& Microsemi

Libero SoC Simulation Library Setup Instructions

Introduction

Libero SoC Integration
Libero SoC Tcl file generation

Using ModelSim PE/SE/DE

Aldec Setup for Active-HDL and Riviera-Pro

Environment Variable

Download Compiled Library
Converting run.do for Aldec simulation
Known Issues

Sample Tcl and shell script files

Cadence Incisive Setup

Environment Variables
Download Compiled Library
Creating the NCSim script file
Sample Tcl and shell script files
Automation

Mentor Graphics QuestaSim Setup

Environment variables

Converting run.do for Mentor QuestaSim
Download Compiled Library

Sample Tcl and shell script files

Synopsys VCS Setup

Environment variables
Download Compiled Library
VCS simulation script file
Limitations/Exceptions

Sample Tcl and shell script files
Automation

Introduction

The purpose of this document is to describe the procedure to set up the simulation environment using a Libero SoC project as the input.
This documentation corresponds to the pre-compiled libraries provided for use with Libero SoC v11.2 and newer software releases. The
libraries provided are compiled for Verilog. VHDL users will require a license allowing mixed-mode simulation.

Compiled Simulation Libraries are provided for the following tools:

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#documents

Aldec Active-HDL

Aldec Riviera-PRO
Cadence Incisive Enterprise
Mentor QuestaSim
Synopsys VCS

To request a library for a different simulator, please contact Microsemi SoC Tech Support at soc_tech@microsemi.com.

Libero SoC Integration

Libero SoC supports simulation using ModelSim ME by generating a run.do Tcl file. This file used by ModelSim ME to setup and run the
simulation. To use other simulation tools you can generate the ModelSim ME run.do then modify the Tcl script file to use commands
compatible with your simulator.

Libero SoC Tcl file generation

After creating and generating your design in Libero SoC, you must start a ModelSim ME simulation under all design phases (presynth,
postsynth and postlayout). The purpose of this step is to force Libero SoC to generate the run.do Tcl file for ModelSim ME for each
design phase. After starting each simulation run, you must rename the auto-generated run.do file under the simulation directory to
prevent Libero SoC overwriting that file. For example, the files can be renamed presynth_run.do, postsynth_run.do and
postlayout_run.do.

Using ModelSim PE/SE/DE

Click here to read KI8797 about Compiling SmartFusion Library for ModelSim Full Version (PE/SE/DE) Simulation. The same solution
applies to SmartFusion2 and IGLOO? libraries.

Aldec Setup for Active-HDL and Riviera-Pro

The Aldec simulators use Tcl files similar to ModelSim ME. The run.do Tcl files used by ModelSim ME can be modified and used for
simulation using Aldec simulators. Below is a script file which converts the ModelSim ME run.do files to be compatible with Aldec
simulators.

Environment Variable
Set your environment variable to your license file location:
LM_LICENSE_FILE: must include a pointer to the license server.

Download Compiled Library

Download the libraries for Aldec Active-HDL and Aldec Riviera-PRO from Microsemi’s website.

Converting run.do for Aldec simulation

The following lists the Aldec-equivalent commands to modify in the ModelSim run.do Tcl file:

ModelSim Active-HDL
Vlog alog
Vcom acom
Vliib alib
Vsim asim
Vmap amap

1. Set the location of the current working directory.

set dsn <simulation directory>

2. Set aworking library name and map its location. Also, map the location of Microsemi FPGA family precompiled libraries (for
example, SmartFusion2) on which you are running your design.

alib presynth
amap presynth presynth

amap SmartFusion2 <location of the precompiled libraries>

3. Compile all the necessary HDL files used in the design with the required library.

http://www.microsemi.com/document-portal/doc_download/132400-aldec-active-hdl-v9-2-sp1-libraries-for-smartfusion2-and-igloo2-for-use-with-libero-soc-v11-1-sp1
mailto:soc_tech@microsemi.com
http://soc.microsemi.com/kb/article.aspx?id=KI8797
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#documents

alog -work presynth temp.v (for Verilog)

alog -work presynth testbench.v

acom -work presynth temp.vhd (for Vhdl)

acom -work presynth testbench.vhd

4. After compiling, simulate the design.
asim -L SmartFusion2 -L presynth -t lps presynth.testbench

run 10us

Known Issues

e Libraries compiled using Riviera-PRO are platform specific (i.e. 64-bit libraries cannot be run on 32-bit platform and vice
versa.)

e For designs containing SERDES/MDDR/FDDR, use the following option in your run.do Tcl files while running simulations after
compiling their designs:
o Active-HDL: asim —02
o Riviera-PRO: asim —02 (for presynth and postlayout simulations) and asim —O5 (for postlayout simulations)

Pending SARs. Contact Microsemi SoC Technical Support for more information:
SAR 49892 - Crash in Active-HDL while running MDDR BFM Simulations
SAR 49908 — Active-HDL: VHDL Error for Math block simulations

SAR 50627 — Riviera-PRO 2013.02: Simulation errors for SERDES designs
SAR 50461 — Riviera-PRO: asim -O2/-O5 option in simulations

Sample Tcl and shell script files

The script files below convert ModelSim run.do files into Aldec simulator compatible run.do files.

Script File Usage for Active-HDL

Place this script file in the Libero SoC simulation folder and click run.

Active-HDL:
perl active hdl parser.pl presynth run.do postsynth run.do
postlayout run.do Microsemi Family

Location of ActiveHDL Precompiled libraries

Active_hdl_parser_pl
#!/usr/bin/perl -w

FHAEA AR R R R R R A R R R R R R R R R R

#Usage: perl active hdl parser.pl presynth run.do postsynth run.do postlayout run.do Microsemi Family
Precompiled Libraries location#

FHAEA AR R R R R R R R R R R R R R R

use POSIX;

use strict;

my (Spresynth, Spostsynth, S$postlayout, $family, $1lib location) = @ARGV;
sactive hdl parser ($presynth, $family, $1lib location);

sactive hdl parser ($postsynth, $family, $1lib location);

sactive hdl parser ($postlayout, $family, $1lib location);

sub active hdl parser {

my $ModelSim run do = $ [0];
my S$actel family = $ [1];

my $1ib_location = $_[2];
my $state;

open (INFILE,"S$ModelSim run do");
my @ModelSim run_do = <INFILE>;

my $line;

if ($ModelSim run do =~ m/ (presynth)/)

