
Identify®

User Guide

June 2013

http://solvnet.synopsys.com

LO

Preface

© 2013 Synopsys, Inc. Identify User Guide
2 June 2013

Copyright Notice and Proprietary Information

© 2013 Synopsys, Inc. All rights reserved. This software and documentation
contain confidential and proprietary information that is the property of
Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the
terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license
agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the
documentation for its internal use only.

Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any. Licensee must assign sequential numbers
to all copies. These copies shall contain the following legend on the cover
page:

“This document is duplicated with the permission of Synopsys, Inc., for the
exclusive use of __ and its
employees. This is copy number __________.”

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Preface

Identify User Guide © 2013 Synopsys, Inc.
June 2013 3

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology,
Cadabra, CATS, Certify, CHIPit, CoMET, CODE V, Design Compiler,
DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda,
LightTools, MAST, METeor, ModelTools, NanoSim, NOVeA, OpenVera, ORA,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity,
the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization
Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are regis-
tered trademarks of Synopsys, Inc.

Trademarks (™)

AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves,
BEST, Columbia, Columbia-CE, Cosmos, CosmosLE, CosmosScope, CRITIC,
CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon
Access, Discovery, Eclypse, Encore, EPIC, Galaxy, HANEX, HDL Compiler,
Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem,
Intelli, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty,
Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail,
Mars-Xtalk, Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengi-
neering, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT,
Star-SimXT, StarRC, System Compiler, System Designer, Taurus, Total-
Recall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet Buffer are
trademarks of Synopsys, Inc.

LO

Preface

© 2013 Synopsys, Inc. Identify User Guide
4 June 2013

Service Marks (sm)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license.

ARM and AMBA are registered trademarks of ARM Limited.

Saber is a registered trademark of SabreMark Limited Partnership and is
used under license.

All other product or company names may be trademarks of their respective
owners.

Printed in the U.S.A
June 2013

Identify User Guide © 2013 Synopsys, Inc.
June 2013 5

Contents

Chapter 1: Getting Started

Manual Conventions . 12
Text Conventions . 12
Syntax Conventions . 12

Tool Conventions . 13
File System Conventions . 13
Design Hierarchy Conventions . 14

Chapter 2: System Overview

The Debugging System . 18

The Design Flow . 19

System Components . 21
IICE . 21
Identify Instrumentor . 22
Identify Debugger . 22

Chapter 3: Project Handling

Projects in the Identify Instrumentor . 24
Integrated Identify Instrumentor Projects . 24
Assisted Identify Instrumentor Projects . 26
Viewing a Compiled File . 26
Instrumenting and Saving a Project . 27
Projects with Distributed Instrumentation . 28

Identify Debugger Projects . 29
Opening an Identify Debugger Project . 29
Configuring an Identify Debugger Project . 29
Saving a Project . 31

LO

Contents

© 2013 Synopsys, Inc. Identify User Guide
6 June 2013

Chapter 4: IICE Configuration

Multiple IICE Units . 34
Adding an IICE Unit . 34
Deleting an IICE Unit . 34

Common IICE Parameters . 35
Device Family . 35
Communication Port . 36
Board Type . 36
Use Skew-Resistant Hardware . 36
Prepare Incremental . 37

Individual IICE Parameters . 38
IICE Sampler Tab . 38
IICE Controller Tab . 43

Chapter 5: HAPS Deep Trace Debug

External Memory Instrumentation and Configuration Steps 47
SRAM Clocks . 50
Sample Depth Calculation . 51
Sample Clock Calculation . 51
Hardware Configuration Verification . 52

Chapter 6: Support for Instrumenting HDL

VHDL Instrumentation Limitations . 56

Verilog Instrumentation Limitations . 58

SystemVerilog Instrumentation Limitations . 61

Chapter 7: Identify Instrumentor

Identify Instrumentor Windows . 65
Instrumentation Window . 66
Project Window . 69
Console Window . 70

Commands and Procedures . 71
Opening Projects . 71
Executing Script Files . 72
Selecting Signals for Data Sampling . 72
Instrumenting Buses . 75
Partial Instrumentation . 77
Multiplexed Groups . 79

Contents

Identify User Guide © 2013 Synopsys, Inc.
June 2013 7

Sampling Signals in a Folded Hierarchy . 80
Instrumenting Signals Directly in the idc File . 82
Selecting Breakpoints . 84
Selecting Breakpoints Residing in Folded Hierarchy . 84
Configuring the IICE . 86
Real-time Debugging . 86
Writing the Instrumented Design . 90
Synthesizing Instrumented Designs . 92
Listing Signals . 92
Searching for Design Objects . 94
Console Text . 96

Chapter 8: Identify Debugger

Invoking the Identify Debugger . 98
Synthesis Tool Launch . 98
Operating System Invocation . 98

Identify Debugger Windows . 99
Instrumentation Window . 100
Console Window . 102
Project Window . 102

Commands and Procedures . 104
Opening and Saving Projects . 104
Executing a Script File . 105
Activating/Deactivating an Instrumentation . 105
Selecting Multiplexed Instrumentation Sets . 109
Activating/Deactivating Folded Instrumentation . 110
Run Command . 113
Sampled Data Compression . 114
Sample Buffer Trigger Position . 115
Stop Command . 116
Sampled Data Display Controls . 117
Displaying Data from Folded Signals . 119
Displaying Data for Partial Buses . 120
Displaying Data for Partial Instrumentation . 120
Saving and Loading Activations . 121
Cross Triggering . 123
Listing Watchpoints and Signals . 125
Show Watchpoint/Breakpoint Icons . 126

Debugging on a Different Machine . 127

Simultaneous Debugging . 128

LO

Contents

© 2013 Synopsys, Inc. Identify User Guide
8 June 2013

Identify-Analyst Integration . 129

Waveform Display . 134

Logic Analyzer Interface Parameters . 137
Logic Analyzer Scan Tab . 137
Logic Analyzer Properties Tab . 138
Logic Analyzer Submit Tab . 139
IICE Assignments Report Tab . 140

Console Text . 141

Chapter 9: Incremental Flow
Requirements . 144
Setting up the Original Design . 144
Creating the Incremental Instrumentation . 145
Redefining the Instrumented Signals . 146
Generating the Bitfile . 146
Debugging the Incremental Version . 147

Chapter 10: IICE Hardware Description

JTAG Communication Block . 149

Breakpoint and Watchpoint Blocks . 150
Breakpoints . 150
Watchpoints . 151
Multiply Activated Breakpoints and Watchpoints . 151

Sampling Block . 152

Complex Counter . 153
Creating a Complex Counter . 153
Debugging with the Complex Counter . 153
Disabling the Counter . 155

State Machine Triggering . 156
Simple or Advanced Triggering . 156
Advanced Triggering Mode . 157
State-Machine Editor . 167
State-Machine Examples . 171

Chapter 11: Connecting to the Target System

Basic Communication Connection . 180
Identify Debugger Communications Settings . 180
Identify Debugger Configuration . 186

Contents

Identify User Guide © 2013 Synopsys, Inc.
June 2013 9

JTAG Communication . 191

JTAG Hardware in Instrumented Designs . 193
Using the Built-in JTAG Port . 193
Using the Synopsys Debug Port . 195
Boards Without Direct Built-in JTAG Connections . 197

Setting the JTAG Chain . 199

JTAG Communication Debugging . 201
Basic Communication Test . 201
On-chip Identification Register . 202
JTAG Chain Tests . 202

UMRBus Communications Interface . 203

HAPS Board Bring-up Utility . 204
Setting Initial Values . 205
ConfPro GUI . 205
Utility and Board-Test Commands . 207

LO

Contents

© 2013 Synopsys, Inc. Identify User Guide
10 June 2013

Identify User Guide © 2013 Synopsys, Inc.
June 2013 11

C H A P T E R 1

Getting Started

The Identify® tool set includes the Identify instrumentor and the Identify
debugger. These two tools allow you to debug your HDL design:

• in the target system

• at the target speed

• at the VHDL/Verilog RTL source level

The Identify tool set helps you debug any design that is implemented by an
electronically programmable logic device such as an FPGA or PLD. For the
first time you will be able to debug live hardware with the internal design
visibility you need while using intuitive debugging techniques.

This guide provides comprehensive information about how the Identify tool
set works within your HDL design flow.

This chapter contains:

• Manual Conventions

• Tool Conventions

LO

 Getting Started Manual Conventions

© 2013 Synopsys, Inc. Identify User Guide
12 June 2013

Manual Conventions
There are several conventions that this manual uses in order to communicate
command information.

Text Conventions

There are several text conventions that this manual uses to organize
command, path, and directory information. These conventions or text styles
are:

Syntax Conventions

There are several conventions that this manual uses to convey command
syntax. These conventions are:

This convention... Organizes this information...

Bold command titles

Monospacing type command, path name, and directory examples

Sans-serif type commands, literals, and keywords

Italics variable arguments

This convention... Organizes this information...

bold Commands and literal arguments entered as shown.

italics User-defined arguments or example command
information.

[] Optional information or arguments for command
use. Do not include these brackets with the
command within the command line.

Tool Conventions Getting Started

Identify User Guide © 2013 Synopsys, Inc.
June 2013 13

Tool Conventions
There are tool concepts you must familiarize yourself with when using the
Identify tool set. These concepts help you to decipher structural and
HDL-related information.

File System Conventions

The term file system refers to any command that uses file, directory, or path
name information in its argument. A file system reference must follow these
conventions:

Path Separator “/”

All file system commands that contain a directory name use only forward
slashes, regardless of the underlying operating system:

/usr/syn/data.dat

c:/synopsys/data.dat

... Items that can be repeated any number of times.

| Choices you can make between two items or
commands. The items are located on either side of
this symbol.

Comments concerning the code or information
within the command line.

This convention... Organizes this information...

LO

 Getting Started Tool Conventions

© 2013 Synopsys, Inc. Identify User Guide
14 June 2013

Wildcards

A wildcard is a command element you can use to represent many different
files. You can use these wildcards as arguments to the file system commands.
Conventions for wildcards are as follows:

Square brackets are used in pattern matching as follows:

To use square brackets in wildcard specifications, you must delimit the entire
name with curly braces { }. For example,

{[a-d]1}

matches any character in the specified range (a-d) preceding the character 1.

Design Hierarchy Conventions

Design hierarchy refers to the structure of your design. Design hierarchy
conventions define a way to refer to objects within the design hierarchy.

The Identify tool set supports both VHDL and Verilog. These languages vary
in their hierarchy conventions. The VHDL and Verilog languages contain
design units and hierarchies of these design units. In VHDL these design
units are entity/architecture pairs, in Verilog they are modules. VHDL and
Verilog design units are organized hierarchically. Each of the following HDL
design units creates a new level in the hierarchy.

Syntax Description

* Matches any sequence of characters

? Matches any single character

Syntax Description

[abcd] Matches any character in the specified set.

[a-d] Matches any character in a specified range.

Tool Conventions Getting Started

Identify User Guide © 2013 Synopsys, Inc.
June 2013 15

VHDL

• The top-level entity

• Architectures

• Component instantiation statements

• Process statements

• Control flow statements: if-then-else, and case

• Subprogram statements

• Block statements

Verilog

• The top-level module

• Module instantiation statements

• Always statements

• Control flow statements: if-then-else, and case

• Functions and tasks

Design Hierarchy References

A reference to an element in the design hierarchy consists of a path made up
of references to design units (similar to a file reference described earlier).
Regardless of the underlying HDL (VHDL or Verilog), the path separator
character is always “/”:

/inst/reset_n

Absolute path names begin with a path separator character. The top-level
design unit is represented by the initial “/”. Thus, a port on the top-level
design unit is represented as:

/port_name

The architecture of the top-level VHDL design unit is represented as:

/arch

LO

 Getting Started Tool Conventions

© 2013 Synopsys, Inc. Identify User Guide
16 June 2013

Relative path names do not start with the path separator, and are relative to
the current location in the design hierarchy. Initially, the current location is
the top-level design unit, but commands exist that allow you to change this
location.

Note: Design unit references can be case sensitive depending on the HDL
language. VHDL names are not case sensitive. In contrast, Verilog
names are case sensitive.

Wildcards

A wildcard is a command element you use to represent many different design
hierarchy references. You can use wildcard design references as arguments
to the design hierarchy commands. Conventions for wildcards are as follows:

Square brackets are used in hierarchy pattern matching as follows:

To use square brackets in pattern matching, you must delimit the entire
name with curly braces { }. For example,

{[a-d]1}

matches any character in the specified range (a-d) preceding the character 1.

Syntax Description

* Matches any sequence of characters

? Matches any single character

Syntax Description

[abcd] Matches any character in the specified set.

[a-d] Matches any character in a specified range.

Identify User Guide © 2013 Synopsys, Inc.
June 2013 17

C H A P T E R 2

System Overview

The Identify tool set is part of an HDL design flow process. The tool set is a
dual-component system that allows you to probe your HDL design in the
target environment. The system fits easily into your existing design flow, with
only a few modifications.

The dual-component system consists of the Identify instrumentor software
that allows you to select your design instrumentation at the HDL level and
then create an on-chip hardware probe, and the Identify debugger software
that interacts with the on-chip hardware probe and allows you to perform live
debugging of your design. A combined system of instrumentor and debugger
allows you to debug your design faster, easier, and more efficiently.

This chapter provides a high-level description of the Identify tool set, detailing
how the instrumentor and debugger work and how they fit into your design
flow. The chapter describes:

• The Debugging System

• The Design Flow

• System Components

LO

 System Overview The Debugging System

© 2013 Synopsys, Inc. Identify User Guide
18 June 2013

The Debugging System
The Identify tool set is based on the principle of in-system debugging. Using
these tools allows you to debug your device in the target system, at target
speed while debugging at the HDL level.

Starting with an HDL design, the Identify instrumentor enables you to create
a debuggable HDL version of your design. Then, the Identify debugger
communicates with this debuggable design, captures the operation of the
design, and relates the captured data back to the original HDL design.

The Identify tool set captures the device operation by inserting an IICE (Intel-
ligent In-Circuit-Emulator) device into your design. The IICE is connected to
signals of interest in your design and communicates with a host computer
through a JTAG cable.

Your

IICE

Your System

Device

The Design Flow System Overview

Identify User Guide © 2013 Synopsys, Inc.
June 2013 19

The Design Flow
Design flows for HDL design and debugging vary according the type of
hardware and device you use. Displayed below is the typical HDL design flow
for a programmable hardware device and the design flow with the Identify tool
set:

In the typical design flow, the first step is to create the HDL design files which
are then synthesized to the target device. Following synthesis, the design is
placed and routed, targeting a particular device. Then, the design is imple-
mented on the actual hardware by programming the device.

Program

Write HDL

Synthesis

Place
and

Route

Device

Program

Write HDL

Synthesis

Place
and

Route

Device

Instrument

Debug

Typical Design Flow Identify Design Flow

LO

 System Overview The Design Flow

© 2013 Synopsys, Inc. Identify User Guide
20 June 2013

The flow through the Identify tool set makes a very minor change to the
typical flow. After the HDL is successfully created, the Identify instrumentor
is used to identify the specific signals to be monitored. Saving the project
generates an instrumentation design constraints (idc) file and adds constraint
files to the design RTL for the instrumented signals and break points. The
design is synthesized and then run through the rest of the typical process.
After the device is programmed with the debuggable design, the Identify
debugger is used to debug the design while it is running in the target system.

Because the Identify tool set provides logic debugging capabilities in the
target system which is running at the target speed, the need for extensive
system-level simulation can be reduced. Instead, the effort in the simulation
step can concentrate on the much simpler and faster module-level simulation
and some system-level simulation. The Identify debugger is used to help
debug system-level functionality.

System Components System Overview

Identify User Guide © 2013 Synopsys, Inc.
June 2013 21

System Components
The Identify system is made up of the following:

• IICE

• Identify Instrumentor

• Identify Debugger

IICE

The Intelligent In Circuit Emulator (IICE) is a custom block that is inserted
into your design and connected to signals in the design by the Identify instru-
mentor in accordance with your interface specifications. The IICE samples
internal signals and feeds the sampled signal information back to the Identify
debugger where the data is transformed for interpretation at the HDL level.

The IICE block is actually made up of two different types of blocks. The first is
the controller block and the second is the probe block. The probe block
samples internal signal data and communicates with the controller block.
The controller block communicates with the JTAG port.

Filter
IICE

TCK
TMS
TDI
TDO

 Identify Debugger

Large
Data
Path

Memory

Bus
Controller

Ext
I/OCPU

I/O

LO

 System Overview System Components

© 2013 Synopsys, Inc. Identify User Guide
22 June 2013

The probe block contains the sample buffer where signal value data is stored.
The probe block also contains the trigger logic that determines when the
signal data is stored in the sample buffer.

The controller block receives the sample data from the probe block and sends
it through the JTAG port to the Identify debugger.

Identify Instrumentor

The Identify instrumentor reads and analyzes the pre-synthesis HDL design
and provides detailed information about the signals that can be observed and
allows you to specify how to control signal observation.

The Identify instrumentor uses the HDL design files and the user-selection
information to create the custom IICE block. The Identify instrumentor
connects the IICE to the appropriate signals in the design and writes the new
design to a user-specified location.

Identify Debugger

The Identify debugger lets you interact with the debuggable hardware at the
HDL level. In the Identify debugger, you can activate breakpoints, set watch-
points, and view captured data related to the original source code or as
waveforms. In the Identify debugger, you set trigger conditions that determine
when to capture signal data. A trigger condition is a set of on-chip signal
values or events. When a trigger condition occurs, data is transferred from
the hardware device to the Identify debugger through the JTAG communica-
tion cable or the UMRBus on a HAPS board.

Identify User Guide © 2013 Synopsys, Inc.
June 2013 23

C H A P T E R 3

Project Handling

A project contains all of the information required to instrument and debug a
design. This information includes references to the HDL design files, the
user-selected instrumentation, the settings used to create the IICE, the
watchpoint and breakpoint activations from the debugger, and other system
settings. Additionally, you can save the original design, in either an encrypted
or non-encrypted format, in a project subdirectory. The project file is used to
reproduce the exact state of the project in the Identify tool set.

This chapter describes the procedures for managing projects and includes:

• Projects in the Identify Instrumentor

• Identify Debugger Projects

LO

 Project Handling Projects in the Identify Instrumentor

© 2013 Synopsys, Inc. Identify User Guide
24 June 2013

Projects in the Identify Instrumentor
This section describes how projects are defined between the Identify instru-
mentor and the synthesis tool.

• Integrated – an Identify implementation is defined in the Synopsys FPGA
synthesis tool and the Identify instrumentor is then launched directly
from the Identify implementation in that project.

• Assisted – an Identify implementation is defined in the synthesis tool
project, the project is saved, and the synthesis tool exited. The Identify
instrumentor is then launched independently to open the saved project
file.

Integrated Identify Instrumentor Projects

For Synplify, Synplify Pro, and Synplify Premier users and users of
Certify releases D-2010.06 and later, a Synopsys FPGA project (prj)
file is passed to the Identify instrumentor to define the project. This

project file specifies the design files and their order, the device technology,
and the design’s top-level module or entity.

To make a Synplify, Synplify Pro, Synplify Premier, or compatible Certify
project available to the Identify instrumentor, open the project in the corre-
sponding Synopsys FPGA synthesis tool’s Project view and:

1. Right click on the project (Synplify) or implementation (Synplify Pro,
Synplify Premier, or Certify) and select New Identify Implementation from the
popup menu.

2. Set/verify any technology, device mapping, or other pertinent options
(see the implementation option descriptions in the Synopsys FPGA
synthesis tool user guide) and click OK. A new, Identify implementation
is added to the project view.

Projects in the Identify Instrumentor Project Handling

Identify User Guide © 2013 Synopsys, Inc.
June 2013 25

Note: Because multiple implementations are not supported in the
Synplify synthesis tool, the existing implementation is replaced
with the Identify implementation.

3. Either right click on the Identify implementation and select Launch Identify
Instrumentor from the popup menu or click the Launch Identify Instrumentor
toolbar icon to launch the Identify instrumentor.

Note: If you are prompted to locate the executable, enter the path to the
Identify software in the Locate Identify Installation field (use the browse
button to the right of the field). If you are prompted to select a license
type, select the appropriate type from the list; check the Save as default
license type box to avoid the license prompt in future sessions.

Launching the Identify instrumentor from the Synopsys FPGA synthesis or
Certify tool:

• Brings up the Identify instrumentor graphical interface.

• Extracts the list of design files, their work directories, and the device
family from the prj file.

• Automatically compiles the design files using the synthesis tool compiler
and displays the design hierarchy and the HDL file content with all the
potential instrumentation marked and available for selection.

