removing Items from an Existing Wave Group

Y ou can use any of the following methods to remove an item from a wave group.

1. Usethedrag and drop capability to move an item outside of the group.

274 ModelSim User's Manual, v10.3a

Waveform Analysis
Composite Signals or Buses

2. Usemenu or icon selections to cut or delete an item or items from the group.

3. Usethe delete wave command to specify asignal to be removed from the group.

Note
The delete wave command removes all occurrences of a specified name from the Wave
window, not just an occurrence within a group.

Miscellaneous Wave Group Features

Dragging awave group from the Wave window to the List window will result in al of theitems
within the group being added to the List window.

Dragging a group from the Wave window to the Transcript window will result in alist of al of
the items within the group being added to the existing command line, if any.

Composite Signals or Buses

Y ou can create a composite signal or bus from arbitrary groups of itemsin the Wave window.
Composite signals have the following characteristics:

® Composite signals may contain O, 1, or many items.

® You can drag agroup around the Wave window or to another Wave window.

Creating Composite Signals through Menu Selection

If you've already added some signals to the Wave window, you can create a composite signal
using the following procedure.

To create anew composite signal or bus from one or more signals:

1. Select signalsto combine:

® Shift-click on signal pathnames to select a contiguous set of signals, records, and/or
busses.

® Control-click onindividual signal, record, and/or bus pathnames.
2. Select Wave > Combine Signals
3. Complete the Combine Selected Signals dialog box.

® Name — Specify the name of the new combined signal or bus.

® Order to combine selected items — Specify the order of the signals within the new
combined signal.

ModelSim User’s Manual, v10.3a 275

Waveform Analysis
Saving the Window Format

® Top down— (default) Signals ordered from the top as selected in the Wave window.
® Bottom Up — Signals ordered from the bottom as selected in the Wave window.

® Order of Result Indexes — Specify the order of the indexesin the combined signal.
® Ascending — Bitsindexed [0 : n] starting with the top signal in the bus.

® Descending — (default) Bitsindexed [n : O] starting with the top signal in the bus.

®* Remove selected signals after combining — Saves the selected signalsin the
combined signal only.

®* Reversebit order of busitemsin result — Reverses the bit order of busses that are
included in the new combined signal.

® FHatten Arrays — (default) Moves elements of arrays to be elements of the new
combined signal. If arrays are not flattened the array itself will be an element of the
new combined signal.

* Flatten Records— Movesfields of selected records and signalsto be elements of the
new combined signal. If records are not flattened the record itself will be an element
of the new combined signal.

For more information, refer to Virtual Signals.

Related Topics

virtual signa

“Virtual Objects”

“Using the Virtual Signal Builder”
“Concatenation of Signals or Subelements’

Saving the Window Format

By default, al Wave window information is lost once you close the window. If you want to
restore the window to a previously configured layout, you must save a window format file as
follows:

1. Add the objects you want to the Wave window.
2. Edit and format the objects to create the view you want.

3. Savetheformat to afile by selecting File > Save. This opens the Save Format dialog
box (Figure 8-33), where you can save waveform formatsin a.do file.

276 ModelSim User's Manual, v10.3a

Waveform Analysis
Exporting Waveforms from the Wave window

Figure 8-33. Save Format Dialog

5|
—Pathname
Eiru:uwse...l
—Save contenks
v wwaveform Formats [Waveform edits
Ok | Cancel |

To use the format file, start with ablank Wave window and run the DO file in one of two ways:

®* |nvoke the do command from the command line:
VSIM> do <my_format_file>
® Sdect File> Load.
Note

Window format files are design-specific. Use them only with the design you were
simulating when they were created.

In addition, you can use the write format restart command to create a single .do file that will
recreate all debug windows and breakpoints (see Saving and Restoring Breakpoints) when
invoked with the do command in subsequent simulation runs. The syntax is:

write format restart <filename>

If the ShutdownFile modelsim.ini variableis set to this .do filename, it will call the write format
restart command upon exit.

Exporting Waveforms from the Wave window

This section describes ways to save or print information from the Wave window.

Exporting the Wave Window as a Bitmap Image

Y ou can export the current view of the Wave window to a Bitmap (.bmp) image by selecting the
File > Export > Image menu item and compl eting the Save Image dialog box.

The saved bitmap image only contains the current view; it does not contain any signals not
visible in the current scroll region.

Note that you should not select a new window in the GUI until the export has completed,
otherwise your image will contain information about the newly selected window.

ModelSim User’s Manual, v10.3a 277

Waveform Analysis
Exporting Waveforms from the Wave window

Printing the Wave Window to a Postscript File

Y ou can export the contents of the Wave window to a Postscript (.ps) or Extended Postscript
file by selecting the File > Print Postscript menu item and completing the Write Postscript
dialog box.

The Write Postscript dialog box allows you to control the amount of information exported.

® Signal Selection — allows you to select which signals are exported
* Time Range — alows you to select the time range for the given signals.

Note that the output is a ssimplified black and white representation of the wave window.

Y ou can also perform this action with the write wave command.

Printing the Wave Window on the Windows
Platform

Y ou can print the contents of the Wave window to a networked printer by selecting the File >
Print menu item and compl eting the Print dialog box.

The Print dialog box allows you to control the amount of information exported.

® Signal Selection — allows you to select which signals are exported
* Time Range — allowsyou to select the time range for the given signals.

Note that the output is a simplified black and white representation of the wave window.

Saving Waveforms Between Two Cursors

Y ou can choose one or more objects or signals in the waveform pane and save a section of the
generated waveforms to a separate WLF file for later viewing. Saving selected portions of the
waveform pane alows you to create a smaller dataset file.

The following steps refer to Figure 8-34.

1. Placethefirst cursor (Cursor 1in Figure 8-34) at one end of the portion of ssmulation
time you want to save.

2. Click thelnsert Cursor icon to insert a second cursor (Cursor 2). n

3. Move Cursor 2 to the other end of the portion of time you want to save. Cursor 2 is now
the active cursor, indicated by a bold yellow line and a highlighted name.

4. Right-click the time indicator of the inactive cursor (Cursor 1) to open a drop menu.

278 ModelSim User's Manual, v10.3a

Waveform Analysis
Exporting Waveforms from the Wave window

Figure 8-34. Waveform Save Between Cursors

Joopraabiram_re

-+ ftop)dutfifo_dat

ﬁ_" frop/dutyd

ﬁ_" Jtopfdutfpkk_

ﬁ_" ftopfdutfinput ... JO0000000

é_j frop/dutc JACTIVE
& ropfdutifsm_clk |St0

“me
ase
ase

o
Cursor 1
Cursor £

10000 ns
540 ns

9620 ns

O

et IE 0ns 50 ns

Goba Cursor 1

J

&l—ug_:]

1| | 3 B 3 (1T Activate Cursor 1
: Lock Cursor 1
iZ i3 & kK Wl
-E'_E over Groups l X Assertions IM ave | Delete Cursor 1
i Mew Cursor = B fl
Cursor Propetties. ..
arid & Timeline Properties. ..
Filter WWarveform.. .
Zursor Linking g
5. Select Filter Waveform to open the Wave Filter dialog box. (Figure 8-35)
Figure 8-35. Wave Filter Dialog
| wavefiter x|

Start time: |3540 ns

End time: |9620 ns

I Filter Selected Signals Only

Output WLF

Browse, ..
Ik Zancel |

6. Select Filter Selected Signals Only to save selected objects or signals. Leaving this

checkbox blank will save datafor al waveforms displayed in the Wave window
between the specified start and end time.

ModelSim User’'s Manual, v10.3a

279

Waveform Analysis
Viewing System Verilog Interfaces

7. Enter aname for the file using the .wif extension. Do not use vsimwif sinceit isthe
default name for the simulation dataset and will be overwritten when you end your
simulation.

Viewing Saved Waveforms

1. Open the saved .wif file by selecting File > Open to open the Open File dialog and set
the“Files of type” field to Log Files (*.wlif). Then select the .wif file you want and click
the Open button. Refer to Opening Datasets for more information.

2. Select the top instance in the Structure window
3. Select Add > ToWave > All Itemsin Region and Below.
4. Scroll to the simulation time that was saved. (Figure 8-36)

Figure 8-36. Wave Filter Dataset

!
10000 ns =
0540 ns 0540 N I
1| I L I | b |ﬂ ’ |.

Working With Multiple Cursors

Y ou can save a portion of your waveformsin asimulation that has multiple cursors set. The new
dataset will start and end at the times indicated by the two cursors chosen, even if the time span
includes another cursor.

Viewing System Verilog Interfaces

Y ou can log and display scalar and array virtual interface valuesin the Wave and List windows.

Working with Virtual Interfaces

Y ou can perform the following actions with virtual interfaces:

280 ModelSim User's Manual, v10.3a

Waveform Analysis
Viewing System Verilog Interfaces

® Log thevirtua interface with the log command. For example:
log /test2/virt
® Add avirtual interface to the List window with the add list command.

® Add avirtual interface to the Wave window with the add wave command. For example:

add wave /test2/virt

Adding Virtual Interface References to the Wave Window

Y ou can add the real interfaces that are referenced by avirtual interface by right-clicking the
portion of the virtual interface waveform you are interested in and selecting Add wave
<virtual_interface>/*. Therea interface objects are added to the Wave window and logged
from the time they are added. For example, Figure 8-37 showsthe virtual interface /test2/virt
logged in the Wave window with the real interface /test2/bi1/* added at 75 ns. The nets, array
and so forth in the interface /test2/bi2/* are about to be added.

Figure 8-37. Virtual Interface Objects Added to Wave Window
T wave - Default 3 H]7

— Virtual Interface [ftest2fvirt I

4 Jtest2fvirt i { Teestzfbidl ™ |

— Points to /test2/bilf*
Jtest2fbiljdk

[
A

Wave Editor

Jtest2fbiljdata Fhof__J5hit Zoom In I
ftest2fbil/statesig i e Zoom Out 0
Jtest2fbiljreq Zoom Full E
Jrest2fbiljack Zoom Cursor C
Jtest2fbiljgnt Zoom Last L
Jtest2fbiljaddr Fhoo Zoom Others M
Zoom Range... R
Expanded Time ¥

Event Traceback (@126 ns) L

Examine...

Add Wave [test2/biz/*

Cast *

ModelSim User’s Manual, v10.3a 281

Waveform Analysis
Combining Objects into Buses

Combining Objects into Buses

Y ou can combine signals in the Wave window into buses. A busisa collection of signals
concatenated in a specific order to create a new virtual signal with a specific value. A virtual
compare signal (the result of a comparison simulation) is not supported for combination with
any other signal.

To combine signalsinto a bus, use one of the following methods:

® Select two or more signals in the Wave window and then choose Tools > Combine
Signals from the menu bar. A virtual signal that is the result of a comparison simulation
is not supported for combining with any other signal.

® Usethevirtual signal command at the Main window command prompt.

In the illustration below, four signals have been combined to form a new bus called "Busl."
Note that the component signals are listed in the order in which they were selected in the Wave
window. Also note that the value of the busis made up of the values of its component signals,
arranged in a specific order.

Figure 8-38. Signals Combined to Create Virtual Bus

[test_smfinto

a0Ex1

! [alt 41000 ps
Cursor 1 26100 ps

I 3 [T B [ol o

| [[

Extracting a Bus Slice

Y ou can create a new bus containing a slice of a selected bus using the following procedure.
This action uses the virtual signal command.

1. Inthe Wave window, locate the bus and select the range of signals that you want to
extract.

282 ModelSim User's Manual, v10.3a

Waveform Analysis
Combining Objects into Buses

2. Select Wave > Extract/Pad Slice (Hotkey: Ctrl+e) to display the Wave Extract/Pad Bus
Dialog Box. Al

By default, the dialog box is prepopul ated with information based on your selection and
will create anew bus based on this information.

This dialog box also provides you options to pad the selected slice into alarger bus.

3. Click OK to create agroup of the extracted signals based on your changes, if any, to the
dialog box.

The new bus, by default, is added to the bottom of the Wave window. Alternatively, you
can follow the directionsin Inserting Signals in a Specific Location.

Wave Extract/Pad Bus Dialog Box

Use this dialog box when Extracting a Bus Slice, accessed from the Wave > Extract/Pad Slice
menu item.

Figure 8-39. Wave Extract/Pad Bus Dialog Box

o
—Source
|i_|:'.|:11:
—Result Name
li_cnt_16_9
—Slice Range —Padding
Lefr: |14 Left pad #[0
Right:|s (0,1,%,2) [0
Right pad #Iﬂ_
(0,1,%,2) [0
[~ Transcript commands
oK | Cance|| Apply |

® Source — The name of the bus from which you selected the signals.

® Result Name — A generated name based on the source name and the selected signals.
Y ou can change thisto a different value.

® Slice Range— The range of selected signals.
® Padding — These options alow you to create signal padding around your extraction.

ModelSim User’s Manual, v10.3a 283

Waveform Analysis
Using the Virtual Signal Builder

o Left Pad/Vaue— Aninteger that represents the number of signals you want to pad
to the left of your extracted signals, followed by the value of those signals.

o Right Pad/ Value — An integer that represents the number of signals you want to
pad to the right of your extracted signals, followed by the value of those signals.

® Transcript Commands — During creation of the bus, the virtual signal command to
create the extraction is written to the Transcript window.

Splitting a Bus into Several Smaller Buses

Y ou can split abusinto severa equal-sized buses using the following procedure. This action
uses the virtual signal command.

1. Inthe Wave window, select the top level of the bus you want to split.
2. Select Wave > Split Bus (Hotkey: Ctrl+p) to display the Wave Split Bus dialog box.
3. Edit the settings of the Wave Split dialog box
o Source — (cannot edit) Shows the name of the selected signal and its range.
o Prefix — Specify the prefix to be used for the new buses.
The resulting name is of the form: <prefix><n>, where n increments for each group.

o Split Width — Specify the width of the new buses, which must divide equally into
the bus width.

Using the Virtual Signal Builder

Y ou can create, modify, and combine virtual signals and virtual functions and add them to the
Wave window with the Virtual Signal Builder dialog box.Virtual signals are also added to the
Objectswindow and can be dragged to the List, and Watch windows once they have been added
to the Wave window. The Virtual Signal Builder dialog box is accessed by selecting Wave >
Virtual Builder when the Wave window is docked or selecting Tools> Virtual Builder when
the Wave window is undocked. (Figure 8-40)

284 ModelSim User's Manual, v10.3a

Waveform Analysis
Using the Virtual Signal Builder

Figure 8-40. Virtual Signal Builder

virtual Signal Builder |
—Operators
~Virtuals o "
Name| ﬂ 1 j
Editor i
ﬂ Z
H
L
{
(| =
K A
@ Help | Clear| Add | Test | Close

®* The Namefield allows you to enter the name of the new virtual signal or select an
existing virtual signal from the drop down list. Use alpha, numeric, and underscore
characters only, unless you are using VHDL extended identifier notation.

* TheEditor field isaregular text box. Y ou can enter text directly, copy and paste, or drag
asignal from the Objects, Locals, Source, or Wave window and drop it in the Editor
field.

®* The Operatorsfield allows you to select from alist of operators. Double-click an
operator to add it to the Editor field.

® The Help button provides information about the Name, Clear, and Add Text buttons,
and the Operatorsfield (Figure 8-41).

ModelSim User’s Manual, v10.3a 285

Waveform Analysis
Using the Virtual Signal Builder

Figure 8-41. Virtual Signal Builder Help

@ Help Clear| add | Test |

Close

Logical Operators HE-T-S

Bitwize Operators : NOT, ~, AND, NAND, OF, NOR, XOE, XNOR
Feduction Operators HE-S [usage: &<Wector exXprx:)
Concatenation Operator: & [Usage: <zignallrs&<signals>)

Shift Left/Right Arithmetic/Logical:

[Usage: <signall>'ewvent)
'delayed : Returns a signal delayed by a set amount
[usage: <signaltsx'delayed(lOns))

LA, 3LL, 3BA, 3RL [Usage: <<zignal3> 3LL 4]
Fotate Left/Right:

ROL, ROR [usage: <signald- ROL 4)
'rizing : True when signal changes from low to high
'falling : True when signal changes from high to low
'hazx : True where zignal has an 'X' walue
'event : True for any change in specified signal

®* The Clear button del etes the contents of the Editor field.

® The Add button places the virtual signal in the Wave window in the default location.
Refer to Inserting Signalsin a Specific Location for more information.

® The Test button tests the syntax of your virtual signal.

Creating a Virtual Signal

Prerequisites

® An active smulation or open dataset.

® An active Wave window with objects |oaded in the Pathname pane

Procedure

1. Select Wave >Virtual Builder from the main menu to open the Virtual Builder dialog

box.

2. Drag one or more objects from the Wave or Object window into the Editor field.

3. Modify the object by double-clicking on itemsin the Operatorsfield or by entering text

directly.

Tip: Select the Help button then place your cursor in the Operator field to view syntax

usage for some of the available operators. Refer to Figure 8-40

286

ModelSim User's Manual, v10.3a

Waveform Analysis
Using the Virtual Signal Builder

4. Enter astring in the Name field. Use alpha, numeric, and underscore characters only,
unless you are using VHDL extended identifier notation.

5. Select the Test button to verify the expression syntax is parsed correctly.

6. Select Add to place the new virtual signal in the Wave window at the default insertion
point. Refer to Setting Default Insertion Point Behavior for more information.

Figure 8-42. Creating a Virtual Signal.

Virtual Signal Builder x|
—Operators

—Virtuals | ﬂ

Mame |test_1l’.‘ll’.‘ll ﬂ -
Editor s

/ftop/p/atrk & Stop/p/Tw T ||| peT

- IRND -J

OF

MRND

L| MOR j

a Help Clear| Add | Test | Close

Logical Operators

&&, ||, !

Bitwise Operators : NOT, ~, RND, NAND, CE, NOE, XOR, XNCE
Eeduction Operators HI P (usage: s<{vector exprx)
Concatenation Operator: & {usage: <signall>»s<3ignall>)

Shift Left/Right Arithmetic/Logical:

5La, 5SLL, SEA, 3RL {usage: <signal3> SLL 4)
Eotate Left/Right:

ROL, ROR {usage: <signald> EOL 4)
"rizing : True when signal changes from low to high
"falling : True when signal changes from high to low
"hasx : True where 3ignal haes an 'X" walue
"event : True for any change in specified signal

(usage: <3ignals>"event)
"delayed : Returns a signel delayed by a et amount
{usage: <3ignal&>"delayed{lOna))

Results

The virtual signal is added to the Wave window and the Objects window. An orange diamond
marks the location of the virtual signal in the wave window. (Figure 8-43)

ModelSim User’s Manual, v10.3a 287

Waveform Analysis
Miscellaneous Tasks

Figure 8-43. Virtual Signal in the Wave Window

m B ftop/p/data_r M I
4 ftopfpfrw_r
- Epmswm DEDﬁDDDIil’ZEDIDI
{1)=/top/p/strb
& (0)=(top/p/frw_r

Jtopfpfstrb_r
Jtop/pfverbose
[top/pft_out
[topp/t_set

[5 .
TECEENS -
=

Related Topics

Virtual Objects Virtual Signals
virtual signal command virtual function command

GUI_expression_format

Miscellaneous Tasks

Examining Waveform Values

Y ou can use your mouse to display a dialog that shows the value of awaveform at a particular
time. Y ou can do thistwo ways:

® Rest your mouse pointer on awaveform. After a short delay, adialog will pop-up that
displaysthe value for the time at which your mouse pointer is positioned. If you' d prefer
that this popup not display, it can be toggled off in the display properties. See Setting
Wave Window Display Preferences.

* Right-click awaveform and select Examine. A dialog displays the value for the time at
which you clicked your mouse.

Displaying Drivers of the Selected Waveform

Y ou can display the drivers of asignal selected in the Wave window in the Dataflow window.

Y ou can display the signal in one of three ways:

* Select awaveform and click the Show Drivers button on the toolbar. | 24

* Right-click awaveform and select Show Drivers from the shortcut menu

288 ModelSim User's Manual, v10.3a

Waveform Analysis
Creating and Managing Breakpoints

* Double-click awaveform edge (you can enable/disable this option in the display
properties dialog; see Setting Wave Window Display Preferences)

This operation opens the Dataflow window and displays the drivers of the signal selected in the
Wave window. A Wave pane a so opens in the Dataflow window to show the selected signal
with acursor at the selected time. The Dataflow window shows the signal(s) values at the Wave
pane cursor position.

Sorting a Group of Objects in the Wave Window

Select View > Sort to sort the objects in the pathname and val ues panes.

Creating and Managing Breakpoints

Model Sim supports both signal (that is, when conditions) and file-line breakpoints. Breakpoints
can be set from multiple locations in the GUI or from the command line.

Signal Breakpoints

Signal breakpoints (“when” conditions) instruct Model Sim to perform actions when the
specified conditions are met. For example, you can break on asignal value or at a specific
simulator time (see the when command for additional details). When a breakpoint is hit, a
message in the Main window transcript identifies the signal that caused the breakpoint.

Setting Signal Breakpoints with the when Command

Use the when command to set a signal breakpoint from the VSIM> prompt. For example,

when {errorFlag ='1' OR $now = 2 ms} {stop}

adds 2 ms to the simulation time at which the “when” statement isfirst evaluated, then stops.
The white space between the value and time unit is required for the time unit to be understood
by the smulator. See the when command in the Command Reference for more examples.

Setting Signal Breakpoints with the GUI

Signal breakpoints are most easily set in the Objects Window and the Wave window. Right-
click asignal and select I nsert Breakpoint from the context menu. A breakpoint is set on that
signal and will be listed in the M odify Breakpoints dialog accessible by selecting Tools >
Breakpoints from the Main menu bar.

ModelSim User’s Manual, v10.3a 289

Waveform Analysis
Creating and Managing Breakpoints

Modifying Signal Breakpoints

Y ou can modify signal breakpoints by selecting Tools > Breakpoints from the Main menus.
Thiswill open the Modify Breakpoints dialog (Figure 8-44), which displays alist of all
breakpoints in the design.

Figure 8-44. Modifying the Breakpoints Dialog

Modify Breakpoints x|
— Breakpaoinkts
"ILaI:ueI |Breakpu:uint | |
Al 2 kcounter.v Line: 25
counter,y Line: 36 fdd...
Mu:u:lil:w;.-'...l
Disable |
Delete |
Load. .. |
Save. .. |
— Break Point Label
—File - Line
counker.w - 36
—iCondition
——iCammand
Ok | Cancel |

When you select asignal breakpoint from the list and click the Modify button, the Signal
Breakpoint dialog (Figure 8-45) opens, allowing you to modify the breakpoint.

290 ModelSim User's Manual, v10.3a

Waveform Analysis
Creating and Managing Breakpoints

Figure 8-45. Signal Breakpoint Dialog

signal Breakpoint x|

—Breakpaoint Label

Isim:.-’test_cnunter.-’reset

— Breakpoint Condition

Isim:.-’test_cu:uunter.-’reset

— Breakpoint Commands

echo {Break on sim:/test_counter/reset} ; stop

5l [

[8]4 | Cancel|

File-Line Breakpoints

File-line breakpoints are set on executable lines in your source files. When the lineis hit, the
simulator stops and the Source window opens to show the line with the breakpoint. Y ou can
change this behavior by editing the Pref Source(OpenOnBreak) variable. See Simulator GUI
Preferences for details on setting preference variables.

Setting File-Line Breakpoints Using the bp Command

Use the bp command to set afile-line breakpoint from the VSIM> prompt. For example:

bp top.vhd 147
sets a breakpoint in the source file top.vhd at line 147.

Setting File-Line Breakpoints Using the GUI

File-line breakpoints are most easily set using your mouse in the Source Window. Position your
mouse cursor in the line number column next to ared line number (which indicates an
executable line) and click the left mouse button. A red ball denoting a breakpoint will appear
(Figure 8-46).

ModelSim User’s Manual, v10.3a 291

Waveform Analysis
Creating and Managing Breakpoints

Figure 8-46. Breakpoints in the Source Window

ln¥ | 4 B Now]k
52 = task write: ;l
a3 input [‘addr size-1:0] a;

o4 input [‘“word size-1:0] d4;

55 = kegin

56 if {wverbose) 5Sdisplav("%t: Writing data=%h toc addr=%h
a7 @' gddr r = a: —
il mi_r = 0;

59 strk r = O;

&l @ {posedge clk) strb r = 1;

a6l

data_r = d: -
1| | »

The breakpoints are toggles. Click the left mouse button on the red breakpoint marker to disable

the breakpoint. A disabled breakpoint will appear as a black ball. Click the marker again to
enableit.

Right-click the breakpoint marker to open a context menu that allows you to Enable/Disable,

Remove, or Edit the breakpoint. create the colored diamond; click again to disable or enable
the breakpoint.

Modifying a File-Line Breakpoint

Y ou can modify afile-line breakpoint by selecting Tools > Breakpoints from the Main menus.

Thiswill open the Modify Breakpoints dialog (Figure 8-44), which displays alist of all
breakpoints in the design.

When you select afile-line breakpoint from the list and click the Modify button, the File
Breakpoint dialog (Figure 8-47) opens, allowing you to modify the breakpoint.

292 ModelSim User's Manual, v10.3a

Waveform Analysis
Creating and Managing Breakpoints

Figure 8-47. File Breakpoint Dialog Box

File Breakpoink x|

—Breakpoint Label

File

countet Browse, ..

——Line Imstance MNarne
36 |

— Breakpoint Condition

— Breakpoint Commands

oK | Cancel

Saving and Restoring Breakpoints

The write format restart command creates asingle .do file that will recreate all debug windows,
all file/line breakpoints, and all signal breakpoints created using the when command. The

syntax is:

write format restart <filename>

If the ShutdownFile modelsim.ini variableis set to this .do filename, it will call the write format
restart command upon exit.

Thefile created is primarily alist of add listor add wave commands, though afew other
commands are included. Thisfile may be invoked with the do command to recreate the window

format on a subsequent simulation run.

ModelSim User’s Manual, v10.3a 293

Waveform Analysis
Creating and Managing Breakpoints

294 ModelSim User's Manual, v10.3a

Chapter 9
Debugging with the Dataflow Window

This chapter discusses how to use the Dataflow window for tracing signal values, browsing the
physical connectivity of your design, and performing post-simulation debugging operations.

Dataflow Window Overview

The Dataflow window allows you to explore the "physical” connectivity of your design.

Note
OEM versions of Model Sim have limited Dataflow functionality. Many of the features

described below will operate differently. The window will show only one process and its
attached signals or one signal and its attached processes, as displayed in Figure 9-1.