{

open (OUTFILE,">presynth Aldec.do");

Sstate = $1;

} elsif ($ModelSim run do =~ m/ (postsynth)/)
{

open (OUTFILE,">postsynth Aldec.do");

$state = $1;

} elsif ($ModelSim run do =~ m/ (postlayout)/)
{

open (OUTFILE, ">postlayout Aldec.do");

Sstate = $1;

} else

{

print "Wrong Inputs given to the file\n";

print "#Usage: perl active hdl parser.pl presynth run.do postsynth run.do postlayout run.do
\"Libraries location\"\n";

}
foreach $line (@ModelSim run do)
{
General Operations
$line =~ s/quietly set PROJECT DIR/set dsn/g;
$line =~ s/\$\{PROJECT DIR\}/\$dsn/g;
$line =~ s/vlib/alib/;
$line =~ s/vmap/amap/;
$line =~ s/vcom/acom/;
$line =~ s/"vlog/alog/;
$line =~ s/vsim/asim/g;
$line =~ s/exit/endsim/g;
if ($line =~ m/ (set\s+dsn.*)/)
{
print OUTFILE "$1 \n";

} elsif ($line =~ m/"“source/)

print OUTFILE "$line ";
} elsif ($line =~ m/alib\s+.* ($state)/)

print OUTFILE "alib $1 Aldec \n";
} elsif ($line =~ m/"amap/)

if ($line =~ m/amap\s+(.*. LIB)\s+.*/)
{
print $1."\n";
print OUTFILE "alib $1 \n";
print OUTFILE "$line \n";
} elsif (Sline =~ m/amap\s+.* ($state)/)
{
$line =~ s/$state/$state_Aldec/g;
print OUTFILE "$line \n";
} elsif ($line =~ m/amap\s+.* (Sactel family)/)
{

print OUTFILE "alib $1 \n";
print OUTFILE "amap $1 \"$lib location\"\n\n";
}
} elsif ($line =~ m/(alog\s+.*?. LIB).*.(refresh)/ || $line =~ m/(acom\s+.*?. LIB).*. (refresh)/)

print "\$1 = $1; \$2 = $2; \n";
$line = $1;

$line =~ s/\-\wt+/-refresh/;
print OUTFILE "$line \n";

} elsif ($line =~ m/"alog/ || $line =~ m/"“acom/)

$line =~ s/$state/$state\ Aldec/g;
print OUTFILE "$line \n";

} elsif ($line =~ m/"asim/)

$line =~ s/$state/$state\ Aldec/g;
print OUTFILE "$line \n";

} elsif ($line =~ m/(run.*)/)

print OUTFILE "$1 \n";

} elsif ($line =~ m/endsim/)
print OUTFILE "$line \n";

}
close (INFILE) ;
close (OUTFILE) ;

}

Script File Usage for Riviera-PRO

Place this script file in the Libero SoC simulation folder and click run.

Riviera-PRO:
perl rivierapro parser.pl presynth run.do postsynth run.do
postlayout run.do Microsemi Family

Location of RivieraPRO Precompiled libraries

Rivierapro_parser_pl
#!/usr/bin/perl -w
B i

#Usage: perl active hdl parser.pl presynth run.do postsynth run.do postlayout run.do Microsemi Family
Precompiled Libraries location#

FHAF AR R R R
use POSIX;

use strict;
my ($Spresynth, S$postsynth, $postlayout, $family, $1lib location, $folder name) = @ARGV;

&active hdl parser($presynth, $family, $1lib location, S$folder name);
&active hdl parser($postsynth, $family, $1lib location, S$folder name);
&active hdl parser($postlayout, $family, $1lib location, $folder name);

sub active hdl parser {

my $ModelSim run do = $ [0];
my Sactel family = $
my $lib location = $
my $folder = $ [3];

my $state;

if (-e "S$ModelSim run do")

{
open (INFILE,"S$ModelSim run do");
my @ModelSim_run_do = <INFILE>;

my $line;

if ($ModelSim run do =~ m/ (presynth)/)

{

‘mkdir ALDECiPRESYNTH\ ;

open (OUTFILE,">ALDEC PRESYNTH/presynth Aldec.do");
Sstate = $1;

} elsif ($ModelSim run do =~ m/ (postsynth)/)

{

‘mkdir ALDEC_POSTSYNTH;

open (OUTFILE,">ALDEC_POSTSYNTH/postsynth_Aldec.do”);
Sstate = $1;

} elsif ($ModelSim run do =~ m/ (postlayout)/)

{

‘mkdir ALDEC_POSTLAYOUT T

open (OUTFILE, ">ALDEC POSTLAYOUT/postlayout Aldec.do");
Sstate = $1;

} else

{

print "Wrong Inputs given to the file\n";

print "#Usage: perl active hdl parser.pl presynth run.do postsynth run.do postlayout run.do
\"Libraries location\"\n";

}

foreach $line (@ModelSim run do)
{
General Operations

$line =~ s/quietly set PROJECT DIR/set dsn/g;
$line =~ s/\$\{PROJECT_DIR\}/\S$dsn/g;
$line =~ s/vlib/alib/;
$line =~ s/vmap/amap/;
$line =~ s/vcom/acom/;
$line =~ s/"vlog/alog/;
$line =~ s/vsim/asim/g;
$line =~ s/exit/endsim/g;
if ($line =~ m/ (set\s+dsn.*)/)

{
print OUTFILE "$1 \n";

} elsif (Sline =~ m/"source/)
{
print OUTFILE "$line ";
} elsif ($line =~ m/alib\s+.* (Sstate)/)

print OUTFILE "alib $1_Aldec \n";
} elsif ($line =~ m/alib\s+ddr/)

print OUTFILE "alib ddr \n";
print OUTFILE "amap ddr \"E\:\/WORK\/libs\/ddr\" \n";