Identify
Implementation

LO

 Project Handling Projects in the Identify Instrumentor

© 2013 Synopsys, Inc. Identify User Guide
26 June 2013

Assisted Identify Instrumentor Projects

A Synplify, Synplify Pro, Synplify Premier, or Certify project with an
existing Identify implementation can be opened directly in the
Identify instrumentor. To open a synthesis project directly from the
Identify instrumentor, select File->Open project from the main menu,

click the Open existing project icon, or click the Open Project button in the project
window. Each of these commands brings up the Open Project file dialog box to
allow you to navigate to the directory containing the synthesis project (prj)
files.

On opening a Synplify, Synplify Pro, Synplify Premier, or Certify project file,
the data for that project is loaded into the Identify instrumentor. Loading a
project retrieves all of the information stored in the project (user settings and
file histories are automatically saved). The Identify instrumentor automati-
cally compiles the files. When compilation is complete, the instrumentation
window displays the design hierarchy and the HDL file content with all the
potential instrumentation marked and available for selection.

A list of the four, most recent projects is maintained by the Identify instru-
mentor. Any of these projects can be opened directly from the File->Recent
Projects menu.

Viewing a Compiled File

Once a design has been successfully compiled, the contents of individual
HDL files can be opened in the currently active IICE. To open an HDL file,
either double click on the filename or icon in the project view or right click on
the filename or icon and select View file from the popup menu. The selected file
is displayed in the currently active IICE display.

Projects in the Identify Instrumentor Project Handling

Identify User Guide © 2013 Synopsys, Inc.
June 2013 27

Technology Cell Definitions

The Identify instrumentor normally instantiates module definitions for
technology-specific cells. When a technology cell is not previously defined, the
Identify instrumentor creates a dummy (empty) black box for the undefined
module to allow the compilation to complete.

To disable the generation of black boxes for uninstantiated module defini-
tions, enter the following command in the Identify instrumentor console
window:

device technologydefinitions 0

Note: The command accepts all Boolean arguments (0, off, false, 1, on, or
true). Entering the command without an argument returns the
current setting.

Instrumenting and Saving a Project

After setting up the IICE as described in Chapter 4, IICE Configuration and
after selecting the instrumentation (selecting the signals for sampling, and
setting breakpoints) as described in Chapter 7, Identify Instrumentor, the
project is instrumented and saved.

To save your instrumented project, select File->Save project instrumenta-
tion from the menu or click on the Save project’s activated instrumentation
icon.

Saving a project generates an instrumentation design constraints (idc) file and
adds compiler pragmas in the form of constraint files to the design RTL for
the instrumented signals and break points. This information is then used by
the synthesis tool to incorporate the instrumentation logic (IICE and COMM
blocks) into the synthesized netlist.

LO

 Project Handling Projects in the Identify Instrumentor

© 2013 Synopsys, Inc. Identify User Guide
28 June 2013

Projects with Distributed Instrumentation

Distributed instrumentation allows an instrumented design to be partitioned
into multiple FPGAs and subsequently debugged through a single Identify
Debugger session. Distributed instrumentation generates an instrumentation
design constraints (idc) file that describes the instrumented signals and
break points. Before running RTL preparation in Certify, the design is instru-
mented normally. During SLP generation in Certify, the Identify logic is added
to the partitioned netlist. Following SLP generation, the SLP srs projects are
synthesized and the individual FPGAs are programmed. The Identify
Debugger is then invoked from the Certify project. The Debugger communi-
cates with each of the individual FPGAs to configure the IICE and to
download the sample data. For more information on distributed instrumenta-
tion, see the Certify User Guide.

Identify Debugger Projects Project Handling

Identify User Guide © 2013 Synopsys, Inc.
June 2013 29

Identify Debugger Projects
This section includes descriptions of the following tasks associated with the
Identify debugger:

• Opening an Identify Debugger Project

• Configuring an Identify Debugger Project

• Saving a Project

Opening an Identify Debugger Project

To open a project in the Identify debugger, the project must have
been created in the Identify instrumentor (only the Identify instru-
mentor can create a project) and synthesized in the synthesis tool.
To open an existing Identify debugger project from the Synopsys

FPGA synthesis or Certify tool, highlight the Identify implementation and do
one of the following:

• select Launch Identify Debugger from the popup menu

• click the Launch Identify Debugger icon in the menu bar

• select Run->Launch Identify Debugger (synthesis tool) or Tools->Launch Identify
Debugger (Certify) from the main menu

You can also open an existing project from the Identify debugger interface by
selecting File->Open Project from the menu or by clicking on the Open existing
project icon. The name of the project file will have a prj extension. A list of the
four, most recent projects is maintained by the Identify debugger. Any of
these projects can be opened directly from the File->Recent Projects menu. On
opening, the data for the project is loaded into the Identify debugger. Loading
a project retrieves all of the information stored in a project and makes that
project the current working project.

Configuring an Identify Debugger Project

To configure an Identify debugger project, click the project tab to reopen the
project window (reopening the project window shows the instrumentation
and communication settings).

LO

 Project Handling Identify Debugger Projects

© 2013 Synopsys, Inc. Identify User Guide
30 June 2013

Reviewing the Instrumentation Settings

The Instrumentation settings are displayed in the Instrumentation settings
section of the project window. Because these configuration settings are inher-
ited from the Identify instrumentor and used to construct the IICE, you
cannot change these settings in the Identify debugger.

Changing the Communication Settings

The cable type and port specification communication settings can be set or
changed from the project window.

There is a large list of possible cable type settings including: byteblaster, xilinx-
auto, xilinxusb, xilinxparallel, Microsemi_BuiltinJTAG, JTAGTech3710, Altera_BuiltinJTAG,
and demo. A umrbus setting is also available to setup UMRBus communica-
tions between the host and a HAPS board (see UMRBus Communications
Interface, on page 203). Set Cable type value according to the type of cable you
are using to connect to the programmable device.

Adjust the port setting based on the port where the communication cable is
connected. Most often, lpt1 is the correct setting for parallel ports.

Identify Debugger Projects Project Handling

Identify User Guide © 2013 Synopsys, Inc.
June 2013 31

Reviewing the JTAG Chain Settings

The JTAG chain settings are viewed by clicking the Show chain button in the
Communication settings section of the project window. Normally, the JTAG chain
settings for the devices are automatically extracted from the design. When the
chain settings cannot be determined, they must be created and/or edited
using the chain command in the console window. The settings shown below
are for a 2-device chain that has JTAG identification register lengths of 8 and
10 bits. In addition, the device named “fpga” has been enabled for debugging.

Saving a Project

Saving a project in the Identify debugger saves the following additional
project information to the project file:

• IICE settings

• Instrumentations and activations

To save a project in the Identify debugger, click the Save current activa-
tions icon or select File->Save activations from the menu.

“fpga” device enabled for debugging

Debug: Device ID: IR Length:
1.
2.

[]
[x]

prom
fpga

8
10

LO

 Project Handling Identify Debugger Projects

© 2013 Synopsys, Inc. Identify User Guide
32 June 2013

Identify User Guide © 2013 Synopsys, Inc.
June 2013 33

C H A P T E R 4

IICE Configuration

An important part of the configuration of a project is setting the parameters
for the Intelligent In-Circuit Emulator (IICE) in the Identify instrumentor. The
IICE parameters determine the implementation of one or more IICE units and
configure the units so that proper communication can be established with
the Identify debugger. The IICE parameters common to all IICE units are set
in the Identify instrumentor project window and apply to all IICE units
defined for the implementation; the IICE parameters unique to each IICE
definition in a multi-IICE configuration are interactively set on one of two IICE
Configuration dialog box tabs:

• IICE Sampler Tab – includes sample depth selection and clock specification
and also defines the external memory configuration for the HAPS Deep
Trace Debug feature.

• IICE Controller Tab – includes complex counter trigger width specification,
selection of state machine triggering, and import/export of the IICE trigger
signal.

This chapter describes how to configure one or more IICE units.

LO

 IICE Configuration Multiple IICE Units

© 2013 Synopsys, Inc. Identify User Guide
34 June 2013

Multiple IICE Units
Multiple IICE units allow triggering and sampling of signals from different clock
domains within a design. Each IICE unit is independent and can have unique
IICE parameter settings including sample depth, sampling/triggering options,
and sample clock and clock edge. During the debugging phase, individual or
multiple IICE units can be armed.

Adding an IICE Unit

A New IICE button is included in the Identify instrumentor project window to
allow an additional IICE to be defined for the current instrumentation. When
you click the New IICE button, the project window is reduced to a tab and a
new instrumentation window is opened with the HDL source code redis-
played without any signals instrumented.

Note: When you create a new IICE from the GUI, the name of the IICE unit
is formed by adding an _n suffix to IICE (for example, IICE_0, IICE_1,
etc.). If you create a new IICE from the command line using the Iden-
tify instrumentor iice new command, you can optionally include a
name for the IICE.

Right-clicking on the IICE tab and selecting Configure IICE from the popup
menu brings up the Configure IICE dialog box which allows you to define the
parameters unique to the selected IICE (see Individual IICE Parameters, on
page 38).

Note: Communication port selection, which is common to all IICE units for
an instrumentation, is defined in the Identify instrumentor project
window (see Common IICE Parameters, on page 35).

Deleting an IICE Unit

To delete an IICE unit from your Identify instrumentor project, right-click on
the tab of the IICE to be deleted and select Delete IICE from the popup menu.

Common IICE Parameters IICE Configuration

Identify User Guide © 2013 Synopsys, Inc.
June 2013 35

Common IICE Parameters
The IICE parameters common to all IICE units defined for an instrumentation
include:

• the IICE device family as defined by the synthesis tool

• the communication port

• if optional skew-resistant hardware is to be used

• if incremental updating is enabled (Xilinx technologies only)

These parameters are set/displayed in the project window for the currently-
active instrumentation. All IICE units in a multi-IICE configuration share
these same parameter values.

Device Family

The device family selected in the synthesis tool is reported in the Device family
field (the field is read-only) and cannot be changed.

Note: If the device family specified in the synthesis tool is not supported by
the Identify tool set, an error message is issued and you are prompted
to exit the Identify instrumentor.

LO

 IICE Configuration Common IICE Parameters

© 2013 Synopsys, Inc. Identify User Guide
36 June 2013

Communication Port

The Communication port parameter specifies the type of connection to be used to
communicate with the on-chip IICE. The connection types are:

• builtin – indicates that the IICE is connected to the JTAG Tap controller
available on the target device.

• soft – indicates that the Synopsys Tap controller is to be used. The
Synopsys FPGA Tap controller is more costly in terms of resources
because it is implemented in user logic and requires four user I/O pins
to connect to the communication cable.

• umrbus – indicates that the IICE is connected to the target device on a
HAPS-60 or HAPS-70 series system through the UMRBus.

See Chapter 11, Connecting to the Target System, for a description of the
communication interface.

Board Type

The Board Type read-only field is only present when one of the supported
Synopsys HAPS device technologies is selected in the synthesis tool and
indicates the targeted HAPS board type.

Use Skew-Resistant Hardware

The Use skew-resistant hardware check box, when checked, incorporates skew-
resistant master/slave hardware to allow the instrumentation logic to operate
without requiring an additional global clock buffer resource for the JTAG
clock.

When no global clock resources are available for the JTAG clock, this option
causes the IICE to be built using skew-resistant hardware consisting of
master-slave flip-flops on the JTAG chain which prevents clock skew from
affecting the logic. Enabling this option also causes the Identify instrumentor
to NOT explicitly define the JTAG clock as requiring global clock resources.

Common IICE Parameters IICE Configuration

Identify User Guide © 2013 Synopsys, Inc.
June 2013 37

Prepare Incremental

The Prepare incremental check box is only enabled when one of the supported
Xilinx Virtex technologies is selected in the synthesis tool. Checking this box
enables the multi-pass, incremental flow feature available for specific Xilinx
technologies (see Chapter 9, Incremental Flow).

LO

 IICE Configuration Individual IICE Parameters

© 2013 Synopsys, Inc. Identify User Guide
38 June 2013

Individual IICE Parameters
The individual parameters for each IICE are defined on two tabs of
the Configure IICE dialog box. To display this dialog box, first select the
active IICE by clicking the appropriate IICE tab in the Identify instru-
mentor project window and then select Actions->Configure IICE from the

menu or click on the Edit IICE settings icon. You can also right-click directly on
the IICE tab and select Configure IICE from the popup menu.

IICE Sampler Tab

The IICE Sampler tab defines:

• IICE unit for multi-IICE configurations

• IICE type (regular or real-time debugging)

• Buffer type

• Sample depth

• Sampling/triggering options

• Data compression use

• Sample clock and clock edge

Note: The IICE Sampler tab is redefined when the Buffer type is set to hapssram.

IICE tabs

Individual IICE Parameters IICE Configuration

Identify User Guide © 2013 Synopsys, Inc.
June 2013 39

Current IICE

The Current IICE field identifies the target IICE when there are multiple IICE
units defined within an implementation. The IICE is selected from the drop-
down menu.

IICE type

The IICE type parameter is a read-only field that specifies the type of IICE
unit currently selected – regular (the default) or rtd (real-time debugging). The
IICE type is set from the project view in the user interface when a new IICE is
defined or by an iice sampler Tcl command with a -type option. For information
on the real-time debugging feature, see Real-time Debugging, on page 86.

Buffer Type

The Buffer type parameter specifies the type of RAM to be used to capture the
on-chip signal data. The default value is internal_memory; the hapssram setting
configures the IICE to additionally use external HAPSRAM (for more informa-
tion, see Chapter 5, HAPS Deep Trace Debug).

LO

 IICE Configuration Individual IICE Parameters

© 2013 Synopsys, Inc. Identify User Guide
40 June 2013

Sample Depth

The Sample depth parameter specifies the amount of data captured for each
sampled signal. Sample depth is limited by the capacity of the FPGAs imple-
menting the design, but must be at least 8 due to the pipelined architecture
of the IICE.

Sample depth can be maximized by taking into account the amount of RAM
available on the FPGA. As an example, if only a small amount of block RAM is
used in the design, then a large amount of signal data can be captured into
block RAM. If most of the block RAM is used for the design, then only a small
amount is available to be used for signal data. In this case, it may be more
advantageous to use logic RAM.

Allow Qualified Sampling

The Allow qualified sampling check box, when checked, causes the Identify
instrumentor to build an IICE block that is capable or performing qualified
sampling. When qualified sampling is enabled, one data value is sampled
each time the trigger condition is true. With qualified sampling, you can
follow the operation of the design over a longer period of time (for example,
you can observe the addresses in a number of bus cycles by sampling only
one value for each bus cycle instead of a full trace). Using qualified sampling
includes a minimal area and clock-speed penalty.

Allow Always-Armed Triggering

The Allow always-armed triggering check box, when checked, saves the sample
buffer for the most recent trigger and waits for the next trigger or until inter-
rupted. When always-armed sampling is enabled, a snapshot is taken each
time the trigger condition becomes true.

With always-armed triggering, you always acquire the data associated with
the last trigger condition prior to the interrupt. This mode is helpful when
analyzing a design that uses a repeated pattern as a trigger (for example, bus
cycles) and then randomly freezes. You can retrieve the data corresponding to
the last time the repeated pattern occurred prior to freezing. Using always-
armed sampling includes a minimal area and clock-speed penalty.

Individual IICE Parameters IICE Configuration

Identify User Guide © 2013 Synopsys, Inc.
June 2013 41

Allow data compression

The Allow data compression check box, when checked, adds compression logic to
the IICE to support sample data compression in the Identify debugger (see
Sampled Data Compression, on page 114). When unchecked (the default),
compression logic is excluded from the IICE, and data compression in the
Identify debugger is unavailable. Note that there is a logic data overhead
associated with data compression and that the check box should be left
unchecked when sample data compression is not to be used.

Sample Clock

The Sample clock parameter determines when signal data is captured by the
IICE. The sample clock can be any signal in the design that is a single-bit
scalar type. Enter the complete hierarchical path of the signal as the param-
eter value.

Care must be taken when selecting a sample clock because signals are
sampled on an edge of the clock. For the sample values to be valid, the
signals being sampled must be stable when the specified edge of the sample
clock occurs. Usually, the sample clock is either the same clock that the
sampled signals are synchronous with or a multiple of that clock. The sample
clock must use a scalar, global clock resource of the chip and should be the
highest clock frequency available in the design. The source of the clock must
be the output from a BUFG/IBUFG device.

You can also select the sample clock from the instrumentation window by
right-clicking on the watchpoint icon in the source code display and selecting
Sample Clock from the popup menu. The icon for the selected (single-bit) signal
changes to a clock face as shown in the following figure.

BUFG

DCM/PLL

LO

 IICE Configuration Individual IICE Parameters

© 2013 Synopsys, Inc. Identify User Guide
42 June 2013

Note: You must set the other individual IICE parameters from the Configure
IICE dialog box including the sample clock edge.

Clock Edge

The Clock edge radio buttons determine if samples are taken on the rising
(positive) or falling (negative) edge of the sample clock. The default is the
positive edge.

Sample Clock
Icon

Individual IICE Parameters IICE Configuration

Identify User Guide © 2013 Synopsys, Inc.
June 2013 43

IICE Controller Tab

The IICE Controller tab selects the IICE controller’s triggering mode. All of these
instrumentation choices have a corresponding effect on the area cost of the
Identify IICE.

Current IICE

The Current IICE field is used to identify the target IICE when there are multiple
IICE units defined within an implementation. The IICE is selected from the
drop-down menu.

LO

 IICE Configuration Individual IICE Parameters

© 2013 Synopsys, Inc. Identify User Guide
44 June 2013

IICE type

The IICE type parameter is a read-only field that specifies the type of IICE
unit currently selected – regular (the default) or rtd (real-time debugging). The
IICE type is set from the project view in the user interface when a new IICE is
defined or by an iice sampler Tcl command with a -type option. For information
on the real-time debugging feature, see Real-time Debugging, on page 86.

Simple Triggering

Simple triggering allows you to combine breakpoints and watchpoints to
create a trigger condition for capturing the sample data.

Complex-Counter Triggering

Complex-counter triggering augments the simple triggering by instrumenting
a variable-width counter that can be used to create a more complex trigger
function. Use the width setting to control the desired width of the counter.

State-Machine Triggering

State-machine triggering allows you to pre-instrument a variable-sized state
machine that can be used to specify an ultimately flexible trigger condition.
Use Trigger states to customize how many states are available in the state
machine. Use Trigger condition to control how many independent trigger condi-
tions can be defined in the state machine. For more information on state-
machine triggering, see State Machine Triggering, on page 156.

Import External Trigger Signals

External triggering allows the trigger from an external source to be imported
and configured as a trigger condition for the active IICE. The external source
can be a second IICE located on a different device or external logic on the
board rather than the result of an Identify instrumentation. The imported
trigger signal includes the same triggering capabilities as the internal trigger
sources used with state machines. The adjacent field selects the number of
external trigger sources with 0, the default, disabling recognition of any
external trigger. Selecting one or more external triggers automatically enables
state-machine triggering.

Individual IICE Parameters IICE Configuration

Identify User Guide © 2013 Synopsys, Inc.
June 2013 45

Note: When using external triggers, the pin assignments for the corre-
sponding input ports must be defined in the synthesis or place and
route tool.

Export IICE Trigger Signal

The Export IICE trigger signal check box, when checked, causes the master
trigger signal of the IICE hardware to be exported to the top-level of the
instrumented design.

Allow cross-triggering in IICE

The Allow cross-triggering in IICE check box, when checked, allows this IICE unit
to accept a cross-trigger from another IICE unit. For more information on
cross-triggering, see Cross Triggering, on page 123.

LO

 IICE Configuration Individual IICE Parameters

© 2013 Synopsys, Inc. Identify User Guide
46 June 2013

Identify User Guide © 2013 Synopsys, Inc.
June 2013 47

C H A P T E R 5

HAPS Deep Trace Debug

The HAPS Deep Trace Debug feature uses external SRAM as sample memory
which allows Identify to use both the FPGA internal block RAM as well as the
external HAPSRAM. With the added external memory, a much deeper, signal-
trace buffer is available.

Identify enables the use of HAPS SRAM daughter-boards as an external
buffering memory for designs being targeted for the HAPS platform in a
single-FPGA debugging mode.

This chapter provides detailed descriptions of the feature and its use. A step
by step tutorial using an example design is also available. The HAPS Deep
Trace Debug feature is only available with Synopsys HAPS-50, HAPS-60, and
HAPS-70 series prototyping boards using a HAPS SRAM_1x1_HTII daughter
board (HAPS-50 and HAPS-60) or a HAPS SRAM_HT3 (HAPS-70) daughter
board.