Figure 9-1. The Dataflow Window (undocked) - ModelSim

=101

File Edit View Add Trace Tools Bookmarks Window
- Dataflow - Default

+acc==full=

HFALWAYS#35

ModelSim User's Manual, v10.3a 295

Debugging with the Dataflow Window
Dataflow Usage Flow

Dataflow Usage Flow

The Dataflow window can be used to debug the design currently being simulated, or to perform
post-simulation debugging of adesign. For post-simulation debugging, a database is created at
design load time, immediately after elaboration, and used later.

Note
The -postsimdataflow option must be used with the vsim command for the Dataflow
window to be available for post simulation debug operations.

The usage flow for debugging the current simulation is as follows:

1. Compile the design using the vliog and/or vcom commands.
2. Load the design with the vsim command:
vsim <design_name>
3. Run the smulation.
4. Debug your design.
Figure 9-2 illustrates the current and post-sim usage flows for Dataflow debugging.

296 ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Dataflow Usage Flow

Figure 9-2. Dataflow Debugging Usage Flow

compile design |
NO create database for YES
post-sim debug?
load design with load design with
vsim command vsim -postsimdataflow
-debugdb command
* Create *
. X post-sim
run simulation debug . .
* database run simulation
debug *
save and quit simulation
recall post-sim
s . debug database with
sl dataset open command
debug
database *
debug

Post-Simulation Debug Flow Details

The post-sim debug flow for Dataflow analysisis most commonly used when performing
simulations of large designs in simulation farms, where simulation results are gathered over
extended periods and saved for analysis at alater date. In general, the process consists of two
steps: creating the database and then using it. The details of each step are asfollows:

Create the Post-Sim Debug Database
1. Compile the design using the vlog and/or vcom commands.

2. Load the design with the following commands.

ModelSim User’s Manual, v10.3a 297

Debugging with the Dataflow Window
Dataflow Usage Flow

vsim -postsimdataflow -debugdb=<db_pathname> -wIf <db_pathname>
add log -r /*

By default, the Dataflow window is not available for post simulation debug operations.
Y ou must use the -postsimdataflow to make Dataflow window available during post-sim
debug.

Specify the post-simulation database file name with the -debugdb=<db_pathname>
argument to the vsim command. If a database pathname is not specified, Model Sim
creates a database with the file name vsim.dbg in the current working directory. This
database contains dataflow connectivity information.

Specify the dataset that will contain the database with -wlif <db_pathname>. If a dataset
name is not specified, the default name will be vsim.wif.

The debug database and the dataset that contains it should have the same base name
(db_pathname).

Theadd log -r /* command instructs Model Sim to save all signal values generated when
the simulation is run.

3. Run the smulation.

4. Quit the ssmulation.

The -debugdb=<db_pathname> argument for the vsim command only needs to be used once
after any structural changes to adesign. After that, you can reuse the vsim.dbg file along with
updated waveform files (vsim.wif) to perform post simulation debug.

A structural changeis any change that adds or removes nets or instances in the design, or
changes any port/net associations. This also includes processes and primitive instances.
Changes to behavioral code are not considered structural changes. Model Sim does not
automatically detect structural changes. This must be done by the user.

Use the Post-Simulation Debug Database

1. Start ModelSim by typing vsim at a UNIX shell prompt; or double-click aModelSim

icon in Windows.

. Select File> Change Directory and change to the directory where the post-simulation

debug database resides.

. Recall the post-simulation debug database with the following:

dataset open <db_pathname.wlif>

Model Sim opens the .wif dataset and its associated debug database (.dbg file with the
same basename), if it can be found. If Model Sim cannot find db_pathname.dbg, it will
attempt to open vsim.dbg.

298

ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Common Tasks for Dataflow Debugging

Common tasks for current and post-simulation Dataflow debugging include:

® Adding Objectsto the Dataflow Window

® Exploring the Connectivity of the Design

® Exploring Designs with the Embedded Wave Viewer
® Tracing Events

® Tracing the Source of an Unknown State (StX)

® Finding Objects by Name in the Dataflow Window

Adding Objects to the Dataflow Window

Y ou can use any of the following methods to add objects to the Dataflow window:

® Drag and drop objects from other windows.
® Usethe Add > To Dataflow menu options.

® Select the objects you want placed in the Dataflow Window, then click-and-hold the
Add Selected to Window Button in the Standar d toolbar and select Add to Dataflow.

® Usethe add dataflow command.

The Add > To Dataflow menu offers four commands that will add objects to the window:

® View region — clear the window and display all signals from the current region

® Add region — display all signals from the current region without first clearing the
window

® View all nets— clear the window and display all signals from the entire design
® Add ports— add port symbolsto the port signalsin the current region

When you view regions or entire nets, the window initially displays only the drivers of the
added objects. You can view readers as well by right-clicking a selected object, then selecting
Expand net to reader s from the right-click popup menu.

The Dataflow window provides automatic indication of input signals that are included in the
process sensitivity list. In Figure 9-3, the dot next to the state of the input clk signal for the
#ALWAY S#155 process. This dot indicates that the clk signal isin the sensitivity list for the
process and will trigger process execution. Inputs without dots are read by the process but will
not trigger process execution, and are not in the sensitivity list (will not change the output by
themselves).

ModelSim User’s Manual, v10.3a 299

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Figure 9-3. Dot Indicates Input in Process Sensitivity Lis

#BUF#21

ENOT#29

_:;-t 0

+acc=<full:

#ALWAYS#155

The Dataflow window displays values at the current “ active time,” which is set a number of
different ways:

* with the selected cursor in the Wave window
* with the selected cursor in the Dataflow window’ s embedded Wave viewer
* with the Current Time label in the Source or Dataflow windows.

Figure 9-4 shows the CurrentTime label in the upper right corner of the Dataflow window.
(Thislabel isturned on by default. If you want to turn it off, select Dataflow > Preferencesto
open the Dataflow Options Dialog and check the “Current Time label” box.) Refer to Current
Time Label for more information.

300 ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Figure 9-4. CurrentTime Label in Dataflow Window

Minimize/Maximize Button

[

1= @ 2820 ns |#

Exploring the Connectivity of the Design

A primary use of the Dataflow window is exploring the "physical” connectivity of your design.
Oneway of doing thisis by expanding the view from processto process. This alowsyou to see
the drivers/readers of a particular signal, net, or register.

Y ou can expand the view of your design using menu commands or your mouse. To expand with
the mouse, simply double click asignal, register, or process. Depending on the specific object
you click, the view will expand to show the driving process and interconnect, the reading
process and interconnect, or both.

Alternatively, you can select asignal, register, or net, and use one of the toolbar buttons or drop
down menu commands described in Table 9-1.

Table 9-1. Icon and Menu Selections for Exploring Design Connectivity

Expand net to all drivers Right-click in the Dataflow

a‘. display driver(s) of the selected signal, net, or window > Expand Net to Drivers
register
Expand net to all driversand readers Right-click in the Dataflow

'“:J_E display driver(s) and reader(s) of the selected window > Expand Net
signal, net, or register

Expand net to all readers Right-click in the Dataflow
_’E display reader(s) of the selected signal, net, or window > Expand Net to Readers
register

Asyou expand the view, the layout of the design may adjust to show the connectivity more
clearly. For example, the location of an input signal may shift from the bottom to the top of a
process.

ModelSim User’s Manual, v10.3a 301

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Analyzing a Scalar Connected to a Wide Bus

During design analysis you may need to trace a signal to areader or driver through awide bus.
To prevent the Dataflow window from displaying all of the readers or drivers of the bus follow
this procedure:

1. Youmust bein alive simulation; you can not perform this action post-simulation.
2. Select ascalar net in the Dataflow window (you must select a scalar)
3. Right-click and select one of the Expand > Expand Bit ... options.

After internally analyzing your selection, the dataflow will then show the connected
net(s) for the scalar you selected without showing all the other parts of the bus. This
savesin processing time and produces a more compact image in the Dataflow window
as opposed to using the Expand > Expand Net ... options, which will show all readers
or driversthat are connected to any portion of the bus.

Controlling the Display of Readers and Nets

Some nets (such as a clock) in adesign can have many readers. This can cause the display to
draw numerous processes that you may not want to see when expanding the selected signal, net,
or register. By default, netswith undisplayed readers or drivers are represented by adashed line.
If al the readers and driversfor anet are shown, the new will appear asasolid line. To draw the
undisplayed readers or drivers, double-click on the dashed line.

Limiting the Display of Readers

The Dataflow Window limits the number of readersthat are added to the display when you click
the Expand Net to Readers button. By default, the limit is 10 readers, but you can change this
limit with the "sproutlimit” Dataflow preference as follows:

Open the Preferences dialog box by selecting Tools > Edit Preferences.
Click the By Name tab.
Click the“+" sign next to “Dataflow” to see the list of Dataflow preference items.

Select “sproutlimit” from the list and click the Change Value button.

g > W bdp e

Change the value and click the OK button to close the Change Dataflow Preference
Value dialog box.

6. Click OK to close the Preferences dialog box and apply the changes.

The sprout limit is designed to improve performance with high fanout nets such as clock
signals. Each subsequent click of the Expand Net to Readers button adds the sprout limit of
readers until all readers are displayed.

302 ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Note
D This limit does not affect the display of drivers.

Limiting the Display of Readers and Drivers

To restrict the expansion of readers and/or driversto the hierarchical boundary of a selected
signal select Dataflow > Dataflow Options to open the Dataflow Options dialog box then
check Stop on port in the Miscellaneous field.

Controlling the Display of Redundant Buffers and
Inverters

The Dataflow window automatically traces a signal through buffers and inverters. This can
cause chains of redundant buffers or invertersto be displayed in the Dataflow window. Y ou can

collapse these chains of buffers or inverters to make the design displayed in the Dataflow
window more compact.

To change the display of redundant buffers and inverters: select Dataflow > Dataflow
Prefer ences > Options to open the Dataflow Options dialog. The default setting is to display
both redundant buffers and redundant inverters. (Figure 9-5)

Figure 9-5. Controlling Display of Redundant Buffers and Inverters

Dataflow Options EI
Shiow

[Hierarchy ¥ Redundant buffers

[el contents ¥ Redundant inverkers

[active Time label

T i i o el i e, vy it il

Tracking Your Path Through the Design

Y ou can quickly traverse through many componentsin your design. To help mark your path, the
objects that you have expanded are highlighted in green.

ModelSim User’s Manual, v10.3a 303

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Figure 9-6. Green Highlighting Shows Your Path Through the Design

Y ou can clear this highlighting using the Dataflow > Remove Highlight menu

selection or by clicking the Remove All Highlightsicon in the toolbar. If you click E -
and hold the Remove All Highlightsicon adropdown menu appears, alowing you to

remove only selected highlights.

Y ou can aso highlight the selected trace with any color of your choice by right-clicking
Dataflow window and selecting Highlight Selection from the popup menu (Figure 9-7).

304 ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Figure 9-7. Highlight Selected Trace with Custom Color

E Crataflow

Expand Met ko Drivers
Expand Met ko Readers
Expand Het

Hide Selected
Shiow Selected

Tracex
Chaser

Trace Delay
Chase Delay

Trace Mexk Event
Trace Event Set
Trace Event Reset

Paint ta Paint

Highlight Selection r . Highlight1

Capy b B Highlight2

Paste B Highlight:3

nselect Al = Highlight#

Remove Highlight . Highlights
@ Cuskomize...

Y ou can then choose from one of five pre-defined colors, or Customize to choose from the
palette in the Preferences dialog box.

Exploring Designs with the Embedded Wave Viewer

Another way of exploring your design isto use the Dataflow window’ s embedded wave viewer.
Thisviewer closely resembles, in appearance and operation, the stand-alone Wave window (see
Waveform Analysis for more information).

The wave viewer is opened using the Dataflow > Show Wave menu selection or by
clicking the Show Wave icon. |.|

When wave viewer isfirst displayed, the visible zoom range is set to match that of the last
active Wave window, if one exists. Additionally, the wave viewer's moveable cursor (Cursor 1)
isautomatically positioned to the location of the active cursor in the last active Wave window.
The Current Time label in the upper right of the Dataflow window automatically displays the

ModelSim User’s Manual, v10.3a 305

Debugging with the Dataflow Window

Common Tasks for Dataflow Debugging

time of the currently active cursor. Refer to Current Time Label for information about working
with the Current Time label.

One common scenario isto place signals in the wave viewer and the Dataflow panes, run the
design for some amount of time, and then use time cursorsto investigate value changes. In other
words, as you place and move cursors in the wave viewer pane (see Measuring Time with
Cursorsin the Wave Window for details), the signal values update in the Dataflow window.

Figure 9-8. Wave Viewer Displays Inputs and Outputs of Selected Process
D Dataflow - Default (dataflow)

op

op

op

op

op

op

op

Cursor 1

520

1580 ns

#BUFIF1#108

k

4 »

[«

|
1880 rs] I
o |

Another scenario isto select a process in the Dataflow pane, which automatically adds to the

wave viewer pane all signals attached to the process.

See Tracing Events for another example of using the embedded wave viewer.

306

ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Tracing Events

Y ou can use the Dataflow window to trace an event to the cause of an unexpected output. This
feature uses the Dataflow window’ s embedded wave viewer (see Exploring Designs with the
Embedded Wave Viewer for more details). First, you identify an output of interest in the
dataflow pane, then use time cursors in the wave viewer pane to identify events that contribute
to the output.

The process for tracing eventsis as follows:

1
2.

8.

Log all signals before starting the ssimulation (add log -r /*).

After running a simulation for some period of time, open the Dataflow window and the
wave viewer pane.

Add aprocess or signal of interest into the dataflow pane (if adding asignal, find its
driving process). Select the process and all signals attached to the selected process will
appear in the wave viewer pane.

Place atime cursor on an edge of interest; the edge should be on asignal that isan
output of the process.

Right-click and select Trace Next Event. J:‘.

A second cursor is added at the most recent input event.

Keep selecting Trace Next Event until you've reached an input event of interest. Note
that the signals with the events are selected in the wave viewer pane.

Right-click and select Trace Event Set. | 4=

The Dataflow display "jumps" to the source of the selected input event(s). The operation
follows all signals selected in the wave viewer pane. Y ou can change which signals are
followed by changing the selection.

To continue tracing, go back to step 5 and repeat.

If you want to start over at the originally selected output, right-click and select Trace Event

Reset.

Tracing the Source of an Unknown State (StX)

Another useful Dataflow window debugging tool isthe ability to trace an unknown state (StX)
back to its source. Unknown values are indicated by red linesin the Wave window (Figure 9-9)
and in the wave viewer pane of the Dataflow window.

ModelSim User’s Manual, v10.3a 307

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Figure 9-9. Unknown States Shown as Red Lines in Wave Window

O

ftop/pit_ouk Sk

Cursor 1 2305 ns

1

J K 3 (KT

-

| M Wave I X Assertions | proc, | ﬂ Schematic |

Sl [[—

The procedure for tracing to the source of an unknown state in the Dataflow window is as
follows:

1
2.

Load your design.

Log al signalsin the design or any signals that may possibly contribute to the unknown
value (log -r /* will log al signalsin the design).

Add signalsto the Wave window or wave viewer pane, and run your design the desired
length of time.

Put a Wave window cursor on the time at which the signal value is unknown (StX). In
Figure 9-9, Cursor 1 at time 2305 shows an unknown state on signal t_out.

Add the signal of interest to the Dataflow window by doing one of the following:

o Select the signal in the Wave Window, select Add Selected to Window in the
Standard toolbar > Add to Dataflow.

o right-click the signal in the Objects window and select Add > To Dataflow >
Selected Signals from the popup menu,

o select the signal in the Objects window and select Add > To Dataflow > Selected
Items from the menu bar.

In the Dataflow window, make sure the signal of interest is selected.
Trace to the source of the unknown by doing one of the following:

o If the Dataflow window is docked, make one of the following menu selections:
Tools> Trace > TraceX,
Tools> Trace > TraceX Delay,

308

ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Tools> Trace > ChaseX, or
Tools > Trace > ChaseX Delay.

o If the Dataflow window is undocked, make one of the following menu selections:
Trace> TraceX,
Trace> TraceX Delay,
Trace > ChaseX, or
Trace > ChaseX Delay.

These commands behave as follows:

®* TraceX / TraceX Delay— TraceX steps back to the last driver of an X value.
TraceX Delay works similarly but it steps back in timeto the last driver of an X
value. TraceX should be used for RTL designs; TraceX Delay should be used
for gate-level netlists with back annotated delays.

® ChaseX / ChaseX Delay — ChaseX jumps through a design from output to
input, following X values. ChaseX Delay acts the same as ChaseX but also
moves backwards in time to the point where the output value transitions to X.
ChaseX should be used for RTL designs, ChaseX Delay should be used for
gate-level netlists with back annotated delays.

Finding Objects by Name in the Dataflow Window

Select Edit > Find from the menu bar, or click the Find icon in the toolbar, to search
for signal, net, or register names or an instance of a component. This opens the search ﬂ
toolbar at the bottom of the Dataflow window.

With the search toolbar you can limit the search by type to instances or signals. Y ou select
Exact to find an item that exactly matches the entry you' ve typed in the Find field. The M atch
case selection will enforce case-sensitive matching of your entry. And the Zoom to selection
will zoom in to theitemin the Find field.

The Find All button allows you to find and highlight all occurrences of theitem in the Find
field. If Zoom to is checked, the view will change such that all selected items are viewable. If
Zoom to is not selected, then no change is made to zoom or scroll stete.

Automatically Tracing All Paths Between Two Nets

This behavior is referred to as point-to-point tracing. It allows you to visualize all paths
connecting two different nets in your dataflow.

Prerequisites

® Thisfeatureisavailable during alive simulation, not when performing post-simulation
debugging.

ModelSim User’s Manual, v10.3a 309

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Procedure
1. Select Source — Click on the net to be your source

2. Select Destination — Shift-click on the net to be your destination

3. Run point-to-point tracing — Right-click in the Dataflow window and select Point to
Point.

Results

After beginning the point-to-point tracing, the Dataflow window highlights your design as
shown in Figure 9-10:

1. All objects become gray

2. The source net becomes yellow
3. The destination net becomes red
4

. All intermediate processes and nets become orange.

Figure 9-10. Dataflow: Point-to-Point Tracing

Drataflow

fest rigbidring listne_ 1ot

Destination

Related Tasks

® Changethelimit of highlighted processes— Thereisalimit of 400 processes that will
be highlighted.

a. Tools> Edit Preferences

310 ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Dataflow Concepts

b. By Nametab
c. Dataflow > p2plimit option
® Remove the point-to-point tracing
a. Right-click in the Dataflow window
b. Erase Highlights
® Perform point-to-point tracing from the command line
a. Determine the names of the nets
b. Usethe add dataflow command with the -connect switch, for example:
add data -connect /test_ringbuf/pseudo /test_ringbuf/ring inst/txd

where /test_ringbuf/pseudo is the source net and /test_ringbuf/ring_inst/txd is the
destination net.

Dataflow Concepts

This section provides an introduction to the following important Dataflow concepts:

® Symbol Mapping
® Current vs. Post-Simulation Command Output

Symbol Mapping

The Dataflow window has built-in mappingsfor all Verilog primitive gates (for example, AND,
OR, and so forth). Y ou can also map VHDL entities and Verilog/SystemV erilog modul es that
represent a cell definition, or processes, to built-in gate symbols.

The mappings are saved in afile where the default filename is dataflow.bsm (.bsm stands for
"Built-in Symbol Map") The Dataflow window looks in the current working directory and
inside each library referenced by the design for thefile. It will read all filesfound. Y ou can aso
manually load a.bsmfile by selecting Dataflow > Dataflow Preferences > L oad Built in
Symbol Map.

The dataflow.bsm file contains comments and name pairs, one comment or name per line. Use
the following Backus-Naur Format naming syntax:

Syntax
<bsm_line> ::= <comment> | <statement>

<comment> ::="#" <text> <EOL>
<statement> ::= <name_pattern> <gate>

ModelSim User’s Manual, v10.3a 311

Debugging with the Dataflow Window
Dataflow Concepts

<name_pattern> ::= [<library_name>"."] <du_name> ["(" <specialization>")"]
[","<process name>]

<gate> ::="BUF"|"BUFIFO"|"BUFIF1"["INV"|"INVIFO"|"INVIF1"["AND"['NAND"|
"NOR"|"OR"|"XNOR"|"XOR"['"PULLDOWN"["PULLUP'|"'NMOS"|'"PMOS"|'CM
OS'|"TRAN"|"TRANIFO"["TRANIF1"

For example:

org(only),pl OR
andg (only) ,pl AND
mylib,andg.pl AND
norg, p2 NOR

Entities and modul es representing cells are mapped the same way:

AND1 AND

A 2-input and gate
AND2 AND
mylib,andg.pl AND
xnor (test) XNOR

Note that for primitive gate symbols, pin mapping is automatic.

User-Defined Symbols

Y ou can aso define your own symbols using an ASCII symbol library file format for defining
symbol shapes. This capability is delivered via Concept Engineering’ s Nlview™ widget Symlib
format. The symbol definitions are saved in the dataflow.symfile.

The formal BNF format for the dataflow.symfile format is:

Syntax
<sym_line> ::= <comment> | <statement>

<comment> ::="#" <text> <EOL>

<statement> ::="symbol" <name _pattern>"*" "DEF" <definition>

<name_pattern> ::= [<library_name>"."] <du_name> ["(" <specialization>")"]
[","<process_name>]

<gate> ::="port" | "portBus’ | "permute” | “attrdsp” | "pinattrdsp" | "arc” | "path” | "fpath"
| "text" | "place” | "boxcolor"

Note
D The port names in the definition must match the port names in the entity or module

definition or mapping will not occur.

312 ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Dataflow Concepts

The Dataflow window will search the current working directory, and inside each library
referenced by the design, for the file dataflow.sym. Any and all files found will be given to the
Nlview widget to use for symbol lookups. Again, aswith the built-in symbols, the DU name and
optional process name is used for the symbol lookup. Here's an example of a symbol for afull
adder:

symbol adder (structural) * DEF \
port a in -loc -12 -15 0 -15 \
pinattrdsp @name -cl 2 -15 8 \
port b in -loc -12 15 0 15 \
pinattrdsp @name -cl 2 15 8 \
port cin in -loc 20 -40 20 -28 \
pinattrdsp @name -uc 19 -26 8 \
port cout out -loc 20 40 20 28 \
pinattrdsp @name -1lc 19 26 8 \
port sum out -loc 63 0 51 0 \
pinattrdsp @name -cr 49 0 8 \
path 10 0 0 7 \
path 0 7 0 35 \
path 0 35 51 17 \
path 51 17 51 -17 \
path 51 -17 0 -35 \
path 0 -35 0 -7 \
path 0 -7 10 0

Port mapping is done by name for these symbols, so the port namesin the symbol definition
must match the port names of the Entity|Module|]Process (in the case of the process, it’sthe
signal names that the process reads/writes).

When you create or modify asymlib file, you must generate afile index. Thisindex is how the
NIview widget finds and extracts symbols from the file. To generate the index, select Dataflow
> Dataflow Preferences > Create Symlib Index (Dataflow window) and specify the symlib
file. The file will be rewritten with a correct, up-to-date index. If you save thefile as

datafl ow.sym the Dataflow window will automatically load thefile. Y ou can also manually load
a.symfile by selecting Dataflow > Dataflow Preferences> Load Symlib Library.

Note
D When you map a process to a gate symbol, it is best to name the process statement within

your HDL source code, and use that name in the .bsm or .symfile. If you reference a
default name that contains line numbers, you will need to edit the .bsm and/or .symfile
every time you add or subtract linesin your HDL source.

Current vs. Post-Simulation Command Output

Model Sim includes drivers and readers commands that can be invoked from the command line
to provide information about signals displayed in the Dataflow window. In live ssimulation
mode, the drivers and readers commands will provide both topological information and signal
values. In post-simulation mode, however, these commands will provide only topological
information. Driver and reader values are not saved in the post-simulation debug database.

ModelSim User’s Manual, v10.3a 313

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

Dataflow Window Graphic Interface Reference

This section answers several common questions about using the Dataflow window’ s graphic
user interface:

* What Can | View in the Dataflow Window?
®* How isthe Dataflow Window Linked to Other Windows?
® How Can | Print and Save the Display?

®* How Do | Configure Window Options?

What Can | View in the Dataflow Window?
The Dataflow window displays:

® processes
® signals, nets, and registers

The window has built-in mappings for all Verilog primitive gates (for example, AND, OR, and
so forth). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. See Symbol Mapping for details.

How iIs the Dataflow Window Linked to Other
Windows?

The Dataflow window is dynamically linked to other debugging windows and panes as
described in Table 9-2.

Table 9-2. Dataflow Window Links to Other Windows and Panes
Window Link

Structure Window select asignal or process in the Dataflow window, and the
structure tab updatesif that object isin a different design unit

Processes Window select a processin either window, and that processis
highlighted in the other

Objects Window select a design object in either window, and that object is
highlighted in the other

Wave Window trace through the design in the Dataflow window, and the

associated signals are added to the Wave window

move a cursor in the Wave window, and the values update in
the Dataflow window

314 ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

Table 9-2. Dataflow Window Links to Other Windows and Panes (cont.)
Window Link

Source Window select an object in the Dataflow window, and the Source
window updatesif that object isin adifferent sourcefile

How Can | Print and Save the Display?
Y ou can print the Dataflow window display from asaved .epsfilein UNIX, or by simple menu
selections in Windows. The Page Setup dialog allows you to configure the display for printing.

Saving a .eps File and Printing the Dataflow Display from
UNIX

With the Dataflow window active, select File > Print Postscript to setup and print the
Dataflow display in UNIX, or save the waveform as an .eps file on any platform (Figure 9-11).

Figure 9-11. The Print Postscript Dialog

Print Posktscripk

—Printer

% PFrint cormand: |Ip -d Ipd
- Ip = ZI Setup... |
" File name: Idataflnw.ps Browsze... |

~FPaper
Paper size: | Letter -l
Border width: [0 =
Fant: [Helvetica -

(] | Cancel |

Printing from the Dataflow Display on Windows Platforms

With the Dataflow window active, select File > Print to print the Dataflow display or to save
the display to afile (Figure 9-12).

ModelSim User’s Manual, v10.3a 315

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

Figure 9-12. The Print Dialog

2 x]

Properties. .. |

— Printer

M ame:

Status: Feady
Type: HF Lazernlet 5L

“Where: LFT1:
Comment; ™ Prirt ta file
— Frint range — Copies
i Al Mumber of copies: 1 =
€ PFages from: |0 ko {0

£ Selection Ijl
| Qg I Carizel

Configure Page Setup

With the Dataflow window active, select File > Page setup to open the Page Setup dialog
(Figure 9-13). Y ou can aso open this dialog by clicking the Setup button in the Print Postscript
dialog (Figure 9-11). This dialog allows you to configure page view, highlight, color mode,
orientation, and paper options.