} elsif ($line =~ m/"amap/)

if ($line =~ m/amap\s+(.*. LIB)\s+.*/)
{
print $1."\n";
print OUTFILE "alib $1 \n";
$line =~ s/..\/component/..\/..\/component/g;
print OUTFILE "$line \n";
} elsif ($line =~ m/amap\s+.* ($state)/)
{
$line =~ s/$state/$state\ Aldec/g;
print OUTFILE "$line \n";
} elsif ($line =~ m/amap\s+.* (Sactel family)/)
{
print OUTFILE "alib $1 \n";
print OUTFILE "amap $1 \"$lib location\"\n\n";
#print OUTFILE "alog -work $state\ Aldec \"\$dsn\/simulation\/smartfusion2.v\" ";
}
} elsif ($line =~ m/(alog\s+.*?. LIB).*.(refresh)/ || $line =~ m/(acom\s+.*?. LIB).*. (refresh)/

print "\$1 = $1; \$2 = $2; \n";

$line = $1;

$line =~ s/\-\w+/-refresh/;

print OUTFILE "$line \n";
} elsif ($line =~ m/"alog/ || $line =~ m/"“acom/)
{

$line =~ s/$state/$state\ Aldec/g;

print OUTFILE "$line \n";

} elsif ($line =~ m/"asim/ && $state eq "postsynth" && ($folder =~ m/DDR/ || $folder =~
m/SERDES/ || $folder =~ m/PI_Sim/ || $folder =~ m/ENVM/))

{
$line =~ s/$state/$state\ Aldec/g;
S$line =~ s/asim.*wlf\"/asim /g;
$line =~ s/asim/asim -05/g;

print OUTFILE "$line \n";

} elsif ($line =~ m/"asim/ && $state ne "postsynth" && ($folder =~ m/DDR/ || $folder =~
m/SERDES/ || $folder =~ m/PI Sim/ || $folder =~ m/ENVM/))

{
$line =~ s/$state/$state\ Aldec/g;
$line =~ s/asim.*wlf\"/asim /g;
$line =~ s/asim/asim -02/g;

print OUTFILE "$line \n";

} elsif ($line =~ m/"asim/)

{
$line =~ s/$state/$state\ Aldec/g;
$line =~ s/asim.*wlf\"/asim /g;
#$line =~ s/asim/asim/g;

print OUTFILE "$line \n";

} elsif ($line =~ m/(run.*)/)
{
print OUTFILE "$1 \n";
} elsif ($line =~ m/endsim/)
{
print OUTFILE "$line \n";

close (INFILE) ;
close (OUTFILE) ;

Cadence Incisive Setup

You need to create a script file similar to the ModelSim ME run.do to run the Cadence Incisive simulator. You can follow the steps
below and create script file for NCSim or use the script file provided below to convert the ModelSim ME run.do files into the
configuration files needed to run simulations using NCSim.

Environment Variables

Required environment variables:

1. LM_LICENSE_FILE: must include a pointer to the license file.

2. cds_root: must point to the home directory location of Cadence Incisive Installation.

3. PATH: must point to the bin location under the tools directory pointed by cds_root (i.e. $cds_root/tools/bin/64bit(for a 64 bit
machine and $cds_root/tools/bin for a 32 bit machine)

There are three ways of setting up the simulation environment in case of a switch between 64bit and 32 bit operating systems:

Casel: PATH Variable
set path = (install_dir/tools/bin/64bit $path) for 64bit machines and
set path = (install_dir/tools/bin $path) for 32bit machines

Case2: Using the -64bit Command-line Option
In the command line specify -64bit option in order to invoke the 64bit executable.

Case3: Setting the INCA_64BIT or CDS_AUTO_64BIT Environment Variable
The INCA_64BIT variable is treated as boolean. You can set this variable to any value or to a null string.
setenv INCA_64BIT

Note: The INCA_64BIT environment variable does not affect other Cadence tools, such as IC tools. However, for Incisive tools, the
INCA_64BIT variable overrides the setting for the CDS_AUTO_64BIT environment variable. If the INCA_64BIT environment variable is
set, all Incisive tools will be run in 64-bit mode.

setenv CDS_AUTO_64BIT INCLUDE:INCA

Note: The string INCA must be in uppercase. Because all executables must be run in either 32-bit mode or in 64-bit mode, do not set
the variable to include one executable, as in the following:

setenv CDS_AUTO_64BIT INCLUDE:ncelab
Other Cadence tools, such as IC tools, also use the CDS_AUTO_64BIT environment variable to control the selection of 32-bit or 64-bit
executables. The following table shows how you can set the CDS_AUTO_64BIT variable to run the Incisive tools and IC tools in all
modes.

CDS_AUTO_64BIT Variable Incisive Tools IC Tools
setenv CDS_AUTO_64BIT ALL 64-bit 64-bit
setenv CDS_AUTO_64BIT NONE 32-bit 32-bit
setenv CDS_AUTO_64BIT EXCLUDE:ic_binary 64-bit 32-bit
setenv CDS_AUTO_64BIT EXCLUDE:INCA 32-hit 64-bit

Because all Incisive tools must be run in either 32-bit mode or in 64-bit mode, do not use EXCLUDE to exclude a specific executable,
as in the following:
setenv CDS_AUTO_64BIT EXCLUDE:ncelab

Note: If you set the CDS_AUTO_64BIT variable to exclude the Incisive tools (setenv CDS_AUTO_64BIT EXCLUDE:INCA), all Incisive
tools are run in 32-bit mode. However, the -64bit command-line option overrides the environment variable.

The following configuration files help you manage your data and control the operation of the simulation tools and utilities

e Library mapping file (cds.lib)—Defines a logical name for the location of your design
e Libraries and associates them with physical directory names.

e Variables file (hdl.var}—Defines variables that affect the behavior of simulation tools and utilities

Download Compiled Library

Download the libraries for Cadence Incisive from Microsemi’s website.

Creating the NCSim script file

After creating a copy of the run.do Tcl files, please do the following steps in order to run your simulation using NCSim.

1.