External Memory Instrumentation and
Configuration Steps

With the HAPS Deep Trace Debug mode, the Synplify/Identify flow remains
unchanged. The only difference is in the configuration of a HAPS SRAM
memory as the external sample buffer using IICE parameters.

LO

 HAPS Deep Trace Debug External Memory Instrumentation and Configuration Steps

© 2013 Synopsys, Inc. Identify User Guide
48 June 2013

The HAPS Deep Trace Debug feature includes the capability to control the
configured sample depth. This depth can be dynamically varied using the
Sample depth option available on the IICE Sampler tab. The depth can be varied
between the minimum depth to the maximum configured depth, but cannot
exceed the maximum configured depth.

The following figure shows the HAPS Settings dialog box for the HAPS Deep
Trace Debug mode when the buffer type on the IICE Sampler tab is set to
hapssram.

Note: You can also select the hapssram buffer type using the iice sampler
hapssram Tcl command.

The individual HAPS Deep Trace Debug parameters are described in the
ensuing table.

External Memory Instrumentation and Configuration Steps HAPS Deep Trace Debug

Identify User Guide © 2013 Synopsys, Inc.
June 2013 49

Parameter Description

Board The HAPS Deep Trace Debug feature is available only with
specific HAPS boards. The instrumentor allows selection of
hapssram buffer type only when the device used on the HAPS
board is set in the implementation options. For example, if a
Synopsys HAPS-50 device is specified in Synplify Pro, the
Identify Instrumentor enables HAPS-50 series board selection
from the drop-down menu. Similarly, if a Synopsys HAPS-60 or
HAPS-70 device is specified for the project, HAPS-60 or HAPS-70
series board selection is enabled from the drop-down menu.

SRAM locations The buffering of the instrumented samples is performed using an
external SRAM daughter card connected to any or all the
HapsTrak II or HapsTrak 3 connectors of a single FPGA. The
selection of the connectors where the daughter cards are
physically connected is done by selecting one or more HapsTrak
locations (locations 1 through 6 for HAPS-50/HAPS-60 or a
matrix location for HAPS-70) of the daughter cards for the FPGA
under debug.

SRM stack The depth of SRAM on each daughter card is 4M locations of
72-bit words for HTII SRAM cards and 8M locations of 90-bit
words for HT3 SRAM cards. To increase the external SRAM
memory depth beyond 4M x 72 or 8M x 90, the daughter cards
can be stacked. For the HTII type SRAM, 1, 2, or 4 daughter
cards can only be stacked for the selected SRAM locations and
for HT3 type SRAM cards, 1, 2, 3, or 4 cards can be stacked. The
stack number specified applies to all connector locations
specified by SRAM locations.

SRAM module
type

The HapsTrak SRAM daughter card type is selected using this
drop-down option.

SRAM clock type The clock to the SRAM daughter card can be either fed from the
clock used within the design (Internal) or from an external clock
source present on the HAPS board (see SRAM Clocks, on
page 50).

SRAM clock
frequency

Specifies the frequency of the clock source to the SRAM. The
supported SRAM operating frequency ranges for various HAPS
board and SRAM card stacks using the FPGA internal PLL
output as the SRAM clock are listed in SRAM Clocks, on
page 50.

LO

 HAPS Deep Trace Debug External Memory Instrumentation and Configuration Steps

© 2013 Synopsys, Inc. Identify User Guide
50 June 2013

SRAM Clocks

When the clock source is internal to the design:

• select the Internal radio button

• specify the clock signal to be used as the source clock in the adjacent
text box.

Any clock signal within the design at any hierarchy level can be instrumented
as the SRAM clock.

When the clock source is external:

• select the External radio button

• Specify a suitable pin-lock constraint in the synthesis constraint file for
the deepbuf_sclk_iiceName_p and deepbuf_sclk_iiceName_n ports (these ports
are created automatically in the instrumented design)

• provide the external clock source to this FPGA port

Because of performance considerations, users are recommended to use FPGA
internal PLL output as the source of the SRAM clock.

Specify the frequency of the clock source to the SRAM. The supported SRAM
operating frequency ranges for various HAPS boards and SRAM card stacks
using the internal PLL output as the SRAM clock are given in the following
table:

SRAM H-SRAM-1x1-HTII (2.5V) HT3-SRAM (1.8V)

Board HAPS-50 Series HAPS-60 Series HAPS-70 Series

1 SRAM stack 88 to 140 MHz 96 to 155 MHz 150 MHz

2 SRAM card stack 88 to 100 MHz 92 to 116 MHz 100 MHz

3 SRAM card stack Not Supported Not Supported Not Supported

4 SRAM card stack 75 MHz 80to 110 MHz Not Supported

External Memory Instrumentation and Configuration Steps HAPS Deep Trace Debug

Identify User Guide © 2013 Synopsys, Inc.
June 2013 51

Sample Depth Calculation

For a given, user-defined external memory configuration setting, the
maximum allowed depth can be calculated based on the formula described
below.

• Number of HapsTrak slots used: Nslot

• Number of SRAM cards stacked: NSRAM

• Number of 72-bit or 90-bit words per SRAM card: Nword

(4194304 for HapsTrak II; 8388608 for HapsTrak 3)

• Number of signals to be sampled (instrumented): Nsignal

For example, if Nslot = 1, NSRAM =1, Nword = 4M (4194304) and Nsignal = 1900,
the maximum sampling depth for K samples for a HapsTrak II SRAM card is
155344.

Sample Clock Calculation

For a given set of user-defined external memory configuration settings, the
sample clock frequency can estimated using the formula described below.

In the above expressions:

• Number of HapsTrak slots used: Nslot

• Number of signals to be sampled (instrumented): Nsignal

 +
≤

slot

signal

SRAMword
sample

N
N

NNK

72
6

 +
≤

slot

signal

SRAMword
sample

N
N

NNK

72
6

90

HapsTrak II HapsTrak 3

2
72

6
+

 +
≤

slot

signal

SRAM
sampling

N
N

ff
2

72
6

+

 +
≤

slot

signal

SRAM
sampling

N
N

ff

90

HapsTrak II HapsTrak 3

LO

 HAPS Deep Trace Debug External Memory Instrumentation and Configuration Steps

© 2013 Synopsys, Inc. Identify User Guide
52 June 2013

• SRAM bus frequency: fSRAM

For example, if fSRAM = 100MHz, Nslot= 1, and Nsignal= 1900, the maximum
sampling frequency for a HapsTrak II SRAM card is 3.44MHz.

Note: For every parameter/option that is set, as described above, an equiv-
alent Tcl command is also available.

Hardware Configuration Verification

A self-test is available for verifying the deep trace debug hardware configura-
tion. The self-test writes data patterns to the external memory and reads
back the data pattern written to detect configuration errors, connectivity
problems, and SRAM frequency mismatches.

The self test is normally executed:

• following the initial setup to verify the hardware configuration against
the instrumentation

• during routine operations whenever a hardware problem is suspect

• whenever the physical configuration is modified (changing any of the
IICE Sampler dialog box configuration settings such as relocating the
SRAM daughter card to another connector)

To run the self-test from the Identify debugger GUI:

1. Open the project view.

2. Click the IICE icon.

3. Select one of the two patterns (pattern 0 or pattern 1) from the Self-test
drop-down menu.

4. Click the Run SRAM tests button.

External Memory Instrumentation and Configuration Steps HAPS Deep Trace Debug

Identify User Guide © 2013 Synopsys, Inc.
June 2013 53

Selecting 0 uses one test pattern, and selecting 1 uses another pattern. To
ensure adequate testing, repeat the command using alternate pattern
settings.

The self-test can also be run from the command line using the following
syntax:

iice sampler -runselftest 1|0

LO

 HAPS Deep Trace Debug External Memory Instrumentation and Configuration Steps

© 2013 Synopsys, Inc. Identify User Guide
54 June 2013

Identify User Guide © 2013 Synopsys, Inc.
June 2013 55

C H A P T E R 6

Support for Instrumenting HDL

The Identify tool set fully supports the synthesizable subset of both Verilog
and VHDL design languages. Designs that contain a mixture of VHDL and
Verilog can be debugged – the Identify software reads in your design files in
either language.

There are some limitations on which parts of a design can be instrumented
by the Identify instrumentor. However, in all cases you can always instru-
ment all other parts of your design.

The instrumentation limitations are usually related to language features.
These limitations are described in this chapter.

• VHDL Instrumentation Limitations, on page 56

• Verilog Instrumentation Limitations, on page 58

• SystemVerilog Instrumentation Limitations, on page 61

LO

 Support for Instrumenting HDL VHDL Instrumentation Limitations

© 2013 Synopsys, Inc. Identify User Guide
56 June 2013

VHDL Instrumentation Limitations
The synthesizable subsets of VHDL IIEEE 1076-1993 and IEEE 1076-1987
are supported in the current release of the Identify debugger.

Design Hierarchy

Entities that are instantiated more than once are supported for instrumenta-
tion with the exception that signals that have type characteristics specified by
unique generic parameters cannot be instrumented.

Subprograms

Subprograms such as VHDL procedures and functions cannot be instru-
mented. Signals and breakpoints within these specific subprograms cannot
be selected for instrumentation.

Loops

Breakpoints within loops cannot be instrumented.

Generics

VHDL generic parameters are fully supported as long as the generic param-
eter values for the entire design are identical during both instrumentation
and synthesis.

Transient Variables

Transient variables defined locally in VHDL processes cannot be instru-
mented.

VHDL Instrumentation Limitations Support for Instrumenting HDL

Identify User Guide © 2013 Synopsys, Inc.
June 2013 57

Breakpoints and Flip-flop Inferencing

Breakpoints inside flip-flop inferring processes can only be instrumented if
they follow the coding styles outlined below:

For flip-flops with asynchronous reset:

process(clk, reset, ...) begin
if reset = '0' then

reset_statements;
elsif clk’event and clk = '1' then

synchronous_assignments;
end if;

end process;

For flip-flops with synchronous reset or without reset:

process(clk, ...) begin
if clk’event and clk = '1' then

synchronous_assignments;
end if;

end process;

Or:

process begin
wait until clk’event and clk = '1'

synchronous_assignments;
end process;

The reset polarity and clock-edge specifications above are only exemplary.
The Identify software has no restrictions with respect to the polarity of reset
and clock. A coding style that uses wait statements must have only one wait
statement and it must be at the top of the process.

Using any other coding style for flip-flop inferring processes will have the
effect that no breakpoints can be instrumented inside the corresponding
process. During design compilation, the Identify instrumentor issues a
warning when the code cannot be instrumented.

LO

 Support for Instrumenting HDL Verilog Instrumentation Limitations

© 2013 Synopsys, Inc. Identify User Guide
58 June 2013

Verilog Instrumentation Limitations
The synthesizable subsets of Verilog HDL IEEE 1364-1995 and 1364-2001
are supported.

Subprograms

Subprograms such as Verilog functions and tasks cannot be instrumented.
Signals and breakpoints within these specific subprograms cannot be
selected for instrumentation.

Loops

Breakpoints within loops cannot be instrumented.

Parameters

Verilog HDL parameters are fully supported. However, the values of all the
parameters throughout the entire design must be identical during instru-
mentation and synthesis.

Locally Declared Registers

Registers declared locally inside a named begin block cannot be instrumented
and will not be offered for instrumentation. Only registers declared in the
module scope and wires can be instrumented.

Verilog Include Files

There are no limitations on the instrumentation of 'include files that are refer-
enced only once. When an 'include file is referenced multiple times as shown in
the following example, the following limitations apply:

• If the keyword module or endmodule, or if the closing ‘)’ of the module port
list is located inside a multiply-included file, no constructs inside the
corresponding module or its submodules can be instrumented.

• If significant portions of the body of an always block are located inside a
multiply-included file, no breakpoints inside the corresponding always
block can be instrumented.

Verilog Instrumentation Limitations Support for Instrumenting HDL

Identify User Guide © 2013 Synopsys, Inc.
June 2013 59

If either situation is detected during design compilation, the Identify instru-
mentor issues an appropriate warning message.

As an example, consider the following three files:

adder.v File
module adder (cout, sum, a, b, cin);
parameter size = 1;
output cout;
output [size-1:0] sum;
input cin;
input [size-1:0] a, b;
assign {cout, sum} = a + b + cin;
endmodule

adder8.v File
`include "adder.v"
module adder8 (cout, sum, a, b, cin);
output cout;
parameter my_size = 8;
output [my_size - 1: 0] sum;
input [my_size - 1: 0] a, b;
input cin;
adder #(my_size) my_adder (cout, sum, a, b, cin);
endmodule

adder16.v File
`include "adder.v"
module adder16 (cout, sum, a, b, cin);
output cout;
parameter my_size = 16;
output [my_size - 1: 0] sum;
input [my_size - 1: 0] a, b;
input cin;
adder #(my_size) my_adder (cout, sum, a, b, cin);
endmodule

There is a workaround for this problem. Make a copy of the include file and
change one particular include statement to refer to the copy. Signals and
breakpoints that originate from the copied include file can now be instru-
mented.

LO

 Support for Instrumenting HDL Verilog Instrumentation Limitations

© 2013 Synopsys, Inc. Identify User Guide
60 June 2013

Macro Definitions

The code inside macro definitions cannot be instrumented. If a macro defini-
tion contains important parts of some instrumentable code, that code also
cannot be instrumented. For example, if a macro definition includes the case
keyword and the controlling expression of a case statement, the case state-
ment cannot be instrumented.

Always Blocks

Breakpoints inside a synchronous flip-flop inferring an always block can only
be instrumented if the always block follows the coding styles outlined below:

For flip-flops with asynchronous reset:

always @(posedge clk or negedge reset) begin
if(!reset) begin

reset_statements;
end

else begin
synchronous_assignments;

end;
end;

For flip-flops with synchronous reset or without reset:

always @(posedge clk) begin
synchronous_assignments;

end process;

The reset polarity and clock-edge specifications and the use of begin blocks
above are only exemplary. The Identify instrumentor has no restrictions with
respect to these other than required by the language.

For other coding styles, the Identify instrumentor issues a warning that the
code is not instrumentable.

SystemVerilog Instrumentation Limitations Support for Instrumenting HDL

Identify User Guide © 2013 Synopsys, Inc.
June 2013 61

SystemVerilog Instrumentation Limitations
The synthesizable subsets of Verilog HDL IEEE 1364-2005 (SystemVerilog)
are supported with the following exceptions.

Typedefs

You can create your own names for type definitions that you use frequently in
your code. SystemVerilog adds the ability to define new net and variable user-
defined names for existing types using the typedef keyword. Only typedefs of
supported types are supported.

Struct Construct

A structure data type represents collections of data types. These data types
can be either standard data types (such as int, logic, or bit) or, they can be
user-defined types (using SystemVerilog typedef). Signals of type structure can
only be sampled and cannot be used for triggering; individual elements of a
structure cannot be instrumented, and it is only possible to instrument
(sample only) an entire structure. The following code segment illustrates
these limitations:

In the above code segment, port signal sig_oport_P_Struc_data is a packed
structure consisting of two elements (up_nibble and lo_nibble) which are of a
user-defined datatype. As elements of a structure, these elements cannot be
instrumented. The signal sig_oport_P_Struc_data can be instrumented for
sampling, but cannot be used for triggering (setting a watch point on the
signal is not allowed). If this signal is instrumented for sample and trigger,
the Identify instrumentor allows only sampling and ignores triggering.

module lddt_P_Struc_top (
 input sig_clk, sig_rst,
 .
 .
 .
 output struct packed {
 logic_nibble up_nibble;
 logic_nibble lo_nibble;
 } sig_oport_P_Struc_data
);

Cannot be instrumented
(no sampling and

no triggering)

Instrumentable only for
sampling; no triggering

LO

 Support for Instrumenting HDL SystemVerilog Instrumentation Limitations

© 2013 Synopsys, Inc. Identify User Guide
62 June 2013

Union Construct

A union is a collection of different data types similar to a structure with the
exception that members of the union share the same memory location.
Unions are not supported for instrumentation and it is not possible to select
a union datatype signal for either sampling or triggering. The following code
segment illustrates this limitation:

In the above code, port signals sig_iport_P_Union_data and sig_oport_P_Union_data
are of type union. Code that includes union constructs compiles successfully
without error in the synthesis tool, but is disabled for instrumentation in the
Identify instrumentor.

Arrays

Arrays having more than one dimension cannot be instrumented for
triggering. The following code segment illustrates these limitation:

In the above code segment, waddress, waddress1, and raddress are one dimen-
sional packed arrays. These signals can be instrumented for both sampling
and triggering. Signals data and data1 are 2-dimensional arrays. These signals
can only be instrumented for sampling, and triggering is not allowed.

module lddt_P_Union_top (
 input sig_clk, sig_rst,
 input union packed {
 type_P_Struc_datapkt P_Struc_data;
 logic [7:0][7:0] P_Array_data;
 } sig_iport_P_Union_data,
 output union packed {
 type_P_Struc_datapkt P_Struc_data;
 logic [7:0][7:0] P_Array_data;
 } sig_oport_P_Union_data
);

Cannot be instrumented
(no sampling and

no triggering)

module test (clock,waddress,waddress1,
 raddress,we,data,data1,q,q1);
input clock;
input [8:0] waddress,waddress1,raddress;
input we;
input [255:0] [31:0] data, data1;
output reg [31:0] q, q1; Instrumented for sampling only

SystemVerilog Instrumentation Limitations Support for Instrumenting HDL

Identify User Guide © 2013 Synopsys, Inc.
June 2013 63

Partial instrumentation of multi-dimensional and multi-dimensional arrays
of struct is not permitted, and instrumentation of multi-dimensional arrays of
packed unions is not supported.

Interface

Interface and interface items are not supported for instrumentation and
cannot be used for sampling or triggering. The following code segment illus-
trates this limitation:

interface ff_if (input logic clk, input logic rst,
 input logic din, output logic dout);
modport write (input clk, input rst, input din, output dout);
endinterface: ff_if

module top (input logic clk, input logic rst,
 input logic din, output logic dout) ;

 ff_if ff_if_top(.clk(clk), .rst(rst), .*);
 sff UUT (.ff_if_0(ff_if_top.write));
endmodule

In the above code segment, the interface instantiation of interface ff_if is
ff_if_top which cannot be instrumented. Similarly, interface item modport write
cannot be instrumented.

Port Connections for Interfaces and Variables

Instrumentation of named port connections on instantiations to implicitly
instantiate ports is not supported.

Packages

Packages permit the sharing of language-defined data types, typedef user-
defined types, parameters, constants, function definitions, and task defini-
tions among one or more compilation units, modules, or interfaces. Instru-
mentation within a package is not supported.

Concatenation Syntax

The concatenation syntax on an array watchpoint signal is not accepted by
the Identify debugger. To illustrate, consider a signal declared as:

bit [3:0] sig_bit_type;

LO

 Support for Instrumenting HDL SystemVerilog Instrumentation Limitations

© 2013 Synopsys, Inc. Identify User Guide
64 June 2013

To set a watchpoint on this signal, the accepted syntax in the Identify
debugger is:

watch enable –iice IICE {/sig_bit_type} {4’b1001}

The 4-bit vector cannot be divided into smaller vectors and concatenated (as
accepted in SystemVerilog). For example, the below syntax is not accepted:

watch enable –iice IICE {/sig_bit_type} {{2’b10,2’b01}}

Identify User Guide © 2013 Synopsys, Inc.
June 2013 65

C H A P T E R 7

Identify Instrumentor

The Identify instrumentor performs the following functions:

• defines the instrumentation for the user’s HDL design

• creates the instrumented HDL design

• creates the associated IICE

• creates the design database

The remainder of this chapter describes:

• Identify Instrumentor Windows

• Commands and Procedures

Identify Instrumentor Windows
The Graphical User Interface (GUI) for the Identify instrumentor is divided
into the following three major areas:

• Instrumentation Window

• Project Window

• Console Window

LO

 Identify Instrumentor Identify Instrumentor Windows

© 2013 Synopsys, Inc. Identify User Guide
66 June 2013

In this section, each of these areas and their uses is described. The following
discussions assume that a project (with an HDL design) has been loaded into
the Identify instrumentor.

Instrumentation Window

The instrumentation window includes a hierarchy browser on the left and the
source-code display on the right. The window is displayed when you open a
synthesis project (prj) file in the Identify instrumentor by either launching
the Identify instrumentor from a synthesis project or explicitly loading a
synthesis project into the Identify instrumentor.