Figure 9-13. The Page Setup Dialog

Page Setup x|

Miew——————— ~Highlight
= Full i Off
" Current Yiew " on
—Color Mode —Orienkakion
i~ Colar
= 5 i Porkraik
i~ Irwvert Calor A
¥ Landscape
¥ Mano = :
—Paper
Font: [Helwetica ﬂ

oK | Cancel |

316 ModelSim User's Manual, v10.3a

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

How Do | Configure Window Options?

Y ou can configure several options that determine how the Dataflow window behaves. The
settings affect only the current session.

Select DataFlow > Dataflow Preferences > Optionsto open the Dataflow Options dialog box.

Figure 9-14. Dataflow Options Dialog

Dataflow Options x|

—Shaw
[Hierarchy ¢ Redundant buffers
[T cell contents ¥ Redundantinverters

[~ Active Time label

~Miscellaneous
¥ Keep Dataflow content W Select environment
¥ Bottom inout pins ¥ Automatic add to Wave
[Disable sprout [~ Stop on pert
[T select equivalentnets [V Enable tooltip popups
¥ Log nets

—Warnings

[¥ Enable diverging X famin warning
[¥ Enable depth limit warning

[¥ Enable % event at time 0 warning
[¥ Enable Add Dataflow warning

@ D+C| Ean::el| Apdv|

ModelSim User’s Manual, v10.3a 317

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

318 ModelSim User's Manual, v10.3a

Chapter 10
Source Window

This chapter discusses the uses of the Source Window for editng, debugging, causality tracing,
and code coverage.

Creating and Editing SourceFiles. 319
Data and ObjectsintheSourceWindow. 323
BreakpOiNtS. . ..o 327
Source Window BoOKmMarks. 334
Setting Source Window Preferences 334

Creating and Editing Source Files

Y ou can create and edit VHDL, Verilog, SystemVerilog, SystemC, macro (.do), and text filesin
the Source window.

Creating New Files

Y ou can create new files by selecting File > New > Sour ce, then selecting one of the following
items:

®* VHDL — Opens anew file with the file extension .vhd

®* Verilog— Opens anew file with the file extension .v

® SystemC — Opens anew file with the file extension .cpp

* SystemVerilog— Opens anew file with the file extension .sv
® DO — Opens anew macro file with the file extension .do

® Other — Opensanew text file.

Opening Existing Files
Y ou can open files for editing in the following ways:

® Select File> Open then select the file from the Open File dialog box.

® Select the Open icon in the Standard Toolbar then select the file from the Open File
dialog box.

ModelSim User’s Manual, v10.3a 319

Source Window
Creating and Editing Source Files

® Double-click objectsin the Ranked, Call Tree, Design Unit, Structure, Objects, and
other windows. For example, if you double-click an item in the Objects window or in
the Structure window (sim), the underlying source file for the object will open in the
Source window, the indicator scrolls to the line where the object is defined, and the line
is bookmarked.

® Selecting View Sour ce from context menus in the Message Viewer, Assertions, Files,
Structure, and other windows.

® Enter the edit <filename> command to open an existing file.

Editing Files

Y ou can make changes to your source files by editing your code.

Changing File Permissions

If your fileis protected you must create a copy of your file or change file permissionsin order to
make changes to your source documents. Protected files can be edited in the Source window but
the changes must be saved to a new file.

To change file permissions from the Source window:
Procedure
1. Right-click in the Source window
2. Select (uncheck) Read Only.
3. Edityour file.
4

. Saveyour file under a different name.

Note
To edit the original source document(s) you must change the read/write file permissions

outside of ModelSim.

To change this default behavior, set the Pref Sour ce(ReadOnly) preference variable to 0. Refer
to Simulator GUI Preferences for details on setting preference variables.

Searching for Code

The Source window includes a Find function that allows you to search for specific code.

320 ModelSim User's Manual, v10.3a

Source Window
Creating and Editing Source Files

Searching for One Instance of a String
Procedure
1. Make the Source window the active window by clicking anywhere in the window

2. Select Edit > Find from the Main menu or press Ctrl-F. The Search bar is added to the
bottom of the Source Window.

3. Enter your search string, then press Enter

The cursor jumps to the first instance of the search string in the current document and
highlightsit. Pressing the Enter key advances the search to the next instance of the string
and so on through the source document.

Searching for All Instances of a String

Y ou can search for and bookmark every instance of a search string making it easier to track
specific objects throughout a sourcefile.

Procedure
1. Enter the search term in the search field.

2. Select the Find Options drop menu and select Bookmark All M atches. 'ﬂiv

ModelSim User’s Manual, v10.3a 321

Source Window
Creating and Editing Source Files

Figure 10-1. Bookmark All Instances of a Search

Ln#]@ = 10river | & o | ¢ B How [+ E
14 timescale 1 ns / 1 ns

11

12 % [module proc{clk, addr, data, rw, strb, rdy):
13 input clk, rdy;

14 A output addr, rw, strb;

15 inout datar

18

17 reg ["addr_size-1:0] addr r;

18 reg ["word_size-1:0] data r;

13 req rWw_r, strb_r;

L]

reqg verbose;

St B L T S B 8
=

2 wire t _out, t_set, rw_out;
LI 3 A wire ["addr size-1:01 #{5) AddAr = addr r:= =
X|Find: |I'!ﬁ' addr &F j M = T aa [fay T Z
MWaue Search Badoward = memaory.v
Match Case
———— Exact (whole word) : H

Regular Expression

Searching for the Original Declaration of an Object

Y ou can also search for the original declaration of an object, signal, parameter, and so on.

Double click on the object in many windows, including the Structure, Objects, and List
windows. The Source window opens the source document containing the original
declaration of the object and places a bookmark on that line of the document.

Double click on a hyperlinked section of code in your source document. The source
document is either opened or made the active Source window document and the
declaration is highlighted briefly. Refer to Hyperlinked Text for more information about
enabling Hyperlinked text.

Navigating Through Your Design

When debugging your design from within the GUI, Model Sim keeps alog of al areas of the
design environment you have examined or opened, similar to the functionality in most web
browsers. Thislog allows you to easily navigate through your design hierarchy, returning to
previous views and contexts for debugging purposes.

322

ModelSim User's Manual, v10.3a

Source Window
Data and Objects in the Source Window

To easily move through the context history, select then right-click an instance namein a source
document. This opens adrop down menu (refer to Figure 10-2) with the following options for
navigating your design:

Figure 10-2. Setting Context from Source Files

Ln#]@ 4= 10river| & o | %[B How [+[] R
11
12 4 H module proc{clk, addr, data, rw, strb, rdy);:
13 input clk, rdy;
14 A output addr, rw, atrb;
15 inout data;
1s
17 A reg ["addr asize-1:0] addr_r;
18 reqg ["word_size-1:0] dat.a_r;l =
19 reg rw r, st Dpen Instance
. Ascend Env
i
Back k
21 reg verbose; =
) memory.w{17)
22 wWire t_out, t
2 wWire addr a: Add r
23 wire [addr_s: proc.w(1Z) I
24 Wire [Cwnrd 8 re——————— . P
LI Cut Cir]+x

® Open Instance — changes your context to the instance you have selected within the
sourcefile. Thisisnot availableif you have not placed your cursor in, or highlighted the
name of,, an instance within your source file.

If any ambiguities exist, most likely due to generate statements, this option opens a
dialog box allowing you to choose from all available instances.

® Ascend Env — changes your context to the next level up within the design. Thisis not
availableif you are at the top-level of your design.

® Back/Forward — allows you to change to previously selected contexts. Questa saves
up to 50 context locations. Thisis not available if you have not changed your context.

The Open Instance option is essentially executing an environment command to change your
context. Therefore any time you use this command manually at the command prompt, that
information is also saved for use with the Back/Forward options.

Data and Objects in the Source Window

The Source window allows you to display the current value of objects, trace connectivity
information, and display coverage data during a simulation run.

ModelSim User’s Manual, v10.3a 323

Source Window
Data and Objects in the Source Window

Determining Object Values and Descriptions

There are two quick methods for determining the value and description of an object displayed in
the Source window:

® Select an object, then right-click and select Examine or Describe from the context
menul.

® Pause over an object with your mouse pointer to see an examine window popup.
(Figure 10-3)

Figure 10-3. Examine Pop Up

Ln# J@ 4= 1/8 Driver Lines < o | mﬂ
1 1-30 4'he -
40 BEGIN
41 = IF (inclk" LD inclk = "1") THEN
1->0
az [H IF (we = "1') THEN
1
43 I[E]‘l’.-: (inaddr)} <= data_in;

{00 /ram tb/dpraml/mem
44 = END IF 0: 00101000 00101001 00101010 00101011
00101100 00101101 00101110 00001101

45 END IF; <

46 FND PROCESS - G: 00000011 000000 OO0 00000
. B o ' 12 R0RRRREE MROOONEN 00NN NOREEEH
43 EH read proc : PFRUCESS (oOutclE, outaddr)

1-=0 4ha -
1| | 9

Y ou can select Sour ce > Examine Now or Source > Examine Current Cursor to choose at
what simulation time the object is examined or described. Refer to Setting Simulation Timein
the Source Window for more information.

Y ou can also invoke the examine and/or describe commands on the command line or in a
macro.

Setting Simulation Time in the Source Window

The Source window includes atime indicator in the top right corner (Figure 10-4) that displays
the current simulation time, the time of the active cursor in the Wave window, or a user-
designated time.

324 ModelSim User's Manual, v10.3a

Source Window
Data and Objects in the Source Window

Figure 10-4. Current Time Label in Source Window

lé"hzzzz la'hzzzz
reg ["addr size-1:0] saddr r;

2'hi04

]
(43

Ln#]@ 4 1/3 Driver Lines | < | | I'Ij' B Now [*|F
21
22 reg wverbose;
1'hl
23 Current Time Label
24 reg ["word_size-1:0] adata_r, pdata_r:

1. Click the time indicator to open the Enter Value dialog box (Figure 10-5).

2. Change the value to the starting time you want for the causality trace.

3. Click the OK button.

Figure 10-5. Enter an Event Time Value

Ln#]@ 4 1/3 Driver Lines <« |» ¢ @ 510 ns +) ¥
30 = wire [“word size-1:0] #(5) sdate = sdata_r O Mow (2820 ns)
16'h... 16'h000| » @ Current Time (510 ns)

31 Wire #{5) 3rw = 3rw_r,

Set Current Time...

1'h0 1'h0

32
33 reg [3:0] oen, wen;

4'hf 4'h7 X|
34 wire [3:0] hit;

- Change Current Time to:

4"hm0
35 510 ns
36 f**************** Carhe setg *14

37 cache set 30(paddr, pdata, hit| ﬁ@

g'hoz

la'...

To analyze the values at a given time of the simulation you can:

® Show the signal values at the current simulation time by selecting Sour ce > Examine

Now. Thisisthe default behavior. The window automatically updates the values as+

you perform arun or a single-step action.

® Show the signal values at current cursor position in the Wave window by selecting

Sour ce > Examine Current Cursor.

ModelSim User’'s Manual, v10.3a

325

Source Window
Debugging and Textual Connectivity

Debugging and Textual Connectivity

Hyperlinked Text

The Source window supports hyperlinked navigation. When you double-click hyperlinked text
the selection jumps from the usage of an object to its declaration and highlights the declaration.
Hyperlinked text isindicated by amouse cursor change from an arrow pointer icon to a pointing
fingericon: &

Double-clicking hyerlinked text does one of the following:

* Jump from the usage of asignal, parameter, macro, or avariable to its declaration.
® Jump from amodule declaration to its instantiation, and vice versa.
® Navigate back and forth between visited source files.
Procedure
Hyperlinked text is off by default. To turn hyperlinked text on or off in the Source window:

1. Make sure the Source window is the active window.

2. Select Source > Hyperlinks.

To change hyperlinks to display as underlined text set prefMain(HyperLinkingUnderline) to
1 (select Tools > Edit Preferences, By Name tab, and expand the Main Object).

Highlighted Text in the Source Window

The Source window can display text that is highlighted as a result of various conditions or
operations, such as the following:

® Double-clicking an error message in the transcript shown during compilation
® Using Event Traceback > Show Driver

In these cases, the relevant text in the source code is shown with a persistent highlighting. To
remove this highlighted display, choose More > Clear Highlights from the right-click popup
menu of the Source window. Y ou can also perform this action by selecting Source > More >
Clear Highlights from the Main menu.

Note
Clear Highlights does not affect text that you have selected with the mouse cursor.

326 ModelSim User's Manual, v10.3a

Source Window
Breakpoints

Example

To produce a compile error that displays highlighted text in the Source window, do the
following:

1
2.

Choose Compile > Compile Options

In the Compiler Options dialog box, click either the VHDL tab or the Verilog &
SystemVerilog tab.

Enable Show source lines with errors and click OK.

Open adesign file and create a known compile error (such as changing the word “ entity”
to “entry” or “modul€e”’ to “nodule”).

Choose Compile > Compile and then compl ete the Compile Source Files dialog box to
finish compiling thefile.

When the compile error appears in the Transcript window, double-click on it.

The source window is opened (if needed), and the text containing the error is
highlighted.

To remove the highlighting, choose Source > More > Clear Highlights.

Dragging Source Window Objects Into Other
Windows

Model Sim allows you to drag and drop objects from the Source window to the Wave and List
windows. Double-click an object to highlight it, then drag the object to the Wave or List
window. To place agroup of objects into the Wave and List windows, drag and drop any
section of highlighted code.

Breakpoints

Y ou can set a breakpoint on an executablefile, file-line number, signal, signal value, or
condition in asourcefile. When the simulation hits a breakpoint, the simulator stops, the Source
window opens, and a blue arrow marks the line of code where the simulation stopped. Y ou can
change this behavior by editing the Pref Sour ce(OpenOnBreak) variable. Refer to Simulator
GUI Preferences for more information on setting preference variables.

Setting Individual Breakpoints in a Source File

Y ou can set individual file-line breakpoints in the Line number column of the Source Window.

ModelSim User’s Manual, v10.3a 327

Source Window
Breakpoints

Procedure

Click in the line number column of the Source window next to ared line number and ared ball
denoting a breakpoint will appear (Figure 10-6).

The breakpoint markers (red ball) are toggles. Click once to create the breakpoint; click again to
disable or enable the breakpoint.

Figure 10-6. Breakpoint in the Source Window

LER %) B M | P
52 = task write; ;l
a3 input [‘"addr size-1:0] a;r

o4 input [“word_size-1:0] d;

55 o kegin

5& if {werbose) fdisplav{"%t: Writing data=%h toc addr=%h
5?0 addr r = a; —
i rw_r = 0;

59 atrb r = 0;

a0 @ (posedge clk) strbk r = 1;

a6l

data_r = d; -
4| | »

Setting Breakpoints with the bp Command

Y ou can set afile-line breakpoints with the bp command to add a file-line breakpoint from the
VSIM> prompt.

For example:

bp top.vhd 147
sets a breakpoint in the source file top.vhd at line 147.

Editing Breakpoints
To edit a breakpoint in a source file, do any one of the following:

® Select Tools> Breakpoints from the Main menu.

® Right-click abreakpoint in your source file and select Edit All Breakpoints from the
popup menu.

® Click the Edit Breakpointstoolbar button from the Simulate Toolbar.

This opens the Modify Breakpoints dialog shown in Figure 10-7. The Modify Breakpoints
dialog provides alist of al breakpoints in the design organized by 1D number.

1. Select afile-line breakpoint from the list in the Breakpoints field.

328 ModelSim User's Manual, v10.3a

Source Window

Breakpoints

2. Click Modify, which opensthe File Breakpoint dialog box, Figure 10-7.

Figure 10-7. Editing Existing Breakpoints

Modify Breakpoinks x|
— Breakpoints
‘I"ILaI:neI |Breakpn:nint | |
Ay kest_sm.w Line: 115
o beh_sram.v Line: 45
Ay beh_sram.v Line: 25
& Line: 57
o S e Disable
Delete
Load...
Save... |
—Break Point Label File Breakpoint x|
—Breakpoint Label
—File - Line |
beh sram.w - 48 File
beh_sram.w Browse, .,
— Condition
— Line Instance Mame
o ||
— ommand
— Breakpoint Condition
— Breakpoint Commands
ok | Cancel |

3. Fill out any of the following fields to edit the selected breakpoint:
® Breakpoint Label — Designates alabel for the breakpoint.

® |nstance Name — The full pathname to an instance that sets a SystemC breakpoint
so it applies only to that specified instance.

ModelSim User’'s Manual, v10.3a

329

Source Window
Breakpoints

® Breakpoint Condition — One or more conditions that determine whether the
breakpoint is observed. If the condition is true, the simulation stops at the
breakpoint. If false, the simulation bypasses the breakpoint. A condition cannot refer
toaVHDL variable (only asignal). Refer to Setting Conditional Breakpoints for
more information.

® Breakpoint Command — A string, enclosed in braces ({}) that specifies one or
more commands to be executed at the breakpoint. Use a semicolon (;) to separate
multiple commands.

ﬂ Tip: Thesefieldsin the File Breakpoint dialog box use the same syntax and format as the
-inst switch, the -cond switch, and the command string of the bp command. For more
information on these command options, refer to the bp command in the Reference
Manual.

4. Click OK to close the File Breakpoints dialog box.
5. Click OK to close the Modify Breakpoints dialog box.

Deleting Individual Breakpoints
Y ou can permanently delete individual file-line breakpoints using the breakpoint context menu.
Procedure
1. Right-click the red breakpoint marker in the file line column.

2. Select Remove Breakpoint from the context menu.

Deleting Groups of Breakpoints
Y ou can delete groups of breakpoints with the Modify Breakpoints Dialog.
Procedure
1. Open the Modify Breakpoints dialog.
2. Select and highlight the breakpoints you want to delete.
3. Click the Delete button
4. OK.

Saving and Restoring Breakpoints

Y ou can save your breakpointsin a separate breakpoints.do file or save the breakpoint settings
as part of alarger .do file that recreates all debug windows and includes breakpoints.

330 ModelSim User's Manual, v10.3a

Source Window
Breakpoints

1. Tosaveyour breakpointsin a.do file, select Tools > Breakpoints to open the Modify
Breakpoints dialog. Click Save. Y ou will be prompted to save the file under the name:
breakpoints.do.

To restore the breakpoints, start the simulation then enter:
do breakpoints.do
2. To save your breakpoints together with debug window settings, enter
write format restart <filename>

Thewrite format restart command creates asingle .do file that saves all debug windows,
file/line breakpoints, and signal breakpoints created using the when command.The file
created isprimarily alist of add listor add wave commands, though a few other
commands are included. If the ShutdownFile modelsim.ini variableis set to this.do
filename, it will call the write format restart command upon exit.

To restore debugging windows and breakpoints enter:

do <filename>.do

Note
D Editing your source file can cause changes in the numbering of the lines of code.

Breakpoints saved prior to editing your source file may need to be edited once they are
restored in order to place them on the appropriate code line.

Setting Conditional Breakpoints

In dynamic class-based code, an expression can be executed by more than one object or class
instance during the simulation of a design. Y ou set a conditional breakpoint on the linein the
source file that defines the expression and specifies a condition of the expression or instance
you want to examine. Y ou can write conditional breakpoints to evaluate an absol ute expression
or arelative expression.

Y ou can use the SystemVerilog keyword this when writing conditional breakpoints to refer to
properties, parameters or methods of an instance. The value of this changes every time the
expression is evaluated based on the properties of the current instance. Y our context must be
within alocal method of the same class when specifying the keyword thisin the condition for a
breakpoint. Strings are not allowed.

The conditional breakpoint examples below refer to the following SystemV erilog source code
file source.sv:

Figure 10-8. Source Code for source.sv

1 class Simple;
2 integer cnt;
3 integer 1id;

ModelSim User’s Manual, v10.3a 331

Source Window
Breakpoints

4 Simple next;

5

6 function new(int x);
7 id=x;

8 cnt=0

9 next=null
10 endfunction
11

12 task up;

13 cnt=cnt+1;
14 if (next) begin
15 next.up;
16 end

17 endtask

18 endclass

19

20 module test;

21 reg clk;

22 Simple a;

23 Simple b;

24

25 initial

26 begin

27 a = new(7);
28 b = new(5);
29 end

30

31 always @ (posedge clk)
32 begin

33 a.up;

34 b.up;

35 a.up

36 end;

37 endmodule

Prerequisites
Compile and load your simulation.

Setting a Breakpoint For a Specific Instance

Enter the following on the command line:

bp simple.sv 13 -cond {this.id==7}

Results

The simulation breaks at line 13 of the simple.sv source file (Figure 10-8) the first time module
a hits the expression because the breakpoint is evaluating for anid of 7 (refer to line 27).

Setting a Breakpoint For a Specified Value of Any Instance.

Enter the following on the command line:

bp simple.sv 13 -cond {this.cnt==8}

332 ModelSim User's Manual, v10.3a

Source Window
Breakpoints

Results

The simulation evaluates the expression at line 13 in the simple.sv source file (Figure 10-8),
continuing the simulation run if the breakpoint evaluates to false. When an instance evaluates to
true the simulation stops, the source is opened and highlights line 13 with ablue arrow. The first
time cnt=8 evaluates to true, the simulation breaks for an instance of module Simple b. When
you resume the simul ation, the expression eval uates to cnt=8 again, but thistime for an instance
of module Simple a.

Y ou can also set this breakpoint with the GUI:

1. Right-click on line 13 of the simple.sv sourcefile.
2. Select Edit Breakpoint 13 from the drop menu.
3. Enter

this.cnt==8

in the Breakpoint Condition field of the M odify Breakpoint dialog box. (Refer to
Figure 10-7) Note that the file name and line number are automatically entered.

Run Until Here

The Source window allows you to run the simulation to a specified line of code with the “Run
Until Here” feature. When you invoke Run Until Her e, the ssimulation will run from the
current simulation time and stop on the specified line unless:

® The simulator encounters a breakpoint.
® Optionally, the Run Length preference variable causes the simulation run to stop.
® The simulation encounters a bug.

To specify Run Until Here, right-click on the line where you want the simulation to stop and
select Run Until Here from the pop up context menu. The simulation starts running the
moment the right mouse button releases.

The simulator run length is set in the Simulation Toolbar and specifies the amount of time the
simulator will run before stopping. By default, Run Until Here will ignore the time interval
entered in the Run Length field of the Simulation Toolbar unless the
PrefSouce(RunUntilHereUseRL) preference variable is set to 1 (enabled). When

PrefSour ce(RunUntilHereUseRL) is enabled, the simulator will invoke Run Until Here and
stop when the amount of time entered in the Run Time field has been reached, a breakpoint is
hit, or the specified line of code is reached, whichever happens first.

For more information about setting preference variables, refer to Simulator GUI Preferences.

ModelSim User’s Manual, v10.3a 333

Source Window
Source Window Bookmarks

Source Window Bookmarks

Source window bookmarks are graphical iconsthat give you reference points within your code.
The blue flags mark individual lines of code in a source file and can assist visual navigation
through alarge source file by marking certain lines. Bookmarks can be added to currently open
source files only and are deleted once thefileis closed.

Setting and Removing Bookmarks

Y ou can set bookmarks in the following ways:

® Set anindividua bookmark.

a. Right-click in the Line number column on the line you want to bookmark then select
Add/Remove Bookmark.

® Set multiple bookmarks based on a search term refer to Searching for All Instances of a
String.

To remove a bookmark:

® Right-click the line number with the bookmark you want to remove and select
Add/Remove Bookmark.

® Sdect the Clear Bookmar ks button in the Sour ce toolbar.

Setting Source Window Preferences

Y ou can customize a variety of settings for Source windows. Y ou can change the appearance
and behavior of the window in several ways. For more information, refer to Customizing the
Source Window and GUI Preferences.

334 ModelSim User's Manual, v10.3a

Chapter 11
Signal Spy

The Verilog language allows access to any signal from any other hierarchical block without
having to route it through the interface. This means you can use hierarchical notation to either
write or read the value of asignal in the design hierarchy from atest bench. Verilog can aso
reference asignal in aVVHDL block or reference asignal in aVerilog block through alevel of

VHDL hierarchy.

With the VHDL-2008 standard, VHDL supports hierarchical referencing as well. However,
you cannot reference from VHDL to Verilog. The Signal Spy procedures and system tasks
provide hierarchical referencing across any mix of Verilog, VHDL and/or SystemC, alowing
you to monitor (spy), drive, force, or release hierarchical objects in mixed designs. While not
strictly required for references beginning in Verilog, it does allow references to be consistent

across al languages.

Signal Spy procedures for VHDL are provided in the VHDL Utilities Package (util) within the
modelsim_lib library. To access these procedures, you would add lines like the following to

your VHDL code:

library modelsim_lib;
use modelsim lib.util.all;

The Verilog tasks and SystemC functions are available as built-in System Tasks and Functions.

Table 11-1. Signal Spy Reference Comparison

Refer to: VHDL procedures | Verilog system tasks | SystemC function
disable signa_spy disable signal_spy() | $disable signal_spy() | disable signa_spy()
enable signal_spy enable_signal_spy() | $enable signal_spy() | enable signa_spy()

init_signal_driver

init_signal_driver()

$init_signal_driver()

init_signa_driver()

init_signal_spy init_signal_spy() $init_signal_spy() init_signa_spy()
signal_force signal_force() $signal_force() signal_force()
signa_release signal_release() $signal_release() signa_release()

Designed for Test Benches

Note that using Signal Spy procedures limits the portability of your code—HDL code with

Signal Spy procedures or tasks works only in Questa and Modelsim. Consequently, you should
use Signal Spy only in test benches, where portability isless of a concern and the need for such
procedures and tasks is more applicable.

ModelSim User’'s Manual, v10.3a

335

Signal Spy
Signal Spy Formatting Syntax

Signal Spy Formatting Syntax

Strings that you pass to Signal Spy commands are not language-specific and should be
formatted as if you were referring to the object from the command line of the smulator. Thus,
you use the simulator's path separator. For example, the Verilog LRM specifies that a Verilog
hierarchical reference to an object always has a period (.) as the hierarchical separator, but the
reference does not begin with a period.

Signal Spy Supported Types

Signal Spy supports the following SystemV erilog types and user-defined SystemC types.