Create a cds.lib file that defines which libraries are accessible and where they are located. The file contains statements that map
library logical names to their physical directory paths. For example if you are running presynth simulation, the cds.lib file can be
written as:

DEFINE presynth ./presynth
DEFINE COREAHBLITE_LIB ./COREAHBLITE_LIB
DEFINE smartfusion2 <location of Smartfusion2 precompiled libraries on disk>

Create a hdl.var file which is an optional configuration file that contains configuration variables, which determine how your design
environment is configured.
These include:
e Variables used to specify the work library where the compiler stores compiled objects and other derived data.
e For Verilog, variables (LIB_MAP, VIEW_MAP, WORK) that are used to specify the libraries and views to search
when the elaborator resolves instances.
e Variables that allow you to define compiler, elaborator, and simulator command-line options and arguments.
In case of presynth simulation example shown above, say we have 3 RTL files a.v, b.v, testbench.v which needs to be
compiled into presynth, COREAHBLITE_LIB and presynth libraries respectively. The hdl.var file can be written as:

DEFINE WORK presynth
DEFINE PROJECT_DIR <location of the files>

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT DIR}/a.v => presynth)
DEFINE LIB_MAP ($LIB_MAP, ${PROJECT DIR}/b.v => COREAHBLITE_LIB)

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/testbench.v => presynth)
DEFINE LIB_MAP ($LIB_MAP, + => presynth)

Compile the design files using ncvlog option.

ncvlog +incdir+<testbench directory> —cdslib ./cds.lib —hdlvar ./hdl.var —logfile ncvlog.log —update —linedebug a.v b.v
testbench.v

Elaborate the design using ncelab: The elaborator constructs a design hierarchy based on the instantiation and configuration
information in the design, establishes signal connectivity, and computes initial values for all objects in the design. The elaborated
design hierarchy is stored in a simulation snapshot, which is the representation of your design that the simulator uses to run the
simulation.

ncelab —Message —cdslib ./cds.lib —hdlvar ./hdl.var —logfile ncelab.log —errormax 15 —access +rwc —status worklib.<name
of testbench module>:module

Elaboration during postlayout simulation
In case of postlayout simulations, first the SDF file needs to be compiled before elaboration using ncsdfc command.

ncsdfc <filename>.sdf —output <filename>.sdf.X
During elaboration use the compiled SDF output with —autosdf option as follows:

ncelab -autosdf —Message —cdslib ./cds.lib —hdlvar ./hdl.var —logfile ncelab.log —errormax 15 —access +rwc —status
worklib.<name of testbench module>:module —sdf_cmd_file ./sdf _cmd_file

The sdf_cmd_file should be as follows

COMPILED_SDF_FILE = “<location of compiled SDF file>"

Simulating using ncsim: After elaboration a simulation snapshot is created which is loaded by ncsim for simulation. This can be
run in batch mode or GUI mode.

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#documents

ncsim —Message —batch/-gui —cdslib ./cds.lib —hdlvar ./hdl.var —logfile ncsim.log —errormax 15 —status worklib.<testbench
module name>:module

6. Using ncverilog or irun: All the above three steps of compiling, elaborating and simulating can be put into a shell script file and
sourced from command line. Instead of using these three steps design can be simulated in one step using ncverilog or irun option
as follows:

ncverilog +incdir+<testbench location> -cdslib ./cds.lib —hdlvar ./hdl.var <all RTL files used in the design>
irun +incdir+<testbench location> -cdslib ./cds.lib —hdlvar ./hdl.var <all RTL files used in the design>

Known Issues
Testbench Workaround:
Using the following statement for specifying the clock frequency in the testbench generated by user or the default
testbench generated by Libero SoC does not work with NCSim.
always @(SYSCLK)
#(SYSCLK_PERIOD / 2.0) SYSCLK <=!ISYSCLK;

Modify as follows to run simulation:
always #(SYSCLK_PERIOD / 2.0) SYSCLK = ~SYSCLK;

Compiled libraries for NCSim are platform specific (i.e. 64bit libraries are not compatible on 32bit platform and vice versa.)

Postsynth and Postlayout Simulations using MSS and SERDES:

While running postsynth simulations of designs containing MSS block, or postlayout simulations of designs using SERDES, the BFM
simulations do not work if —libmap option is not specified during elaboration. This is because during elaboration, MSS is resolved from
the work library (because of the default binding and the worklib being postsynth/postlayout) where it is just a black box.

The ncelab command should be written as follows in order to resolve the MSS block from smartfusion2 precompiled library.
ncelab -libmap lib.map -libverbose -Message -access +rwc cfgl
and the lib.map file should be as follows:

config cfgl;
design <testbench_module_name>;
default liblist smartfusion2 <worklib>;
endconfig

This will resolve any cell in the smartfusion2 library before looking in the work library i.e. postsynth/postlayout.

The —libmap option can be used by default during elaboration for every simulation(presynth, postsynth and postlayout). This will avoid
simulation issues that are caused due to resolution of instances from libraries.

ncelab: *F,INTERR: INTERNAL EXCEPTION:

This ncelab tool exception is a caveat for designs containing FDDR in Smartfusion2 and IGLOO2 during postsynth and postlayout
simulations using —libmap option. This issue has been reported to Cadence support team (SAR 52113).

Sample Tcl and shell script files

The files below are the configuration files needed for setting up the design and shell script file for running NCSim commands.

Cds.lib

DEFINE smartfusion2 /scratch/krydor/tmpspace/users/me/nc-vliog64/SmartFusion2
DEFINE COREAHBLITE LIB ./COREAHBLITEiLIB

DEFINE presynth ./presynth

Hdl.var
DEFINE WORK presynth

DEFINE PROJECT_DIR
/scratch/krydor/tmpspace/sqausers/me/3rd party simulators/Cadence/IGLOO2/ENVM/M2GL050/envm ficl serl v/eNVM fab
master

http://bugzilla/show_bug.cgi?id=52113

DEFINE LIB MAP ($LIB7MAP,
${PROJECT DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/v1og/core/coreahblite addrdec.v =>
COREAHBLITE LIB)

DEFINE LIB MAP ($LIB_MAP,
${PROJECT DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite defaultslavesm.v =>
COREAHBLITE LIB)

DEFINE LIB MAP ($LIB MAP,
${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite masterstage.v =>
COREAHBLITE LIB)

DEFINE LIB MAP ($LIB7MAP,
${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite slavearbiter.v =>
COREAHBLITEiLIB)

DEFINE LIB MAP ($LIB7MAP,
${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/v1og/core/coreahblite slavestage.v =>
COREAHBLITE LIB)

DEFINE LIB MAP ($LIB_MAP,
${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite matrix2x16.v =>
COREAHBLITE LIB)