Hierarchy Browser

The hierarchy browser on the left shows a graphical representation of the
design’s hierarchy. At the top of the browser is the ROOT node. The ROOT
node represents the top-level entity or module of your design. For VHDL
designs, the first level below the ROOT is the architecture of the top-level
entity. The level below the top-level architecture for VHDL designs, or below
the ROOT for Verilog designs, shows the entities or modules instantiated at
the top level.

Hierarchy Browser Source-Code Display

Identify Instrumentor Windows Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 67

Clicking on a + sign opens the entity/module instance so that the hierarchy
below that instance can be viewed. Lower levels of the browser represent
instantiations, case statements, if statements, functional operators, and other
statements.

Single clicking on any element in the hierarchy browser causes the associ-
ated HDL code to be visible in the adjacent source code display.

A popup menu is available in the hierarchy browser to set or clear break-
points or watchpoints at any level of the hierarchy. Positioning the cursor
over an element and clicking the right mouse button displays the following
menu.

The selected operation is applied to all breakpoints or signal watchpoints at
the selected level of hierarchy.

Note: You cannot instrument signals when a sample clock is included in
the defined group.

LO

 Identify Instrumentor Identify Instrumentor Windows

© 2013 Synopsys, Inc. Identify User Guide
68 June 2013

The popup menu functions can be duplicated in the console window using
the Identify instrumentor hierarchy command in combination with either the
Identify instrumentor breakpoints or signals command. A typical Identify instru-
mentor command sequence to instrument the signal set within a design
would be:

signals add [hierarchy find -type signal /]

In the above sequence, the slash (/) indicates that all of the signals in the root
hierarchy (entire design) are to be instrumented. If you specify a lower level of
hierarchy following the slash, the command only applies to that hierarchical
level. For more information on the Identify instrumentor breakpoints, signals,
and hierarchy commands, see the Reference Manual.

Black-box modules are represented by a black icon, and their contents can
not be instrumented. Also, certain modules cannot be instrumented (see
Chapter 6, Support for Instrumenting HDL, for a specific description). Modules
that cannot be instrumented are displayed in a disabled state in a grey font.

Source Code Display

The HDL source code in the source code display is annotated with signals
that can be probed and breakpoints that can be selected. Signals that can be
selected for probing by the IICE are underlined, colored in blue, and have
small watchpoint icons next to them. Source lines that can be selected as
breakpoints have small circular icons in the left margin adjacent to the line
number.

Identify Instrumentor Windows Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 69

Project Window

The project window is displayed when you first start up the Identify instru-
mentor (to invoke the Identify instrumentor, see Projects in the Identify
Instrumentor, on page 24).

The project window includes a set of project management buttons and a
symbolic view of the project on the left and an area for setting the common
IICE parameters on the right (the area below the common IICE parameters
shows the top-level unit when the design was compiled).

The project window can be displayed at any time by clicking the project name
tab that remains visible when an instrumentation window is displayed.

Common IICE

Project
Buttons

Project
Symbols

Parameters
Top-Level
Unit

LO

 Identify Instrumentor Identify Instrumentor Windows

© 2013 Synopsys, Inc. Identify User Guide
70 June 2013

Console Window

The console window appears below the project or instrumentation window
and displays a history of Identify instrumentor commands that have been
executed, including those executed by menu selections and button clicks.
The Identify instrumentor console window allows you to enter commands as
well as to view the results of those commands. Command history recording is
available through a transcript command (see the Reference Manual).

When you save your instrumentation (click Save project’s active implementation),
the information at the bottom of the display reports the total number of
instrumented signals to implement in each IICE. To display the resource
estimates for the FPGA device, click the IICEs resource estimation icon.

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 71

Commands and Procedures
The following sections describe basic Identify instrumentor commands and
procedures.

Opening Projects

To launch the Identify instrumentor from the Synopsys synthesis tool
(Synplify, Synplify Pro, Synplify Premier, or Certify) graphical interface:

1. Right click on the implementation and select New Identify Implementation
from the popup menu.

2. Set/verify any technology, device mapping, or other pertinent options
(see the implementation option descriptions in the Synopsys FPGA
Synthesis or Certify User Guide) and click OK. A new, Identify
implementation is added to the synthesis tool project view.

3. Either right click on the Identify implementation and select Launch Identify
Instrumentor from the popup menu or click the Launch Identify Instrumentor
toolbar icon to launch the Identify instrumentor.

Launching the Identify instrumentor from a Synopsys synthesis tool:

• Brings up the Identify instrumentor graphical interface.

Identify
Implementation

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
72 June 2013

• Extracts the list of design files, their work directories, and the device
family from the prj file.

• Automatically compiles the design files using the synthesis tool compiler
and displays the design hierarchy and the HDL file content with all the
potential instrumentation marked and available for selection.

When importing a synthesis tool project into the Identify instrumentor, the
working directory is automatically set from the corresponding project file. See
Chapter 3, Project Handling, for details on setting up and managing projects.

Executing Script Files

A script file is a file that contains Identify instrumentor Tcl commands. A
script file is a convenient way to capture a command sequence you would like
to repeat. To execute a script file, select the File->Execute Script menu selection
in the Identify instrumentor user interface and navigate to the location of
your script file or use the source command (see Chapter 4, Alphabetical
Command Reference, in the Reference Manual).

Selecting Signals for Data Sampling

To select a signal to be sampled, simply click on the watchpoint icon
next to the signal name in the Identify instrumentor instrumentation
window; a popup menu appears that allows the signal to be selected
for sampling, triggering, or both.

To control the overhead for the trigger logic, always instrument signals that
are not needed for triggering with the Sample only selection (the watchpoint
icon is blue for sample-only signals).

Scalar Signal Popup
Bus Signal Popup

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 73

Qualified clock signals can be specified as the Sample Clock (see Sample
Clock, on page 41) and bus segments can be individually specified (see
Instrumenting Buses, on page 75). In addition, signals specified as Sample and
trigger or Sample only can be included in mux groups (see Multiplexed Groups,
on page 79).

If the icon is clear (unfilled), the signal is disabled for sampling (not instru-
mented), and if the icon is red, the signal is enabled for triggering only. If the
icon is blue, the signal is enabled for sampling only, and if the icon is green,
the signal is enabled for both sampling and triggering. In the example below,
notice that when signal “grant1” is enabled, the console window displays the
text command that implements the selection and the results of executing the
command.

Signals that can be selected

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
74 June 2013

To disable a signal for sampling or triggering, select the signal in the Identify
instrumentor instrumentation window and then select Not instrumented from
the popup menu; the watchpoint icon will again be clear (unfilled).

Note: You can use Find to recursively search for signals and then instru-
ment selected signals directly from the Find dialog box (see Searching
for Design Objects, on page 94).

Signal “grant1” selected

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 75

Instrumenting Buses

Entire buses or individual or groups of bits of a bus can be independently
instrumented.

Instrumenting a Partial Bus

To instrument a sequence (range) of bits of a bus:

1. Place the cursor over a bus that has not been fully instrumented and
select Add partial instrumentation to display the following dialog box.

2. In the dialog box, enter the most- and least-significant bits in the MSB
and LSB fields. Note that the bit range specified is contiguous; to
instrument non-contiguous bit ranges, see the section, Instrumenting
Non-Contiguous Bits or Bit Ranges, on page 76.

Note: When specifying the MSB and LSB values, the index order of the bus
must be followed. For example, when defining a partial bus range for
bus [63:0] (or “63 downto 0”), the MSB value must be greater than the
LSB value. Similarly, for bus [0:63] (or “0 upto 63”), the MSB value
must be less that the LSB value.

3. Select the type of instrumentation for the specified bit range from the
drop-down menu and click OK.

When you click OK, a large letter “P” is displayed to the left of the bus
name in place of the watchpoint icon. The color of this letter indicates if
the partial bus is enabled for triggering only (red), for sampling only
(blue), or for both sampling and triggering (green).

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
76 June 2013

Instrumenting Single Bits of a Bus

To instrument a single bit of a bus, enter the bit value in the MSB field of the
Add partial bus dialog box, leave the LSB field blank, and select the instrumen-
tation type from the drop-down menu as previously described.

Instrumenting Non-Contiguous Bits or Bit Ranges

To instrument non-contiguous bits or bit ranges:

1. Instrument the first bit range or bit as described in one of the two
previous sections.

2. Re-position the cursor over the bus, click the right mouse button, and
again select Add partial instrumentation to redisplay the Add partial bus dialog
box. Note that the previously instrumented bit or bit range is now
displayed.

3. Specify the bit or bit range to be instrumented as previously described,
select the type of instrumentation from the drop-down menu, and click
OK. If the type of instrumentation is different from the existing
instrumentation, the letter “P” will be yellow to indicate a mixture of
instrumentation types.

Note: Bits cannot overlap groups (a bit cannot be instrumented more than
once).

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 77

Changing the Instrumentation Type

To change the instrumentation type of a partial bus:

1. Position the cursor over the bus and click the right mouse button.

2. Highlight the bit range or bit to be changed and select the new
instrumentation type from the adjacent menu.

Note: The above procedure is also used to remove the instrumentation from
a bit or bit range by selecting Not instrumented from the menu.

Partial Instrumentation

Partial instrumentation allows fields within a record or a structure to be
individually instrumented. Selecting a compatible signal for instrumentation,
either in the RTL window or through the Find dialog box, enables the partial
instrumentation feature and displays a dialog box where the field name and
its type of instrumentation can be entered.

When instrumented, the signal is displayed with a P icon in place of the
watchpoint (glasses) icon to indicate that portions of the record are instru-
mented. The P icon is the same icon that is used to show partial instrumenta-
tion of a bus and uses a similar color coding:

• Green indicates that all fields of the record are instrumented for sample
and trigger

• Blue indicates that all fields of the record are instrumented for sample
only

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
78 June 2013

• Pink indicates that all fields of the record are instrumented for trigger
only

• Yellow indicates that not all fields of the record are instrumented the
same way

The figure below shows the partial instrumentation icon on signal tt. The
yellow color indicates that the individual fields (tt.r2 and tt.c2) are assigned
different types of instrumentation.

The Find dialog also uses the partial instrumentation icon to show the state of
instrumentation on fields of partially instrumented records.

Note: Partial instrumentation can only be added to a field or record one
slice-level down in the signal hierarchy.

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 79

Multiplexed Groups

Multiplexed groups allow signals to be assigned to logical groups. Using
multiplexed groups can substantially reduce the amount of pattern memory
required during subsequent debugging when all of instrumented signals are
not required to be loaded into memory at the same time.

Only signals or buses that are instrumented as either Sample and trigger or
Sample only can be added to a multiplexed group. To create multiplexed
groups, right click on each individual instrumented signal or bus and select
Add mux group from the popup menu.

In the Add mux group dialog box displayed, select a corresponding group by
checking the group number and then click OK to assign to the signal or bus
to that group. A signal can be included in more than one group by checking
additional group numbers before clicking OK.

When assigning instrumented signals to groups:

• A maximum of eight groups can be defined; signals can be included in
more than one group, but only one group can be active in the Identify
debugger at any one time.

• Signals instrumented as Sample Clock or Trigger only cannot be included in
multiplexed groups.

• Partial buses cannot be assigned to multiplexed groups.

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
80 June 2013

• The signals group command can be used to assign groups from the
console window (see signals, on page 79 of the Reference Manual).
Command options allow more than one instrumented signal to be
assigned in a single operation and allow the resultant group assign-
ments to be displayed.

For information on using multiplexed groups in the Identify debugger see
Selecting Multiplexed Instrumentation Sets, on page 109.

Sampling Signals in a Folded Hierarchy

When a design contains entities or modules that are instantiated more than
once, it is termed to have a folded hierarchy (folded hierarchies also occur
when multiple instances are created within a generate loop). By definition,
there will be more than one instance of every signal in a folded entity or
module. To allow you to instrument a particular instance of a folded signal,
the Identify instrumentor automatically recognizes folded hierarchies and
presents a choice of all possible instances of each signal with the hierarchy.

The choices are displayed in terms of an absolute signal path name
originating at the top-level entity or module. The list of choices for a
particular signal is accessed by clicking the watchpoint icon or corre-
sponding signal.

The example below consists of a top-level entity called two-level and two
instances of the repeated_unit entity. The source code of repeated_unit is
displayed, and the list of instances of the val signal is displayed by clicking on
the watchpoint icon or the signal name. Two instances of the signal val are
available for sampling:

/rtl/cnt_inst0/val
/rtl/cnt_inst1/val

Either, or both, of these instances can be selected for sampling by selecting
the signal instance and then sliding the cursor over to select the type of
sampling to be instrumented for that signal instance.

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 81

The color of the watchpoint icon is determined as follows:

• If no instances of the signal are selected, the watchpoint icon is clear.

• If some, but not all, instances of the signal are defined for sampling, the
watchpoint icon is yellow.

• If all instances are defined for sampling, the color of the watchpoint icon
is determined by the type of sampling specified (all instances sample
only: blue, all instances trigger only: red, all instances sample and
trigger: green, all instances in any combination: yellow).

Alternately, any of the instances of a folded signal can be selected or
deselected at the Identify instrumentor console window prompt by using the
absolute path name of the instance. For example,

signals add /rtl/cnt_inst1/val

See the Reference Manual for more information.

To disable an instance of a signal that is currently defined for sampling, click
on the watchpoint icon or signal, select the instance from the list displayed,
and select Not instrumented.

For related information on folded hierarchies in the Identify debugger, see
Activating/Deactivating Folded Instrumentation, on page 110 and Displaying
Data from Folded Signals, on page 119.

The list of instrumentable instances of signal val

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
82 June 2013

Instrumenting Signals Directly in the idc File

In addition to the methods described in the previous sections, signals can be
instrumented directly within the srs file in the synthesis tool outside of the
Identify instrumentor. This methodology facilitates updates to a previous
instrumentation and also allows signals within a parameterized module,
which were previously unavailable for instrumentation, to be successfully
instrumented. This technique is referred to as “post-compile instrumenta-
tion.” To instrument a signal directly within the synthesis tool using this
technique:

1. Compile the existing instrumented design in the synthesis tool.

2. Open the RTL view (srs file) in the synthesis tool.

3. Highlight the net of the signal to be instrumented.

4. With the net highlighted, click the right mouse button, select Identify -
Copy TCL from the popup menu, and select the type of instrumentation
to be applied.

.

5. Create a new or open an existing identify.idc file in the designName/rev_n
directory and paste the signal string into the file. The following figure
shows the cntrl_ack_o_0_sqmuxa signal (from the block_xfer block) on line
10 being pasted into the file as a sample-only signal.

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 83

Note: If you are creating a new identify.idc file, you must add the IICE
definition on lines 1, 2, and 3 to the beginning of the file as
shown in the above figure.

6. Edit the entry and add an -iice option to the line as shown in the example
below (the Copy TCL command does not automatically include the IICE
unit in the entry):

signals add -iice {IICE} -sample
{/SRS/blk_xfer_inst/cntrl_ack_o_0_sqmuxa}

7. Save the edited identify.idc file and rerun synthesis.

When you open the Identify debugger, an SRS entry is included in the
hierarchy browser; selecting this entry displays the additional signal or
signals added to the identify.idc file. Selecting a signal in the instrumentation
window brings up the Watchpoint Setup dialog box to allow a trigger expression
to be assigned to the defined signal.

Note that trigger expressions on signals added to the identify.idc file must use
the VHDL style format.

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
84 June 2013

Selecting Breakpoints

Breakpoints are used to trigger data sampling. Only the breakpoints
that are instrumented in the Identify instrumentor can be enabled as
triggers in the Identify debugger. To instrument a breakpoint in the

Identify instrumentor, simply click on the circular icon to the left of the line
number. The color of the icon changes to green when enabled.

Once a breakpoint is instrumented, the Identify instrumentor creates trigger
logic that becomes active when the code region in which the breakpoint
resides is active.

In the above example, the code region of the instrumented breakpoint is
active if the variable current_state is state zero (s_ZERO) and the signal clr is not
‘0’ when the clock event occurs.

Selecting Breakpoints Residing in Folded Hierarchy

If a design contains entities or modules that are instantiated more than once,
the design is termed to have folded hierarchy. By definition, there will be
more than one instance of every breakpoint in a folded entity or module. To
allow you to instrument a particular instance of a folded breakpoint, the
Identify instrumentor automatically detects folded hierarchy and presents a
choice of all possible instances of each breakpoint.

Breakpoint on line 23 enabled

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 85

The choices are displayed in terms of an absolute breakpoint path name
originating at the top-level entity or module. The list of choices for a partic-
ular breakpoint is accessed by clicking on the breakpoint icon to the left of
the line number.

The example below consists of a top-level entity called top and two instances
of the repeated_unit entity. The source code of repeated_unit is displayed; the list
of instances of the breakpoint on line 100 is displayed by clicking on the
breakpoint icon next to the line number. As shown in the following figure,
three instances of the breakpoint are available for sampling.

Any or all of these breakpoints can be selected by clicking on the corre-
sponding line entry in the list displayed.

The color of the breakpoint icon is determined as follows:

• If no instances of the breakpoint are selected, the icon is clear in color.

• If some, but not all, instances of the breakpoint are selected, the icon is
yellow.

• If all instances are selected, the icon is green.

Alternately, any of the instances of a folded breakpoint can be selected or
deselected at the Identify instrumentor console window prompt by using the
absolute path name of the instance. For example,

breakpoints add
/rtl/inst0/rtl/process_18/if_20/if_23/repeated_unit.vhd:24

See the Reference Manual for more information.

Folded breakpoint on line 100 selected

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
86 June 2013

The lines in the list of breakpoint instances act to toggle the selection of an
instance of the breakpoint. To disable an instance of a breakpoint that has
been previously selected, simply select the appropriate line in the list box.

Configuring the IICE

If the IICE configuration parameters for the active IICE need to be
changed, use the Actions->Configure IICE menu selection or the Edit IICE
settings icon to change them. Chapter 4, IICE Configuration, discusses
how to set these parameters for both single- and multi-IICE configu-
rations and for the HAPS deep trace debug feature.

Real-time Debugging

Real-time debugging is a feature that allows users of HAPS-50 and HAPS-60
series boards to provide scope or logic analyzer access to instrumented
signals directly through a Mictor board interface connector installed on the
HAPS board.

The use of this feature requires:

• A HAPS-50 or HAPS-60 series board

• One or more Mictor boards installed in HapsTrakII connectors

• Synopsys HAPS device family specified in the synthesis tool

Enabling the Real-time Debugging Feature

The real-time debugging feature can be used only when the above require-
ments are met. To use real-time debugging, a special IICE is defined in either
the user interface or by command entry in the console window.

To specify the IICE from the user interface, open the Project view and click
the New IICE button to display the following dialog box. Select the RTD radio
button and click OK.

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 87

To define the IICE from the console window, enter the iice new command:

iice new [iiceID] -type rtd

In the command syntax, iiceID is the name of the new IICE and, if omitted,
defaults to an incremental number (for example, IICE_0).

Either of the above methods creates a new, real-time IICE for the design with
all of the signals “not instrumented.” This new IICE is identified by the “R”
symbol in the IICE tab.

Before you can instrument any of the signals, you must configure the HAPS
Settings tab as outlined in the next section.

HAPS Settings Tab

The HAPS Settings tab for the real-time debugging feature includes a drop-
down menu for selecting the HAPS board type and a set of Mictor board
location check boxes. The available board selections are determined by the
Synopsys HAPS device selection on the Device tab of the Implementation Options
dialog box in the synthesis tool. When a HAPS-60 based device is targeted,
the available selections are HAPS-61, HAPS-62, and HAPS-64 as shown in the
following figure. Similarly, when a HAPS-50 based device is targeted, the
available radio buttons are HAPS-51, HAPS-52, and HAPS-54. The Mictor
daughter board location check boxes identify the corresponding HapsTrakII
connector location.

Real-time IICE Tab

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
88 June 2013

On the IICE Sampler tab:

1. Specify the HAPS board you are using from the Board drop-down menu.

2. Specify one or more Mictor board HapsTrakII connector locations by
clicking on the connector number.

3. When finished with the above entries, click the OK button at the bottom
of the tab.

Instrumenting the Real-Time Debug Signals

Instrumenting signals for real-time debugging is similar to normal instru-
mentation in that signal watchpoints and breakpoints are identified and
activated in the instrumentation window. The exception is that the only
watchpoint selection available from the popup menu for real-time debugging
signals is Sample only.

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 89

Viewing the Signal Assignments

Watchpointed signals are automatically assigned to the specified
Mictor daughter board pin locations. These assignments are listed in
the Change mapping dialog box. To display the dialog box, click the ‘R’
icon (Change ‘RTD’ type IICE signals/breakpoints mapping) in the top menu
bar.