* SystemVerilog types

o All scalar and integer SV types (bit, logic, int, shortint, longint, integer, byte, both
signed and unsigned variations of these types)

o Rea and Shortrea

o User defined types (packed/unpacked structures including nested structures,
packed/unpacked unions, enums)

o Arraysand Multi-D arrays of all supported types.
® SystemC types
o Primitive C floating point types (double, float)
o User defined types (structures including nested structures, unions, enums)

Cross-language type-checks and mappings are included to support these types across all the
possible language combinations:

* SystemC-SystemVerilog

* SystemC-SystemC

* SystemC-VHDL

®* VHDL-SystemVerilog

* SystemVerilog-SystemVerilog

In addition to referring to the complete signal, you can also address the bit-selects, field-selects
and part-selects of the supported types. For example:

/top/myInst/my_record[2] .my_ fieldl[4].my_vector[8]

336 ModelSim User's Manual, v10.3a

Signal Spy
disable_signal_spy

disable_signal_spy
This reference section describes the following:
®* VHDL Procedure— disable_signal_spy()

* Verilog Task — $disable_signal_spy()
® SystemC Function — disable _signal_spy()

The disable_signal_spy call disablesthe associated init_signal_spy. The association between
the disable_signal_spy call and the init_signal_spy call is based on specifying the same
src_object and dest_object arguments to both. The disable _signal_spy call can only affect
init_signal_spy callsthat had their control_state argument set to "0" or "1".

By default this command uses aforward slash (/) as a path separator. Y ou can change this
behavior with the Signal SpyPathSeparator variable in the modelsim.ini file.

VHDL Syntax
disable signal_spy(<src_object>, <dest_object>, <verbose>)

Verilog Syntax
$disable signal_spy(<src_object>, <dest_object>, <verbose>)

SystemC Syntax
disable signal_spy(<src_object>, <dest_object>, <verbose>)

Returns
Nothing

Arguments
® src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal, SystemVerilog or Verilog register/net, or SystemC signal.
This path should match the path that was specified in the init_signal_spy call that you want
to disable.

® dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal, SystemVerilog or Verilog register/net, or SystemC signal.
This path should match the path that was specified in the init_signal_spy call that you want
to disable.

* verbose

Optional integer. Specifies whether you want a message reported in the transcript stating
that a disable occurred and the simulation time that it occurred.

0 — Does not report a message. Default.

ModelSim User’s Manual, v10.3a 337

Signal Spy
disable_signal_spy

1 — Reports a message.
Related procedures
init_signal_spy, enable signal_spy
Example
See“init_signal_spy Example” or “$init_signa_spy Example’

338 ModelSim User's Manual, v10.3a

Signal Spy
enable_signal_spy

enable_signal _spy
This reference section describes the following:
®* VHDL Procedure— enable _signal_spy()

®* Verilog Task — $enable_signa_spy()
® SystemC Function — enable_signal_spy()

The enable_signal_spy() call enables the associated init_signal_spy call. The association
between the enable_signal_spy call and theinit_signal_spy call is based on specifying the same
src_object and dest_object arguments to both. The enable_signal_spy call can only affect
init_signal_spy callsthat had their control _state argument set to "0" or "1".

By default this command uses aforward slash (/) as a path separator. Y ou can change this
behavior with the Signal SpyPathSeparator variable in the modelsim.ini file.

VHDL Syntax
enable signal_spy(<src_object>, <dest_object>, <verbose>)

Verilog Syntax

$enable signal_spy(<src_object>, <dest_object>, <verbose>)
SystemC Syntax

enable signal_spy(<src_object>, <dest_object>, <verbose>)
Returns

Nothing

Arguments
® src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to aVHDL signal, SystemVerilog or Verilog register/net, or SystemC signal.
This path should match the path that was specified in the init_signal_spy call that you want
to enable.

* dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal, SystemVerilog or Verilog register/net, or SystemC signal.
This path should match the path that was specified in the init_signal_spy call that you want
to enable.

* verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that an enable occurred and the simulation time that it occurred.

0 — Does not report a message. Default.

ModelSim User’s Manual, v10.3a 339

Signal Spy
enable_signal_spy

1 — Reports a message.
Related tasks
init_signal_spy, disable_signal_spy
Example
See “$init_signa_spy Example’ or “init_signa_spy Example’

340 ModelSim User's Manual, v10.3a

Signal Spy
init_signal_driver

Init_signal_driver
This reference section describes the following:
® VHDL Procedure— init_signal_driver()
® Verilog Task — $init_signal_driver()
® SystemC Function— init_signal_driver()

Theinit_signa_driver() call drivesthe value of aVHDL signal, Verilog net, or SystemC (called
the src_object) onto an existing VHDL signal or Verilog net (called the dest_object). This
allows you to drive signals or nets at any level of the design hierarchy from within aVHDL
architecture or Verilog or SystemC module(for example, atest bench).

Note
Destination SystemC signals are not supported.

Theinit_signal_driver procedure drives the value onto the destination signal just asif the
signals were directly connected in the HDL code. Any existing or subsequent drive or force of
the destination signal, by some other means, will be considered with the init_signal_driver
value in the resolution of the signal.

By default this command uses aforward slash (/) as a path separator. Y ou can change this
behavior with the Signal SpyPathSeparator variable in the modelsim.ini file.
Call only once

Theinit_signal_driver procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_driver only once for a particular pair of
signals. Onceinit_signa_driver is caled, any change on the source signal will be driven on the
destination signal until the end of the simulation.

For VHDL, you should place al init_signal_driver callsin aVHDL process and code this
VHDL process correctly so that it is executed only once. The VHDL process should not be
sensitive to any signals and should contain only init_signal_driver calls and a simple wait
statement. The process will execute once and then wait forever. See the example below.

For Verilog, you should place all $init_signa_driver callsin aVerilog initial block. See the
example below.

VHDL Syntax
init_signal_driver(<src_object>, <dest_object>, <delay>, <delay type>, <verbose>)

Verilog Syntax
$init_signal_driver(<src_object>, <dest_object>, <delay>, <delay_type>, <verbose>)

SystemC Syntax
init_signal_driver(<src_object>, <dest_object>, <delay>, <delay_type>, <verbose>)

ModelSim User’s Manual, v10.3a 341

Signal Spy
init_signal_driver

Returns
Nothing

Arguments

src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal, Verilog net, or SystemC signal. Use the path separator to
which your ssimulation is set (for example, "/" or "."). A full hierarchical path must begin
witha"/" or ".". The path must be contained within double quotes.

dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog net. Use the path separator to which
your simulation is set (for example, "/" or "."). A full hierarchical path must begin witha"/"
or ".". The path must be contained within double quotes.

delay

Optional time value. Specifies adelay relative to the time at which the src_object changes.
The delay can be an inertial or transport delay. If no delay is specified, then adelay of zero
is assumed.

delay type
Optiona del_mode or integer. Specifies the type of delay that will be applied.
For the VHDL init_signa_driver Procedure, The value must be either:
mti_inertial (default)
mti_transport
For the Verilog $init_signal_driver Task, The value must be either:
0 — inertial (default)
1 — transport
For the SystemC init_signal_driver Function, The value must be either:
0 — inertial (default)
1 — transport
verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object is driving the dest_object.

0 — Does not report a message. Default.
1 — Reports a message.

Related procedures

init_signal_spy, signal_force, signal_release

342

ModelSim User's Manual, v10.3a

Signal Spy
init_signal_driver

Limitations

® Forthe VHDL init_signal_driver procedure, when driving aVerilog net, the only
delay_type allowed isinertial. If you set the delay type to mti_transport, the setting will
be ignored and the delay type will be mti_inertial.

® FortheVerilog $init_signal_driver task, when driving aVerilog net, the only delay_type
allowed isinertia. If you set the delay type to 1 (transport), the setting will be ignored,
and the delay type will be inertial.

® For the SystemC init_signa_driver function, when driving a Verilog net, the only
delay_type allowed isinertia. If you set the delay type to 1 (transport), the setting will
be ignored, and the delay type will beinertial.

® Any delaysthat are set to a value less than the simulator resolution will be rounded to
the nearest resolution unit; no special warning will be issued.

® Verilog memories (arrays of registers) are not supported.

$init_signal_driver Example

This example creates alocal clock (clkO) and connectsiit to two clocks within the design
hierarchy. The .../blk1l/clk will match local clkO and a message will be displayed. The .../blk2/clk
will match the local clkO but be delayed by 100 ps. For the second call to work, the .../blk2/clk
must be aVHDL based signal, because if it were aVerilog net a 100 psinertial delay would
consume the 40 ps clock period. Verilog nets are limited to only inertial delays and thus the
setting of 1 (transport delay) would be ignored.

“timescale 1 ps / 1 ps
module testbench;
reg clk0;

initial begin
clk0 = 1;
forever begin
#20 clk0 = ~clkO;
end
end

initial begin

$init_signal_driver ("clkO", "/testbench/uut/blkl/clk", , , 1);
Sinit_signal_driver ("clkO", "/testbench/uut/blk2/clk", 100, 1);
end
endmodule

init_signal_driver Example

This example creates alocal clock (clkO) and connectsiit to two clocks within the design
hierarchy. The .../blkl/clk will match local clkO and a message will be displayed. The open

ModelSim User’s Manual, v10.3a 343

Signal Spy
init_signal_driver

entries allow the default delay and delay _type while setting the verbose parameter toa 1. The
.../blk2/clk will match the local clkO but be delayed by 100 ps.

library IEEE, modelsim_1lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
signal clk0 : std_logic;
begin
gen_clk0 : process
begin
clk0 <= '1l'" after 0 ps, '0' after 20 ps;
wait for 40 ps;
end process gen_clk0;

drive_sig_process : process

begin
init_signal_driver("clkO", "/testbench/uut/blkl/clk", open, open, 1);
init_signal_driver("clkO", "/testbench/uut/blk2/clk", 100 ps,
mti_transport) ;
wait;

end process drive_sig _process;

end;

344 ModelSim User's Manual, v10.3a

Signal Spy
init_signal_spy

Init_signal_spy
This reference section describes the following:
®* VHDL Procedure—init_signa_spy()

® Verilog Task — $init_signal_spy()
* SystemC Function — init_signal_spy()

Theinit_signal_spy() call mirrorsthe value of aVHDL signal, SystemVerilog or Verilog
register/net, or SystemC signal (called the src_object) onto an existing VHDL signal, Verilog
register, or SystemC signal (called the dest_object). This allows you to reference signals,
registers, or nets at any level of hierarchy from within a VHDL architecture or Verilog or
SystemC module (for example, atest bench).

Theinit_signal_spy call only sets the value onto the destination signal and does not drive or
force the value. Any existing or subsequent drive or force of the destination signal, by some
other means, will override the value that was set by init_signal_spy.

By default this command uses aforward slash (/) as a path separator. Y ou can change this
behavior with the Signal SpyPathSeparator variable in the modelsim.ini file.

Call only once

Theinit_signal_spy call creates a persistent relationship between the source and destination
signals. Hence, you need to call init_signal_spy once for a particular pair of signals. Once
init_signal_spy is called, any change on the source signal will mirror on the destination signal
until the end of the simulation unless the control_state is set.

However, you can place simultaneous read/write calls on the same signal using multiple
init_signal_spy calls, for example:

init_signal_spy ("/sc_top/sc_sig", "/top/hdl_INST/hdl_sig");
init_signal_spy ("/top/hdl_INST/hdl_sig", "/sc_top/sc_sig");

The control _state determines whether the mirroring of values can be enabled/disabled and what
theinitial state is. Subsequent control of whether the mirroring of valuesis enabled/disabled is
handled by the enable signal_spy and disable signal_spy calls.

For VHDL procedures, you should place all init_signal_spy callsin a VHDL process and code
this VHDL process correctly so that it is executed only once. The VHDL process should not be
sensitive to any signals and should contain only init_signal_spy calls and asimple wait
statement. The process will execute once and then wait forever, which is the desired behavior.
See the example below.

For Verilog tasks, you should place all $init_signal_spy tasksin aVerilog initial block. See the
example below.

VHDL Syntax
init_signal_spy(<src_object>, <dest_object>, <verbose>, <control_state>)

ModelSim User’s Manual, v10.3a 345

Signal Spy
init_signal_spy

Verilog Syntax
$init_signal_spy(<src_object>, <dest_object>, <verbose>, <control_state>)

SystemC Syntax
init_signal_spy(<src_object>, <dest_object>, <verbose>, <control _state>)

Returns
Nothing

Arguments
® src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or SystemVerilog or Verilog register/net. Use the path
separator to which your simulation is set (for example, "/" or "."). A full hierarchical path
must begin with a"/" or ".". The path must be contained within double quotes.

® dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register. Use the path separator to
which your ssimulation is set (for example, "/" or "."). A full hierarchical path must begin
witha"/" or ".". The path must be contained within double quotes.

* verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object’ s value is mirrored onto the dest_object.

0 — Does not report a message. Default.
1 — Reports a message.
® control_state

Optional integer. Possible values are -1, 0, or 1. Specifies whether or not you want the
ability to enable/disable mirroring of values and, if so, specifiesthe initial state.

-1 — no ability to enable/disable and mirroring is enabled. (default)
0 — turns on the ability to enable/disable and initially disables mirroring.
1— turns on the ability to enable/disable and initially enables mirroring.
Related procedures
init_signal_driver, signal_force, signal_release, enable_signal_spy, disable signal_spy

Limitations

® When mirroring the value of a SystemVerilog or Verilog register/net onto aVHDL
signal, the VHDL signal must be of type bit, bit_vector, std logic, or std_logic_vector.

* Verilog memories (arrays of registers) are not supported.

346 ModelSim User's Manual, v10.3a

Signal Spy
init_signal_spy

init_signal_spy Example

In this example, the value of /top/uut/instl/sigl is mirrored onto /top/top_sigl. A message is
issued to the transcript. The ability to control the mirroring of valuesis turned on and the
init_signal_spy isinitially enabled.

The mirroring of values will be disabled when enable _sig transitionsto a’0’ and enable when
enable sig transitionstoa’l’.

library ieee;

library modelsim_lib;

use ieee.std_logic_1l164.all;

use modelsim_lib.util.all;

entity top is

end;

architecture only of top is
signal top_sigl : std_logic;

begin

Spy_process : process

begin
init_signal_spy("/top/uut/instl/sigl","/top/top_sigl",1,1);
wait;

end process Spy_process;

spy_enable_disable : process(enable_sig)

begin
if (enable_sig = 'l') then
enable_signal_spy("/top/uut/instl/sigl","/top/top_sigl",0);
elseif (enable_sig = '0'")
disable_signal_spy("/top/uut/instl/sigl","/top/top_sigl",0);
end if;

end process spy_enable_disable;

end;

$init_signal_spy Example
In this example, the value of .top.uut.instl.sigl ismirrored onto .top.top_sigl. A message is
issued to the transcript. The ability to control the mirroring of valuesis turned on and the
init_signal_spy isinitially enabled.

The mirroring of values will be disabled when enable reg transitionstoa’0’ and enabled when
enable regtransitionstoa’l’.

module top;

reg top_sigl;
reg enable_reg;

initial
begin
Sinit_signal_spy(".top.uut.instl.sigl",".top.top_sigl",1,1);
end

ModelSim User’s Manual, v10.3a 347

Signal Spy
init_signal_spy

always @ (posedge enable_reg)

begin
Senable_signal_spy(".top.uut.instl.sigl",".top.top_sigl",0);
end

always @ (negedge enable_reg)

begin
Sdisable_signal_spy(".top.uut.instl.sigl",".top.top_sigl",0);
end

endmodule

348 ModelSim User's Manual, v10.3a

Signal Spy
signal_force

signal_force

This reference section describes the following:
®* VHDL Procedure— signal_force()

* Verilog Task — $signal_force()
® SystemC Function — signal_force()

The signal_force() call forces the value specified onto an existing VHDL signal, Verilog
register/register bit/net, or SystemC signal (called the dest_object). This allows you to force
signals, registers, bits of registers, or nets at any level of the design hierarchy from within a
VHDL architecture or Verilog or SystemC module (for example, atest bench).

A signal_force works the same as the force command with the exception that you cannot issue a
repeating force. The force will remain on the signal until asignal_release, aforce or noforce
command, or a subsequent signal_force isissued. Signal_force can be called concurrently or
sequentially in a process.

This command displays any signals using your radix setting (either the default, or asyou
specify) unless you specify the radix in the value you set.

By default this command uses aforward slash (/) as a path separator. Y ou can change this
behavior with the Signal SpyPathSeparator variable in the modelsim.ini file.

VHDL Syntax
signal_force(<dest_object>, <value>, <rel_time>, <force_type>, <cancel_period>, <verbose>)

Verilog Syntax
$signal_force(<dest_object>, <value>, <rel_time>, <force type>, <cancel period>,
<verbose>)
SystemC Syntax
signal_force(<dest_object>, <value>, <rel_time>, <force_type>, <cancel_period>, <verbose>)

Returns
Nothing

Arguments
® dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal, SystemVerilog or Verilog register/bit of a
register/net or SystemC signal. Use the path separator to which your simulation is set (for
example, "/" or "."). A full hierarchical path must begin witha"/" or ".". The path must be
contained within double quotes.

ModelSim User’s Manual, v10.3a 349

Signal Spy
signal_force

* vaue

Required string. Specifies the value to which the dest_object is to be forced. The specified
value must be appropriate for the type.

Where value can be;

o asequence of character literals or as a based number with aradix of 2, 8, 10 or 16.
For example, the following values are equivalent for asignal of type bit_vector (0 to
3):

® 1111 — character literal sequence
* 2#1111 —binary radix

® 10#15— decimal radix

® 16#F — hexadecimal radix

o areferenceto aVerilog object by name. Thisisadirect reference or hierarchical
reference, and is not enclosed in quotation marks. The syntax for this named object
should follow standard Verilog syntax rules.

* rel _time

Optional time. Specifies atime relative to the current simulation time for the force to occur.
The default isO.

e force type

Optional forcetype or integer. Specifies the type of force that will be applied.

For the VHDL procedure, the value must be one of the following;
default — which is "freeze" for unresolved objects or "drive" for resolved objects
deposit
drive
freeze

For the Verilog task, the value must be one of the following;

0 — default, which is "freeze" for unresolved objects or "drive" for resolved objects

1 — deposit
2 —drive
3 —freeze

For the SystemC function, the value must be one of the following;

0 — default, which is "freeze" for unresolved objects or "drive" for resolved objects

1 — deposit
2 —drive
3 —freeze

350 ModelSim User's Manual, v10.3a

Signal Spy
signal_force

See the force command for further details on force type.
® cancel_period

Optional time or integer. Cancels the signal_force command after the specified period of
time units. Cancellation occurs at the last ssimulation delta cycle of atime unit.

For the VHDL procedure, avalue of zero cancels the force at the end of the current time
period. Default is-1 ms. A negative value means that the force will not be cancelled.

For the Verilog task, A value of zero cancels the force at the end of the current time period.
Default is-1. A negative value means that the force will not be cancelled.

For the SystemC function, A value of zero cancels the force at the end of the current time
period. Default is-1. A negative value means that the force will not be cancelled.

* verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the value is being forced on the dest_object at the specified
time.

0 — Does not report a message. Default.
1 — Reports a message.
Related procedures
init_signa_driver, init_signal_spy, signal_release
Limitations
® Verilog memories (arrays of registers) are not supported.

$signal_force Example

This example forcesreset to a"1" from time 0 nsto 40 ns. At 40 ns, reset isforced to a"0",
200000 ns after the second $signal_force call was executed.

“timescale 1 ns / 1 ns
module testbench;

initial
begin
Ssignal_force("/testbench/uut/blkl/reset", "1", 0, 3, , 1);
$signal_force("/testbench/uut/blkl/reset", "0", 40, 3, 200000, 1);
end

endmodule

signal_force Example

This example forcesreset to a"1" from time 0 nsto 40 ns. At 40 ns, reset isforced to a"0", 2
ms after the second signal_force call was executed.

ModelSim User’s Manual, v10.3a 351

Signal Spy
signal_force

If you want to skip parameters so that you can specify subsequent parameters, you need to use
the keyword "open" as a placeholder for the skipped parameter(s). Thefirst signal_force
procedure illustrates this, where an "open" for the cancel _period parameter means that the
default value of -1 msis used.

library IEEE, modelsim lib;
use IEEE.std_logic_1164.all;
use modelsim lib.util.all;

entity testbench is
end;

architecture only of testbench is
begin

force_process : process
begin
signal_force("/testbench/uut/blkl/reset",
signal_force("/testbench/uut/blkl/reset",
1);
wait;
end process force_process;

end;

nln’
"O",

0 ns, freeze, open, 1);
40 ns, freeze, 2 ms,

352

ModelSim User's Manual, v10.3a

Signal Spy
signal_release

signal_release
This reference section describes the following:
® VHDL Procedure— signal_release()

®* Verilog Task — $signal_release()
® SystemC Function — signal_release()

The signal_release() call releases any force that was applied to an existing VHDL signal,
SystemVerilog or Verilog register/register bit/net, or SystemC signal (called the dest_object).
This alows you to release signals, registers, bits of registers, or nets at any level of the design
hierarchy from within aVHDL architecture or Verilog or SystemC module (for example, atest
bench).

A signa_release works the same as the noforce command. Signal_release can be called
concurrently or sequentially in a process.

By default this command uses aforward slash (/) as a path separator. Y ou can change this
behavior with the Signal SpyPathSeparator variable in the modelsim.ini file.

VHDL Syntax
signal_release(<dest_object>, <verbose>)

Verilog Syntax
$signal_release(<dest_object>, <verbose>)

SystemC Syntax
signal_release(<dest_object>, <verbose>)

Returns
Nothing

Arguments
® dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal, SystemVerilog or Verilog register/net, or
SystemC signal. Use the path separator to which your ssmulation is set (for example, "/" or
"."). A full hierarchical path must begin with a"/" or ".". The path must be contained within
double quotes.

* verbose

Optional integer. Possible values are O or 1. Specifies whether you want a message reported
in the Transcript stating that the signal is being released and the time of the release.

0 — Does not report a message. Defaullt.
1 — Reports a message.

ModelSim User’s Manual, v10.3a 353

Signal Spy
signal_release

Related procedures
init_signal_driver, init_signal_spy, signal_force

signal_release Example

This example releases any forces on the signals data and clk when the signal release flagisa
"1". Both callswill send a message to the transcript stating which signal was released and when.

library IEEE, modelsim 1lib;
use IEEE.std_logic_1164.all;
use modelsim lib.util.all;

entity testbench is
end;

architecture only of testbench is
signal release_flag : std_logic;
begin

stim_design : process
begin

wait until release_flag = '1';
signal_release("/testbench/dut/blkl/data", 1);
signal_release("/testbench/dut/blkl/clk", 1);

end process stim_design;

end;

$signal_release Example

This example releases any forces on the signals data and clk when the register release flag
transitionsto a"1". Both calls will send a message to the transcript stating which signal was
released and when.

module testbench;

reg release_flag;

always @ (posedge release_flag) begin
Ssignal_release("/testbench/dut/blkl/data", 1);

Ssignal_release("/testbench/dut/blkl/clk", 1);
end

endmodule

354 ModelSim User's Manual, v10.3a

Chapter 12
Generating Stimulus with Waveform Editor

The Model Sim Waveform Editor offers a simple method for creating design stimulus. Y ou can
generate and edit waveformsin a graphical manner and then drive the simulation with those
waveforms. With Waveform Editor you can do the following:

® Create waveforms using four predefined patterns: clock, random, repeater, and counter.
See Creating Waveforms from Patterns.

® Edit waveforms with numerous functions including inserting, deleting, and stretching
edges; mirroring, inverting, and copying waveform sections; and changing waveform
values on-the-fly. See Editing Waveforms.

® Drive the simulation directly from the created waveforms

® Save created waveformsto four stimulus file formats: Tcl force format, extended VCD
format, Verilog module, or VHDL architecture. The HDL formats include code that
matches the created waveforms and can be used in test benches to drive a simulation.
See Exporting Waveforms to a Stimulus File

Limitations
The current version does not support the following:
* Enumerated signals, records, multi-dimensiona arrays, and memories
® User-defined types
* SystemC or SystemVerilog

Getting Started with the Waveform Editor

Y ou can use Waveform Editor before or after loading a design. Regardless of which method
you choose, you will select design objects and use them as the basis for created waveforms.

Using Waveform Editor Prior to Loading a Design

Here are the basic steps for using waveform editor prior to loading a design:

1. Right-click adesign unit on the Library Window and select Create Wave.

ModelSim User’s Manual, v10.3a 355

Generating Stimulus with Waveform Editor
Getting Started with the Waveform Editor

Figure 12-1. Waveform Editor: Library Window
Likarary - el

1'1 M arne | Type | Path j
wiark, Library C:/modeltech/en

coLnter g modeltechies

L test_counter
_v]itaI2EI_EIEI £
Refrezh

IBee Fiecompile

Simulate modeltechhes

ODEL_TECH.
ODEL_TECH.

[l rmodelsin_lib Optimize ODEL_TECH.
shd Update ODEL_TECH.
std_developers ODEL_TECH.
FYNOpEYS M OCEL_TECH.
verilog Delete H{ODEL_TECH.
Copy
I L4 J
1| Properties. . _..l

MLibrar_u

2. Edit the waveformsin the Wave window. See Editing Waveforms for more details.

3. Run the ssimulation (see Simulating Directly from Waveform Editor) or save the created
waveforms to a stimulus file (see Exporting Waveforms to a Stimulus File).

Using Waveform Editor After Loading a Design

Here are the basic steps for using waveform editor after loading a design:

1. Right-click ablock in the structure window or an object in the Object pane and select
Create Wave.

356 ModelSim User's Manual, v10.3a

Generating Stimulus with Waveform Editor
Creating Waveforms from Patterns

Figure 12-2. Opening Waveform Editor from Structure or Objects Windows
Bl B

[instance [Design unit_ [Design unit by E_
— g It
: View Declaration
A clock_diver Wiew [nstantiation L". Signal Declaration
gl chrl_sim o - -4 addr e 210
gl spraml b inaddr
- spram? B4 "”'ﬂ'j'jf 120 Inzert Breakpoint
gl spram3 h: Co - Add to Wave »
G- spramd L - Add to List 8
Bl dpraml gt Log Signal »
o HIMPLICITIRE(dat . 1z Erpand Selected E-4 Toggle Coverage *
—.J HIMPLICIT IRE[out... 1z Collapze Selected J
@ HIMPLICITAWIRE(ina.. 12 Ewpand Al -4 Force...
LB #IMPUINITWARFimel = Collapse Al =l ' " VRN MoForce
| |] Clock. ..

Save List... o

IMLibrary ‘ @Sim‘ ZiFiles

FCrde Crverane B L |

2. Usethe Create Pattern wizard to create the waveforms (see Creating Waveforms from
Patterns).

3. Edit the waveforms as required (see Editing Waveforms).

4. Run the simulation (see Simulating Directly from Waveform Editor) or save the created
waveforms to a stimulus file (see Exporting Waveforms to a Stimulus File).

Creating Waveforms from Patterns

Waveform Editor includes a Create Pattern wizard that walks you through the process of
creating waveforms. To access the wizard:

* Right-click an object in the Objects pane or structure pane (that is, sim tab of the
Workspace pane) and select Create Wave.

* Right-click asignal already in the Wave window and select Create/Modify Waveform.
(Only possible before simulation isrun.)