DEFINE LIB MAP ($LIB MAP,
${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/v1og/core/coreahblite.v => COREAHBLITE LIB)

DEFINE LIB MAP ($LIB MAP, ${PROJECT DIR}/component/work/SB/CCC_0/SB CCC 0 FCCC.v => presynth)

DEFINE LIB MAP ($LIB_MAP,
${PROJECT DIR}/component/Actel/DirectCore/CoreConfigMaster/2.0.101/rtl/vlog/core/coreconfigmaster.v => presynth
)

DEFINE LIB MAP ($LIB_MAP,
${PROJECT_ DIR}/component/Actel/DirectCore/CoreConfigP/4.0.100/rtl/v1og/core/coreconfigp.v => presynth)

DEFINE LIB MAP ($LIB_MAP,
${PROJECT_DIR}/component/Actel/DirectCore/CoreResetP/5.0.103/rtl/vlog/core/coreresetp pcie hotreset.v =>
presynth)

DEFINE LIB MAP ($LIB_MAP,
${PROJECT DIR}/component/Actel/DirectCore/CoreResetP/5.0.103/rtl/v1og/core/coreresetp.v => presynth)

DEFINE LIB MAP (SLIB MAP, ${PROJECT DIR}/component/work/SB/FABOSC 0/SB FABOSC 0 OSC.v => presynth)
DEFINE LIB MAP (SLIB MAP, ${PROJECT DIR}/component/work/SB HPMS/SB HPMS.v => presynth)
DEFINE LIB MAP (SLIB _MAP, ${PROJECT DIR}/component/work/SB/SB.v => presynth)

DEFINE LIB MAP (S$LIB MAP, ${PROJECT DIR}/component/work/SB top/SERDES IF 0/SB top SERDES IF 0 SERDES IF.v =>
presynth)

DEFINE LIB MAP (SLIB_MAP, ${PROJECT DIR}/component/work/SB top/SB top.v => presynth)
DEFINE LIB MAP (SLIB MAP, ${PROJECT DIR}/component/work/SB top/testbench.v => presynth)
DEFINE LIB MAP ($LIB MAP, + => presynth)

Commands.csh

ncvlog +incdir+../../component/work/SB top -cdslib ./cds.lib -hdlvar ./hdl.var -logfile ncvlog.log -errormax 15
-update -linedebug ../../component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite addrdec.v
./../component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite defaultslavesm.v
./component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite masterstage.v
./component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite slavearbiter.v
./component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite slavestage.v
./component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite matrix2x16.v
./component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vliog/core/coreahblite.v
./component/work/SB/CCC_0/SB_CCC_0 FCCC.v
./component/Actel/DirectCore/CoreConfigMaster/2.0.101/rtl/vlog/core/coreconfigmaster.v
./component/Actel/DirectCore/CoreConfigP/4.0.100/rtl/v1og/core/coreconfigp.v
./component/Actel/DirectCore/CoreResetP/5.0.103/rtl/vlog/core/coreresetp pcie hotreset.v
./component/Actel/DirectCore/CoreResetP/5.0.103/rtl/v1og/core/coreresetp.v
./component/work/SB/FABOSC 0/SB_FABOSC 0 OSC.v ../../component/work/SB HPMS/SB HPMS.v
./component/work/SB/SB.v ../../component/work/SB_top/SERDES_IF _0/SB_top SERDES IF 0 SERDES IF.v
. /component/work/SB_top/SB_top.v ../../component/work/SB top/testbench.v

N N N N

ncelab -Message -cdslib ./cds.lib -hdlvar ./hdl.var -work presynth -logfile ncelab.log -errormax 15 -access +rwc
-status presynth.testbench:module

ncsim -Message -batch -cdslib ./cds.lib -hdlvar ./hdl.var -logfile ncsim.log -errormax 15 -status
presynth.testbench:module

Automation

The script file below converts ModelSim run.do files into configuration files needed to run simulations using NCSim.

Script File Usage
perl cadence parser.pl presynth run.do postsynth run.do
postlayout run.do Microsemi Family

Location_of Cadence Precompiled libraries

Cadence_parser.pl
#!/usr/bin/perl -w

FHEEA AR R R R R R R R R R R R R R R R R R

#Usage: perl questa parser.pl presynth run.do postsynth run.do postlayout run.do Microsemi Family
Precompiled Libraries location#

FHEAAF AR R

use POSIX;

use strict;

my ($presynth, S$postsynth, S$postlayout, S$family, $1lib location) = @ARGV;
&questa parser (Spresynth, $family, $1ib location);
&questa parser (Spostsynth, $family, $1lib location);
&questa parser ($postlayout, $family, $1lib location);

sub questa parser {

my $ModelSim run do = $ [0];

Il
oy
-

my Sactel family
my $1lib location = $ [2];
my $state;

if (-e "$ModelSim run do")

open (INFILE,"S$ModelSim run do");
my @ModelSim run do = <INFILE>;

my $line;

if ($ModelSim run do =~ m/ (presynth)/)

{

‘mkdir QUESTA PRESYNTH Ty

open (OUTFILE,">QUESTA PRESYNTH/presynth questa.do");
Sstate = $1;

} elsif ($ModelSim run do =~ m/(postsynth)/)

{

‘mkdir QUESTAﬁPOSTSYNTH\ ;

open (OUTFILE,">QUESTA POSTSYNTH/postsynth questa.do");
Sstate = $1;

} elsif ($ModelSim run do =~ m/ (postlayout)/)

{

‘mkdir QUESTA POSTLAYOUT 5y

open (OUTFILE,">QUESTA POSTLAYOUT/postlayout questa.do");
Sstate = $1;

} else

{

print "Wrong Inputs given to the file\n";

print "#Usage: perl questa parser.pl presynth run.do postsynth run.do postlayout run.do
\"Libraries location\"\n";

}

foreach $line (@ModelSim run do)

{
#General Operations
$line =~ s/..\/designer.*simulation\///g;
$line =~ s/$state/$state\ questa/g;
#print OUTFILE "$line \n";

if ($line =~ m/vmap\s+.* (Sactel family)/)
{
print OUTFILE "vmap $actel family \"$lib location\"\n";

} elsif ($line =~ m/vmap\s+(.*. LIB)/)

{
$line =~ s/..\/component/..\/..\/component/g;
print OUTFILE "$line \n";

} elsif (Sline =~ m/vsim/)

{
$line =~ s/vsim/vsim -novopt/g;

print OUTFILE "$line \n";
} else

{
print OUTFILE "$line \n";

}

close (INFILE) ;

close (OUTFILE) ;

} else {

print "$ModelSim run do does not exist. Rerun simulation again \n";
}

}

Mentor Graphics QuestaSim Setup

The run.do Tcl files generated by Libero SoC for simulations using ModelSim Microsemi Editions can be used for simulations using
QuestaSim with a single change. In the ModelSim ME run.do Tcl file the precompiled libraries location needs to be modified.