Individual assignments can be changed by highlighting the assignment to be
changed and then either:

• moving the assignment up or down using the Up or Down buttons.

• clicking the Assign button to display the Assign mapping dialog box and
then selecting the new pin location from the drop-down menu and
clicking OK.

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
90 June 2013

Logic Analyzer Interface

The logic analyzer interface at the Mictor connector is configured in the
Identify debugger (see Logic Analyzer Interface Parameters, on page 137).

Writing the Instrumented Design

To create the instrumented design, you must first complete the following
steps:

1. Define a synthesis project with all source files defined

2. Specify IICE parameters/HAPS settings

3. Select signals to sample

4. Select breakpoints to instrument

5. Optionally include the original HDL source

Note: To include the original HDL source with the project, select
Options->Instrumentation preference from the menu to display the Instru-
mentation Preferences dialog box and select the Save original source in
instrumentation directory check box. If the original source is to be
encrypted, additionally select the Use encryption check box. Selecting
Save original source in instrumentation directory saves the original HDL
source to the orig_sources subdirectory in the instrumentation direc-
tory when you instrument your design.

Finally, click on the Save project’s active instrumentation icon to capture
your instrumentation. Saving a project’s instrumentation generates
an instrumentation design constraints (idc) file and adds compiler
pragmas in the form of constraint files to the design RTL for the

instrumented signals and break points. This information is then used by the
synthesis tool to incorporate the instrumentation logic (IICE and COMM
blocks) into the synthesized netlist. If you are including an encrypted HDL
source (Use encryption box checked), you are first prompted to supply a
password for the encryption.

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 91

Including Original HDL Source

Including the original HDL source with the instrumented project simplifies
design transfer when instrumentation and debugging are performed on
separate machines and is especially useful when a design is being debugged
on a system that does not have access to the original sources.

As explained in Debugging on a Different Machine, on page 127, you can
simply copy the entire implementation directory to the debug system; the
Identify project will be able to locate the original sources for display. To
include the original HDL source, select the Save original source in instrumentation
directory check box from the Instrumentor Preferences dialog box (Options->Instru-
mentation preferences) before you save and instrument your project. The clear
text or encrypted source is included in the orig_sources subdirectory.

When the Use encryption check box is additionally selected, the original sources
are encrypted when they are written into the orig_sources subdirectory. The
encryption is based on a password that is requested when you write out the
instrumented project. Encryption allows you to debug on a machine that you
feel would not be sufficiently secure to store your sources. After you transfer
the instrumentation directory to the unsecure machine, you are prompted to
reenter the encryption password when you open the project in the debugger.

For maximum security when selecting an encryption password:

• use spaces to create phrases of four or more words (multiple words
defeat dictionary-type matching)

• include numbers, punctuation marks, and spaces

• make passwords greater than 16 characters in length

Note: Passwords are the user’s responsibility; Synopsys cannot recover a
lost or forgotten password.

The decrypted files are never written to the unsecure machine’s hard disk.
Users are discouraged from transferring the instr_sources directory to the
unsecure machine, as this directory is not required for debugging.

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
92 June 2013

Synthesizing Instrumented Designs

When you save your instrumentation, the following files and subdirectories
are updated or created in the synthesis project implementation directory
(projectName/rev_n):

• an identify.idc file describing the instrumented watchpoints and break-
points; this file can be manually edited to add additional watchpoints
(see Instrumenting Signals Directly in the idc File, on page 82).

• instr_sources subdirectory containing:

– the IICE core file (syn_dics.v)

– a Synopsys FPGA constraints file (syn_dics.sdc) – this file is used
directly by the synthesis tool

– a Synopsys FPGA compiler design constraints file (syn_dics.cdc)

• an optional orig_sources subdirectory containing the original HDL files in
either encrypted or clear-text format

• an identify.db encrypted data file

Note: When instrumenting a VHDL file that is not compiled into the work
library, make sure that the syn_dics.vhd file is included in the
synthesis project ahead of the user design files. Additionally, this file
must be compiled into the work library.

Listing Signals

The Identify instrumentor includes a set of menu commands and, in most
cases, icons for listing watchpoint and breakpoint conditions.

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 93

List Instrumented Signals

To view all of the signals currently instrumented in the entire design,
use the Actions->Show Instrumented Signals menu selection or click the
Show Instrumented Signals icon. The result of listing the signals is
displayed in the Find dialog box.

List All Signals

To view all of the signals in the design, use the Actions->Show All Signals menu
selection.

List Signals Available for Instrumentation

To see only the signals in the design available for instrumentation,
use the Actions->Show Possible Signals menu selection or the Show
Possible Signals icon.

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
94 June 2013

List Instrumented Breakpoints

To list all of the breakpoints that have been instrumented, use the
Actions->Show Instrumented Breakpoints menu selection or the Show Instru-
mented Breakpoints icon.

List All Breakpoints

To list all breakpoints, use the Actions->Show All Breakpoints menu selection.

List Breakpoints Available for Instrumentation

To list all of the breakpoints that are available for instrumentation,
use the Actions->Show Possible Breakpoints menu selection or the Show
Possible Breakpoints icon.

Searching for Design Objects

The Find dialog box is a general utility to recursively search for
signals, breakpoints, and/or instances. To invoke the Find dialog box,
use the Edit->Find menu selection or the Display find dialog icon.

The Find dialog box has an area for specifying the objects to find and an area
for displaying the results of the search.

Commands and Procedures Identify Instrumentor

Identify User Guide © 2013 Synopsys, Inc.
June 2013 95

The search specification includes these options:

• Of type: – specify which type of object to search for: breakpoint, signal,
instance, or “*” (any). The default is “*” (any).

• Named: – specify a name, or partial name to search for in the design. Wild
cards are allowed in the name. The default is “*” (any).

• With status: – specify the status of the object to be found. The values can
be instrumented, sample trigger, sample_only, trigger_only, not-instrumented, or “*”
(any). The default is “*” (any).

• Look in: – specify the location in the design hierarchy to begin the recur-
sive search. The root (“/”) is the default setting.

• In IICE: – a read-only field that indicates which IICE is to be searched
when multiple IICEs are defined. To search another IICE, close the Find
dialog box, click the desired IICE tab, and reopen the Find dialog box.

The search specification also includes a Show hidden elements check box. When
this check box is enabled, the search also includes objects that would not
normally be searched such as breakpoints in dead code.

Search Specification Search Results

LO

 Identify Instrumentor Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
96 June 2013

The search results window shows each object found along with its hierar-
chical location. In addition, for breakpoints and signals, the results window
includes the corresponding icon (watchpoint or breakpoint) that indicates the
instrumentation status of the qualified signal or breakpoint.

To change the instrumentation status of a signal, click directly on the watch-
point icon and select the instrumentation type from the popup menu. You
can use the Ctrl and Shift keys to select multiple signals and then apply the
change to all of the selected signals. To toggle the instrumentation status of a
breakpoint, click the breakpoint icon. You also can use the Ctrl and Shift keys
to select multiple breakpoints and then apply the change to all selected
breakpoints from the popup menu.

Console Text

To capture all text written to the console, use the log console command (see
the Reference Manual). Alternately, you can click the right mouse button
inside the console window and select Save Console Output from the menu.

To capture all commands executed in the console window use the transcript
command (see the Reference Manual).

To clear the text from the console, use the clear command or click the right
mouse button from within the console window and select Clear from the
menu.

Identify User Guide © 2013 Synopsys, Inc.
June 2013 97

C H A P T E R 8

Identify Debugger

The Identify debugger enables HDL designs to be debugged by interacting
with the instrumented HDL design implemented in the target hardware
system. You can activate breakpoints and watchpoints to cause trigger events
within the IICE on the target device. These triggers cause signal data to be
captured in the IICE. The data is then transferred to the Identify debugger
through a communications port where it can be displayed in a variety of
formats.

This chapter describes:

• Invoking the Identify Debugger, on page 98

• Identify Debugger Windows, on page 99

• Commands and Procedures, on page 104

• Debugging on a Different Machine, on page 127

• Simultaneous Debugging, on page 128

• Identify-Analyst Integration, on page 129

• Waveform Display, on page 134

• Logic Analyzer Interface Parameters, on page 137

• Console Text, on page 141

LO

 Identify Debugger Invoking the Identify Debugger

© 2013 Synopsys, Inc. Identify User Guide
98 June 2013

Invoking the Identify Debugger
The Identify debugger can be launched directly from a synthesis project or
the Identify debugger can be explicitly opened directly from a Windows or
Linux system.

Synthesis Tool Launch

If you are using a Synopsys FPGA synthesis tool or the Certify tool, invoke the
Identify debugger directly from the graphical user interface as follows:

• From Synplify Pro or Synplify Premier, highlight the Identify implemen-
tation and select Run->Launch Identify Debugger from the menu bar or
popup menu, or click the Launch Identify Debugger icon in the top menu
bar.

• From Synplify, select Run->Launch Identify Debugger from the menu bar or
click the Launch Identify Debugger icon in the top menu bar.

• From Certify, highlight the Identify implementation and select
Tools->Launch Identify Debugger from the menu bar or popup menu, or click
the Launch Identify Debugger icon in the top menu bar.

The Identify debugger IICE instrumentation window opens with the corre-
sponding project displayed (see Instrumentation Window, on page 100).

Operating System Invocation

The Identify debugger runs on both the Windows and Linux platforms. To
explicitly invoke the debugger from a Windows system, either:

• double click the Identify Debugger icon on the desktop

• run identify_debugger.exe from the /bin directory of the installation path

To explicitly invoke the Identify debugger from a Linux system:

• run identify_debugger from the /bin directory of the installation path

Identify Debugger Windows Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 99

The initial Identify debugger project window opens. To display the instrumen-
tation window, do either of the following:

• Click the Open existing project icon in the menu bar and, in the Open Project
File dialog box, navigate to the project directory and open the corre-
sponding project (prj) file.

• Select File->Open project from the main menu and, in the Open Project File
dialog box, navigate to the project directory and open the corresponding
project (prj) file.

The Identify instrumentation (IICE) window opens with the corresponding
project displayed (see Project Window, on page 102).

Identify Debugger Windows
The Graphical User Interface for the Identify debugger has three major areas:

• IICE instrumentation window

• Console window

• Project window

In this section, each of these areas and their uses are described. The
following discussions assume that:

• a project (with an HDL design) has been loaded into the Identify instru-
mentor and instrumented

• the design has been synthesized in your synthesis tool

• the synthesized output netlist has been placed and routed by the place
and route tool

• the resultant bit file has been used to program the FPGA with the
instrumented design

• the board containing the programmed FPGA is cabled to your host for
analysis by the Identify debugger

LO

 Identify Debugger Identify Debugger Windows

© 2013 Synopsys, Inc. Identify User Guide
100 June 2013

Instrumentation Window

The instrumentation window in the Identify debugger, like the instrumenta-
tion window in the Identify instrumentor, includes a hierarchy browser on
the left and the source code display on the right.

Hierarchy Browser

The hierarchy browser on the left shows a graphical representation of the
design’s hierarchy. At the top of the browser is the ROOT node. The ROOT
node represents the top-level entity or module of your design. For VHDL
designs, the first level below the ROOT is the architecture of the top-level
entity. The level below the top-level architecture for VHDL designs, or below
the ROOT for Verilog designs, shows the entities or modules instantiated at
the top level.

Hierarchy Browser Source-Code Display

Identify Debugger Windows Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 101

Clicking on a + sign opens the entity/module instance so that the hierarchy
below that instance can be viewed. Lower levels of the browser represent
instantiations, case statements, if statements, functional operators, and other
statements.

Single clicking on any element in the hierarchy browser causes the associ-
ated HDL code to be displayed in the adjacent source code window.

Source Code Display

The source code display shows the HDL source code annotated with signals
and breakpoints that were previously instrumented.

Note: Signals and breakpoints that were not enabled in the Identify instru-
mentor are not displayed in the Identify debugger.

Signals that can be selected for setting watchpoints are underlined, colored in
blue text, and have small watchpoint (or “P”) icons next to them. Breakpoints
that can be activated have small green circular icons in the left margin to the
left of the line number.

LO

 Identify Debugger Identify Debugger Windows

© 2013 Synopsys, Inc. Identify User Guide
102 June 2013

Selecting the watchpoint or “P” icon next to a signal (or the signal itself)
allows you to select the Watchpoint Setup dialog box from the popup menu. This
dialog box is used to specify a watchpoint expression for the signal. See
Setting a Watchpoint Expression, on page 105.

Selecting the green breakpoint icon to the left of the source line number
causes that breakpoint to become armed when the run command is executed.
See Run Command, on page 113.

Console Window

The Identify debugger console window displays commands that have been
executed, including those executed by menu selections and button clicks.
The Identify debugger console window also allows you to type Identify
debugger commands and to view the results of command execution.

Project Window

An empty project window is displayed when you explicitly start up the
Identify debugger from the Windows or Linux platform. The window is
replaced by the instrumentation window when the synthesis project (prj) file
is read into the Identify debugger.

The project window is restored at any time by clicking its tab at the bottom of
the window.

Identify Debugger Windows Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 103

The project window displays the symbolic view of the project on the left and a
Run button with a list of all of the available IICE units that can be debugged
on the right.

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
104 June 2013

Commands and Procedures
This section describes the typical operations performed in the Identify
debugger.

Opening and Saving Projects

The Identify debugger commands to open and save projects are available as
menu items and icons.

When opening a project:

• The working directory is automatically set from the corresponding
project file.

• If the project was saved with encrypted original sources, you are
prompted to enter the original password used to encrypt the files. This
password is then used to read any encrypted files.

See Chapter 3, Project Handling, for details on setting up and managing
projects.

Function Menu Bar
Icon

Menu Command

Open existing project File->Open project

Save current
activations

File->Save activations

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 105

Executing a Script File

A script file contains Identify Tcl commands and is a convenient way to
capture a command sequence that you would like to repeat. To execute a
script file, select the File->Execute Script menu selection and navigate to your
script file location or use the source command (see Chapter 4, Alphabetical
Command Reference, in the Reference Manual).

Activating/Deactivating an Instrumentation

The trigger conditions used to control the sampling buffer comprise break-
points, watchpoints, and counter settings (see Chapter 10, IICE Hardware
Description). Activation and deactivation of breakpoints and watchpoints are
discussed in this chapter.

Setting a Watchpoint Expression

Any signal that has been instrumented for triggering can be activated as a
watchpoint in the Identify debugger. A watchpoint is defined by assigning it
one or two HDL constant expressions. When a watched signal changes to the
value of its watchpoint expression, a trigger event occurs.

A watchpoint is set on a signal by clicking-and-holding on the signal
or the watchpoint icon next to the signal and then selecting the Set
Trigger Expressions menu item to bring up the Watchpoint Setup dialog
box.

A watchpoint is set on a partial bus signal by clicking-and-holding
on the signal or the “P” icon next to the signal, selecting the partial
bus group from the list displayed, and then selecting the Set Trigger
Expressions menu item to bring up the Watchpoint Setup dialog box.

There are two forms of watchpoints: value and transition.

• A value watchpoint triggers when the watched signal attains a specific
value.

• A transition watchpoint triggers when the watched signal has a specific
value transition.

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
106 June 2013

To create a value watchpoint, assign a single, constant expression to the
watchpoint. A value watchpoint triggers when the watched signal value
equals the expression. In the example below, the signal is a 4-bit signal, and
the watchpoint expression is set to “0010” (binary). Any legal VHDL or Verilog
(as appropriate) constant expression is accepted.

To create a transition watchpoint, assign two constant expressions to the
watchpoint. A transition watchpoint triggers when the watched signal value
is equal to the first expression during a clock period and the value is equal to
the second expression during the next clock period. In the example below, the
transition being defined is a transition from “0010” to “1011.”

The VHDL or Verilog expressions that are entered in the Watchpoint Setup
dialog box can also contain “X” values. The “X” values allow the value of some
bits of the watched signal to be ignored (effectively, “X” values are don’t-care
values). For example, the above value watchpoint expression can be specified
as “X010” which causes the watchpoint to trigger only on the values of the
three right-most bits.

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 107

Hexadecimal values can additionally be entered as watchpoint values using
the following syntax:

x"hexValue"

As shown, a hexadecimal value is introduced with an x character and the
value must be enclosed in quotation marks. Similarly, you can include a
hexadecimal entry in an equivalent Tcl command by literalizing the quote
marks with back slashes as shown in the following example:

watch enable -iice IICE -condition 0 /structural/reg_fout x\"aa\"

Clicking OK on the Watchpoint Setup dialog box activates the watchpoint (the
watchpoint or “P” icon changes to red) which is then armed in the hardware
the next time the Run button is pressed.

Deactivating a Watchpoint

By default, a watchpoint that does not have a watchpoint expression is
inactive. A watchpoint that has a watchpoint expression can be temporarily
deactivated. A deactivated watchpoint retains the expression entered, but is
not armed in the hardware and does not result in a trigger.

To deactivate a watchpoint, click-and-hold on the signal or the
associated watchpoint icon. The watchpoint popup menu appears.

To deactivate a partial-bus watchpoint, click-and-hold on the signal
or the associated “P” icon and select the bus segment from the list of
segments displayed. The watchpoint popup menu appears.

The Watch menu selection will have a check mark to indicate that the watch-
point is activated. Click on the Watch menu selection to toggle the check mark
and deactivate the watchpoint.

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
108 June 2013

Reactivating a Watchpoint

To reactivate an inactive watchpoint, click-and-hold on the signal or the
associated watchpoint or “P” icon. Clicking the watchpoint icon redisplays the
watchpoint popup menu: clicking the “P” icon, lists the partial bus segments;
select the bus segment from the list displayed to display the watchpoint
popup menu. Click on the Watch menu selection to toggle the check mark and
reactivate the watchpoint.

Activating a Breakpoint

Instrumented breakpoints are shown in the Identify debugger as green icons
in the left margin adjacent to the source-code line numbers. Green break-
point icons are inactive breakpoints, and red breakpoint icons are active
breakpoints. To activate a breakpoint, click on the icon to toggle it from green
to red.

To deactivate an active breakpoint, click on the breakpoint icon to toggle it
from red to green.

Inactive breakpoint (green)

Active breakpoint (red)

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 109

Selecting Multiplexed Instrumentation Sets

Multiplexed groups of instrumented signals defined in the Identify instru-
mentor can be individually selected for activation in the Identify debugger (for
information on defining a multiplexed group in the Identify instrumentor, see
Multiplexed Groups, on page 79).

Using multiplexed groups can substantially reduce the amount of pattern
memory required during debugging when all of the originally instrumented
signals are not required to be loaded into memory at the same time.

To activate a predefined multiplexed group in the Identify debugger:

1. Click on the IICE icon in the top menu to display the Enhanced Settings for
IICE Unit dialog box.

2. Use the drop-down menu in the Mux Group section to select the group
number to be active for the debug session.

3. The signals group command can be used to assign groups from the
console window (see signals, on page 79 of the Reference Manual).

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
110 June 2013

Activating/Deactivating Folded Instrumentation

If your design contains entities or modules that are instantiated more than
once, the design is termed to have a “folded” hierarchy (folded hierarchies
also occur when multiple instances are created within a generate loop). By
definition, there will be more than one instance of every signal and break-
point in a folded entity or module. During instrumentation, it is possible to
instrument more than one instance of a signal or breakpoint.

When debugging an instrumented design with multiple instrumented
instances of a breakpoint or signal, the Identify debugger allows you to
activate/deactivate each of these instrumented instances independently.
Independent selection is accomplished by displaying a list of the instru-
mented instances when the breakpoint or signal is selected for activa-
tion/deactivation.

Activating/Deactivating a Folded Watchpoint

The following example consists of a top-level entity called folded2 and two
instances of the repeated_unit entity. The source code of repeated_unit is
displayed. In this folded entity, multiple instances of the signal val and the
breakpoint at line 24 (not shown) are instrumented.

To activate/deactivate instances of the val signal, select the watchpoint icon
next to the signal. A list will pop up with the two instrumented instances of
the signal val available for activation/deactivation:

/rtl/cnt_inst0/val
/rtl/cnt_inst1/val

Either of these instances is activated/deactivated by clicking on the appro-
priate line in the list box to bring up the watchpoint menu shown in the
following figure.

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 111

The color of the watchpoint icon is determined as follows:

• If no instances of the signal are activated, the watchpoint icon is green
in color.

• If some, but not all, instances of the signal are activated, the watchpoint
icon is yellow in color.

• If all instances are activated, the watchpoint icon is red in color.