The graphic below shows theinitial dialog in the wizard. Note that the Drive Type field is not
present for input and output signals.

ModelSim User’s Manual, v10.3a 357

Generating Stimulus with Waveform Editor
Creating Waveforms from Patterns

Figure 12-3. Create Pattern Wizard

Create Pattern Wizard |
Generate a waveform far any signal far — Select Pattem :
the choosen patter. Pattern Signal Name
The allowed patterns are: sime Atopdodedata
Conztant (" Clock | F
Clock * Constant DriveType
Hansan " Fandom
Repeater * freeze (deposit © dive € Expected Output
Canter " Fepeater
Select the pattern an the right frame.
" Counter
Range 15:0
Start Time End Time Time Linit
0 [1000 [ns wd

<F'reviu:uus| Mext I Cancel I

In this dialog you specify the signal that the waveform will be based upon, the Drive Type (if
applicable), the start and end time for the waveform, and the pattern for the waveform.

The second dialog in the wizard lets you specify the appropriate attributes based on the pattern
you select. The table below shows the five available patterns and their attributes:

Table 12-1. Signal Attributes in Create Pattern Wizard

Pattern Description

Clock Specify an initial value, duty cycle, and clock period for
the waveform.

Constant Specify avalue.

Random Generates different patterns depending upon the seed

value. Specify the type (normal or uniform), aninitial
value, and a seed value. If you don’'t specify a seed value,
Model Sim uses a default value of 5.

Repeater Specify an initial value and pattern that repeats. Y ou can
also specify how many times the pattern repeats.

Counter Specify start and end values, time period, type (Range,
Binary, Gray, One Hot, Zero Hot, Johnson), counter
direction, step count, and repeat number.

358 ModelSim User's Manual, v10.3a

Generating Stimulus with Waveform Editor
Creating Waveforms with Wave Create Command

Creating Waveforms with Wave Create
Command

The wave create command gives you the ability to generate clock, constant, random, repeater,
and counter waveform patterns from the command line. Y ou can then modify the waveform
interactively in the GUI and use the results to drive simulation. See the wave create command in
the Command Reference for correct syntax, argument descriptions, and examples.

Editing Waveforms

Y ou can edit waveforms interactively with menu commands, mouse actions, or by using the
wave edit command.

To edit waveforms in the Wave window, follow these steps:

1. Create an editable pattern as described under Creating Waveforms from Patterns.

2. Enter editing mode by right-clicking a blank area of the toolbar and selecting
Wave_edit from the toolbar popup menu.

Thiswill open the Wave Edit toolbar. For details about the Wave Edit toolbar, please
refer to Wave Edit Toolbar.

Figure 12-4. Wave Edit Toolbar
e DA N B R =

3. Select an edge or a section of the waveform with your mouse. See Selecting Parts of the
Waveform for more details.

4. Select acommand from the Wave > Wave Editor menu when the Wave window is
docked, from the Edit > Wave menu when the Wave window is undocked, or right-
click on the waveform and select a command from the Wave context menu.

The table below summarizes the editing commands that are available.

Table 12-2. Waveform Editing Commands

Operation Description

Cut Cut the selected portion of the waveform to the clipboard

Copy Copy the selected portion of the waveform to the
clipboard

Paste Paste the contents of the clipboard over the selected
section or at the active cursor location

Insert Pulse Insert a pulse at the location of the active cursor

ModelSim User’s Manual, v10.3a 359

Generating Stimulus with Waveform Editor
Editing Waveforms

Table 12-2. Waveform Editing Commands (cont.)

Operation Description

Delete Edge Delete the edge at the active cursor

Invert Invert the selected waveform section

Mirror Mirror the selected waveform section

Vaue Change the value of the selected portion of the waveform

Stretch Edge Move an edge forward/backward by "stretching” the
waveform; see Stretching and Moving Edges for more
information

Move Edge Move an edge forward/backward without changing other
edges; see Stretching and Moving Edges for more
information

Extend All Extend all created waveforms by the specified amount or

Waves to the specified simulation time; Model Sim cannot undo
this edit or any edits done prior to an extend command

Change Drive | Change the drive type of the selected portion of the

Type waveform

Undo Undo waveform edits (except changing drive type and
extending al waves)

Redo Redo previously undone waveform edits

These commands can also be accessed viatoolbar buttons. See Wave Edit Toolbar for more
information.

Selecting Parts of the Waveform

There are several methods for selecting edges or sections of awaveform. The table and graphic
below describe the various options.

Table 12-3. Selecting Parts of the Waveform
Method

Click on or just to the right of the
waveform edge

Action

Select awaveform edge

Select a section of the waveform | Click-and-drag the mouse pointer in the

waveform pane

Select a section of multiple
waveforms

Click-and-drag the mouse pointer while
holding the <Shift> key

Drag a cursor in the cursor pane

Extend/contract the selection size

360 ModelSim User's Manual, v10.3a

Generating Stimulus with Waveform Editor
Editing Waveforms

Table 12-3. Selecting Parts of the Waveform (cont.)

Action

Method

Extend/contract selection from
edge-to-edge

Click Next Transition/Previous
Transition icons after selecting section

Figure 12-5. Manipulating Waveforms with the Wave Edit Toolbar and Cursors

File Edit “ew &dd Format Tools Window

Use the Wawve Edit
toolbar to manipulate
waveform selections.

e S i e E R e

Edit: jroppficlk. | Skl

Edit Cursor 510 ns

=

4 3K 3 (T

»
=

102 ns ko 708 ns |

w [K

Use cursors to expand
or contract selections.

Selection and Zoom Percentage

Y ou may find that you cannot select the exact range you want because the mouse moves more
than one unit of simulation time (for example, 228 nsto 230 ns). If this happens, zoom in on the
Wave display (see Zooming the Wave Window Display), and you should be able to select the

range you want.

ModelSim User’'s Manual, v10.3a

361

Generating Stimulus with Waveform Editor
Simulating Directly from Waveform Editor

Auto Snapping of the Cursor

When you click just to the right of awaveform edge in the waveform pane, the cursor
automatically "snaps’ to the nearest edge. This behavior is controlled by the Snap Distance
setting in the Wave window preferences dialog.

Stretching and Moving Edges
There are mouse and keyboard shortcuts for moving and stretching edges:

Table 12-4. Wave Editor Mouse/Keyboard Shortcuts
Action M ouse/keyboard shortcut
Stretchanedge | Hold the <Ctrl> key and drag the edge

Move an edge Hold the <Ctrl> key and drag the edge
with the 2nd (middle) mouse button

Here are some points to keep in mind about stretching and moving edges:

® |f you stretch an edge forward, more waveform isinserted at the beginning of simulation
time.

® |f you stretch an edge backward, waveform is deleted at the beginning of simulation
time.

® |f you move an edge past another edge, either forward or backward, the edge you moved
past is deleted.

Simulating Directly from Waveform Editor

Y ou need not save the waveforms in order to use them as stimulus for a simulation. Once you
have configured al the waveforms, you can run the ssmulation as normal by selecting
Simulate > Start Simulation in the Main window or using the vsim command. ModelSim
automatically uses the created waveforms as stimulus for the simulation. Furthermore, while
running the simulation you can continue editing the waveforms to modify the stimulus for the
part of the simulation yet to be completed.

Exporting Waveforms to a Stimulus File

Once you have created and edited the waveforms, you can save the datato a stimulus file that
can be used to drive asimulation now or at alater time. To save the waveform data, select
File > Export > Waveform or use the wave export command.

362 ModelSim User's Manual, v10.3a

Generating Stimulus with Waveform Editor
Exporting Waveforms to a Stimulus File

Figure 12-6. Export Waveform Dialog

Export Waveform i

X

Save Az
’V f* ForceFile ¢ EWCD File © WHOL Testhench © Werilog Testbench

Start Time

End Time Timne Uit

|0
Dezign Unit Marme

hd

|1000 s

Icuunter

File M ame
|expuﬂ

Browsze... |

[Overwite Existing Files

ok I LCancel |

Y ou can save the waveforms in four different formats:

Table 12-5. Formats for Saving Waveforms

Format Description

Force format Createsa Tcl script that contains force commands
necessary to recreate the waveforms; source the file
when loading the simulation as described under
Driving Simulation with the Saved Stimulus File

EVCD format Creates an extended VVCD file which can be reloaded

using the Import > EVCD File command or can be
used with the -vcdstim argument to vsim to simulate
the design

VHDL Testbench

CreatesaVHDL architecture that you load as the top-
level design unit

Verilog Testbench

Creates a Verilog module that you load as the top-
level design unit

ModelSim User’'s Manual, v10.3a

363

Generating Stimulus with Waveform Editor
Driving Simulation with the Saved Stimulus File

Driving Simulation with the Saved Stimulus
File
The method for loading the stimulus file depends upon what type of format you saved. In each

of the following examples, assume that the top-level of your block is named "top" and you
saved the waveforms to a stimulus file named "mywaves" with the default extension.

Table 12-6. Examples for Loading a Stimulus File

Format L oading example

Force format vsim top -do mywaves.do
Extended VCD format® vsim top -vcdstim mywaves.ved
VHDL Testbench vcom mywaves.vhd

vsim mywaves

Verilog Testbench vlog mywaves.v
vsim mywaves

1. You canasousethel mport > EVCD command from the Wave window. See bel ow
for more details on working with EVCD files.

Signal Mapping and Importing EVCD Files

When you import a previously saved EVCD file, Model Sim attempts to map the signalsin the
EVCD fileto the signalsin the loaded design by matching signals based on name and width.

If Model Sim can not map the signals automatically, you can do the mapping yourself by
selecting asignal, right-clicking the selected signal, then selecting Map to Design Signal from
the popup menu. This opens the Evcd Import dialog.

Figure 12-7. Evcd Import Dialog

Evcd Import - x|
|'Map Dezign Signals From Ewved

Edit:/ram_thy/add | hd

oK I LCancel |

Select asignal from the drop-down arrow and click OK.

Note
This command works only with extended VCD files created with Model Sim.

364 ModelSim User's Manual, v10.3a

Generating Stimulus with Waveform Editor
Saving the Waveform Editor Commands

Saving the Waveform Editor Commands

When you create and edit waveformsin the Wave window, M odel Sim tracks the underlying Tcl
commands and reports them to the transcript. Y ou can save those commands to a DO file that
can be run at alater time to recreate the waveforms.

To save your waveform editor commands, select File > Save.

ModelSim User’s Manual, v10.3a 365

Generating Stimulus with Waveform Editor
Saving the Waveform Editor Commands

366 ModelSim User's Manual, v10.3a

Chapter 13
Standard Delay Format (SDF) Timing
Annotation

This chapter covers the Model Sim implementation of SDF (Standard Delay Format) timing
annotation. Included are sectionson VITAL SDF and Verilog SDF, plus troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’ s built-in SDF annotator.

Note
SDF timing annotations can be applied only to your FPGA vendor’slibraries; al other

libraries will simulate without annotation.

Specifying SDF Files for Simulation

Model Sim supports SDF versions 1.0 through 4.0 (IEEE 1497), except the NETDELAY and
LABEL statements. The simulator’ s built-in SDF annotator automatically adjusts to the version
of the file. Use the following vsim command line options to specify the SDF files, the desired
timing values, and their associated design instances:

-sdfmin [<instance>=]<filename>
-sdftyp [<instance>=]<filename>
-sdfmax [<instance>=]<filename>

Any number of SDF files can be applied to any instance in the design by specifying one of the
above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical, and
-sdfmax to select maximum timing values from the SDF file.

Instance Specification

The instance paths in the SDF file are relative to the instance to which the SDF is applied.
Usually, thisinstance is an ASIC or FPGA model instantiated under atest bench. For example,
to annotate maximum timing values from the SDF file myasic.sdf to an instance ul under atop-
level named testbench, invoke the smulator as follows:

vsim -sdfmax /testbench/ul=myasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. Thisisusually
incorrect because in most cases the model isinstantiated under atest bench or within alarger
system level simulation. In fact, the design can have several models, each having its own SDF
file. In this case, specify an SDF file for each instance. For example,

ModelSim User’s Manual, v10.3a 367

Standard Delay Format (SDF) Timing Annotation
Specifying SDF Files for Simulation

vsim -sdfmax /system/ul=asicl.sdf -sdfmax /system/u2=asic2.sdf system

SDF Specification with the GUI

As an adternative to the command line options, you can specify SDF filesin the Start
Simulation dialog box under the SDF tab.

Figure 13-1. SDF Tab in Start Simulation Dialog

x
Design | YHOL | Verlag | Libraries SDF | Others |]
——SDF Files
Add...
b odify...
Delete
—SDF Options Multi-Source delay
[Dizable SOF warmings
[T Reduce SDF emrors to warnings !I
| Cancel |

Y ou can access this dialog by invoking the ssmulator without any arguments or by selecting
Simulate > Start Simulation.

For Verilog designs, you can also specify SDF files by using the $sdf annotate system task. See
$sdf _annotate for more details.

Errors and Warnings

Errorsissued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not.

Use either the -sdfnoerror or the +nosdferror option with vsim to change SDF errors to
warnings so that the simulation can continue.

368 ModelSim User's Manual, v10.3a

Standard Delay Format (SDF) Timing Annotation
VHDL VITAL SDF

® Useeither the -sdfnowarn or the +nosdfwarn option with vsim to suppress warning
messages.

Another option isto use the SDF tab from the Start Simulation dialog box (Figure 13-1).
Select Disable SDF war nings (-sdfnowarn +nosdfwarn) to disable warnings, or select Reduce
SDF errorsto warnings (-sdfnoerror) to change errors to warnings.

See Troubleshooting for more information on errors and warnings and how to avoid them.

VHDL VITAL SDF

VHDL SDF annotation works on VITAL cellsonly. The IEEE Std 1076.4-2000, IEEE
Sandard for VITAL ASC Modeling Specification describes how cells must be written to
support SDF annotation. Once again, the designer does not need to know the details of this
specification because the library provider has aready written the VITAL cells and tools that
create compatible SDF files. However, the following summary may help you understand
simulator error messages. For additional VITAL specification information, see VITAL Usage
and Compliance.

SDF to VHDL Generic Matching

An SDF file contains delay and timing constraint datafor cell instancesin the design. The
annotator must locate the cell instances and the placeholders (VHDL generics) for the timing
data. Each type of SDF timing construct is mapped to the name of a generic as specified by the
VITAL modeling specification. The annotator locates the generic and updatesit with the timing
value from the SDFfile. It isan error if the annotator fails to find the cell instance or the named
generic. The following are examples of SDF constructs and their associated generic names:

Table 13-1. Matching SDF to VHDL Generics

SDF construct Matching VHDL generic name
(IOPATH ay (3)) tpd ay

(IOPATH (posedge clk) g (1) (2)) tpd_clk_q posedge
(INTERCONNECT ully u2/a(5)) tipd a

(SETUP d (posedge clk) (5)) tsetup_d clk_noedge posedge
(HOLD (negedge d) (posedge clk) (5)) thold_d clk _negedge posedge
(SETUPHOLD d clk (5) (5)) tsetup_d clk & thold_d_clk
(WIDTH (COND (reset==1'b0) clk) (5)) | tpw_clk_reset_eq O

(DEVICEYy (1)) tdevice c1 y!

1. clistheinstance name of the module containing the previous generic(tdevice ¢l).

ModelSim User’s Manual, v10.3a 369

Standard Delay Format (SDF) Timing Annotation
Verilog SDF

The SDF statement CONDEL SE, when targeted for Vital cells, is annotated to atpd generic of
the form tpd_<inputPort>_<outputPort>.

Resolving Errors

If the ssimulator finds the cell instance but not the generic then an error message isissued. For
example,

** Error (vsim-SDF-3240) myasic.sdf(18):
Instance ' /testbench/dut/ul’ does not have a generic named 'tpd_a_y’

In this case, make sure that the design is using the appropriate VITAL library cells. If itis, then
there is probably a mismatch between the SDF and the VITAL cells. Y ou need to find the cell
instance and compare its generic names to those expected by the annotator. Look in the VHDL
source files provided by the cell library vendor.

If none of the generic nameslook like VITAL timing generic names, then perhapsthe VITAL
library cells are not being used. If the generic names do look like VITAL timing generic names
but don’t match the names expected by the annotator, then there are several possibilities:

® Thevendor’stools are not conforming to the VITAL specification.

®* The SDF file was accidentally applied to the wrong instance. In this case, the simulator
also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

® Thevendor’slibrary and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim with the
-vital2.2b option:

vsim -vital2.2b -sdfmax /testbench/ul=myasic.sdf testbench

For more information on resolving errors see Troubleshooting.

Verilog SDF

Verilog designs can be annotated using either the simulator command line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The command
line options annotate the design immediately after it isloaded, but before any simulation events
take place. The $sdf_annotate task annotates the design at thetimeit is called in the Verilog
source code. This provides more flexibility than the command line options.

370 ModelSim User's Manual, v10.3a

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

$sdf annotate

Syntax
$sdf _annotate
(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"], ["<mtm_spec>"],
["'<scale factor>"], ["<scale type>"]);
Arguments
* <ddffile>"
String that specifies the SDF file. Required.
® <instance>

Hierarchical name of the instance to be annotated. Optional. Defaults to the instance where
the $sdf _annotate call is made.

* "<config_file>"

String that specifiesthe configuration file. Optional. Currently not supported, this argument
isignored.

* "<log file>"

String that specifies the logfile. Optional. Currently not supported, this argument isignored.
* "<mtm_spec>"

String that specifies the delay selection. Optional. The allowed strings are "minimum”,

"typica", "maximum", and "tool _control". Caseisignored and the default is"tool _control".
The"tool _control" argument means to use the delay specified on the command line by

+mindelays, +typdelays, or +maxdelays (defaults to +typdelays).
* ‘"<gcale factor>"

String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier isarea number that is used to
scal e the corresponding delay in the SDF file.

* "<scde type>"

String that overrides the <mtm_spec> delay selection. Optional. The <mtm_spec> delay
selection is always used to select the delay scaling factor, but if a<scale type> is specified,
then it will determine the min/typ/max selection from the SDF file. The allowed strings are
"from_min", "from_minimum", "from_typ", "from_typica", "from_max",
"from_maximum", and "from_mtm". Caseisignored, and the default is"from_mtm", which
means to use the <mtm_spec> value.

Examples

Optional arguments can be omitted by using commas or by leaving them out if they are at the
end of the argument list. For example, to specify only the SDF file and the instance to which it

applies:

ModelSim User’s Manual, v10.3a 371

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

Ssdf_annotate("myasic.sdf", testbench.ul);
To aso specify maximum delay values.

$sdf_annotate("myasic.sdf", testbench.ul, , , "maximum") ;

SDF to Verilog Construct Matching

The annotator matches SDF constructs to corresponding Verilog constructsin the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each SDF
construct, the annotator locates the cell instance and updates each specify path delay or timing
check that matches. An SDF construct can have multiple matches, in which case each matching
specify statement is updated with the SDF timing value. SDF constructs are matched to Verilog
constructs as follows.

®* |OPATH ismatched to specify path delays or primitives:
Table 13-2. Matching SDF IOPATH to Verilog

SDF Verilog
(IOPATH (posedge clk) g (3) (4)) | (posedge clk =>q) =0;
(IOPATH ay (3) (4) buf ul (y, a);

The IOPATH construct usually annotates path delays. If ModelSim can’t locate a
corresponding specify path delay, it returns an error unless you use the

+sdf iopath to prim_ok argument to vsim. If you specify that argument and the module
contains no path delays, then all primitives that drive the specified output port are
annotated.

* INTERCONNECT and PORT are matched to input ports:
Table 13-3. Matching SDF INTERCONNECT and PORT to Verilog

SDF Verilog
(INTERCONNECT ul.y u2.a(5)) |inputa;
(PORT u2.a(5)) inout &;

Both of these constructs identify a module input or inout port and create an internal net
that is adelayed version of the port. Thisis called aModule Input Port Delay (MIPD).
All primitives, specify path delays, and specify timing checks connected to the original
port are reconnected to the new MIPD net.

372 ModelSim User's Manual, v10.3a

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

® PATHPULSE and GLOBALPATHPUL SE are matched to specify path delays:

Table 13-4. Matching SDF PATHPULSE and GLOBALPATHPULSE to Verilog
SDF Verilog

(PATHPULSE ay (5) (10)) (a=>y)=0;
(GLOBALPATHPULSE ay (30) (60)) | (a=>y)=0;

If the input and output ports are omitted in the SDF, then al path delays are matched in
the cell.

®* DEVICE ismatched to primitives or specify path delays:
Table 13-5. Matching SDF DEVICE to Verilog

SDF Verilog
(DEVICEY (5)) and ul(y, a, b);
(DEVICEY (5)) (a=>y)=0;(b=>y) =0

If the SDF cdll instance is a primitive instance, then that primitive' s delay is annotated.
If it isamodule instance, then al specify path delays are annotated that drive the output
port specified in the DEVICE construct (all path delays are annotated if the output port
is omitted). If the module contains no path delays, then all primitives that drive the
specified output port are annotated (or all primitives that drive any output port if the
output port is omitted).

® SETUP is matched to $setup and $setuphold:

Table 13-6. Matching SDF SETUP to Verilog
SDF Verilog
(SETUP d (posedge clk) (5)) $setup(d, posedge clk, 0);
(SETUP d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

®* HOLD ismatched to $hold and $setuphold:
Table 13-7. Matching SDF HOLD to Verilog

SDF Verilog
(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);
(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

ModelSim User’s Manual, v10.3a 373

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

®* SETUPHOLD is matched to $setup, $hold, and $setuphold:

Table 13-8. Matching SDF SETUPHOLD to Verilog
SDF Verilog
(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);
(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);
(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

* RECOVERY ismatched to $recovery:

Table 13-9. Matching SDF RECOVERY to Verilog
SDF Verilog

(RECOVERY (negedgereset) (posedgeclk) | $recovery(negedge reset, posedge clk, 0);
(5)

* REMOVAL ismatched to $removal:

Table 13-10. Matching SDF REMOVAL to Verilog
SDF Verilog
(REMOVAL (negedge reset) (posedge clk) | $removal (negedge reset, posedge clk, 0);
(5)

* RECREM ismatched to $recovery, $removal, and $recrem:

Table 13-11. Matching SDF RECREM to Verilog
SDF Verilog

(RECREM (negedge reset) (posedge clk) | $recovery(negedge reset, posedge clk, 0);
®) (5))

(RECREM (negedge reset) (posedge clk) | $removal (negedge reset, posedge clk, 0);
() (9)

(RECREM (negedge reset) (posedge clk) | $recrem(negedge reset, posedge clk, 0);
5 (5))

® SKEW ismatched to $skew:

Table 13-12. Matching SDF SKEW to Verilog
SDF Verilog
(SKEW (posedge clkl) (posedge clk2) (5)) | $skew(posedge clkl, posedge clk2, 0);

374 ModelSim User's Manual, v10.3a

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

e WIDTH is matched to $width:

Table 13-13. Matching SDF WIDTH to Verilog
SDF Verilog
(WIDTH (posedge clk) (5)) | $width(posedge clk, 0);

®* PERIOD is matched to $period:

Table 13-14. Matching SDF PERIOD to Verilog
SDF Verilog
(PERIOD (posedge clk) (5)) | $period(posedge clk, 0);

®* NOCHANGE is matched to $nochange:

Table 13-15. Matching SDF NOCHANGE to Verilog

SDF Verilog
(NOCHANGE (negedge write) addr (5) (5)) | $nochange(negedge write, addr, O, 0);

To see complete mappings of SDF and Verilog constructs, please consult |EEE Std 1364-2005,
Chapter 16 - Back Annotation Using the Standard Delay Format (SDF).

Retain Delay Behavior

The simulator processes RETAIN delaysin SDF files as described in this section. A RETAIN
delay can appear as.

(IOPATH addr[13:0] dout[7:0]
(RETAIN (rvall) (rval2) (rval3)) // RETAIN delays
(dvall) (dval2) ... // IOPATH delays

)

Because rval2 and rval 3 on the RETAIN line are optional, the simulator makes the following
assumptions:

® Onlyrvallisspecified — rvallisused asthe value of rval2 and rval3.

® rvalland rval2 are specified — the smaller of rvall and rval2 is used as the value of
rval3.

During simulation, if any rval that would apply is larger than or equal to the applicable path
delay, then RETAIN delay is not applied.

Y ou can specify that RETAIN delays should not be processed by using +vlog_retain_off on the
vsim command line.

ModelSim User’s Manual, v10.3a 375

Standard Delay Format (SDF) Timing Annotation

$sdf_annotate

Retain delays apply to an IOPATH for any transition on the input of the PATH unless the
IOPATH specifies a particular edge for the input of the IOPATH. This means that for an
IOPATH such as RCLK -> DOUT, RETAIN delay should apply for a negedge on RCLK even
though a Verilog model is coded only to change DOUT in response to a posedge of RCLK. If
(posedge RCLK) -> DOUT is specified in the SDF then an associated RETAIN delay applies
only for posedge RCLK. If apath is conditioned, then RETAIN delays do not apply if adelay
path is not enabled.

Table 13-16 defines which delay is used depending on the transitions:

Table 13-16. RETAIN Delay Usage (default)

Path Retain Retain Delay Path Delay Note

Transition | Transition | Used Used

0->1 0->x->1 rvall (0->Xx) 0->1

1->0 1->x->0 rval2 (1->x) 1->0

z->0 z->x->0 rval3 (z->x) z->0

z->1 z->x->1 rval3 (z->X) z->1

0->z 0->x->z rvall (0->x) 0->z

1->z 1->x->z rval2 (1->x) 1->z

x->0 X->x->0 n/a x->0 use PATH delay, no RETAIN
x->1 X->X->1 n/a xX->1 delay is applicable

X->Z X->X->Z n/a X->Z

0->X 0->x->x rvall (0->Xx) 0->x use RETAIN delay for PATH
1->X 1->x->X rval2 (1->x) 1->x defay if itis smaller

Z->X Z->X->X rval3 (z->x) Z->X

Y ou can specify that X insertion on outputs that do not change except when the causal inputs

change by using +vlog_retain_same2same_on on the vsim command line. An example is when
CLK changesbut bit DOUT[0] does not change fromits current value of 0, but you want it to go
through the transition 0 -> X -> 0.

Table 13-17. RETAIN Delay Usage (with +vlog_retain_same2same_on)

Path Retain Retain Delay Path Delay Note

Transition | Transition | Used Used

0->0 0->x->0 rvall (0->x) 1->0

1->1 1->x->1 rval2 (1->x) 0->1

z->7 Z->X->7 rval3 (z->X) max(0->z,1->2)

X->X X->X->X No output transition

376

ModelSim User's Manual, v10.3a

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

Optional Edge Specifications

Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

® A match occursif the SDF port does not have an edge.
® A match occursif the specify port does not have an edge.
* A match occursif the SDF port edge is identical to the specify port edge.