Environment variables

Required environment variables:

LM_LICENSE_FILE: must include the path to the license file
MODEL_TECH: must identify the path to the home directory location of QuestaSim installation
PATH: must point to the executable location pointed by MODEL_TECH

Converting run.do for Mentor QuestaSim

The run.do Tcl files generated by Libero SoC for simulations using ModelSim Microsemi Editions can be used for simulations using
QuestaSim with a single change.

Note:
All the designs which are simulated using QuestaSim must include -novopt option along with vsim command in the run.do TCL script
files.

Download Compiled Library

Download the libraries for Mentor Graphics QuestaSim from Microsemi’s website.

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#documents

Sample Tcl and shell script files

The script files here convert the ModelSim ME run.do files into QuestaSim compatible run.do files.

Script File Usage
perl questa parser.pl presynth run.do postsynth run.do
postlayout run.do Microsemi Family

Location_ of Questasim_ Precompiled libraries

Questa_parser_pl
#!/usr/bin/perl -w
FHEH A H AR R R R R

#Usage: perl questa parser.pl presynth run.do postsynth run.do postlayout run.do Microsemi Family
Precompiled Libraries location#

FHEEAF AR R R R R R R R R R R R R R R R R R R R

use POSIX;

use strict;

my (Spresynth, Spostsynth, $postlayout, $family, $1lib location) = @ARGV;
&questa parser (Spresynth, $family, $1ib location);
&questa parser (Spostsynth, $family, $1lib location);
&questa parser (Spostlayout, S$family, $1lib location);

sub questa parser {

my $ModelSim run do = $ [0];

my $actel family = $ [1];
my $1lib location = $ [2];
my $state;

if (-e "$ModelSim run do")

{
open (INFILE,"$ModelSim run do");
my @ModelSim run do = <INFILE>;

my $line;

if ($ModelSim run do =~ m/ (presynth)/)

{

‘mkdir QUESTA_PRESYNTH‘ ;

open (OUTFILE,">QUESTA PRESYNTH/presynth questa.do");
Sstate = $1;

} elsif ($ModelSim run do =~ m/(postsynth)/)

{

‘mkdir QUESTAﬁPOSTSYNTH\ ;

open (OUTFILE,">QUESTA POSTSYNTH/postsynth questa.do");
Sstate = $1;

} elsif ($ModelSim run do =~ m/(postlayout)/)

{

‘mkdir QUESTA POSTLAYOUT 5y

open (OUTFILE,">QUESTA POSTLAYOUT/postlayout questa.do");
Sstate = $1;

} else

{

print "Wrong Inputs given to the file\n";

print "#Usage: perl questa parser.pl presynth run.do postsynth run.do postlayout run.do
\"Libraries location\"\n";

}

foreach $line (@ModelSim run do)

{
#General Operations
$line =~ s/..\/designer.*simulation\///g;
$line =~ s/$state/$state\ questa/g;
#print OUTFILE "$line \n";

if ($line =~ m/vmap\s+.* (Sactel family)/)
{
print OUTFILE "vmap $actel family \"$1lib location\"\n";

} elsif ($line =~ m/vmap\s+(.*. LIB)/)

{
$line =~ s/..\/component/..\/..\/component/g;
print OUTFILE "$line \n";

} elsif (Sline =~ m/vsim/)

{
$line =~ s/vsim/vsim -novopt/g;

print OUTFILE "$line \n";
} else
{

print OUTFILE "$line \n";

}

close (INFILE) ;

close (OUTFILE) ;

} else {

print "$ModelSim run do does not exist. Rerun simulation again \n";
}

}

Synopsys VCS Setup

The flow recommended by Microsemi relies on the Elaborate and Compile flow in VCS. This document includes a script file that uses
the run.do Tcl script files generated by Libero SoC and generates the setup files needed for VCS simulation. The script file uses the
run.do Tcl file to:

1. Create a library mapping file, which is done using the synopsys_sim.setup file located in the same directory where VCS
simulation is running.
2. Create a shell script file to elaborate and compile your design using VCS.

Environment variables

Set the appropriate environment variables for VCS based on your setup. The environment variables needed as per the VCS
documentation are:

LM_LICENSE_FILE: must include a pointer to the license server.
VCS_HOME: must point to the home directory location of the VCS installation.
PATH: must include a pointer to the bin directory below the VCS_HOME directory.

Download Compiled Library

Download the libraries for Synopsys VCS from Microsemi’s website.

VCS simulation script file
After setting up VCS and generating the design and the different run.do Tcl files from Libero SoC you must:
1. Create the library mapping file synopsys_sim.setup; this file contains pointers to the location of all the libraries to be used by the

design. Please note that the file name must not change and it must be located in the same directory where simulation is running.
Here is an example for such a file for pre-synthesis simulation:

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#documents

WORK > DEFAULT

SmartFusion? : <location of the SmartFusion? pre-compiled libraries>
presynth : ./presynth

DEFAULT : ./work

2. Elaborate the different design files, including the testbench, using the vlogan command in VCS. These commands may be included
in a shell script file. Here is an example of the commands needed to elaborate a design defined in rtl.v with its testbench defined in
testbench.v:

vlogan +v2k -work presynth rtl.v

vlogan +v2k -work presynth testbench.v

3. You can then compile the design using VCS using the following command:

vcs —sim res=1fs presynth.testbench

Please note that the timing resolution of simulation must be set to 1fs for correct functional simulation.