For related information on folded hierarchies, see Sampling Signals in a
Folded Hierarchy, on page 80 and Displaying Data from Folded Signals, on
page 119.

Activating/Deactivating a Folded Breakpoint

To activate/deactivate instances of the breakpoint on line 24, select the icon
next to line number 24. A list will pop up with the two instrumented
instances of the breakpoint available for activation/deactivation:

/rtl/inst0/rtl/process_18/if_20/if_23/repeated_unit.vhd:24
/rtl/inst1/rtl/process_18/if_20/if_23/repeated_unit.vhd:24

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
112 June 2013

Either of these instances can be activated/deactivated by clicking on the
appropriate line in the list box.

The color of the breakpoint icon is determined as follows:

• If no instances of the breakpoint are activated, the breakpoint icon is
green.

• If some, but not all, instances of the breakpoint are activated, the break-
point icon is yellow.

• If all instances are activated, the breakpoint icon is red.

The list of instrumented instances

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 113

Run Command

The Run command sends watchpoint and breakpoint activations to the IICE,
waits for the trigger to occur, receives data back from the IICE when the
trigger occurs, and then displays the data in the source window.

To execute the Run command for the active IICE (or a single IICE),
select Debug->Run from the menu or click the Arm selected IICE(s) for
triggering icon. If data compression is to be used on the sample data,

see Sampled Data Compression, on page 114. To execute the Run command
for multiple IICE units, open the project window (click the project window
tab), enable the individual IICE units by checking their corresponding boxes,
and either click the large Run button or select Debug->Run from the menu.

After the Run command is executed, the sample of signal values at the trigger
position is annotated to the HDL code in the source code window. This data
can be displayed in a waveform viewer (see the Identify debugger waveform
command) or written out to a file (see the Identify debugger write vcd
command).

Note: In a multi-IICE environment, you can edit and run other IICEs while
an IICE is running. The icons within the individual IICE tabs indicate
when an IICE is running (rotating arrow) and when an IICE has new
sample data (green check mark).

The following example shows a design with one breakpoint activated, the
breakpoint triggered, and the sample data displayed. The small green arrow
next to the activated breakpoint in the example indicates that this breakpoint
was the actual breakpoint that triggered. Note that the green arrow is only
present with simple triggering.

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
114 June 2013

Sampled Data Compression

A data compression mechanism is available to compress the sampled data to
effectively increase the depth of the sample buffer without requiring any
additional hardware resources. When enabled, data compression is applied to
the sampled data to temporarily remove any data that remains unchanged
between cycles (a sample is automatically taken after 64 unchanging cycles).

Data compression is enabled from the project view by clicking the IICE icon to
display the Enhanced Settings for IICE Unit dialog box and clicking the Enable
check box in the Data Compression section or from the command prompt by
entering the following command:

iice sampler -datacompression 1

Data compression must be set prior to executing the Run command and
applies to all enabled IICE units. Data compression is not available when
using state-machine triggering, or qualified or always-armed sampling.

Activated and triggered breakpoint Sampled data (in yellow)

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 115

Sample Data Masking

A masking option is available with data compression to selectively mask
individual bits or buses from being considered as changing values within the
sample data. This option is only available through the Tcl interface using the
following syntax:

iice sampler -enablemask 0 |1 [-msb integer -lsb integer] signalName

For example, the following command masks bits 0 through 3 of vector signal
mybus[7:0] from consideration by the data compression mechanism:

iice sampler -enablemask 1 -msb 3 -lsb 0 mybus

Similarly, to reinstate the masked signals in the above example, use the
command:

iice sampler -enablemask 0 -msb 3 -lsb 0 mybus

Sample Buffer Trigger Position

The purpose of the activated watchpoints and breakpoints is to cause a
trigger event to occur. The trigger event causes sampling to terminate in a
controlled fashion. Once sampling terminates, the data in the sample buffer
is communicated to the Identify debugger and then displayed in the GUI.

The sample buffer is continuously sampling the design signals. Conse-
quently, the exact relationship between the trigger event and the termination
of the sampling can be controlled by the user. Currently, the Identify
debugger supports the following trigger positions relative to the sample
buffer:

• Early

• Middle

• Late

Determining the correct setting for the trigger position is up to the user. For
example, if the design behavior of interest usually occurs after a particular
trigger event, set the trigger position to “early.”

The trigger position can be changed without requiring the design to be
reinstrumented or recompiled. A new trigger position setting takes effect the
next time the Run command is executed.

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
116 June 2013

Early Position

The sample buffer trigger position can be set to “early” so that the
majority of the samples occurs after the trigger event. To set the
trigger position to “early,” use the Debug->Trigger Position->early menu
selection or click on the Set trigger position to early in the sample buffer icon.

Middle Position

The sample buffer trigger position defaults to “middle” so that there is
an equal number of samples before and after the trigger event. To set
the trigger position to “middle,” use the Debug->Trigger Position->middle
menu selection or click on the Set trigger position to the middle of the sample
buffer icon.

Late Position

The sample buffer trigger position can be set to “late” so that the
majority of the samples occurs before the trigger event. To set the
trigger position to “late,” use the Debug->Trigger Position->late menu
selection or click on the Set trigger position to late in the sample buffer icon.

Stop Command

The Stop command sends control back to the Identify debugger after
you have armed the trigger, but before the trigger occurs. The Stop
command can be executed by selecting Debug->Stop from the menu or
by clicking the Stop debugging hardware icon.

Note: If you are running the IICE from the project window using the Run
button and IICE check boxes (multi-IICE mode), you can stop a run
by clicking the STOP icon adjacent to the check box.

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 117

Sampled Data Display Controls

The sampled data display controls are used to navigate through the data
values captured by the sample buffer. All sample buffer data is tagged with a
cycle number based on when the data item was stored in the sample buffer
relative to the trigger event. The data item stored at the trigger event time has
cycle number 0, the data item stored one sample clock cycle after the trigger
has cycle number 1, and the data item stored one sample clock cycle before
the trigger has cycle number -1. The data display procedures allow you to
retrieve data values for a specific cycle number.

The sampled data displayed in the Identify debugger is controlled by the Cycle
text field. You can manually change the cycle number by typing a number in
the entry field. Also, the up and down arrows to the right of the cycle number
increment or decrement the cycle number for each click.

To reset the cycle number to the default position (the zero time
position), use the Debug->Cycle->home menu selection or click on the
Goto trigger event in sample history icon.

Radix

The radix of the sampled data displayed can be set to any of a number of
different number bases. To change the radix of a sampled signal:

1. Right click on the signal name or the watchpoint or “P” icon and select
Change signal radix to display the following dialog box.

Sampled data
display controls

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
118 June 2013

2. Click the corresponding radio button.

3. Click OK.

Note: You can change the radix before the data is sampled. The watchpoint
signal value will appear in the specified radix when the sampled data
is displayed.

Specifying default resets the radix to its initial intended value. Note that the
radix value is maintained in the “activation database” and that this informa-
tion will be lost if you fail to save or reload your activation. Also, the radix set
on a signal is local to the Identify debugger and is not propagated to any of
the waveform viewers.

Note: Changing the radix of a partial bus changes the radix for all bus
segments.

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 119

Displaying Data from Folded Signals

If your design contains entities or modules that are instantiated more than
once, it is termed to have a “folded” hierarchy (folded hierarchies also occur
when multiple instances are created within a generate loop). By definition,
there will be more than one instance of every signal in a folded entity or
module. During instrumentation, it is possible to instrument more than one
instance of a signal.

When debugging an instrumented design with multiple instrumented
instances of a signal, the Identify debugger allows you to display the data
values of each of these instrumented signals.

Because multiple data values cannot be displayed at the same location, a
single data value is always displayed. For multiply instrumented signals, the
Identify debugger displays an ellipsis (...) to indicate that there are multiple
values present. To display all of the instrumented values, click-and-hold on
the ellipsis indicator.

The example below consists of a top-level entity called top and two instances
of the repeated_unit entity. In the example, the source code of repeated_unit is
displayed, and both of the lists of instances of the signal val have been instru-
mented. The two instances are /rtl/inst0/val and /rtl/inst1/val, and their data
values are displayed in the pop-up window as shown in the following figure:

For related information on folded hierarchies, see Sampling Signals in a
Folded Hierarchy, on page 80 and Activating/Deactivating Folded Instrumen-
tation, on page 110.

Indicator of folded data Data values for instances of folded signal val

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
120 June 2013

Displaying Data for Partial Buses

When debugging designs with partially instrumented buses, the Identify
debugger displays the data values of each of the instrumented segments.

To display the instrumented values for the individual bus segments, position
the cursor over the composite bus value. The individual partial bus values
are displayed in a tooltip in the specified radix as shown in the following
figure.

Note that in the above figure, the question marks (?) in the composite bus
value (64' h3fad7910d1????36) indicate that the corresponding segment (data_in
[23:8]) has not been instrumented.

Displaying Data for Partial Instrumentation

In the Identify debugger, the value for a fully instrumented record or struc-
ture is shown with a value for each field, in field order. The following figure
shows instrumented signal sig_iport_P_Struc_instr. When displaying a partially
instrumented bus, the value U is used for the uninstrumented slices. This
same notation is used to show the data values for a partially instrumented
record or structure (the value for each instrumented field is listed in field
order, and an uninstrumented field value is shown as a U).

Composite bus value Data values of partial buses

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 121

The Find dialog in the Identify debugger shows a partially instrumented signal
with the P icon. You can set the trigger expressions on the fields instru-
mented for triggering in the same manner as if the signal was fully instru-
mented (that is, select the signal, right click to bring up the dialog, and select
the option to set the trigger expression).

Saving and Loading Activations

The Identify debugger includes a “capture and replay” function that allows
you to save and load a set of enabled watchpoints and breakpoints referred to
collectively as an “activation.” Each activation can additionally include the
sample data set that was captured for a given trigger condition. Activations
are stored in files with an adb extension in a project’s instrumentation subdi-
rectory.

Saving an Activation

An activation can be explicitly saved or saved on exit. To explicitly save an
activation:

1. Enable the set of watchpoints and breakpoints for the activation.

2. If the sample data set is to be included, run the Identify debugger to
collect the sample data.

3. Select File->Save activations or click the Save current activations icon in the
menu bar to bring up the following dialog box.

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
122 June 2013

4. Enter (or select) an activation name in the Save current trigger settings as:
field. Selecting an existing activation from the drop-down menu
overwrites the selected activation.

5. To include the sample data set with the activation, enable the Save
current sample data check box.

6. Click Yes to save the activation.

Loading an Activation

To load an existing activation:

1. Open the project view.

2. Expand (if necessary) the hierarchy to display the list of activations as
shown in the following figure.

3. Click on the desired activation and select Load activation.

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 123

Autosaving Current Activation

By default, when you exit the Identify debugger without explicitly saving an
activation, the active activation is automatically saved to the last_run.adb file.
This file is automatically loaded the next time you open the project.

Note: To save a specific activation, always use Save current activations to
explicitly name the file and prevent the data from overwriting the
last_run.adb file.

To disable the auto-save feature, uncheck the Auto-save trigger settings and
sample results check box on the Debugger Preferences dialog box (select
Options->Debugger preferences).

Cross Triggering
Cross triggering allows the trigger from one IICE unit to be used to qualify a
trigger on another IICE unit, even when the two IICE units are in different
time domains. Cross triggering is available in both the simple triggering and
complex counter triggering modes (state-machine triggering supports cross
triggering by allowing the IICE unit IDs to be included in the state-machine
equations).

Cross triggering for an IICE unit is enabled in the Identify instrumentor by
selecting the Allow cross-triggering in IICE check box on the IICE Controller tab for
the local IICE unit. The cross-trigger mode is selected from the drop-down
menu in the Identify debugger as shown below.

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
124 June 2013

The drop-down menu selections are as follows:

Note: If the drop-down menu does not display, make sure that Allow cross-
triggering in IICE is enabled on the IICE Controller tab of the Identify
instrumentor and that you have defined more than one IICE unit.

Menu Selection Function

disabled No triggers accepted from external IICE units (event trigger can
only originate from local IICE unit)

any Event trigger from local IICE unit occurs when an event at any
IICE unit, including the local IICE unit, occurs

all Event trigger from local IICE unit occurs when all events,
irrespective of order, occur at all IICE units including the local
IICE unit

after-iiceName Event trigger from local IICE unit occurs only after the event at
selected external IICE unit iiceName has occurred (external IICE
units are individually listed)

after all Event trigger from local IICE unit occurs after all events occur
at all IICE units

Commands and Procedures Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 125

Listing Watchpoints and Signals

To list categories of watchpoints and signals in the debugger, use the popup
Debug menu selection and select the category from the list displayed.

The results are displayed in the Find Design Elements dialog box.

LO

 Identify Debugger Commands and Procedures

© 2013 Synopsys, Inc. Identify User Guide
126 June 2013

Show Watchpoint/Breakpoint Icons

The show watchpoint and breakpoint icons in the menu bar display their
corresponding values in the Find Design Elements dialog box as follows:

Show Disabled Breakpoints

To display the disabled (inactive) breakpoints, click the Show disabled
breakpoints icon.

Show Enabled Breakpoints

To display the enabled (active) breakpoints, click the Show enabled
breakpoints icon.

Show Disabled Watchpoints

To display the disabled (inactive) watchpoints, click the Show disabled
watchpoints icon.

Show Enabled Watchpoints

To display the enabled (active) watchpoints, click the Show enabled
watchpoints icon.

Debugging on a Different Machine Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 127

Debugging on a Different Machine
It is not unusual for the instrumentation phase and the debugging phase to
be performed on different machines. For example, the debug machine is often
located in a hardware lab. When a different machine is used for debugging,
you must copy both the project file (projectName.prj) and the Identify imple-
mentation directory (e.g., rev_1) to the lab machine.

Because the Identify tool set allows you to debug your design in the HDL, the
Identify debugger must have access to the original source files. Depending on
the type of your network, the Identify debugger may be able to access the
original sources files directly from the lab machine. If this is not possible or if
the two computers are not networked, you must also copy the original
sources to the debug machine. If the Identify debugger cannot locate the
original source files, it will open the project, but an error will be generated for
each missing file, and the corresponding source code will not be visible in the
source viewer.

Copying the source files to the debug machine can be done in two ways:

• Identify can automatically include the original source files in the imple-
mentation directory so that when you copy the implementation directory
to the lab machine, the original sources files (in the orig_sources subdi-
rectory) are included. The Identify debugger automatically looks in this
directory for any missing source files. This preference is set before
compiling the instrumented design by selecting Options->Instrumentation
preference and making sure that Save original source in instrumentation directory
is checked.

• The original source files can be manually copied to the lab machine or
may already exist in a different location on this machine. In this case, it
may be necessary to help Identify locate the design files using the search-
path command. Simply call this command from the command line before
loading the project file (projectName.prj). The argument is a semi-colon-
separated (Windows) or colon-separated (Linux) list of directories in
which to find the original source files.

searchpath {d:/temp;c:/Documents and Settings/me/my_design/}

LO

 Identify Debugger Simultaneous Debugging

© 2013 Synopsys, Inc. Identify User Guide
128 June 2013

The Identify debugger will only display files that match the CRC generated at
the time of instrumentation.

Note: If there are security issues with having the original source files on the
lab machine, the Identify instrumentor can password-protect the
original sources on the development machine for use with the Identify
debugger (for information on file encryption, see Including Original
HDL Source, on page 91).

Simultaneous Debugging
When multiple Identify debugger licenses are available, multiple FPGAs
residing on a single, non-HAPS board can be debugged concurrently through
a single cable. This capability is based on semaphores that allow more than
one debugger to share the common port.

Board

FPGA1 FPGA2

Cable

Semaphore
pid1

pid2

Debugger 1

Debugger 2

PID1

PID2

Identify-Analyst Integration Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 129

Identify-Analyst Integration
The display of instrumented signals captured in a VCD file by the Identify
debugger is available within the HDL Analyst in Synplify Premier.

The following steps outline an abbreviated procedure for using an Identify-
generated VCD file with the HDL Analyst. For a complete description of this
feature, see VCD-Analyst Integration in the Synopsys FPGA Synthesis User
Guide.

After generating a VCD file in the Identify debugger and opening the HDL
Analyst RTL view in Synplify Premier:

1. Click the VCD Panel icon () or select VCD->VCD Panel from the
HDL-Analyst menu to display the VCD control panel.

2. If necessary, click the Move this panel to an alternate location button to
relocate the VCD control panel under the RTL view.

3. Click the Open a VCD File icon () or select VCD->Load VCD File from the
HDL-Analyst menu to open the Load Identify VCD File dialog box.

LO

 Identify Debugger Identify-Analyst Integration

© 2013 Synopsys, Inc. Identify User Guide
130 June 2013

4. In the dialog box, enter the path to the vcd file generated by the Identify
debugger (use the browse ... button) and make sure that the Identify
Debug box is checked. The Validate VCD File with Netlist check box, when
enabled, checks for mismatches between the design netlist and the VCD
file loaded.

5. Click the Load button to load the VCD file and display the instrumented
signals from the VCD file in the waveform viewer.

6. If Validate VCD File with Netlist is checked, click the Show Mismatches button
to display any mismatched nets. Mismatches are reported in the
Mismatching Nets dialog box.

Identify-Analyst Integration Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 131

7. Close the Load Identify VCD File dialog box.

8. To view values for the signals, select the desired signals in the waveform
viewer and select HDL-Analyst->VCD->VCD Properties. On the Parameters
tab, enable the Annotate check box.

9. To annotate values on the waveform viewer to their respective HDL
Analyst sheet, check the Annotate box on the control panel.

LO

 Identify Debugger Identify-Analyst Integration

© 2013 Synopsys, Inc. Identify User Guide
132 June 2013

Select a particular signal on the control panel to highlight its corre-
sponding signal in the RTL view. Signals are annotated with their
previous, current, and next values.

Loading and Unloading Identify VCD Files

You can load, re-load, or unload Identify VCD files from the HDL-Analyst->VCD
menu.

• To load an Identify VCD file, select Load VCD File (or click the Open a VCD
File icon () on the control panel).

• To re-load an Identify VCD file, select Reload VCD File (or click the Re-open
the previously loaded VCD file icon () on the control panel).

When the Identify debugger generates a revised VCD file, changes to the
VCD file must be handled after it is loaded. The reload policy imple-
mented provides the following options:

– Auto – automatically reload the VCD file (the default)

– Ask – prompt if the VCD file is to be reloaded

– Never – never reload the VCD file

The reload policy is set on the Parameters tab of the VCD Properties dialog
box. When an Identify VCD file is reloaded, the tool preserves informa-
tion as much as possible such as the current time and watched signals.

• To unload an Identify VCD file, select Unload the VCD File. This option
frees up memory used by the Identify debug data without having to close
and re-open the HDL Analyst view.

Identify-Analyst Integration Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 133

VCD Control Panel Functions

The following additional functions are available from the VCD control panel:

• Observing nets on a particular HDL Analyst sheet

• Changing the format of signals displayed in the viewer

These functions are described in detail in the Synopsys FPGA Synthesis User
Guide.

LO

 Identify Debugger Waveform Display

© 2013 Synopsys, Inc. Identify User Guide
134 June 2013

Waveform Display
The waveform display control displays the sampled data in a waveform style.
By default, this feature uses the Synopsys DVE waveform viewer. Provision
for using other popular waveform viewers that support VCD data is included.
Alternately, you can interface your own waveform viewer by writing a custom-
ized script to access your waveform viewer from the Identify debugger. For
details, see the application note, “Interfacing Your Waveform Viewer with the
Identify Debugger” on the SolvNet website.

Viewer selection and setup are controlled by the Waveform Viewer Preferences
dialog box. Selecting Options->Debugger preferences from the menu bar brings
up the dialog box shown below.

Waveform Display Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 135

The Synopsys DVE and Verdi waveform viewers are only available on Linux
platforms. To use the included GTKWave viewer, click the GTKWave radio
button in the Default Waveform Viewer section.

The Period field sets the period for the waveform display and is independent of
the design speed.

After running the Identify debugger, the selected waveform viewer is
displayed by selecting Window->Waveform from the menu or by clicking
the Open Waveform Display icon in the menu bar. All sampled signals in

the design are included in the waveform display. Two additional signals are
added to the top of the display when enabled by their corresponding check
boxes. The first signal, identify_cycle, reflects the trigger location in the sample
buffer. The second signal, identify_sampleclock, is a reference that shows every
clock edge. The following figure shows a typical waveform view with the
identify_cycle and identify_sampleclock signals enabled (highlighted in the figure).