* A match occursif explicit edge transitions in the specify port edge overlap with the SDF
port edge.

Theserules allow SDF annotation to take place even if there is a difference between the number
of edge-specific constructsin the SDF file and the Verilog specify block. For example, the
Verilog specify block may contain separate setup timing checks for afalling and rising edge on
data with respect to clock, while the SDF file may contain only a single setup check for both
edges.

Table 13-18. Matching Verilog Timing Checks to SDF SETUP
SDF Verilog
(SETUP data (posedge clock) (5)) | $setup(posedge data, posedge clk, 0);

(SETUP data (posedge clock) (5)) | $setup(negedge data, posedge clk, 0);

In this case, the cell accommodates more accurate data than can be supplied by the tool that
created the SDF file, and both timing checks correctly receive the same value.

Likewise, the SDF file may contain more accurate data than the model can accommodate.

Table 13-19. SDF Data May Be More Accurate Than Model
SDF Verilog
(SETUP (posedge data) (posedge clock) (4)) | $setup(data, posedge clk, 0);
(SETUP (negedge data) (posedge clock) (6)) | $setup(data, posedge clk, 0);

In this case, both SDF constructs are matched and the timing check receives the value from the
last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF fileislimited to posedge and negedge. For example,

Table 13-20. Matching Explicit Verilog Edge Transitions to Verilog
SDF Verilog
(SETUP data (posedge clock) (5)) | $setup(data, edge[01, 0x] clk, 0);

ModelSim User’s Manual, v10.3a 377

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

The explicit edge specifiersare 01, 0x, 10, 1x, x0, and x1. The set of [01, Ox, x1] isequivalent to
posedge, while the set of [10, 1x, X0Q] is equivalent to negedge. A match occursif any of the
explicit edgesin the specify port match any of the explicit edgesimplied by the SDF port.

Optional Conditions

Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

®* A match occursif the SDF does not have a condition.

® A match occurs for atiming check if the SDF port condition is semantically equivalent
to the specify port condition.

® A match occursfor apath delay if the SDF condition islexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

Table 13-21. SDF Timing Check Conditions

SDF Verilog
(SETUP data (COND (reset!=1) $setup(data, posedge clk & & &
(posedge clock)) (5)) (reset==0),0);

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

Table 13-22. SDF Path Delay Conditions

SDF Verilog
(COND (r1||r2) (IOPATH clk q (5))) if (r1||r2) (clk =>q) =5; // matches
(COND (r1 || r2) (IOPATH clk q (5))) if (r2]rl) (clk =>q) = 5; // does not match

The annotator does not match the second condition above because the order of r1 and r2 are
reversed.

Rounded Timing Values

The SDF TIMESCAL E construct specifies time units of valuesin the SDF file. The annotator
rounds timing values from the SDF fil e to the time precision of the module that is annotated. For
example, if the SDF TIMESCALE is 1ns and avalue of .016 is annotated to a path delay in a
module having atime precision of 10ps (from the timescal e directive), then the path delay

378 ModelSim User's Manual, v10.3a

Standard Delay Format (SDF) Timing Annotation
SDF for Mixed VHDL and Verilog Designs

receives avalue of 20ps. The SDF value of 16psisrounded to 20ps. Interconnect delays are
rounded to the time precision of the module that contains the annotated MIPD.

SDF for Mixed VHDL and Verilog Designs

Annotation of amixed VHDL and Verilog design isvery flexible. VHDL VITAL cells and
Verilog cells can be annotated from the same SDF file. Thisflexibility is available only by
using the simulator’ s SDF command line options. The Verilog $sdf _annotate system task can
annotate Verilog cells only. See the vsim command for more information on SDF command line
options.

Interconnect Delays

An interconnect delay represents the delay from the output of one device to the input of another.
Model Sim can model single interconnect delays or multisource interconnect delays for Verilog,
VHDL/VITAL, or mixed designs. See the vsim command for more information on the relevant
command line arguments.

Timing checks are performed on the interconnect delayed versions of input ports. This may
result in misleading timing constraint violations, because the ports may satisfy the constraint
while the delayed versions may not. If the simulator seemsto report incorrect violations, be sure
to account for the effect of interconnect delays.

Disabling Timing Checks

Model Sim offers a number of options for disabling timing checks on a global basis. The table
below provides a summary of those options. See the command and argument descriptionsin the
Reference Manual for more details.

Table 13-23. Disabling Timing Checks
Command and argument | Effect

vlog +notimingchecks disables timing check system tasks for all instancesin the
specified Verilog design

vlog +nospecify disables specify path delays and timing checks for all
instances in the specified Verilog design

vsim +no_neg_tchk disables negative timing check limits by setting them to
zero for al instances in the specified design

vsim +no_notifier disables the toggling of the notifier register argument of
the timing check system tasks for al instancesin the
specified design

ModelSim User’s Manual, v10.3a 379

Standard Delay Format (SDF) Timing Annotation

Troubleshooting

Table 13-23. Disabling Timing Checks (cont.)

Command and argument

Effect

vsim +no_tchk_msg

disables error messages issued by timing check system
tasks when timing check violations occur for al instances
in the specified design

vsim +notimingchecks

disables Verilog and VITAL timing checks for all
instances in the specified design; sets generic
TimingChecksOn to FALSE for all VHDL Vital models
with the Vital_levelO or Vital_levell attribute. Setting this
generic to FAL SE disables the actual calls to the timing
checks along with anything else that is present in the
model's timing check block.

vsim +nospecify

disables specify path delays and timing checks for all
instances in the specified design

Troubleshooting

Specifying the Wrong Instance

By far, the most common mistake in SDF annotation isto specify the wrong instance to the

simulator’ s SDF options. The most common caseisto leave off theinstance altogether, whichis

the same as selecting the top-level design unit. Thisis generally wrong because the instance

paths in the SDF are relative to the ASIC or FPGA model, which isusually instantiated under a

top-level test bench. See Instance Specification for an example.

Simple examplesfor both aVHDL and a Verilog test bench are provided below. For simplicity,

these test bench examples do nothing more than instantiate a model that has no ports.

VHDL Test Bench

entity testbench is end;

architecture only of testbench is

component myasic

end component;
begin

dut : myasic;
end;

Verilog Test Bench

module testbench;
myasic dut() ;
endmodule

380

ModelSim User's Manual, v10.3a

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

The name of the model is myasic and the instance label is dut. For either test bench, an
appropriate simulator invocation might be:
vsim -sdfmax /testbench/dut=myasic.sdf testbench

Optionally, you can leave off the name of the top-level:

vsim -sdfmax /dut=myasic.sdf testbench

The important thing isto select the instance for which the SDF isintended. If the model is deep
within the design hierarchy, an easy way to find the instance name is to first invoke the
simulator without SDF options, view the structure pane, navigate to the model instance, select
it, and enter the environment command. This command displays the instance name that should
be used in the SDF command line option.

Matching a Single Timing Check

SDF annotation of RECREM or SETUPHOLD matching only a single setup, hold, recovery, or
removal timing check will result in a Warning message.

Mistaking a Component or Module Name for an
Instance Label
Another common error isto specify the component or module name rather than the instance
label. For example, the following invocation iswrong for the above test benches:
vsim -sdfmax /testbench/myasic=myasic.sdf testbench

Thisresultsin the following error message:

** Error (vsim-SDF-3250) myasic.sdf (0):
Failed to find INSTANCE ’/testbench/myasic’.

Forgetting to Specify the Instance

If you leave off the instance altogether, then the simulator issues a message for each instance
path in the SDF that is not found in the design. For example,

vsim -sdfmax myasic.sdf testbench

Resultsin:

** Error (vsim-SDF-3250) myasic.sdf (0):
Failed to find INSTANCE ’/testbench/ul’
** Error (vsim-SDF-3250) myasic.sdf (0):
Failed to find INSTANCE ’/testbench/u2’
** Error (vsim-SDF-3250) myasic.sdf (0):
Failed to find INSTANCE ’/testbench/u3’

ModelSim User’s Manual, v10.3a 381

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

** Error (vsim-SDF-3250) myasic.sdf (0):
Failed to find INSTANCE ’/testbench/u4d’
** Error (vsim-SDF-3250) myasic.sdf (0):
Failed to find INSTANCE ’/testbench/ub5’
** Warning (vsim-SDF-3432) myasic.sdf:
This file is probably applied to the wrong instance.
** Warning (vsim-SDF-3432) myasic.sdf:
Ignoring subsequent missing instances from this file.

After annotation is done, the simulator issues asummary of how many instances were not found
and possibly a suggestion for a qualifying instance:

** Warning (vsim-SDF-3440) myasic.sdf:

Failed to find any of the 358 instances from this file.

** Warning (vsim-SDF-3442) myasic.sdf:

Try instance '/testbench/dut’. It contains all instance paths from this
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see Resolving Errors for specific VHDL VITAL SDF troubleshooting.

Reporting Unannotated Specify Path Objects

Create areport about unannotated or partially-annotated specify path objects, path delays and
timing checks, to better understand your design that uses SDF files.

Unannotated specify objects occur either because the SDF file did not contain any SDF
statements targeting that object or (in arather unusual situation) because all the valuesin the
statement were null, as signified by a pair of empty parentheses “()”.

The partial annotation of specify objects occurs when the SDF statements contain some null
values.
Procedure

1. Add the -sdfreport=<filename> argument to your vsim command line.

Results

The Unannotated Specify Objects Report contains alist of objects that fit into any of the
following three categories:

® Unannotated specify paths (UASP).

® Unannotated timing checks (UATC). Thisindicates either a single-value timing check
that was not annotated or part of a $setuphold or $recrem that was not annotated.

® |ncompletely-annotated specify path transition edges (IATE). Thisindicates that certain
edges of a specify path, such as0->1, 1->Z, and so on, were incompletely annotated.

382 ModelSim User's Manual, v10.3a

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

The header of the report contains afull description of the syntax.

Examples

This example report shows the format if you have full design visibility (vopt with the +acc

argument):

Unannotated Specify Objects Report:

(UASP) = Unannotated specify path.
(UATC) = Unannotated timing check.
(IATE) = Incompltely annotated specify path transition edges.
/testl/ul: ([mymod(fast):test.v(4)]):
17: (CK => Q1) = (1000) (UASP)
18: (S => Q1) = (102, 1000) (IATE:10)
19: (SI => Q1) = (103, 104, 1000) (IATE:tz)
20: (CK => Q2) = (1000, 201) (IATE:01)
21: (S => Q2) = (1000, 1000, 202) (IATE:01,10)
22: (SI => Q2) = (203, 1000, 204) (IATE:10)
30: SETUP: (posedge CK &&& Snl), (D &&& CKe0O): 2000 (UATC)
30: HOLD: (D &&& CKe0), (posedge CK &&& Snl): 3000 (UATC)
36: HOLD: (posedge CK &&& Sn0O), (SI &&& Sn0): 1000 (UATC)
37: SETUP: (posedge CK &&& Sn0O), (SI &&& CKe0): 6000 (IATC)
38: HOLD: (posedge CK), (SI): 9000 (IATC)

Found 1 instances with unannotated or

incompletely annotated specify block objects.

This example report shows the format if you fully optimized the design (lines are abbreviated

for readability):

Unannotated Specify Objects Report:

(UASP) = Unannotated specify path.

(UATC) = Unannotated timing check.

(IATE) = Incompltely annotated specify path transition edges.

/testl/ul: ([mymod(fast):test.v(4)]):
(CK => Q1) = (1000, 1000, 1000, 1000, 1000, 1000) (UASP)
(S => Q1) = (102, 1000, 102, 102, 1000, 102, 1000) (IATE:10,17,70,1X,X0, ZX)
(ST => Q1) = (103, 104, 1000, 103, 1000, 104, 1000, 103) (IATE:0Z,127,0X,1X,X2Z)
(CK => Q2) = (1000, 201, 1000, 1000, 201, 201, 201, 1000) (IATE:01,0z,2z1,0X,X1, ZX)
(S => Q2) = (1000, 1000, 1000, 202, 1000) (IATE:01,10,21,70,0X,X1,1X, X0, ZX)
(SI => Q2) = (203, 1000, 204, 203, 204, 1000, 204, 1000) (IATE:10,70,1X,X0, zZX)
HOLD: (posedge CK), (SI): 9000 (UATC)
SETUP: (posedge CK &&& Sn0), (SI &&& CKe0O): 6000 (UATC)
SETUP: (posedge CK &&& Snl), (D &&& CKeO): 2000 (UATC)
HOLD: (D &&& CKe0), (posedge CK &&& Snl): 3000 (UATC)
HOLD: (posedge CK &&& Sn0O), (SI &&& Sn0): 1000 (UATC)

Found 1 instances with unannotated or

incompletely annotated specify block objects.

ModelSim User’'s Manual, v10.3a

383

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

384 ModelSim User's Manual, v10.3a

Chapter 14
Value Change Dump (VCD) Files

The Vaue Change Dump (VCD) file format is supported for use by Model Sim and is specified
in the |EEE 1364-2005 standard. A VCD fileisan ASCII file that contains information about
value changes on selected variables in the design stored by VCD system tasks. Thisincludes
header information, variable definitions, and variable value changes.

VCD isin common use for Verilog designs and is controlled by VCD system task callsin the
Verilog source code. Model Sim provides equivalent commands for these system tasks and
extends VCD support to SystemC and VHDL designs. Y ou can use these ModelSim VCD
commands on Verilog, VHDL, SystemC, or mixed designs.

Extended VCD supports Verilog and VHDL ports in a mixed-language design containing
SystemC. However, extended VCD does not support SystemC ports in a mixed-language
design.

If you need vendor-specific ASIC design-flow documentation that incorporates VCD, contact
your ASIC vendor.

Creating a VCD File

Model Sim provides two general methods for creating aVCD file:

® Four-State VCD File— produces afour-state VCD file with variable changesin 0, 1, X,
and z with no strength information.

® Extended VCD File — produces an extended VCD (EVCD) file with variable changes
in al states and strength information and port driver data.

Both methods al so capture port driver changes unless you filter them out with optional
command-line arguments.

Four-State VCD File
First, compile and load the design. For example:

% cd <installDir>/examples/tutorials/verilog/basicSimulation
% vlib work

% vlog counter.v tcounter.v

% vsim test_counter

Next, with the design loaded, specify the VCD file name with the vcd file command and add
objects to the file with the ved add command:

ModelSim User’s Manual, v10.3a 385

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

VSIM 1> vcd file myvcdfile.ved
VSIM 2> vcd add /test_counter/dut/*
VSIM 3> run

VSIM 4> quit -f

Upon quitting the simulation, there will be aVCD file in the working directory.

Extended VCD File
First, compile and load the design. For example:

% cd <installDir>/examples/tutorials/verilog/basicSimulation
% vlib work

% vlog counter.v tcounter.v

% vsim test_counter

Next, with the design loaded, specify the VCD file name and objects to add with the
vcd dumpports command:

VSIM 1> vcd dumpports -file myvcdfile.ved /test_counter/dut/*

VSIM 3> run

VSIM 4> quit -f
Upon quitting the simulation, there will be an extended VCD file called myvcdfile.ved in the
working directory.

Note
D Thereisan internal limit to the number of portsthat can be listed with the ved dumpports

command. If that limit is reached, use the vcd add command with the -dumpports option
to name additional ports.

VCD Case Sensitivity

Verilog designs are case-sensitive, so Model Sim maintains case when it produces a VCD file.
However, VHDL is not case-sensitive, so Model Sim converts all signal names to lower case
when it produces a VCD file.

Using Extended VCD as Stimulus

Y ou can use an extended VCD file as stimulus to re-simulate your design. There are two ways
to do this:

1. Simulate thetop level of adesign unit with the input values from an extended VCD file.

2. Specify one or moreinstancesin adesign to be replaced with the output values from the
associated VCD file.

386 ModelSim User's Manual, v10.3a

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

Simulating with Input Values from a VCD File

When simulating with inputs from an extended VV CD file, you can simulate only one design unit
at atime. In other words, you can apply the VCD file inputs only to the top level of the design
unit for which you captured port data.

The general procedure includes two steps:

1. CreateaVCD filefor asingle design unit using the vcd dumpports command.

2. Resimulate the single design unit using the -vcdstim argument with the vsim command.
Note that -vcdstim works only with VCD files that were created by a ModelSim
simulation.

Example 14-1. Verilog Counter
First, create the VCD file for the single instance using ved dumpports:

% cd <installDir>/examples/tutorials/verilog/basicSimulation
% vlib work

% vlog counter.v tcounter.v

% vsim test_counter +dumpports+nocollapse

VSIM 1> vcd dumpports -file counter.ved /test_counter/dut/*
VSIM 2> run

VSIM 3> quit -f

Next, rerun the counter without the test bench, using the -vedstim argument:

% vsim counter_replay -vcdstim counter.vcd
VSIM 1> add wave /*
VSIM 2> run 200

Example 14-2. VHDL Adder
First, create the VCD file using ved dumpports:

% cd <installDir>/examples/vcd

% vlib work

% vcom gates.vhd adder.vhd stimulus.vhd

% vsim testbench2+dumpports+nocollapse

VSIM 1> ved dumpports -file addern.ved /testbench2/uut/*
VSIM 2> run 1000

VSIM 3> quit -f

Next, rerun the adder without the test bench, using the -vcdstim argument:
% vsim -vcdstim addern.ved addern -gn=8 -do "add wave /*; run 1000"
Example 14-3. Mixed-HDL Design

First, create three VCD files, one for each module:

ModelSim User’s Manual, v10.3a 387

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

% cd <installDir>/examples/tutorials/mixed/projects
% vlib work

% vlog cache.v memory.v proc.v

% vcom util.vhd set.vhd top.vhd

% vsim top +dumpports+nocollapse

VSIM 1> vcd dumpports -file proc.ved /top/p/*

VSIM 2> vcd dumpports -file cache.ved /top/c/*
VSIM 3> vcd dumpports -file memory.ved /top/m/*
VSIM 4> run 1000

VSIM 5> quit -f

Next, rerun each module separately, using the captured VCD stimulus:

% vsim -vcdstim proc.ved proc -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim cache.ved cache -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim memory.vcd memory -do "add wave /*; run 1000"
VSIM 1> quit -f

Note
D When using VCD files as stimulus, the VCD file format does not support recording of

deltadelay changes— delta delays are not captured and any delta delay ordering of signal
changesislost. Designs relying on this ordering may produce unexpected results.

Replacing Instances with Output Values from a
VCD File

Replacing instances with output values from aVV CD file lets you simulate without the instance’ s
source or even the compiled object. The genera procedure includes two steps:

1. Create VCD filesfor one or more instancesin your design using the ved dumpports
command. If necessary, use the -vcdstim switch to handle port order problems (see
below).

2. Re-simulate your design using the -vcdstim <instance>=<filename> argument to vsim.
Note that this works only with VCD files that were created by a Model Sim simulation.

Example 14-4. Replacing Instances

In the following example, the three instances /top/p, /top/c, and /top/m are replaced in
simulation by the output values found in the corresponding VCD files.

First, create VCD filesfor al instances you want to replace:

vcd dumpports -vedstim -file proc.ved /top/p/*
vcd dumpports -vedstim -file cache.ved /top/c/*
vcd dumpports -vcdstim -file memory.ved /top/m/*
run 1000

388 ModelSim User's Manual, v10.3a

Value Change Dump (VCD) Files
VCD Commands and VCD Tasks

Next, simulate your design and map the instances to the VCD files you created:

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd
-vcdstim /top/m=memory.vcd
quit -f

Note
D When using VCD files as stimulus, the VCD file format does not support recording of

deltadelay changes— delta delays are not captured and any delta delay ordering of signal
changesislost. Designs relying on this ordering may produce unexpected results.

Port Order Issues

The -vcdstim argument to the ved dumpports command ensures the order that port names
appear in the VCD file matches the order that they are declared in the instance’ s module or
entity declaration. Consider the following module declaration:

module proc(clk, addr, data, rw, strb, rdy);
input clk, rdy;
output addr, rw, strb;
inout data;

The order of the portsin the module line (clk, addr, data, ...) does not match the order of those
ports in the input, output, and inout lines (clk, rdy, addr, ...). In this case the -vcdstim argument
to the ved dumpports command needs to be used.

In cases where the order is the same, you do not need to use the -vcdstim argument to ved
dumpports. Also, module declarations of the form:

module proc (input clk, output addr, inout data, ...)

do not require use of the argument.

VCD Commands and VCD Tasks

ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the VCD
file dong with the results of those commands. The table below maps the VCD commands to
their associated tasks.

Table 14-1. VCD Commands and SystemTasks

VCD commands VCD system tasks
ved add $dumpvars

ved checkpoint $dumpall

ved file $dumpfile

ved flush $dumpflush

ModelSim User’s Manual, v10.3a 389

Value Change Dump (VCD) Files
VCD Commands and VCD Tasks

Table 14-1. VCD Commands and SystemTasks (cont.)

VCD commands VCD system tasks
ved limit $dumplimit

ved of f $dumpoff

ved on $dumpon

Model Sim also supports extended VCD (dumpports system tasks). The table below maps the

VCD dumpports commands to

their associated tasks.

Table 14-2. VCD Dumpport Commands and System Tasks

VCD dumpports commands VCD system tasks
vcd dumpports $dumpports

ved dumpportsall $dumpportsall

vcd dumpportsflush $dumpportsflush
ved dumpportslimit $dumpportslimit
vcd dumpportsoff $dumpportsoff

vcd dumpportson $dumpportson

Model Sim supports multiple VCD files. This functionality is an extension of the IEEE Std
1364-2005 specification. The tasks behave the same as the | EEE equivalent tasks such as
$dumpfile, $dumpvar, and so forth. The difference is that $fdumpfile can be called multiple
times to create more than one VCD file, and the remaining tasks require afilename argument to
associate their actions with a specific file. Table 14-3 maps the VCD commands to their
associated tasks. For additional details, please see the Verilog |EEE Std 1364-2005

specification.

Table 14-3. VCD Commands and System Tasks for Multiple VCD Files

VCD commands

VCD system tasks

ved add -file <filename>

$fdumpvars(levels, {, module or_variable} L i lename)

vcd checkpoint <filename>

$fdumpall(filename)

ved files <filename>

Sfdumpfile(filename)

vcd flush <filename>

$fdumpflush(filename)

ved limit <filename>

$fdumplimit(filename)

ved off <filename>

$fdumpoff(filename)

vcd on <filename>

$fdumpon(filename)

390

ModelSim User's Manual, v10.3a

Value Change Dump (VCD) Files
VCD Commands and VCD Tasks

1. denotes an optional, comma-separated list of 0 or more modules or variables

Using VCD Commands with SystemC

VCD commands are supported for the following SystemC signals:

sc_signal<T>
sc_signal_resolved

sc _signal_rv<N>

VCD commands are supported for the following SystemC signal ports:

sc_in<T>
SC_out<T>
SC_inout<T>
sc_in_resolved
sc_out_resolved
sc_inout_resolved
SC_in_rv<N>
sC_out_rv<N>

sc_inout_rv<N>

<T> can be any of types shown in Table 14-4.

Table 14-4. SystemC Types

unsigned char char sc int
unsigned short short sc_uint
unsigned int int sc_bigint
unsigned long float sc_biguint
unsigned long long double sc_signed
enum sc_unsigned
sc_logic
sc_hit
sc_bv
sc lv

ModelSim User’'s Manual, v10.3a

391

Value Change Dump (VCD) Files
VCD File from Source to Output

Unsupported types are the SystemC fixed point types, class, structures and unions.

Compressing Files with VCD Tasks

Model Sim can produce compressed VCD files using the gzip compression algorithm. Since we
cannot change the syntax of the system tasks, we act on the extension of the output file name. If
you specify a.gz extension on the filename, Model Sim will compress the output.

VCD File from Source to Output

The following example shows the VHDL source, a set of ssmulator commands, and the
resulting VCD outpui.

VHDL Source Code

The design is asimple shifter device represented by the following VHDL source code:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity SHIFTER_MOD 1is
port (CLK, RESET, data_in : IN STD_LOGIC;
Q : INOUT STD_LOGIC_VECTOR (8 downto 0));
END SHIFTER_MOD ;

architecture RTL of SHIFTER_MOD 1is
begin
process (CLK,RESET)
begin
if (RESET = 'l') then
Q <= (others => '0")
elsif (CLK'event and CLK = 'l') then
Q0 <= Q(Q'left - 1 downto 0) & data_in ;
end if ;
end process ;
end ;

VCD Simulator Commands

At simulator time zero, the designer executes the following commands:

392 ModelSim User's Manual, v10.3a

Value Change Dump (VCD) Files
VCD File from Source to Output

vcd file output.ved
vcd add -r *
forcereset 10
force data_ in00
forceclk 00

run 100

force clk 1 0, 0 50 -repeat 100
run 100

vcd off
forcereset 00
forcedata in10
run 100

vcd on

run 850
forcereset 10

run 50

vecd checkpoint
quit -sim

ModelSim User’'s Manual, v10.3a

393

Value Change Dump (VCD) Files
VCD File from Source to Output

VCD Output

The VCD file created as aresult of the preceding scenario would be called output.ved. The
following pages show how it would look.
Sdate

Thu Sep 18

11:07:43 2003

Send

Sversion
<Tool> Version
<version>

Send

Stimescale
1ns

Send

Sscope module

shifter _mod $end

svar
Send
svar
Send
svar
Send
svar
Send
svar
Send
svar
Send
svar
Send
svar
Send
svar
Send
svar
Send
svar
Send
svar
Send

Supscope $end

wire

1

wire 1 "

wire
wire
wire
wire
wire
wire
wire
wire
wire

wire

1 # data_in

1

1

1

1

$

[}
°

’

clk

reset

Q Qe Qo Q Q Q9 Qa Q Q

Senddefinitions

#0

Sdumpvars

0!
1"
0#
0%
0%
0&
Ol
0 (
0)
O*
0+
0,

[8]
[7]
[6]
[5]
[4]
[3]
[2]
[1]
[0]

Send

Send
#100

1!
Sdumpof f
x!
o
x#
x$
X%
xX&
X!
x(
X)

X*
X+
X,
Send
#300
Sdumpon
1!
O"
14#
0%
0%
0&
OI
0(
0)

#700
1!
1
#750

O*

0)

0(

Ol

0&

0%

0s
#1200
1!
Sdumpall
1!

1"

1#

0%

0%

O!
0(
0)
O*
0+
0,
Send

394

ModelSim User's Manual, v10.3a

Value Change Dump (VCD) Files
VCD to WLF

VCD to WLF

The Model Sim ved2wlIf command isa utility that trandates a.ved fileinto a .wif file that can be
displayed in Model Sim using the vsim -view argument. This command only works on VCD
files containing positive time values.