4. Once the design is compiled, you can start simulation using the command:

./simv

5. For back-annotated simulation, the VCS command must be as follows:

vcs postlayout.testbench -sim res=1fs -sdf max:<testbench module name>.<DUT instance name>:<sdf file path> -gui
-1 postlayout.log

Limitations/Exceptions

1. VCS simulations can be run only for Verilog projects of Libero SoC. The VCS simulator has strict VHDL language requirements
that are not met by the Libero SoC auto-generated VHDL files.

2. You must have a $finish statement in the Verilog testbench to stop the simulation whenever you want to. When simulations are run
in GUI mode, run time can be specified in the GUI.

Sample Tcl and shell script files

The Perl below automates the generation of the synopsys_sim.setup file as well as the corresponding shell script files needed to
elaborate, compile, and simulate the design.

If the design uses an MSS, you must copy the test.vec file located in the simulation folder of the Libero SoC project into the VCS
simulation folder.

Some sample run.do Tcl files generated by Libero SoC are attached below, including the corresponding library mapping and shell script
files needed for VCS simulation.

Pre-synthesis

Presynth_run.do
quietly set ACTELLIBNAME SmartFusion2
quietly set PROJECT DIR "/sqga/users/me/VCS Tests/Test DFF"

if {[file exists presynth/iinfo]} {
echo "INFO: Simulation library presynth already exists"
} else {
v1lib presynth
}
vmap presynth presynth
vmap SmartFusion2 "/captures/lin/11 0 0 23 llprod/lib/ModelSim/precompiled/vlog/smartfusion2"

vlog -work presynth "${PROJECT DIR}/component/work/SD1/SD1l.v"
vlog "+incdir+${PROJECT DIR}/stimulus" -work presynth "${PROJECT DIR}/stimulus/SD1 TBl.v"

vsim -L SmartFusion2 -L presynth -t 1fs presynth.SDl TB1
add wave /SD1 TB1/*
add log -r /*

run 1000ns

presynth_main.csh
#!/bin/csh -f

set PROJECT_DIR = "/sqa/users/Me/

/cad_design/tools/vcs.dir/E-2011.

/cad_design/tools/vcs.dir/E-2011.
"${PROJECT DIR}/stimulus/SD1_TB1.

/cad_design/tools/vcs.dir/E-2011.

./simv -1 run.log

Synopsys_sim.setup

WORK > DEFAULT

SmartFusion2 : /VCS/SmartFusion2
presynth : ./presynth

DEFAULT : ./work

Post-synthesis

postsynth_run.do
quietly set ACTELLIBNAME SmartFus
quietly set PROJECT DIR "/sga/use

if {[file exists postsynth/ info]

VCS_Tests/Test_DFF"

03/bin/vlogan +v2k -work presynth "${PROJECT DIR}/component/work/SD1/SD1l.v"

03/bin/vlogan +v2k "+incdir+${PROJECT DIR}/stimulus" -work presynth
v

03/bin/vcs -sim res=1fs presynth.SD1 TB1 -1 compile.log

ion2

rs/Me/VCS Tests/Test DFE"

boAo

echo "INFO: Simulation library postsynth already exists"

} else {
vlib postsynth
}
vmap postsynth postsynth

vmap SmartFusion2 "//idm/captures

vlog -work postsynth "${PROJECT

/pc/11 0 1 12 g4x/Designer/lib/ModelSim/precompiled/vlog/SmartFusion2”

DIR}/synthesis/SDl.v"

vlog "+incdir+${PROJECT DIR}/stimulus" -work postsynth "${PROJECT DIR}/stimulus/SD1 TBl.v"

vsim -L SmartFusion2 -L postsynth
add wave /SD1 TB1/*

add log -r /*

run 1000ns

log SD1_TB1/*

exit

Postsynth_main_ch.txt
#!/bin/csh -f

set PROJECT DIR = "/sga/users/Me/

/cad_design/tools/vcs.dir/E-2011.

/cad_design/tools/vcs.dir/E-2011.
"${PROJECT_DIR}/stimulus/SD1_TBl.

/cad_design/tools/vcs.dir/E-2011.

./simv -1 run.log

Synopsys_sim.setup

WORK > DEFAULT

-t 1fs postsynth.SDl1 TB1

VCS_Tests/Test DFF"

03/bin/vlogan +v2k -work postsynth "${PROJECT DIR}/synthesis/SDl.v"

03/bin/vlogan +v2k "+incdir+${PROJECT DIR}/stimulus" -work postsynth
_—

03/bin/vcs -sim res=1fs postsynth.SD1 TB1 -1 compile.log

SmartFusion2 : /VCS/SmartFusion2

postsynth : ./postsynth
DEFAULT : ./work
Post-layout

postlayout_run.do
quietly set ACTELLIBNAME SmartFusion2
quietly set PROJECT DIR "E:/ModelSim Work/Test DFF"

if {[file exists ../designer/SDl/simulation/postlayout/ infol} {
echo "INFO: Simulation library ../designer/SDl/simulation/postlayout already exists"
} else {
vlib ../designer/SDl/simulation/postlayout
}
vmap postlayout ../designer/SDl/simulation/postlayout
vmap SmartFusion2 "//idm/captures/pc/11 0 1 12 g4x/Designer/lib/ModelSim/precompiled/vlog/SmartFusion2"

vlog -work postlayout "${PROJECT DIR}/designer/SD1/SD1 ba.v"
vlog "+incdir+${PROJECT DIR}/stimulus" -work postlayout "${PROJECT DIR}/stimulus/SD1 TBl.v"

vsim -L SmartFusion2 -L postlayout -t 1fs -sdfmax /SD1_0=${PROJECT_DIR}/designer/SD1/SD1l_ba.sdf
postlayout.SD1l TB1

add wave /SD1_TB1/*
add log -r /*

run 1000ns

Postlayout_main_csh
#!/bin/csh -£

set PROJECT_DIR = "/VCS_Tests/Test_ DFF"

/cad_design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k -work postlayout "${PROJECT DIR}/designer/SD1/SD1l ba.v"

/cad design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k "+incdir+${PROJECT DIR}/stimulus" -work postlayout
"${PROJECT DIR}/stimulus/SD1_TB1.v"

/cad_design/tools/vcs.dir/E-2011.03/bin/vcs -sim res=1fs postlayout.SD1 TB1l -sdf
max:SD1_TB1.SD1 0:${PROJECT DIR}/designer/SD1/SD1 ba.sdf -1 compile.log

./simv -1 run.log

Synopsys_sim.setup

WORK > DEFAULT

SmartFusion2 : /VCS/SmartFusion?2
postlayout : ./postlayout
DEFAULT : ./work

Automation

The flow can be automated using the Perl script file below to convert the ModelSim run.do Tcl files into VCS compatible shell script
files, create proper directories inside the Libero SoC simulation directory, and then run simulations.