If you select a waveform viewer from the Waveform preference dialog box that is
not installed, an error message is displayed when you attempt to invoke the
viewer. To install the waveform viewer:

1. Open the Debugger Preferences dialog box (select Options->Debugger
preferences).

2. Select the desired waveform viewer by clicking the adjacent radio button
and then click OK.

3. Make sure that the selected simulator is installed on your machine and
that the path to the executable is set by your $PATH environment
variable.

To invoke the viewer after running the Identify debugger, select
Window->Waveform or click on the Open Waveform Display icon.

LO

 Identify Debugger Waveform Display

© 2013 Synopsys, Inc. Identify User Guide
136 June 2013

Verdi nWave Viewer

The Verdi nWave viewer is used to display the fast signal database (FSDB)
generated by the Identify debugger as shown in the flow diagram below.

In the diagram, Verdi/Soloti generates the essential signal database (FSDB)
which is imported into the Identify instrumentor where the desired signals
are instrumented. The instrumented design is then synthesized, placed and
routed, and programmed into the FPGA. The Identify debugger samples the
data and generates the FSDB database which is then displayed in the Verdi
nWave viewer.

Logic Analyzer Interface Parameters Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 137

Logic Analyzer Interface Parameters
The logic analyzer interface parameters for the real-time debug
feature in the Identify debugger are defined on the tabs of the RTD
type IICE information dialog box. To display this dialog box, click on the
RTD (RTD type IICE Information/Settings) icon in the top menu.

Logic Analyzer Scan Tab

The Logic Analyzer Scan tab defines:

• the logic analyzer type

• the TLA script program

• user name

• host name/IP address

• if pods are automatically assigned to Mictor connectors

Type of Logic Analyzer

Selects the type of logic analyzer from a drop-down menu. Current supported
types are Agilent 16700 and 16900 series and Tektronix TLA series analyzers.
The logic analyzer must be accessible on the local network.

LO

 Identify Debugger Logic Analyzer Interface Parameters

© 2013 Synopsys, Inc. Identify User Guide
138 June 2013

TLA Script Program

Specifies the full path to the tlascript script file on the Tektronix logic analyzer.
The default path is C:\Program Files\TLA 700\System\tlascript. If this location
does not match the location expected by the Tektronix logic analyzer, change
the location setting. The logic analyzer requires an rsh daemon to access the
script file. To download and install the rsh daemon on the logic analyzer, see
the web-site at http://rshd.sourceforge.net.

User Name

Identifies the user name on the analyzer (Tektronix only).

Host Name/IP Address

Specifies the host name or IP address for the Identify debugger host.

Assign Pods automatically to Mictor connectors

When checked, automatically assigns pods to the Mictor connectors.

Scan Logic Analyzer

Clicking the Scan Logic Analyzer button scans the specified IP address and, if
scanned successfully:

• opens a network connection with the given parameters

• retrieves the modules and pods information

• displays Logic Analyzer Properties and Logic Analyzer Submit tabs

Logic Analyzer Properties Tab

The Logic Analyzer Properties tab allows Mictor pin groups to be manually
assigned to modules and pods using corresponding drop-down menus.
Clicking the Assign Pods button updates the assignments.

http://rshd.sourceforge.net

Logic Analyzer Interface Parameters Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 139

Logic Analyzer Submit Tab

The Logic Analyzer Submit tab submits signal/breakpoint names to the logic
analyzer.

LO

 Identify Debugger Logic Analyzer Interface Parameters

© 2013 Synopsys, Inc. Identify User Guide
140 June 2013

IICE Assignments Report Tab

When using the real-time debugging feature in the Identify instrumentor (see
Real-time Debugging, on page 86), the signal/breakpoint interface assign-
ments to the Mictor connector are reported in the Identify debugger on the
IICE Assignments Report tab. Clicking the tab before assigning logic analyzer
pods to the Mictor pin groups reports only the signal/breakpoint assign-
ments. Clicking the tab after assigning logic analyzer pods to the Mictor pin
groups includes the pods assignments in the report.

By default, the report is displayed on the screen (standard out). The report
can be redirected to a file using the iice assignmentsreport Tcl command (see iice,
on page 55 in the Reference Manual.

Console Text Identify Debugger

Identify User Guide © 2013 Synopsys, Inc.
June 2013 141

Console Text
To capture all the text that is written to the console, use the log console
command (see the Reference Manual). Alternately, you can click the right
mouse button inside the console window and select Save Console Output from
the menu. To capture all commands executed in the console window, use the
transcript command (see the Reference Manual).

To clear the text in the console window, use the clear command or click the
right mouse button inside the console window and select clear from the menu.

LO

 Identify Debugger Console Text

© 2013 Synopsys, Inc. Identify User Guide
142 June 2013

Identify User Guide © 2013 Synopsys, Inc.
June 2013 143

C H A P T E R 9

Incremental Flow

Incremental flow is a multi-pass flow available for the Xilinx technologies that
allows you to make minor changes to the set of instrumented signals without
needing to resynthesize and rerun place and route on your entire design. With
the incremental flow, signals within the initial pass can be replaced with a set
of different signals for a subsequent pass. The incremental flow is shown in
the following figure.

Setup Project

Instrument
Design

Synthesize &
Place and Route

Debug

1st Pass

Modify Instrumented

Incremental

Signals

Debug

2nd Pass

Re-route

LO

 Incremental Flow

© 2013 Synopsys, Inc. Identify User Guide
144 June 2013

Requirements

The incremental flow supported by the Identify tool set is available only when
using a Virtex-5 or Virtex-6 Xilinx-based technology.

Note: Incremental flow is supported by the most recent versions of the
Xilinx ISE software; see the release notes for the specific ISE release
version used with the Identify tool set.

Setting up the Original Design

To use the incremental flow, you must set the following in the Identify instru-
mentor before you instrument and place and route your original design:

1. Open the design in the Identify instrumentor by clicking on the Identify
implementation and selecting Launch Identify Instrumentor from the popup
menu.

2. Select the project tab to display the project view.

3. In the project view, make sure that the Prepare incremental check box is
checked.

4. Instrument and save your original design and close the Identify
instrumentor.

 Incremental Flow

Identify User Guide © 2013 Synopsys, Inc.
June 2013 145

5. From the synthesis tool:

– right click on the Identify implementation and select Add Place & Route
from the popup menu

– enable the Xilinx P & R check box

– click the Run button to run Xilinx place-and-route and generate the
ncd file

Creating the Incremental Instrumentation

To make incremental changes to your original design:

1. From the synthesis tool, open the Identify instrumentor by clicking on
the original implementation and selecting Launch Identify Instrumentor from
the popup menu.

2. Open the project view and click the Make Incremental button to display the
Create Incremental Implementation dialog box.

3. In the dialog box, select the base (original) instrumentation and use the
Browse button to select the path to the Xilinx ncd file.

Note: Make sure that you enter the path to the correct ncd file.

4. Click OK to close the dialog box.

5. At this point, a new incremental icon appears in the project window.
This icon is labeled incr_baseinstr where baseinstr is the name of the
initial instrumentation. Click on the icon to display the new
instrumentation.

LO

 Incremental Flow

© 2013 Synopsys, Inc. Identify User Guide
146 June 2013

Redefining the Instrumented Signals

In the new instrumentation, most of the registered signals and most of the
I/O pins will be available. The console window reports status of the three
“buckets” (sample only, trigger only, and sample and trigger); for every new
signal or bit that you add to a bucket, you must remove at least one existing
signal or bit (the number of signals/bits in a bucket cannot exceed the
original number).

Note: You cannot change the device or IICE configuration in the new
instrumentation.

When you have finished removing and adding signals, save the new instru-
mentation. This action invokes the FPGA editor and runs incremental routing
in the background and creates a new ncd file in the instrumentation direc-
tory. Use this ncd file to generate your new bit file.

Generating the Bitfile

Generating the bitfile from the new ncd file can be done manually or through
the normal Xilinx tool flow.

Xilinx Tool Flow

To use the normal Xilinx flow to create the bitfile:

1. Copy the new ncd file into the Xilinx directory of the original
instrumentation.

2. Rerun ONLY the bitgen portion of the flow.

Note: Be careful not to rerun the entire flow which would overwrite the new
ncd file and revert to the initial instrumentation.

 Incremental Flow

Identify User Guide © 2013 Synopsys, Inc.
June 2013 147

Manual Generation

The Xilinx bitgen command can be used to manually generate the bitfile form
the new ncd file. The syntax for this command is:

bitgen designName.ncd designName.bit

Note: There are many options to the bitgen command that are usually
contained in a board-specific ut file. You can call bitgen with the board-
Name.ut file as an option to pick up any site-specific command
options.

Debugging the Incremental Version

In the Identify debugger, open the project, load the incremental instrumenta-
tion (the most recent instrumentation is loaded by default), and debug as
normal.

LO

 Incremental Flow

© 2013 Synopsys, Inc. Identify User Guide
148 June 2013

Identify User Guide © 2013 Synopsys, Inc.
June 2013 149

C H A P T E R 1 0

IICE Hardware Description

The Identify instrumentor adds instrumentation logic to your HDL design
that allows you to understand and debug the operation of your design. There
are some aspects of the instrumentation logic that are important to under-
stand in order to use the Identify tool set in the most effective way. In this
chapter, the overall instrumentation logic is described briefly followed by
descriptions of some of the more important features. A simplified functional
breakdown of the instrumentation logic consists of:

• JTAG Communication Block

• Breakpoint and Watchpoint Blocks

• Sampling Block

• Complex Counter

• State Machine Triggering

JTAG Communication Block
The JTAG communication block can be implemented using either the built-in
device-specific TAP controller (the builtin option) or using the Identify imple-
mentation of the TAP controller (the soft option). See Chapter 11, Connecting
to the Target System, for more information on the JTAG controller.

LO

 IICE Hardware Description Breakpoint and Watchpoint Blocks

© 2013 Synopsys, Inc. Identify User Guide
150 June 2013

Breakpoint and Watchpoint Blocks
The following topic are described in this section:

• Breakpoints

• Watchpoints, on page 151

• Multiply Activated Breakpoints and Watchpoints, on page 151

Breakpoints

Breakpoints are a way to easily create a trigger that is determined by the flow
of control in the design.

In both Verilog and VHDL, the flow of control in a design is primarily deter-
mined by if, else, and case statements. The control state of these statements is
determined by their controlling HDL conditional expressions. Breakpoints
provide a simple way to trigger when the conditional expressions of one or
more if, else, or case statements have particular values.

The example below shows a VHDL code fragment and its associated break-
points.

 99 process(op_code, cc, result) begin
100 case op_code is
101 when "0100" =>
102 result <= part_res;
103 if cc = '1' then
104 c_flag <= carry;
105 if result = zero then
106 z_flag <= '1';
107 else
108 z_flag <= '0';
109 end if;
110 end if;

Breakpoint and Watchpoint Blocks IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 151

The four breakpoints correspond to these control flow equations:

• Breakpoint at line number 102:

(op_code = "0100")

• Breakpoint at line number 104:

(op_code = "0100") and (cc = '1')

• Breakpoint at line number 106:

(op_code = "0100") and (cc = '1') and (result = zero)

• Breakpoint at line number 108:

(op_code = "0100") and (cc = '1') and (result != zero)

Watchpoints

A watchpoint creates a trigger that is determined by the state of a signal in
the design. The watchpoint can trigger either on the value of a signal or on a
transition of a signal from one value to another.

Multiply Activated Breakpoints and Watchpoints

How breakpoints and watchpoints operate individually has been described
earlier in this guide. Activated breakpoints and watchpoints also interact with
each other in a very specific way.

Multiple Activated Breakpoints

Each breakpoint is implemented as logic that watches for a particular event
in the design. When an instrumented design has more than one activated
breakpoint, the breakpoint events are ORed together. This effectively allows
the breakpoints to operate independently – only one activated breakpoint
must trigger in order to cause the sampling buffer to acquire its sample.

LO

 IICE Hardware Description Sampling Block

© 2013 Synopsys, Inc. Identify User Guide
152 June 2013

Multiple Activated Watchpoints

Each watchpoint is implemented as logic that watches for a specific event
consisting of a bit pattern or transition on a specific set of signals. When an
instrumented design has more than one activated watchpoint, the watch-
point events are ANDed together. This effectively causes the watchpoints to
be dependent on each other – all activated watchpoint events must occur
concurrently to cause the sampling buffer to acquire its sample.

For example, if watchpoint 1 implements (count == 23) and watchpoint 2
implements (ack == ‘1’), then activating these watchpoints together effectively
creates a new watchpoint: (count == 23) && (ack == ‘1’).

Combining Activated Breakpoints and Activated Watchpoints

When an instrumented design has one or more activated breakpoints and
one or more activated watchpoints, the result of the OR of the breakpoint
events and the result of the AND of the watchpoint events is ANDed together.
The result of this AND operation is called the Master Trigger Signal. This
ANDing effectively causes the breakpoints and watchpoints to be dependent
on each other – one activated breakpoint and all activated watchpoint events
must occur concurrently to cause the sampling buffer to acquire its sample.

As a result, a Master Trigger Signal event can be constructed that operates
like a conditional breakpoint. For example, activating a breakpoint and the
two watchpoints from the previous example produces a conditional break-
point: (breakpoint event) && (count== 23) && (ack == ‘1’).

Sampling Block
The sampling block is basically a large memory used to store all the sampled
signals. During an active debugging session, the sampled signals are contin-
ually being stored in the sampling block. When the sampling block receives
an event from the Master Trigger Signal event logic or the complex counter
logic, the sampling block stops writing new data to the buffer and holds its
contents. Eventually, the contents of the sampling block are uploaded to the
Identify debugger for display and formatting.

Complex Counter IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 153

Whenever possible, the sampling block should use the built-in RAM blocks
that are available in most programmable chips. Otherwise, implementing the
sample buffer using individual storage elements will consume large amounts
of the logic capacity of the chip. If you have no choice but to use individual
storage elements, analyze how much logic you have available on your chip
and adjust how many signals you sample and the depth of the sample buffer.

Complex Counter
The complex counter connects the output of the breakpoint and watchpoint
event logic to the sampling block and allows the user to implement complex
triggering behavior.

Creating a Complex Counter

The counter is created, configured, and inserted into the HDL design during
instrumentation using the Identify instrumentor IICE Controller tab of the IICE
Configuration dialog box or using the Identify instrumentor iice controller
command.

During configuration, the size of the counter is specified. For example, a 16-
bit counter is the default. This default value produces a counter that ranges
from 0 to 65535.

Setting the counter size to zero during instrumentation configuration
disables counter insertion.

Debugging with the Complex Counter

During debugging in the Identify debugger, the complex counter is used to
produce complex triggering behavior.

During the debugging of the design, the complex counter is set to zero on
invocation of the Identify debugger run command. Then, it counts events from
the Master Trigger Signal event logic in a specific way depending on the
counter mode.

LO

 IICE Hardware Description Complex Counter

© 2013 Synopsys, Inc. Identify User Guide
154 June 2013

Finally, the counter sends a trigger event to the sample block when a termi-
nation condition occurs. The form of the termination condition depends on
the mode of operation of the counter and on the target value of the counter:

• The counter target value can be set to any value in the counter’s range.

• The counter has four modes: events, cycles, watchdog, and pulsewidth.

The counter target value and the counter mode can be set directly from the
main menu.

The following table provides a general description of the trigger behavior for
the various complex counter modes. Each mode is described in more detail in
individual subsections, and examples are included showing how the modes
are used. In both the table and subsection descriptions, the counter target
value setting is represented by the symbol n.

Counter mode Target value = 0 Target value n > 0

events illegal stop sampling on the nth trigger
event.

cycles stop sampling on 1st
trigger event

stop sampling n cycles after the
1st trigger event.

watchdog illegal stop sampling if the trigger
condition is not met for n
consecutive cycles.

pulsewidth illegal stop sampling the first time the
trigger condition is met for n
consecutive cycles.

Complex Counter IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 155

events Mode

In the events mode, the number of times the Master Trigger Signal logic
produces an event is counted. When the nth Master Trigger Signal event
occurs, the complex counter sends a trigger event to the sample block. For
example, this mode could be used to trigger on the 12278th time a collision
was detected in a bus arbiter.

cycles Mode

In the cycles mode, the complex counter sends a trigger event to the sample
block on the nth cycle after the first Master Trigger Signal event is received.
The clock cycles counted are from the clock defined for sampling. For
example, this mode could be used to observe the behavior of a design
2,000,000 cycles after it is reset.

watchdog Mode

In the watchdog mode, the counter sends a trigger event to the sample block
if no Master Trigger Signal events have been received for n cycles. For
example, if an event is expected to occur regularly, such as a memory refresh
cycle, this mode triggers when the expected event fails to occur.

pulsewidth Mode

In the pulsewidth mode, the complex counter sends a trigger event to the
sample block if the Master Trigger Signal logic has produced an event during
each of the most recent n consecutive cycles. For example, this mode can be
used to detect when a request signal is held high for more than n cycles
thereby detecting when the request has not been serviced within a specified
interval.

Disabling the Counter

According to the previous table, the counter can be disabled simply by setting
its target value to 1 and its mode to events. Then, the complex counter will
pass any received event from the Master Trigger Signal logic on to the sample
block with no additional delay.

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
156 June 2013

State Machine Triggering
This section describes the different methods of triggering available in the
Identify debugger. It explains the different choices available during instru-
mentation and the functionality these choices provide in the Identify
debugger as well as discussing the cost effects of the various types of instru-
mentation.

Simple or Advanced Triggering

There are two triggering modes available, the simple mode and the advanced
mode. The simple mode allows comparing signals to values (including don’t
cares) and then triggering when the signals match those values. This scheme
can be enhanced by using breakpoints to denote branches in control logic. If
a breakpoint is enabled, this particular branch must be active at the same
time that the signals match their respective values. The overall trigger logic
involves signals and breakpoints in the following way:

• Signals: All signals must match their respective comparison values in
order to trigger.

• Breakpoints: All breakpoints are OR connected, meaning that any one
enabled breakpoint is enough to trigger.

• Signals and breakpoints are combined using AND, such that all signals
must match their values AND at least one enabled breakpoint must
occur.

The logic that implements breakpoint and signal triggering is referred to as
trigger condition in the following text.

In the advanced trigger mode, multiple such trigger conditions are instru-
mented, and a runtime-programmable state machine is also instrumented to
allow you to specify the temporal and logical behavior that combines these
trigger conditions into a complex trigger function. For instance, this state
machine enables you to trigger on a certain sequence of events like “trigger if
pattern A occurs exactly five cycles after pattern B, but only if pattern C does
not intervene.”

By default, the Identify instrumentor instruments the design according to the
simple trigger mode. See the following for more information on how to select
the advanced trigger mode.

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 157

Advanced Triggering Mode

Setting up an instrumented design to enable advanced triggering is extremely
easy. There are two iice controller command options available in the Identify
instrumentor that control the extent and cost of the instrumentation:

• -triggerconditions integer – The integer argument to this option defines
how many trigger conditions are created. The range is from 1 to 16. All
these trigger conditions are identical in terms of signals and breakpoints
connected to them, but they can be programmed separately in the
Identify debugger.

• -triggerstates integer – The integer argument to this option defines how
many states the trigger state machine will have. The range is 2 to 16;
powers of 2 are preferable as other numbers limit functionality and do
not provide any cost savings.

Similar to the simple-triggering mode, a counter can be instrumented to
augment the functionality of the state machine. To instrument a counter,
enter an iice controller -counterwidth option with an argument greater than 0 in
the Identify instrumentor console window.

Please refer to the following text to determine cost and consequences of these
settings in the Identify instrumentor.

Structural Implementation of State Machine Triggering

For each trigger condition ci, a logic cone is implemented which evaluates the
signals and the breakpoints connected to the trigger logic and culminates in a
1-bit result identical to the trigger condition in simple mode. All these 1-bit
results are connected to the address inputs of a RAM table.

If a counter has been added to the instrumentation, the counter output is
compared to constant 0, and the single-bit output of that comparison is also
connected to the address inputs of the same RAM table.

The other address inputs are provided by the state register.

The outputs of the RAM table are:

• the next-state value nstate

• the trigger signal trigger (causes the sample buffer to take a snapshot if
high)

• the counter-enable signal cnten (if ‘1’, counter is decremented by 1)

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
158 June 2013

• the counter-load signal cntld (if ‘1’, counter is loaded with cntval)

• the counter value cntval (only useful in conjunction with cntld)

The last three outputs are only present if a counter is instrumented. Please
also refer to the figure below.

The implementation of the RAM table is identical to the implementation of the
sample buffer (that is, the device buffertype setting selects the implementation
of both the sample buffer and the state-machine RAM table).