Capturing Port Driver Data

Some ASIC vendors' toolkitsread aV CD file format that provides details on port drivers. This
information can be used, for example, to drive atester. For more information on a specific
toolkit, refer to the ASIC vendor’ s documentation.

In Model Sim, use the ved dumpports command to create aVCD file that captures port driver
data. Each time an external or internal port driver changes values, a new value changeis
recorded in the VCD file with the following format:

p<state> <0 strength> <1 strength> <identifier_code>

Driver States
Table 14-5 shows the driver states recorded as TSSI states if the direction is known.

Table 14-5. Driver States
Input (testfixture) | Output (dut)

D low L low

U high H high

N unknown X unknown
Z tri-state T tri-state

d low (two or more
drivers active)

| low (two or more
drivers active)

u high (two or more
drivers active)

h high (two or
more drivers active)

If the direction is unknown, the state will be recorded as one of the following:

Table 14-6. State When Direction is Unknown

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

ModelSim User’s Manual, v10.3a 395

Value Change Dump (VCD) Files
Capturing Port Driver Data

Table 14-6. State When Direction is Unknown (cont.)
Unknown direction

? unknown (both input and output are driving
unknown)

F three-state (input and output unconnected)

A unknown (input driving low and output driving
high)

a unknown (input driving low and output driving
unknown)

B unknown (input driving high and output driving
low)

b unknown (input driving high and output driving
unknown)

C unknown (input driving unknown and output
driving low)

¢ unknown (input driving unknown and output
driving high)

f unknown (input and output three-stated)

Driver Strength
The recorded 0 and 1 strength values are based on Verilog strengths:
Table 14-7. Driver Strength
Strength VHDL std_logic mappings
highz 'z
small

medium
weak
large
pull "WH L
strong uxXo Y
7 supply

O~ W|N|F,]| O

396 ModelSim User's Manual, v10.3a

Value Change Dump (VCD) Files
Capturing Port Driver Data

ldentifier Code

The <identifier_code> is an integer preceded by < that starts at zero and isincremented for each
port in the order the ports are specified. Also, the variable type recorded in the VCD header is
"port".

Resolving Values

Theresolved values written to the V CD file depend on which options you specify when creating
thefile.

Default Behavior

By default, Model Sim generates VVCD output according to the |EEE Std 1364 -2005, | EEE
Sandard for Veri Iog® Hardware Description Language. This standard states that the values 0
(both input and output are active with value 0) and 1 (both input and output are active with
value 1) are conflict states. The standard then defines two strength ranges:

® Strong: strengths 7, 6, and 5
* Weak: strengths 4, 3,2, 1

Therulesfor resolving values are as follows:

* If theinput and output are driving the same value with the same range of strength, the
resolved value is 0 or 1, and the strength is the stronger of the two.

* If theinput isdriving a strong strength and the output is driving a weak strength, the
resolved valueis D, d, U or u, and the strength is the strength of the input.

¢ If theinput isdriving aweak strength and the output is driving a strong strength, the
resolved valueisL, |, H or h, and the strength is the strength of the output.

When force Command is Used

If you force avalue on a net that does not have adriver associated with it, Model Sim uses the
port direction as shown in Table 14-8 to dump valuesto the VCD file. When the port isan inout,
the direction cannot be determined.

Table 14-8. VCD Values When Force Command is Used

Valueforcedon | Port Direction
net

input output inout
0 D L 0

ModelSim User’s Manual, v10.3a 397

Value Change Dump (VCD) Files
Capturing Port Driver Data

Table 14-8. VCD Values When Force Command is Used

Valueforced on | Port Direction

net .)
Input output Inout

1 U H 1

X N X ?

Z Z T F

Extended Data Type for VHDL (vl _logic)

Mentor Graphics has created an additional VHDL data type for use in mixed-language designs,
in case you need access to the full Verilog state set. The vl_logic type is an enumeration that
defines the full set of VHDL valuesfor Verilog nets, as defined for Logic Strength Modeling in
|EEE 1364 "-2005.

This specification defines the following driving strengths for signals propagated from gate
outputs and continuous assignment outputs:

Supply, Strong, Pull, Weak, HiZ

This specification also defines three charge storage strengths for signals originating in the trireg
net type:

Large, Medium, Small

Each of these strengths can assume a strength level ranging from 0 to 7 (expressed as a binary
value from 000 to 111), combined with the standard four-state values of 0, 1, X, and Z. This
resultsin a set of 256 strength values, which preserves Verilog strength values going through
the VHDL portion of the design and allows a VCD in extended format for any downstream
application.

Thevl_logic type is defined in the following file installed with Model Sim, where you can view
the 256 strength values:

<install dir>/vhdl_src/verilog/vltypes.vhd

Thislocation is a pre-compiled verilog library provided in your installation directory, along
with the other pre-compiled libraries (std and ieee).

Note
The Wave window display and WLF do not support the full range of vl_logic values for

VHDL signals.

398 ModelSim User's Manual, v10.3a

Value Change Dump (VCD) Files
Capturing Port Driver Data

Ignoring Strength Ranges

Y ou may wish to ignore strength ranges and have Model Sim handle each strength separately.
Any of the following options will produce this behavior:

® Usethe-no_strength_range argument to the ved dumpports command
® Usean optional argument to $dumpports (see Extended $dumpports Syntax bel ow)
® Usethe +dumpports+no_strength range argument to vsim command

In this situation, Model Sim reports strengths for both the zero and one components of the value
if the strengths are the same. If the strengths are different, Model Sim reports only the “winning”
strength. In other words, the two strength values either match (for example, pA 551) or the
winning strength is shown and the other is zero (for instance, pH 051!).

Extended $dumpports Syntax

Model Sim extends the $dumpports system task in order to support exclusion of strength ranges.
The extended syntax is as follows:

Sdumpports (scope_list, file_pathname, ncsim file_index, file_format)

Thenc_sim_index argument is required yet ignored by ModelSim. It isrequired only to be
compatible with NCSim’s argument list.

Thefile_format argument accepts the following values or an ORed combination thereof (see
examples below):

Table 14-9. Values for file_format Argument

File format value | Meaning

0 Ignore strength range

2 Use strength ranges; produces | EEE 1364-compliant
behavior
Compress the EVCD output

8 Include port direction information in the EVCD file
header; same as using -direction argument to vcd
dumpports

Here are some examples:

// ignore strength range

Sdumpports (top, "filename", 0, 0)

// compress and ignore strength range
Sdumpports (top, "filename", 0, 4)

// print direction and ignore strength range
S$dumpports (top, "filename", 0, 8)

ModelSim User’s Manual, v10.3a 399

Value Change Dump (VCD) Files
Capturing Port Driver Data

print direction, and ignore strength range
"filename", 0, 12)

// compress,
Sdumpports (top,

Example 14-5. VCD Output from vcd dumpports

This example demonstrates how ved dumpports resolves values based on certain combinations
of driver values and strengths and whether or not you use strength ranges. Table 14-10 is

sample driver data.

Given the driver data above and use of 1364 strength ranges, here is what the VCD file output

Table 14-10. Sample Driver Data

time invalue | out value | in strength value | out strength value
(range) (range)

0 0 0 7 (strong) 7 (strong)

100 0 0 6 (strong) 7 (strong)

200 0 0 5 (strong) 7 (strong)

300 0 0 4 (weak) 7 (strong)

900 1 0 6 (strong) 7 (strong)

27400 |1 1 5 (strong) 4 (weak)

27500 |1 1 4 (weak) 4 (weak)

27600 |1 1 3 (weak) 4 (weak)

would look like:

#0

p0 7 0
#100
p0 7 0
#200
p0 7 0
#300
pL 7 0
#900
pPB 7 6
#27400
pU 0 5
#27500
pl 0 4
#27600
pl 0 4

400

ModelSim User's Manual, v10.3a

Chapter 15
Tcl and Macros (DO Files)

Tcl isascripting language for controlling and extending Model Sim. Within Model Sim you can
develop implementations from Tcl scripts without the use of C code. Because Tcl isinterpreted,
development is rapid; you can generate and execute Tcl scripts “on the fly” without stopping to
recompile or restart Model Sim. In addition, if Model Sim does not provide the command you
need, you can use Tcl to create your own commands.

Tcl Features

Using Tcl with Model Sim gives you these features:

command history (like that in C shells)

full expression evaluation and support for all C-language operators
afull range of math and trig functions

support of listsand arrays

regular expression pattern matching

procedures

the ability to define your own commands

command substitution (that is, commands may be nested)

robust scripting language for macros

Tcl References

For quick reference information on Tcl, choose the following from the Model Sim main menu:

Help > Tcl Man Pages

In addition, the following books provide more comprehensive usage information on Tcl:

Tcl and the Tk Toolkit by John K. Ousterhout, published by Addison-Wesley Publishing
Company, Inc.

Practical Programming in Tcl and Tk by Brent Welch, published by Prentice Hall.

ModelSim User’s Manual, v10.3a 401

Tcl and Macros (DO Files)
Tcl Commands

Tcl Commands

For complete information on Tcl commands, select Help > Tcl Man Pages. Also see Simulator
GUI Preferences for information on Tcl preference variables.

M odel Sim command names that conflict with Tcl commands have been renamed or have been
replaced by Tcl commands, as shown in Table 15-1.

Table 15-1. Changes to ModelSim Commands

PreviousM odelSim | Command changed to (or replaced by)
command

continue run with the -continue option

format list | wave write format with either list or wave specified

if replaced by the Tcl if command, see If Command
Syntax for more information

list add list

nolist | nowave delete with either list or wave specified

Set replaced by the Tcl set command

source vsource

wave add wave

Tcl Command Syntax

The following eleven rules define the syntax and semantics of the Tcl language. Additional
details on If Command Syntax.

1. A Tcl script isastring containing one or more commands. Semi-colons and newlines are

command separators unless quoted as described below. Close brackets ("]") are
command terminators during command substitution (see below) unless quoted.

. A command is evaluated in two steps. First, the Tcl interpreter breaks the command into

words and performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a command
procedure to carry out the command, then all of the words of the command are passed to
the command procedure. The command procedure is free to interpret each of its words
inany way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.

. Words of acommand are separated by white space (except for newlines, which are

command separators).

402

ModelSim User's Manual, v10.3a

Tcl and Macros (DO Files)
Tcl Command Syntax

4. If thefirst character of aword is adouble-quote (") then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backslash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.

5. If thefirst character of aword is an open brace ({) then the word is terminated by the
matching close brace (}). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
the word is quoted with abackslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themselves.

6. If aword contains an open bracket ([) then Tcl performs command substitution. To do
thisit invokesthe Tcl interpreter recursively to process the characters following the
open bracket asa Tcl script. The script may contain any number of commands and must
be terminated by a close bracket (]). The result of the script (that is, the result of its last
command) is substituted into the word in place of the brackets and all of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.

7. If aword contains adollar-sign ($) then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of avariable.
Variable substitution may take any of the following forms:

o $name

Name is the name of a scalar variable; the name is terminated by any character that
isn't aletter, digit, or underscore.

o $name(index)

Name gives the name of an array variable and index gives the name of an element
within that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on
the characters of index.

o ¥ name}

Name is the name of ascalar variable. It may contain any characters whatsoever
except for close braces.

There may be any number of variable substitutionsin asingle word. Variable
substitution is not performed on words enclosed in braces.

8. If abackslash (\) appears within aword then backs ash substitution occurs. In all cases
but those described below the backslash is dropped and the following character is

ModelSim User’s Manual, v10.3a 403

Tcl and Macros (DO Files)
Tcl Command Syntax

treated as an ordinary character and included in the word. This allows characters such as

double quotes, close brackets, and dollar signs to be included in words without

triggering specia processing. Table 15-2 lists the backslash sequences that are handled

specialy, along with the value that replaces each sequence.

Table 15-2. Tcl Backslash Sequences

Sequence Value

\a Audible aert (bell) (0x7)
\b Backspace (0x8)

\f Form feed (Oxc).

\n Newline (Oxa)

\r Carriage-return (Oxd)

\t Tab (0x9)

\v Vertical tab (Oxb)

\<newline>whiteSpace

A single space character replaces the backslash, newline,
and all spaces and tabs after the newline. This backslash
sequence isuniquein that it is replaced in a separate pre-
pass before the command is actually parsed. This means
that it will be replaced even when it occurs between
braces, and the resulting space will be treated as aword
separator if it isn't in braces or quotes.

\\ Backslash ("\")

\ooo The digits 0oo (one, two, or three of them) give the octal
value of the character.

\xhh The hexadecimal digits hh give the hexadecimal value of

the character. Any number of digits may be present.

10.

Backslash substitution is not performed on words enclosed in braces, except for
backslash-newline as described above.

If apound sign (#) appears a a point where Tcl is expecting the first character of the
first word of acommand, then the pound sign and the characters that follow it, up

through the next newline, are treated as acomment and ignored. The # character denotes

acomment only when it appears at the beginning of a command.

Each character is processed exactly once by the Tcl interpreter as part of creating the
words of acommand. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value is inserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by the recursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.

404

ModelSim User's Manual, v10.3a

Tcl and Macros (DO Files)
Tcl Command Syntax

11. Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even
if the variable's value contains spaces.

If Command Syntax

The Tcl if command executes scripts conditionally. Note that in the syntax below the question
mark (?) indicates an optional argument.

Syntax

if exprl ?then? bodyl elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description

The if command evaluates exprl as an expression. The value of the expression must be a
boolean (a numeric value, where O is false and anything elseistrue, or a string value such as
true or yesfor true and false or no for false); if it istrue then bodyl is executed by passing it to
the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is true then body2 is
executed, and so on. If none of the expressions evaluates to true then bodyN is executed. The
then and else arguments are optional "noise words" to make the command easier to read. There
may be any number of elsaif clauses, including zero. BodyN may also be omitted aslong as else
is omitted too. The return value from the command is the result of the body script that was
executed, or an empty string if none of the expressions was non-zero and there was no bodyN.

Command Substitution

Placing acommand in square brackets ([]) will cause that command to be evaluated first and its
results returned in place of the command. For example:

seta 25

setb 11

setc3

echo "the result is [expr ($a + $b)/$c]"

This generates the following output:

"the result is 12"
Substitution allows you to obtain VHDL variables and signals, and Verilog nets and registers
using the following construct:

[examine -<radix> name]

The %name substitution is no longer supported. Everywhere %name could be used, you now
can use [examine -value -<radix> name] which allows the flexibility of specifying command
options. The radix specification is optional.

ModelSim User’s Manual, v10.3a 405

Tcl and Macros (DO Files)
Tcl Command Syntax

Command Separator

A semicolon character (;) works as a separator for multiple commands on the sameline. It is not
required at the end of aline in acommand sequence.

Multiple-Line Commands

With Tcl, multiple-line commands can be used within macros and on the command line. The
command line prompt will change (asin a C shell) until the multiple-line command is complete.

In the example below, note the way the opening brace’{’ is at the end of the if and else lines.
Thisisimportant because otherwise the Tcl scanner won't know that thereis more coming in the
command and will try to execute what it has up to that point, which won't be what you intend.

if { [exa sig_a] == "0011zz"} {
echo "Signal value matches"
do macro_1.do

} else {
echo "Signal value fails"
do macro_2.do

Evaluation Order

An important thing to remember when using Tcl is that anything put in braces ({}) is not
evaluated immediately. Thisisimportant for if-then-else statements, procedures, loops, and so
forth.

Tcl Relational Expression Evaluation

When you are comparing values, the following hints may be useful:

® Tcl storesall values as strings, and will convert certain strings to numeric values when
appropriate. If you want aliteral to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...
The following will also work:
if {[exa var_1] == "345"}...

®* However, if aliteral cannot be represented as a number, you must quoteit, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001Z}...

will give an error.

406 ModelSim User's Manual, v10.3a

Tcl and Macros (DO Files)
Simulator State Variables

if {[exa var_2] == "001z"}...
will work okay.

* Do not quote single characters between apostrophes; use quotation marks instead.
For example:

if {[exa var_3] == 'X'}...

will produce an error. However, the following:
if {[exa var_3] == "X"}...

will work.

® For the equal operator, you must use the C operator (==). For not-equal, you must use
the C operator (!=).

Variable Substitution

When a $<var_name> is encountered, the Tcl parser will look for variables that have been
defined either by Model Sim or by you, and substitute the value of the variable.

Note
Tcl is case sensitive for variable names.

To access environment variables, use the construct:

$env(<var_name>)
echo My user name is $env(USER)

Environment variables can also be set using the env array:

set env(SHELL) /bin/csh
See modelsim.ini Variables for more information about Model Sim-defined variabl es.

System Commands
To pass commands to the UNIX shell or DOS window, use the Tcl exec command:

echo The date is [exec date]

Simulator State Variables

Unlike other variables that must be explicitly set, simulator state variables return avalue
relative to the current ssimulation. Simulator state variables can be useful in commands,

ModelSim User’s Manual, v10.3a 407

Tcl and Macros (DO Files)
Simulator State Variables

especially when used within ModelSim DO files (macros). The variables are referenced in
commands by prefixing the name with adollar sign ($).

architecture

This variable returns the name of the top-level architecture currently being simulated; for a
configuration or Verilog module, this variable returns an empty string.

argc

This variable returns the total number of parameters passed to the current DO file macro.

argv

This variable returnsthe list of parameters (arguments) passed to the vsim command line.

configuration
This variable returns the name of the top-level configuration currently being simulated; returns
an empty string if no configuration.

delta

This variable returns the number of the current simulator iteration.

entity

This variable returns the name of the top-level VHDL entity or Verilog module currently being
simulated.

library

This variable returns the library name for the current region.

MacroNestingLevel

This variable returns the current depth of macro call nesting.

n

This variable represents a macro parameter, where n can be an integer in the range 1-9.

Now

This variable always returns the current simulation time with time units (for example, 110,000
ns). Note: the returned value contains a comma inserted between thousands.

408 ModelSim User's Manual, v10.3a

Tcl and Macros (DO Files)
Simulator State Variables

now

This variable returns the current simulation time with or without time units—depending on the
setting for time resolution, as follows:

* When timeresolution isaunary unit (such as 1ns, 1ps, 1fs), this variable returns the
current simulation time without time units (for example, 100000).

® When timeresolution is a multiple of the unary unit (such as 10ns, 100ps, 10fs), this
variable returns the current simulation time with time units (for example, 110000 ns).

Note: the returned value does not contain a comma inserted between thousands.

resolution

This variable returns the current simulation time resolution.

Referencing Simulator State Variables

Variable values may be referenced in simulator commands by preceding the variable name with
adollar sign ($). For example, to use the now and resolution variables in an echo command

type:
echo "The time is $now $resolution.”

Depending on the current simulator state, this command could result in:

The time is 12390 ps 10ps.

If you do not want the dollar sign to denote a simulator variable, precedeit with a"\". For
example, \$now will not be interpreted as the current simulator time.

Special Considerations for the now Variable

For the when command, special processing is performed on comparisons involving the now
variable. If you specify "when { $now=100} ...", the simulator will stop at time 100 regardless of
the multiplier applied to the time resolution.

Y ou must use 64-bit time operatorsif the time value of now will exceed 2147483647 (the limit
of 32-bit numbers). For example:

if { [gtTime $now 2us] } {

See Simulator Tcl Time Commands for details on 64-bit time operators.

ModelSim User’s Manual, v10.3a 409

Tcl and Macros (DO Files)
List Processing

List Processing

InTcl, a"ligt" isaset of stringsin braces separated by spaces. Several Tcl commands are
available for creating lists, indexing into lists, appending to lists, getting the length of lists and
shifting lists, as shown in Table 15-3.

Table 15-3. Tcl List Commands

Command syntax Description

lappend var_namevallva? ... appendsvall, vaz, ..., tolist var_name

lindex list_name index returns the index-th element of list_name; the first
elementisO

linsert list nameindex vallva?2 ... | insertsvall, vaz2, ..., just before the index-th element
of list_name

list vall, val2 ... returnsaTcl list consisting of vall, va2, ...

llength list_name returns the number of elementsin list_name

Irangelist_namefirst last returns a sublist of list_name, from index first to index
last; first or last may be "end", which refers to the last
element inthelist

Ireplacelist_namefirst last vall, replaces elements first through last with vall, val2, ...

vaz, ...

Two other commands, Isear ch and Isort, are also available for list manipulation. See the Tcl
man pages (Help > Tcl Man Pages) for more information on these commands.

Simulator Tcl Commands

These additional commands enhance the interface between Tcl and Model Sim. Only brief
descriptions are provided in Table 15-4. For more information and command syntax see
Commands.

Table 15-4. Simulator-Specific Tcl Commands

Command Description

dias creates anew Tcl procedure that evaluates the specified
commands; used to create a user-defined alias

find locatesincrTcl classes and objects

|shift takesa Tcl list as argument and shiftsit in-place one place
to the left, eliminating the Oth element

Isublist returns a sublist of the specified Tcl list that matches the

specified Tcl glob pattern

410 ModelSim User's Manual, v10.3a

Tcl and Macros (DO Files)
Simulator Tcl Time Commands

Table 15-4. Simulator-Specific Tcl Commands (cont.)

Command Description

printenv echoesto the Transcript pane the current names and values
of al environment variables

Simulator Tcl Time Commands

ModelSim Tcl time commands make simulator-time-based val ues available for use within other
Tcl procedures.

Time values may optionally contain a units specifier where the intervening spaceis also
optional. If the space is present, the value must be quoted (for example, 10ns, "10 ns'). Time
values without units are taken to be in the UserTimeScale. Return values are awaysin the
current Time Scale Units. All time values are converted to a 64-bit integer value in the current
Time Scale. When values are smaller than the current Time Scale, the values are truncated to O
and awarning isissued.

ModelSim User’s Manual, v10.3a 411

Tcl and Macros (DO Files)
Simulator Tcl Time Commands

Conversions

Table 15-5. Tcl Time Conversion Commands

Command Description

intToTime <intHi32> <intLo32> converts two 32-bit pieces (high and low
order) into a 64-bit quantity (Timein
ModelSim is a 64-bit integer)

Rea ToTime <real> converts a <rea> number to a 64-bit
integer in the current Time Scale

scaleTime <time> <scaleFactor> returns the value of <time> multiplied by
the <scaleFactor> integer

Relations
Table 15-6. Tcl Time Relation Commands
Command Description
eqTime <time> <time> evaluates for equal
negTime <time> <time> evaluates for not equal
gtTime <time> <time> evaluates for greater than
gteTime <time> <time> evaluates for greater than or equal
[tTime <time> <time> evaluates for less than
[teTime <time> <time> evaluates for less than or equal

All relation operations return 1 or O for true or false respectively and are suitable return values
for TCL conditional expressions. For example,

if {[egTime $Now 1750ns]} {

}

412 ModelSim User's Manual, v10.3a

Tcl and Macros (DO Files)
Tcl Examples

Arithmetic
Table 15-7. Tcl Time Arithmetic Commands
Command Description
addTime <time> <time> add time
divTime <time> <time> 64-bit integer divide
mulTime <time> <time> 64-bit integer multiply
subTime <time> <time> subtract time

Tcl Examples

Example 15-1 uses the Tcl while loop to copy alist from variable a to variable b, reversing the
order of the elements along the way:

Example 15-1. Tcl while Loop

set b [list]
set 1 [expr {[llength sal - 1}]
while {$i >= 0} {
lappend b [lindex $a $i]
incr i -1

}

Example 15-2 uses the Tcl for command to copy alist from variable a to variable b, reversing
the order of the elements along the way:

Example 15-2. Tcl for Command

set b [list]

for {set 1 [expr {[llength S$a] - 1}]} {$i >= 0} {incr i -1} {
lappend b [lindex $a $i]

}

Example 15-3 uses the Tcl foreach command to copy alist from variable a to variable b,
reversing the order of the elements along the way (the foreach command iterates over all of the
elements of alist):

Example 15-3. Tcl foreach Command

set b [list]
foreach i $a { set b [linsert $b 0 $i] }

Example 15-4 showsalist reversal as above, thistime aborting on a particular element using the
Tcl break command:

ModelSim User’s Manual, v10.3a 413

Tcl and Macros (DO Files)
Tcl Examples

Example 15-4. Tcl break Command

set b [list]
foreach 1 S$Sa {
if {$1 = "Zzz"} break
set b [linsert $Sb 0 $1i]
}

Example 15-5isalist reversal that skips a particular element by using the Tcl continue
command:

Example 15-5. Tcl continue Command

set b [list]
foreach 1 S$Sa {
if {$1 = "ZzZ"} continue
set b [linsert $Sb 0 $1i]
}

Example 15-6 worksin UNIX only. In a Windows environment, the Tcl exec command will
execute compiled files only, not system commands.) The example shows how you can access
system information and transfer it into VHDL variables or signals and Verilog nets or registers.
When a particular HDL source breakpoint occurs, a Tcl function is called that gets the date and
time and depositsit into aVHDL signal of type STRING. If a particular environment variable
(DO_ECHO) is set, the function also echoes the new date and time to the transcript file by
examining the VHDL variable.

Example 15-6. Access and Transfer System Information

(in VHDL source):

signal datime : string(l to 28) := " ";# 28 spaces

(on VSIM command line or in macro):

proc set_date {} {
global env
set do_the_echo [set env (DO_ECHO)]
set s [clock format [clock seconds]]
force -deposit datime Ss
if {do_the_echo} {
echo "New time is [examine -value datime]"
}
}

bp src/waveadd.vhd 133 {set_date; continue}
--sets the breakpoint to call set_date

Example 15-7 specifies the compiler arguments and lets you compile any number of files.

414 ModelSim User's Manual, v10.3a

Tcl and Macros (DO Files)
Macros (DO Files)

Example 15-7. Tcl Used to Specify Compiler Arguments

set Files [list]

set nbrArgs Sargc

for {set x 1} {$x <= $nbrArgs} {incr x} {
set lappend Files S$1
shift

}

eval vcom -93 -explicit -noaccel S$Files

Example 15-8 is an enhanced version of the last one. The additional code determines whether
thefilesare VHDL or Verilog and uses the appropriate compiler and arguments depending on
the file type. Note that the macro assumes your VHDL files have a.vhd file extension.

Example 15-8. Tcl Used to Specify Compiler Arguments—Enhanced

set vhdFiles [list]
set vFiles [list]
set nbrArgs Sargc
for {set x 1} {$x <= $nbrArgs} {incr x} {
if {[string match *.vhd $11} {
lappend vhdFiles $1
} else {
lappend vFiles $1
}
shift
}
if {[llength SvhdFiles] > 0} {
eval vcom -93 -explicit -noaccel $vhdFiles
}
if {[llength SvFiles] > 0} {
eval vlog SvFiles

3

Macros (DO Files)

Model Sim macros (also called DO files) are simply scripts that contain Model Sim and,
optionally, Tcl commands. Y ou invoke these scripts with the Tools > TCL > Execute Macro
menu selection or the do command.