Run this script file using the following syntax:
perl vcs parse.pl presynth run.do postsynth run.do postlayout run.do

Vcs_parse_pl
#!/usr/bin/perl -w

iddassasssasiaasasisassasiassdasisadsatisadidassisssiasissdsasssasiasisasiatsssi

#

#Usage: perl vcs parse.pl presynth run.do postsynth run.do postlayout run.do

#
Bk

my ($Spresynth, S$postsynth, S$postlayout) = @ARGV;
if (system("mkdir VCS Presynth")) {print "mkdir failed:\n";}
if (system("mkdir VCS Postsynth")) {print "mkdir failed:\n";}

if (system("mkdir VCS Postlayout")) {print "mkdir failed:\n";}

chdir (VCS Presynth);

‘cp ../SARGV[0] . ;

sparse_do ($presynth, "presynth");
chdir ("../™);

chdir (VCS_Postsynth) ;
‘cp ../$ARGV[1] . ;
&parse_do ($postsynth, "postsynth");
chdir ("../"™);
chdir (VCS_ Postlayout);
‘cp ../S$ARGV[2] . ;
&parse do ($postlayout, "postlayout");
chdir ("../™);
sub parse do {
my $vlog = "/cad design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k"

my SLIB = ();

my $file = $ [0] ;
my S$state = $ [1];

open (INFILE, "$file") || die "Cant open File Reason might be:$!";

if ($state eq "presynth")
{

open (OUT1, ">presynth main.csh") || die "Cant create Command File Reason might be:$!";

}
elsif ($state eq "postsynth")

{

open (OUT1, ">postsynth main.csh") || die "Cant create Command File Reason might be:$!";

}
elsif ($state eq "postlayout")
{

open (OUT1, ">postlayout main.csh") || die "Cant create Command File Reason might be:$!";

print "Simulation State is missing \n"

open (OUT2, ">synopsys_sim.setup") || die "Cant create Command File Reason might be:S$!";

.csh file

print OUT1 "#!/bin/csh -f\n\n\n"

#SET UP FILE

print OUT2 "WORK > DEFAULT\n" ;
print OUT2 "SmartFusion2 : /sga/users/Aditya/VCS/SmartFusion2\n"

while ($line = <INFILE>)
{

if ($line =~ m/quietly set PROJECT DIR\s+\" (.*?)\"/)
{
print OUT1 "set PROJECT DIR = \"$1\"\n\n\n" ;

}
elsif ($line =~ m/vlog.*\.v\"/)
{
if ($line =~ m/\s+(\w*?)\ LIB/)
{
#print "\$1 =$1 \n"
Stemp = "$1"." LIB";
#print "Temp = S$temp \n"
SLIB{S$temp}++;
}
chomp ($1line) ;
$line =~ s/"“vlog/$vlog/ ;

S$line =~ s/

//9;
print OUT1 "$line\n";
}
elsif (($line =~ m/vsim.*presynth\. (.*)/) || ($line =~ m/vsim.*postsynth\. (.*)/) |
($line =~ m/vsim.*postlayout\. (.*)/))
{
$tb = $1 ;
Stb =~ s/
//g;
chomp ($tb) ;

#print "TB Name : $tb \n";
if ($line =~ m/sdf(.*)\.sdf/)
{
chomp ($line) ;
$line = $1 ;
#print "LINE : $line \n"
if ($line =~ m/max/)
{
$line =~ s/max \/// ;
$line =~ s/=/:/;

print OUT1 "\n\n/cad design/tools/vcs.dir/E-2011.03/bin/vcs -
sim res=1fs postlayout.$tb -sdf max:$tb.$line.sdf -1 compile.log\n"

}

elsif (Sline =~ m/min/)

{
$line =~ s/min \/// ;
$line =~ s/=/:/;

print OUT1 "\n\n/cad design/tools/vcs.dir/E-2011.03/bin/vcs -
sim res=1fs postlayout.$tb -sdf min:$tb.$line.sdf -1 compile.log\n"

}
elsif ($line =~ m/typ/)
{
$line =~ s/typ \/// ;
$line =~ s/=/:/;
print OUT1 "\n\n/cad design/tools/vcs.dir/E-2011.03/bin/vcs -
sim res=1fs postlayout.$tb -sdf typ:$tb.$line.sdf -1 compile.log\n"
}

#-sdfmax /M3 _FIC32 0=${PROJECT DIR}/designer/M3 FIC32/M3 FIC32 ba.sdf
-- Modelsim SDF format

£ = "-sdf
max:testbench.M3_FIC32_O:${PROJECT_DI;T7zisignegih3_FIC32/M3_FIC32_ba.sdf"; --VCS SDF format
}
}

}
print OUT1 "\n\n"
if ($state eqg "presynth")
{

print OUT2 "presynth : ./presynth\n"

print OUT1 "/cad design/tools/vecs.dir/E-2011.03/bin/vcs -sim res=1fs presynth.$tb -1
compile.log\n" ;

}
elsif ($state eg "postsynth")
{
print OUT2 "postsynth : ./postsynth\n" ;

print OUT1 "/cad design/tools/vcs.dir/E-2011.03/bin/vecs -sim res=1fs postsynth.$tb -1
compile.log\n" ;

}
elsif ($state eq "postlayout")
{
print OUT2 "postlayout : ./postlayout\n"

print "Simulation State is missing \n"
}
foreach $i (keys %LIB)
{
#print "Key : $i Value : SLIB{$i} \n"
print OUT2 "$i : ./$i\n"

print OUT1 "\n\n"
print OUT1 "./simv -1 run.log\n" ;
print OUT2 "DEFAULT : ./work\n"

close INFILE;
close OUTL;
close OUT2;