Creating DO Files

Y ou can create DO files, like any other Tcl script, by doing one of the following:

® Typetherequired commandsin any editor and save the file with the extension .do.

® Savethetranscript asaDO file (refer to Saving a Transcript File asaMacro (DO file)).

ModelSim User’s Manual, v10.3a 415

Tcl and Macros (DO Files)
Macros (DO Files)

® Usethewrite format restart command to create a .do file that will recreate al debug
windows, al file/line breakpoints, and all signal breakpoints created with the when
command.

All "event watching" commands (for example, onbreak, onerror, and so forth) must be placed
before run commands within the macros in order to take effect.

Thefollowing isasimple DO file that was saved from the transcript. It is used in the dataset
exercise in the ModelSim Tutorial. This DO file adds several signals to the Wave window,
provides stimulus to those signals, and then advances the simulation.

add wave 1d
add wave rst
add wave clk
add wave d
add wave g
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force 1d 0
force d 1010
onerror {cont}
run 1700

force 1d 1

run 100

force 1d 0

run 400

force rst 1
run 200

force rst 0 10
run 1500

Using Parameters with DO Files

Y ou can increase the flexibility of DO files by using parameters. Parameters specify values that
are passed to the corresponding parameters $1 through $9 in the macro file. For example say the
macro "testfile" contains the line bp $1 $2. The command below would place a breakpoint in
the source file named design.vhd at line 127:

do testfile design.vhd 127

Thereisno limit to the number of parameters that can be passed to macros, but only nine values
arevisible at onetime. Y ou can use the shift command to see the other parameters.

Deleting a File from a .do Script
To delete afile from a.do script, use the Tcl file command as follows:

file delete myfile.log

Thiswill delete the file "myfile.log.”

416 ModelSim User's Manual, v10.3a

Tcl and Macros (DO Files)
Macros (DO Files)

Y ou can aso use the transcript file command to perform a deletion:

transcript file ()
transcript file my file.log

Thefirst line will close the current log file. The second will open anew log file. If it hasthe
same name as an existing file, it will replace the previous one.

Making Macro Parameters Optional

If you want to make macro parameters optional (that is, be able to specify fewer parameter
values with the do command than the number of parameters referenced in the macro), you must
use the ar gc simulator state variable. The argc simulator state variable returns the number of
parameters passed. The examples below show several ways of using ar gc.

Example 15-9. Specifying Files to Compile With argc Macro

This macro specifies the files to compile and handles 0-2 compiler arguments as parameters. If
you supply more arguments, Model Sim generates a message.

switch Sargc {
0 {vcom filel.vhd file2.vhd file3.vhd }
1 {vcom $1 filel.vhd file2.vhd file3.vhd }
2 {vcom $1 $2 filel.vhd file2.vhd file3.vhd }
default {echo Too many arguments. The macro accepts 0-2 args. }

}
Example 15-10. Specifying Compiler Arguments With Macro

This macro specifies the compiler arguments and lets you compile any number of files.

variable Files ""

set nbrArgs Sargc

for {set x 1} {Sx <= S$nbrArgs} {incr x} {
set Files [concat $Files $1]
shift

}

eval vcom -93 -explicit -noaccel SFiles
Example 15-11. Specifying Compiler Arguments With Macro—Enhanced

This macro is an enhanced version of the one shown in example 2. The additional code
determines whether the filesare VHDL or Verilog and uses the appropriate compiler and

arguments depending on the file type. Note that the macro assumes your VHDL files have a
.vhd file extension.

ModelSim User’s Manual, v10.3a 417

Tcl and Macros (DO Files)
Macros (DO Files)

variable vhdFiles ""
variable vFiles ""
set nbrArgs Sargc
set vhdFilesExist 0
set vFilesExist 0
for {set x 1} {$x <= $nbrArgs} {incr x} {
if {[string match *.vhd $11} {
set vhdFiles [concat SvhdFiles $1]
set vhdFilesExist 1
} else {
set vFiles [concat $vFiles $1]
set vFilesExist 1
}
shift
}
if {$vhdFilesExist == 1} {
eval vcom -93 -explicit -noaccel $vhdFiles
}
1f {SvFilesExist == 1} {
eval vlog SvFiles

3

Useful Commands for Handling Breakpoints and Errors

If you are executing a macro when your simulation hits a breakpoint or causes a run-time error,
Model Sim interrupts the macro and returns control to the command line. The commandsin
Table 15-8 may be useful for handling such events. (Any other legal command may be executed
aswell.)

Table 15-8. Commands for Handling Breakpoints and Errors in Macros

command result

run -continue continue as if the breakpoint had not been executed,
completes the run that was interrupted

onbreak specify acommand to run when you hit a breakpoint
within amacro

onElabError specify a command to run when an error is
encountered during elaboration

onerror specify acommand to run when an error is
encountered within a macro

status get atraceback of nested macro callswhen amacrois
interrupted

abort terminate a macro once the macro has been
interrupted or paused

pause cause the macro to be interrupted; the macro can be

resumed by entering a resume command viathe
command line

418 ModelSim User's Manual, v10.3a

Tcl and Macros (DO Files)
Macros (DO Files)

Y ou can also set the OnErrorDefaultAction Tcl variable to determine what action Model Sim
takes when an error occurs. To set the variable on a permanent basis, you must define the
variable in amodelsim.tcl file (see The modelsim.tcl File for details).

Error Action in DO Files

If acommand in amacro returns an error, Model Sim does the following:

1. If an onerror command has been set in the macro script, Model Sim executes that
command. The onerror command must be placed prior to the run command in the DO
file to take effect.

2. If no onerror command has been specified in the script, Model Sim checks the
OnErrorDefaultAction variable. If the variable is defined, its action will be invoked.

3. If neither 1 or 2 istrue, the macro aborts.

Using the Tcl Source Command with DO Files

Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the Tcl source command, the DO file is executed exactly asif the commandsin it were
typed in by hand at the prompt. Each time a breakpoint is hit, the Source window is updated to
show the breakpoint. This behavior could be inconvenient with alarge DO file containing many
breakpoints.

When a do command is interrupted by an error or breakpoint, it does not update any windows,
and keeps the DO file "locked". This keeps the Source window from flashing, scrolling, and
moving the arrow when acomplex DO file is executed. Typically an onbreak resume command
is used to keep the macro running asit hits breakpoints. Add an onbreak abort command to the
DO fileif you want to exit the macro and update the Source window.

Note

ModelSim User’s Manual, v10.3a 419

Tcl and Macros (DO Files)
Macros (DO Files)

420 ModelSim User's Manual, v10.3a

Appendix A
modelsim.ini Variables

This chapter covers the contents and modification of the modelsim.ini file.

Organization of the modelsim.ini File— A list of the different sections of the
modelsim.ini file.

Making Changes to the modelsim.ini File— How to modify variable settingsin the
modelsim.ini file.

Variables— An alphabetized list of modelsim.ini variables and their properties.

Commonly Used modelsim.ini Variables— A discussion of the most frequently used
variables and their settings.

Organization of the modelsim.ini File

The modelsim.ini file isthe default initialization file and contains control variables that specify
reference library paths, optimization, compiler and simulator settings, and various other
functions. It islocated in your install directory and is organized into the following sections.

The [library] section contains variables that specify paths to various libraries used by
Model Sim.

The [vcom] section contains variables that control the compilation of VHDL files.
The [vlog] section contains variables that control the compilation of Verilog files.

The [DefineOptionset] section allows you to define groups of commonly used
command line arguments. Refer to the section “Optionsets’ in the Referemce Manual
for more information.

The [vsim] section contains variables that control the simulator.

The[msg_system] section contains variables that control the severity of notes,
warnings, and errors that come from vcom, viog and vsim.

The [utils] section contains variables that control utility functions in the tool
environment.

The System Initialization chapter contains descriptions of Environment Variables.

ModelSim User’s Manual, v10.3a 421

modelsim.ini Variables
Making Changes to the modelsim.ini File

Making Changes to the modelsim.ini File

Modify modelsim.ini variables by:

® Changing the settings in the The Runtime Options Dial og.
® Editing modelsim.ini Variables.

The Read-only attribute must be turned off to save changes to the modelsim.ini file.

Changing the modelsim.ini Read-Only Attribute

When first installed, the modelsim.ini fileis protected as a Read-only file. In order to make and
save changes to the file the Read-only attribute must first be turned off in the modelsim.ini
Properties dialog box.
Procedure
1. Navigateto the location of the modelsim.ini file.
<install directory>/modelsim.ini
Right-click on the modelsim.ini file and choose Properties from the popup menu.

This displays the modelsim.ini Properties dialog box.

o > 0D

Uncheck the Attribute: Read-only.
6. Click OK

To protect the modelsim.ini file after making changes, follow the above steps and at step 5,
check the Read-only attribute.

The Runtime Options Dialog

To access, select Simulate > Runtime Optionsin the Main window. The dialog contains three
tabs - Defaults, Severity, and WLF Files.

The Runtime Options dialog writes changes to the active modelsim.ini file that affect the
current session. If the read-only attribute for the modelsim.ini fileis turned off, the changes are
saved, and affect all future sessions. See Changing the modelsim.ini Read-Only Attribute.

422 ModelSim User's Manual, v10.3a

modelsim.ini Variables
Making Changes to the modelsim.ini File

Figure

Runtime Options x|

A-1. Runtime Options Dialog: Defaults Tab

Defaults I Message Severity] WLF Files] ﬂﬂ
—Default Radix Suppress YWarnings:
™ Symbolic [From Synopsys Packages
 Binary [From IEEE Mumeric Std Packages
" Octal
" Dedmal
rh .
— Default Run —Default Force Type
%' Hexadedmal "mD na " Freeze
{" ASCII
" Drive
T
me ™ Deposit
% Default (based on type
Default RadixFlags Tteration Limit ®)
[~ Enumnumeric ’75000

04 Cancel Apply

Table A-1

. Runtime Option Dialog: Defaults Tab Contents

Option

Description

Default Radix

Setsthe default radix for the current simulation run. The chosen radix
Isused for all commands (force, examine, change are examples) and
for displayed valuesin the Objects, Locals, Dataflow, List, and Wave
windows, as well as the Source window in the source annotation
view. The corresponding modelsm.ini variable is DefaultRadix. Y ou
can override this variable with the radix command.

Default Radix Flags

Displays SystemV erilog and SystemC enums as numbers rather than
strings. This option overrides the global setting of the default radix.
Y ou can override this variable with the add list -radixenumsymbolic.

Suppress Warnings

From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. The corresponding
modelsim.ini variable is StdArithNoWarnings.

From |EEE Numeric Std Packages suppresses warnings generated
within the accelerated numeric_std and numeric_bit packages. The
corresponding modelsim.ini variable is NumericStdNoWarnings.

ModelSim User’s Manual, v10.3a 423

modelsim.ini Variables

Making Changes to the modelsim.ini File

Table A-1. Runtime Option Dialog: Defaults Tab Contents (cont.)

Option

Description

Default Run

Sets the default run length for the current simulation. The
corresponding modelsim.ini variableis RunLength. Y ou can override
this variable by specifying the run command.

Iteration Limit

Sets a limit on the number of deltas within the same simulation time
unit to prevent infinite looping. The corresponding modelsim.ini
variableis lterationLimit.

Default Force Type

Selects the default force type for the current simulation. The
corresponding modelsim.ini variable is DefaultForceKind. Y ou can
override this variable by specifying the force command argument
-default, -deposit, -drive, or -freeze.

Figure A-2. Runtime Options Dialog Box: Severity Tab

Runtime Options El
Defaults Sewerity I WLF Files] ﬂ_ﬂ
Break Sewerity ———— Mo Message Display Faor
C Eatal YHOL ‘erilog
aka

& Failure ™ Failure [Fatal

" Error [Error [Error

0 Warning [\Warning I Warning

 Note] Info [Mote v Irfo

Ik Zancel Apply

Table A-2. Runtime Option Dialog: Severity Tab Contents

Option

Description

No M essage Display
For -VHDL

Selects the VHDL assertion severity for which messages will not be
displayed (even if break on assertion is set for that severity). Multiple
selections are possible. The corresponding modelsim.ini variables are
IgnoreFailure, IgnoreError, IgnoreéWarning, and IgnoreNote.

424

ModelSim User's Manual, v10.3a

modelsim.ini Variables
Making Changes to the modelsim.ini File

Figure A-3. Runtime Options Dialog Box: WLF Files Tab

Runtime Options |

Defaulks] Sewverity WLF Files I ﬁﬂ
— WLF File Size Lirnik WLF File Tirme Lirnit
% Mo Size Limit &+ Mo Time Limit
" Size Limit ||:| Meg. " Time Limit ||:| nz v
—WLF akkributes Desian Hierarchy
¥ Compress WLF daka, ¥ Save regions containing logged signals.
[Delete WLF fille on exik, " Save all regions in design.

(] 4 Cancel Apply

Table A-3.

Runtime Option Dialog: WLF Files Tab Contents

Option

Description

WLF File Size Limit

Limitsthe WLF file by size (as closely as possible) to the specified
number of megabytes. If both size and time limits are specified, the
most restrictive is used. Setting it to O resultsin no limit. The
corresponding modelsim.ini variable is WLFSizeL imit.

WLF FileTime
Limit

Limitsthe WLF file by size (as closely as possible) to the specified
amount of time. If both time and size limits are specified, the most
restrictive is used. Setting it to O resultsin no limit. The
corresponding modelsim.ini variable is WLFTimeLimit.

WLF Attributes

Specifies whether to compress WLF files and whether to delete the
WLF filewhen the simulation ends. Y ou would typically only disable
compression for troubleshooting purposes. The corresponding
modelsim.ini variables are WLFCompress for compression and
WLFDeleteOnQuit for WLF file deletion.

Design Hierarchy

Specifieswhether to save all design hierarchy inthe WLF file or only
regions containing logged signals. The corresponding modelsim.ini
variable is WLFSaveAllRegions.

ModelSim User’s Manual, v10.3a 425

modelsim.ini Variables
Making Changes to the modelsim.ini File

Editing modelsim.ini Variables
The syntax for variablesin thefileis:

<variable> = <value>

Procedure

1. Openthe modelsm.ini file with atext editor.

2. Find the variable you want to edit in the appropriate section of thefile.

3. Typethe new value for the variable after the equal (=) sign.
4. |If the variableis commented out with asemicolon (;) remove the semicolon.
5.

Save.

Overriding the Default Initialization File

Y ou can make changes to the working environment during a work session by loading an
aternate initialization file that replaces the default modelsim.ini file. Thisfile overridesthefile
and path specified by the MODEL SIM environment variable. See “Initialization Sequence” for
the modelsim.ini file search precedence.

Procedure
1. Open the modelsim.ini file with atext editor.
. Make changes to the modelsim.ini variables.

2
3. Savethefile with an alternate name to any directory.
4

. After start up of thetool, specify the -modelsimini <ini_filepath> switch with one of the
following commands:

Table A-4. Commands for Overriding the Default Initialization File

Simulator Commands Compiler Commands Utility Commands
vsim vcom vdel
viog vdir
vgencomp
vmake

See the <command> -modelsimini argument description for further information.

426 ModelSim User's Manual, v10.3a

modelsim.ini Variables
Variables

Variables

The modelsim.ini variables arelisted in order alphabetically. The following information isgiven
for each variable.

® A short description of how the variable functions.

® Thelocation of the variable, by section, in the modelsim.ini file.

® Thesyntax for the variable.

® Alisting of al values and the default value where applicable.

* Related arguments that are entered on the command line to override variable settings.
Commands entered at the command line always take precedence over modelsim.ini
settings. Not all variables have related command arguments.

® Related topics and links to further information about the variable.

AddPragmaPrefix

This variable enables recognition of synthesis and coverage pragmas with a user specified
prefix. If this argument is not specified, pragmas are treated as comments and the previously
excluded statements included in the synthesized design. All regular synthesis and coverage
pragmas are honored.

Section [vcom], [vlog]

Syntax
AddPragmaPrefix = <prefix>

<pr efix> — Specifies a user defined string where the default is no string, indicated by
quotation marks ("").

AmsStandard

This variable specifies whether vcom adds the declaration of REAL_VECTOR to the
STANDARD package. Thisis useful for designers using VHDL-AMS to test digital parts of
their model.

Section [vcom]

Syntax
AmsStandard = {0 | 1}
0 — (default) Off
1—0On
Y ou can override this variable by specifying vcom {-amsstd | -noamsstd} .

ModelSim User’s Manual, v10.3a 427

modelsim.ini Variables
Variables

Related Topics
MGC_AMS HOME

ArchiveLibCompact

This variable sets the compaction trigger for archive libraries. The value is the percentage of
free spacein the archive.

Section [utilg]

Syntax
Archivel.ibCompact = <value>
Default value is 0.5.

AssertFile

This variable specifies an alternative file for storing VHDL assertion messages. By default,
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (refer to “Creating a Transcript File”). If the AssertFile variableis specified,
all assertion messages will be stored in the specified file, not in the transcript.

Section [vsim]
Syntax
AsseartFile = <filename>

<filename> — Any valid file name containing assertion messages, where the default
nameis assert.log.

Y ou can override this variable by specifying vsim -asser tfile.

BatchMode

This variable runs batch (non-GUI) simulations. The simulations are executed via scripted files
from a Windows command prompt or UNIX terminal and do not provide for interaction with
the design during simulation. The BatchM ode variable will be ignored if you use the -batch, -
C, -gui, or -i optionsto vsim. Refer to Batch Simulation for more information about running
batch simulations.

Section [vsim]

Syntax
BatchMode ={0 | 1}

0 — (default) Runs the ssimulator in interactive mode. Refer to vsim -i for more
information.

428 ModelSim User's Manual, v10.3a

modelsim.ini Variables
Variables

1 — Enables batch simulation mode.
Y ou can also enable batch mode by specifying vsim -batch.

Related Topics

Batch Simulation vsim -do
BatchTranscriptFile variable vsim -i
TranscriptFile variable vsim -logfile
vsim -batch vsim -nolog

BatchTranscriptFile

This variable enables automatic creation of atranscript file when the simulator runs in batch
mode. All transcript datais sent to stdout when this variableis disabled and the simulator isrun
in batch mode (BatchM ode = 1, or vsim -batch).
Section [vsim]
Syntax

BatchTranscriptFile = <filename>

<filename> — Any string representing a valid filename where the default is transcript.
Y ou can override this variable by specifying vsim -logfile <filename>, vsim -nolog.

Related Topics

Batch Simulation vsim -batch
BatchMode variable vsim -logfile
TranscriptFile variable vsim -nolog

transcript file command

BindAtCompile

This variable instructs Model Sim to perform VHDL default binding at compile time rather than
load time.

Section [vcom]

Syntax
BindAtCompile={0 | 1}
0 — (default) Off
1—0On
Y ou can override this variable by specifying vcom {-bindAtCompile | -bindAtL oad} .

ModelSim User’s Manual, v10.3a 429

modelsim.ini Variables
Variables

Related Topics
Default Binding RequireConfigForAllDefaultBinding

BreakOnAssertion

This variable stops the simulator when the severity of a VHDL assertion message or a
SystemVerilog severity system task is equal to or higher than the value set for the variable.

Section [vsim]

Syntax
BreakOnAssertion={0|1]2]3| 4}
0 — Note
1— Warning
2 — Error
3 — (default) Failure
4 — Fatal

Related Topics

Y ou can set this variable in the The Runtime
Options Dialog.

CheckPlusargs

This variable defines the simulator’ s behavior when encountering unrecognized plusargs. The
simulator checks the syntax of all system-defined plusargs to ensure they conform to the syntax
defined in the Reference Manual. By default, the simulator does not check syntax or issue
warnings for unrecognized plusargs (including accidently misspelled, system-defined plusargs),
because there is no way to distinguish them from a user-defined plusarg.

Section [vsim]
Syntax
CheckPlusargs={0| 1|2}
0 — (default) Ignore
1 — Issues awarning and simulates while ignoring.
2 — Issues an error and exits.

CheckpointCompressMode

This variable specifies that checkpoint files are written in compressed format.

430 ModelSim User's Manual, v10.3a

modelsim.ini Variables
Variables

Section [vsim]
Syntax
CheckpointCompressMode = {0 | 1}
0 — Off
1 — (default) On

CheckSynthesis

This variable turns on limited synthesis rule compliance checking, which includes checking
only signals used (read) by a process and understanding only combinational logic, not clocked
logic.

Section [vcom]
Syntax
CheckSynthesis={0| 1}
0 — (default) Off
1—0On
Y ou can override this variable by specifying vcom -check_synthesis.

ClassDebug

This variable enables visibility into and tracking of class instances.
Section [vsim]
Syntax
ClassDebug ={0| 1}
0 — (default) Off
1—0On
Y ou can override this variable by specifying vsim -classdebug.
Related Topics

classinfo find command classinfo stats command
classinfo instances command classinfo trace command
classinfo report command classinfo types command

CommandHistory

This variable specifies the name of afile in which to store the Main window command history.

ModelSim User’s Manual, v10.3a 431

modelsim.ini Variables
Variables

Section [vsim]
Syntax

CommandHistory = <filename>

<filename> — Any string representing avalid filename where the default is
cmdhist.log.

The default setting for this variable isto comment it out with a semicolon (;).

CompilerTempDir

This variable specifies adirectory for compiler temporary filesinstead of “work/_temp.”
Section [vcom]

Syntax
CompilerTempDir = <directory>
<directory>— Any user defined directory where the default is work/_temp.

ConcurrentFileLimit

Thisvariable controls the number of VHDL files open concurrently. This number should be less
than the current limit setting for maximum file descriptors.

Section [vsim]
Syntax
ConcurrentFileLimit = <n>
<n>— Any non-negative integer where 0 is unlimited and 40 is the default.

Related Topics

Syntax for File Declaration

CreateDirForFileAccess

This variable controls whether the Verilog system task $fopen or vpi_mcd_open() will create a
non-existent directory when opening afile in append (a), or write (w) modes.

Section [vsim]
Syntax
CreateDirForFileAccess={0| 1}

0 — (default) Off
1—0On

432 ModelSim User's Manual, v10.3a

modelsim.ini Variables
Variables

Related Topics
New Directory Path With $fopen

DatasetSeparator
This variable specifies the dataset separator for fully-rooted contexts, for example:

sim:/top

The variable for DatasetSeparator must not be the same character as the PathSeparator variable,
or the Signal SpyPathSeparator variable.

Section [vsim]
Syntax
DatasetSeparator = <character>

<character>— Any character except specia characters, such as backslash (\), brackets
({}), and so forth, where the default isa colon (;).

DefaultForceKind

This variable defines the kind of force used when not otherwise specified.
Section [vsim]
Syntax
DefaultForceKind = { default | deposit | drive | freeze}
default — Uses the signal kind to determine the force kind.
deposit — Sets the object to the specified value.
drive — Default for resolved signals.
freeze — Default for unresolved signals.
Y ou can override this variable by specifying force { -default | -deposit | -drive | -freeze} .

Related Topics

Y ou can set this variable in the The Runtime
Options Dialog.

DefaultLibType

This variable determines the default type for alibrary created with the vlib command.
Section [utilg]

ModelSim User’s Manual, v10.3a 433

modelsim.ini Variables
Variables

Syntax
DefaultLibType={0|1]|2}
0 - legacy library using subdirectories for design units
1 - archive library (deprecated)
2 - (default) flat library

DefaultRadix
Thisvariable allows a numeric radix to be specified as aname or number. For example, you can
specify binary as“binary” or “2” or octal as“octal” or “8”.

Section [vsim]

Syntax
DefaultRadix = { ascii | binary | decimal | hexadecimal | octal | symbolic | unsigned}
ascii — Display valuesin 8-bit character encoding.
binary— Display valuesin binary format. Y ou can also specify 2.
decimal or 10 — Display values in decimal format. Y ou can also specify 10.

hexadecimal— (default) Display values in hexadecimal format. Y ou can also specify
16.

octal — Display valuesin octal format. Y ou can also specify 8.
symbolic — Display valuesin aform closest to their natural format.
unsigned — Display values in unsigned decimal format.

Y ou can override this variable by specifying radix { ascii | binary | decimal | hexadecimal |
octal | symbolic | unsigned}, or by using the -default_radix switch with the vsim command.

Related Topics

You can set thisvariablein the The Runtime Changing Radix (base) for the Wave Window
Options Dialog.

DefaultRadixFlags

This variable controls the display of enumeric radices.
Section [vsim]

Syntax
DefaultRadixFlags={" " | enumeric | showbase}

" " — No options. Formats enums symbolically.
enumeric — Display enumsisin numeric format.

434 ModelSim User's Manual, v10.3a

modelsim.ini Variables
Variables

showbase — (default) Display enums showing the number of bits of the vector and the
radix that was used where:

binary = b

decimal = d

hexadecimal = h

ASCll =a

time=t
For example, instead of simply displaying a vector value of “31”, avalue of “16’h31” may be
displayed to show that the vector is 16 bits wide, with a hexadecimal radix.

Y ou can override this variable with the radix command.

DefaultRestartOptions

This variable sets the default behavior for the restart command.
Section [vsim]

Syntax

DefaultRestartOptions = { -force | -noassertions | -nobreakpoint | -nofcovers | -nolist | -nolog |
-nowave}

-for ce — Restart simulation without requiring confirmation in a popup window.

-noasser tions — Restart simulation without maintaining the current assert directive
configurations.

-nobreakpoint — Restart simulation with all breakpoints removed.

-nofcover s— Restart without maintaining the current cover directive configurations.
-nolist — Restart without maintaining the current List window environment.

-nolog — Restart without maintaining the current logging environment.

-nowave — Restart without maintaining the current Wave window environment.

semicolon (;) — Default isto prevent initiation of the variable by commenting the
variableline.

Y ou can specify one or more value in a space separated list.

Y ou can override this variable by specifying restart { -for ce | -noassertions | -nobreakpoint |
-nofcovers| -nolist | -nolog | -nowave} .

ModelSim User’s Manual, v10.3a 435

modelsim.ini Variables
Variables

Related Topics

vsim -restore

DelayFileOpen

This variable instructs Model Sim to open VHDL87 files on first read or write, else open files
when elaborated.

Section [vsim]
Syntax
DelayFileOpen={0| 1}
0 — (default) On
1 — Off

displaymsgmode

This variable controls where the simulator outputs system task messages. The display system
tasks displayed with this functionality include: $display, $strobe, $monitor, $write aswell asthe
analogous file 1/0 tasks that write to STDOUT, such as $fwrite or $fdisplay.

Section [msg_system]
Syntax
displaymsgmode = { both | tran | wif}
both — Outputs messages to both the transcript and the WLF file.

tran — (default) Outputs messages only to the transcript, therefore they are unavailable
in the Messa