Cost Estimation

The most critical setting with respect to cost is the number of trigger condi-
tions, as each trigger condition results in an additional address bit on the
RAM, and thus doubles the size of the RAM table with each bit. Next in
importance is the counter width as this factor contributes directly to RAM
table width and is especially significant in the context of FPGA RAM primi-
tives that allow a trade-off of width for depth.

trigger

cntld
cnten
cntval

nstate
state

cntnull

2-port RAM

port 1, read-only

port 2, write-only

co
u

nt
e

r
re

g
.

Write port driven by JTAG circuitry

c1
cn

c0

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 159

The block RAM on Xilinx Virtex-II, Virtex-II Pro, Virtex-4, and Spartan-6
devices includes 18k bits per block and a number of different possible config-
urations (Virtex-5, Virtex-6, and Virtex-7 devices include 36k bits per block).
The following table provides some hints for good, trigger state-machine
settings for the smaller, 18k-bit devices when using only a single block for the
trigger-state machine.

The actual instrumentation, however, is not limited to the values provided,
nor is it limited to the use of a single block RAM (for example, it may be
advantageous in a particular situation to trade away states for additional
trigger conditions or for additional counter width). Any configuration can be
automatically implemented, as long as it fits on the device with the remainder
of the design.

Although RAM parameters are automatically determined by the Identify
instrumentor, this information should be monitored to make sure that no
resources are wasted.

Table 10-1: Xilinx Virtex-II, Virtex-II Pro, Virtex-4, and Spartan-6 devices

RAM size With counter Without counter

Address Depth Data Conditions States Counter Conditions States

9-bit 512 36-bit 5 8 30-bit no useful setting

9-bit 512 36-bit 6 4 31-bit no useful setting

10-bit 1024 18-bit 6 8 12-bit no useful setting

10-bit 1024 18-bit 7 4 13-bit no useful setting

11-bit 2048 9-bit 7 8 3-bit 7 16

12-bit 4096 4-bit n/a n/a n/a 9 8

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
160 June 2013

Using State Machine Triggering in the Identify Debugger

Perform the following steps in the Identify debugger console window to setup
a trigger in advanced triggering mode. These steps can be done in any order.

• setup the values for the trigger conditions using the Identify debugger
watch and stop commands.

• setup the trigger state machine behavior using the Identify debugger
statemachine command.

The watch command takes an additional parameter, -condition, specifying the
trigger conditions that the given condition is intended for. This argument is
available in simple mode as well, but as there is only one trigger condition in
this case, the argument is redundant.

• watch enable -condition (triggerCondition|all) signalName value1 [value2 ...]

• watch disable -condition (triggerCondition|all) signalName

• watch info [-raw] signalName

The parameter triggerCondition is a list value conforming to the Tcl language.
Examples are: 1, "1 2 3", {2 3}, or [list 1 2 3], quotes, braces, and
brackets included, respectively. Alternatively, the keyword all can be specified
to apply the setting to all trigger conditions.

The Identify debugger watch info command reports status information about
the signal. This information is returned in machine-processible form if the
optional parameter -raw is specified.

Similarly for the Identify debugger stop command:

• stop enable -condition (triggerCondition |all) breakpoint

• stop disable -condition (triggerCondition |all) breakpoint

• stop info [-raw] breakpoint

The semantics of the parameters are identical to the above descriptions.

The statemachine Command

During instrumentation, the number of states was previously defined using
the -triggerstates option of the Identify instrumentor iice controller command.
Now, at debug time, you can define what happens in each state and transi-
tion depending on the pattern matches computed by the trigger conditions.

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 161

The Identify debugger statemachine command is used to configure the trigger
state machine with the desired behavior. This is very similar to the
“advanced” trigger mode offered by many logic analyzers. As it is very easy to
introduce errors in the process of specifying the state machine, special
caution is appropriate. Also, a state-machine editor is available in the Identify
debugger user interface to facilitate state-machine development and under-
standing (see State-Machine Editor, on page 167). It is also important to note
that the initial state for each run is always state 0 and that not all of the
available states need to be defined.

The syntax forms of the Identify debugger statemachine command are:

• statemachine addtrans -from state [-to state] [-cond "equation|titriggerInID"]
[-cntval integer] [-cnten] [-trigger]

• statemachine clear (-all|state [state ...])

• statemachine info [-raw] (-all|state [state ...])

Subcommand statemachine addtrans

The Identify debugger addtrans subcommand defines the transitions between
the states. The options are as follows:

• -from state – specifies the state this transition is exiting from.

• -to state – specifies the state this transition goes to. If this is not given, it
defaults to the state given in the -from option.

• -cond "equation|titriggerInID" – specifies the condition or external trigger
input under which the transition is to be taken. The default is “true”
(i.e., the transition is taken regardless of input data; see below for more
details).

• -cntval integer – specifies that if this transition is taken, the counter is
loaded with the given value. Only valid when a counter is instrumented.

• -cnten – when this flag is given, the counter is decremented by 1 during
this transition. Only valid when a counter is instrumented.

• -trigger – when this flag is given, a trigger occurs during this transition.

The order in which the transitions are added is important. In each state, the
first transition condition that matches the current data is taken and any
subsequent transitions in the list that match the current data are ignored.

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
162 June 2013

Conditions

The conditions are specified using Boolean expressions comprised of
variables and operators. The available variables are:

• c0,... cn, where n is the number of trigger conditions instrumented.
These variables represent the output bit of the respective trigger condi-
tion.

• titriggerInID – the ID (0 thru 7) of an external trigger input.

• cntnull – true whenever the counter is equal to 0 (only available when a
counter is instrumented).

• iiceID – variable used with cross triggering to define the source IICE units
to be included in the equation for the destination IICE trigger.

Operators are:

• Negation: not, !, ~

• AND operators: and, &&, &

• OR operators: or, ||, |

• XOR operators: xor, ^

• NOR operators: nor, ~|

• NAND operators: nand, ~&

• XNOR operators: xnor, ~^

• Equivalence operators: ==, =

• Constants: 0, false, OFF, 1, true, ON

Parentheses ‘(‘, ‘)’ are recommended whenever the operator precedence is in
question. Use the Identify debugger statemachine info command to verify the
conditions specified.

For example, valid expression examples are:

"c0 and c1"

"!(c1 or c2) and c3"

"c0 or ti4" (condition c0 or external trigger ID ti4)

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 163

Other Subcommands

The Identify debugger statemachine clear command deletes all transitions from
the states given in the argument, or from all states if the argument -all is
specified.

The Identify debugger statemachine info command prints the current state
machine settings for the states given in the argument, or for the entire state
machine, if the option -all is specified. If the option -raw is given, the informa-
tion is returned in a machine-processible form.

State Machine Examples

To implement a trigger behavior that triggers when the pattern on condition 1
or condition 2 (c1 or c2) becomes true for the 10th time (a setting identical to
counter mode events in the simple mode triggering), the following state
machine can be used:

statemachine addtrans -from 0 -to 1 -cntval 9
statemachine addtrans -from 1 -cond "(c1 | c2) & cntnull" -trigger
statemachine addtrans -from 1 -cond "c1 or c2" -cnten

A trigger condition requiring pattern c2 to occur 10 times after pattern c1 has
occurred, without pattern c3 occurring in between (commonly available in
logic analyzers as “Pattern 1 followed by Pattern 2 before Pattern 3”) can be
achieved with the following state machine:

statemachine addtrans -from 0 -to 1 -cond c1 -cntval 9
statemachine addtrans -from 1 -cond "c2 & cntnull" -trigger
statemachine addtrans -from 1 -to 0 -cond c3
statemachine addtrans -from 1 -cond "c2" -cnten

These behaviors can be cascaded by moving on to the next behavior instead
of triggering in the transition that has -trigger specified, as long as there are
trigger conditions and states available.

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
164 June 2013

Convenience Functions

There are a number of convenience functions to set up complex triggers avail-
able in the file identifyInstallDir/share/contrib/syn_trigger_utils.tcl which is loaded into
the Identify debugger at startup:

• st_events condition integer – Sets up the state machine to mimic counter
mode events of the simple triggering mode as described above. The
argument condition is a boolean equation setting up the condition, and
integer is the counter value.

• st_watchdog condition integer – Same as st_events for watchdog mode.

• st_cycles condition integer – Same as above for cycles mode.

• st_pulsewidth condition integer – Same as above for pulsewidth mode.

• st_B_after_A conditionA conditionB [integer:=1] – Sets up a trigger mode to
trigger if conditionB becomes true anytime after conditionA became true.
The optional integer argument defaults to 1 and denotes how many
times conditionB must become true in order to trigger.

• st_B_after_A_before_C conditionA conditionB conditionC [integer:=1] – Sets up a
trigger mode to trigger if conditionB becomes true after conditionA
becomes true, but without an intervening conditionC becoming true
(same as the second example above). The optional integer argument
defaults to 1 and denotes how many times conditionB must become true
without seeing conditionC in order to trigger.

• st_snapshot_fill condition [integer] – Uses qualified sampling to sample data
until sample buffer is full. The argument condition is a boolean equation
defining the trigger condition, and integer is the number of samples to
take with each occurrence of the trigger (default 1).

• st_snapshot_intr condition [integer] – Uses qualified sampling to sample data
until manually interrupted by an Identify debugger stop command. The
argument condition is a boolean equation defining the trigger condition
and integer is the number of samples to take with each occurrence of the
trigger (default 1).

Please refer to the file syn_trigger_utils.tcl mentioned above for the implementa-
tion of these trigger modes using the Identify debugger statemachine command.
Users can add their own convenience functions by following the examples in
this file.

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 165

Cross Triggering with State Machines

Cross triggering allows a specific IICE unit to be triggered by one or more IICE
units in combination with its own internal trigger conditions. The IICE being
triggered is referred to as the “destination” IICE; the other IICE units are
referred to as the “source” IICE units.

Multiple IICE designs allow triggering and sampling of signals from different
clock domains. With an asynchronous design, a separate IICE unit can be
assigned to each clock domain, triggers can be set on signals within each
IICE unit, and then the IICE units scheduled to trigger each other on a user-
defined sequence using cross triggering. In this configuration, each IICE unit
is independent and can have unique IICE parameter settings including
sample depth, sample/trigger options, and sample clock and clock edges.

Cross triggering is supported in all three IICE controller configurations
(simple, complex counter, and state-machine triggering) and all three config-
urations make use of state machines.

Cross triggering is enabled in the Identify instrumentor (cross triggering can
be selectively disabled in the Identify debugger). To enable a destination IICE
unit to accept a trigger from a source IICE unit, enter the following command
in the Identify instrumentor console window (by default, cross triggering is
disabled):

iice controller -crosstrigger 1

For cross triggering to function correctly, the destination and the contributing
source IICE units must be instrumented by selecting breakpoints and watch-
points. Concurrently run these units either by selecting the individual IICE
units and clicking the RUN button in the Identify debugger project view or by
entering one of the following commands in the Identify debugger console
window:

run -iice all

run -iice {iiceID1 iiceID2 ... iiceIDn}

When simple- or complex-counter triggering is selected in the destination
IICE controller, the following Identify debugger cross-trigger commands are
available:

• The following Identify debugger command causes the destination IICE to
trigger normally (the triggers from source IICE units are ignored).

iice controller -crosstriggermode DISABLED

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
166 June 2013

• The following Identify debugger command causes the destination IICE to
trigger when any source IICE triggers or on its own internal trigger.

iice controller -crosstriggermode ANY

• The following Identify debugger command causes the destination IICE to
trigger when all source IICE units and the destination IICE unit have
triggered in any order.

iice controller -crosstriggermode ALL

• The following Identify debugger commands cause the destination IICE to
trigger after the source IICE unit triggers coincident with the next desti-
nation IICE internal trigger.

iice controller -crosstriggermode after -crosstriggeriice iiceID
iice controller -crosstriggermode after -crosstriggeriice all

The first Identify debugger command uses a single source IICE unit
(iiceID), and the second Identify debugger command requires all source
IICE units to trigger.

When state-machine triggering is selected, the state machine must be speci-
fied with at least three states (three states are required for certain triggering
conditions, for example, when the destination IICE is in Cycles mode and you
want to configure the destination IICE to trigger after another (source) IICE.

With state-machine triggering, the following Identify debugger statemachine
command sequences are available in the Identify debugger console window:

• The following Identify debugger command sequence is equivalent to
disabling cross triggering. The destination IICE triggers on its own
internal trigger condition (c0).

statemachine clear -all
statemachine addtrans -from 0 -cond "c0" -trigger

• In the following Identify debugger command sequence, the destination
IICE waits for iiceID to trigger and then triggers on its own internal
trigger condition (c0). This sequence implements the “after iiceID”
functionality of the simple- and complex-counter triggering modes.

statemachine clear -all
statemachine addtrans -from 0 -to 1 -cond "iiceID"
statemachine addtrans -from 1 -to 0 -cond "c0" -trigger

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 167

• In the following Identify debugger command sequence, the destination
IICE triggers when the last running IICE triggers.

statemachine clear -all
statemachine addtrans -from 0 -cond "c0 and iiceID and iiceID1

and iiceID2" -trigger
statemachine addtrans -from 0 -to 1 -cond "c0"
statemachine addtrans -from 1 -to 0 -cond "iiceID and iiceID1

and iiceID2" -trigger

• In the following Identify debugger command sequence, the destination
IICE waits for all the other running source IICE units to trigger and then
triggers on its own internal trigger condition (c0).

statemachine clear -all
statemachine addtrans -from 0 -to 1 -cond "iiceID and iiceID1

and iiceID2"
statemachine addtrans -from 1 -cond "c0" -trigger"

The incorporation of a counter in the state-machine configuration is similar
to the use of a counter in non-cross trigger mode for a state machine.

State-Machine Editor

The Identify debugger includes a graphical state-machine editor that is avail-
able when state-machine triggering is enabled for the active IICE unit on the
IICE Controller tab in the Identify instrumentor.

To bring up the state-machine editor in the Identify debugger, click
the Configure Statemachine Trigger icon in the Identify debugger toolbar.
Note that the icon will be grayed out if state-machine triggering was

not enabled in the Identify instrumentor when the design was instrumented
and that an error message will be generated if more than 10 states are
defined. Clicking the icon displays the Statemachine Editor dialog box for the
selected IICE.

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
168 June 2013

Each state is defined in an individual entry field. Within each entry, you can
add multiple definitions for transitioning from that state. Each transition
includes either one or two actions and a condition. The actions and condi-
tions are defined in the following tables.

Action Description

Decrement Counter Decrements counter when condition is true
(mutually exclusive with Initialize Counter)

Initialize Counter Initializes counter to count specified by
statemachine transition editor (mutually exclusive
with Decrement Counter)

Trigger Sample Buf-
fer

Triggers sample buffer when condition is true

Go to State Transitions to specified state when condition is true

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 169

To use the dialog box:

• As an optional starting point, use Insert Macro to select predefined state-
machine behaviors from the drop-down list. When a macro is selected, a
corresponding Configure Statemachine Macro dialog box is displayed to set
the parameters for the macro. The following figure shows the dialog box
for the st_B_after_A macro.

Enter the required parameters into the dialog box. These parameters
include events, Boolean functions, transition count, and IICE unit. Click
OK after all of the parameters are entered.

Condition Description

c0 ... cN References trigger event in active IICE unit

cntnull True when counter is equal to 0 (available only when counter is
instrumented)

iiceID References trigger event from a second IICE unit for cross
triggering (cross triggering must have been enabled when the
design was instrumented)

titriggerInID References external trigger originating from an IICE module in
another FPGA or on-board external logic

Boolean Boolean operators used to define state-machine events (see
Conditions, on page 162)

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
170 June 2013

• Use the Add new transition, Edit current transition, and Delete current transition
icons as required. The Add new transition and Edit current transition icons
bring up the Statemachine transition editor dialog box which allows transi-
tions to be defined or redefined.

Click OK when the transition has been defined/redefined.

• Click OK in the initial Statemachine Editor dialog box when the state-
machine triggering condition has been defined.

Note that you can view the corresponding state-machine commands in the
Identify debugger console window using the statemachine info -all command.

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 171

State-Machine Examples

The Identify state-machine triggering feature allows the creation of counter-
based state machines from sequences of trigger conditions to create very
effective triggers. You can set up a state-machine trigger during instrumenta-
tion and then program the state machine dynamically during debug to create
a complex, design-specific trigger.

Building a Complex State-machine Trigger

When building a complex, state-machine trigger, you specify the number of
trigger states, the trigger conditions (which can be set dynamically in the
Identify debugger), and the counter width. A common design configuration is
to trigger when a specific sequence of events occurs which, in turn, causes
data collection to stop and the sample data to be downloaded by the corre-
sponding Identify debugger executable from the FPGA. You can enable state-
machine triggering and specify the states through the user interface as
outlined in the following steps:

1. In the Identify instrumentor graphical user interface, select
Actions->Configure IICE from the top menu bar or click the IICE icon.

2. From the Identify instrumentor Configure IICE dialog box, select the IICE
Controller tab, click the State Machine triggering radio button, and specify the
number of trigger states, trigger conditions, and the counter width in the
corresponding fields.

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
172 June 2013

3. Build the state machine trigger from the Identify debugger console
window. The following Identify debugger command sequence is an
example.

statemachine addtrans -from 0 -to 1 -cond c0 -cntval 7 -trigger
statemachine addtrans -from 1 -to 0 -cond "cntnull"
statemachine addtrans -from 1 -to 1 -cnten -trigger

Note that in the last Identify debugger statemachine command, the -to 1
can be omitted (unnecessary because there is no change in state) and
that because the -from states are the same in the second and third
commands, execution falls through to the third command when the
second condition is not true.

4. Once the state-machine trigger is created, use the Identify debugger
statemachine info -all command to display and review the state-machine
transitions.

The state-machine editor in the Identify debugger GUI can be used to define
the state-machine trigger event described in step 3 as shown in the following
figure.

load counter

trigger when counter = 0
count

transition on counter = 0

transition
count = 0

count > 0

transition
c0 = 1

load counter

trigger
count = 0

State 0

State 1

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 173

The following figure shows the state-machine transition editor (click the Add
new transition icon).

The Identify debugger state-machine and state-machine transition editors
allow:

• Graphical entry of state machines

• Editing of state transitions and trigger events

• Conditions to be combined with each other or with a counter

• Counter mode selection of up, down, or initialized to any value

State-machine Triggering with Tcl Commands

The IICE can be configured using TCL commands entered from both the
Identify instrumentor and Identify debugger console windows. Some of the
example commands are as follows:

• To delete the state transitions from each IICE, use the following Identify
debugger command:

statemachine clear -iice all

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
174 June 2013

• To enable complex counter triggering, use the following Identify instru-
mentor command:

iice controller complex

• To set the counter width, use the following Identify instrumentor
command:

iice controller -counterwidth 8

• To configure an IICE for state-machine triggering, use the following
Identify instrumentor command sequence:

iice controller -iice IICE statemachine
iice controller -iice IICE -counterwidth 4
iice controller -iice IICE -triggerconditions 2
iice controller -iice IICE -triggerstates 2

In addition to state-machine triggering, the above Identify instrumentor
commands set the number of trigger conditions to 2 and the number of
trigger states to 2.

• To enable cross triggering, use the following Identify instrumentor
command:

iice controller -crosstrigger 1

• Similarly, to configure the sample depth, use the following Identify
instrumentor command:

iice sampler -depth 2048

Note that the only option for buffer type is internal_memory.

Qualified Sampling

During qualified sampling, data is sampled on every clock. The following
example uses qualified sampling to examine the data for a given number of
clock cycles. To create a complex trigger event to perform qualified sampling:

1. From the Configure IICE dialog box in the Identify instrumentor GUI,
select the IICE Controller tab, click the State Machine triggering radio button,
and enter a value in the Counter width field to define the width of the
sample buffer.

2. Select the IICE Sampler tab and enable the Allow qualified sampling check
box.

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 175

3. From the Identify debugger GUI, select qualified_fill from the Sample Mode
drop-down menu.

4. From the Identify debugger GUI, click on the adjacent Configure
Statemachine Trigger icon and define the state-machine trigger event.

5. From the Identify debugger GUI, select the st_snapshot_fill macro from the
Insert Macro drop-down menu.

Enter the trigger event (the condition that will be the qualifying trigger)
in field A, enter the number of samples to be accumulated in the sample
buffer after the trigger event occurs in field N, and click OK to update the
state-machine definition.

When you click Run in the Identify debugger project window, the sample
buffer begins accumulating data when the trigger event occurs and stops
accumulating data after the specified number of samples is reached.

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
176 June 2013

Note: If you use the Identify debugger st_snapshot_intr macro in place of the
st_snapshot_fill macro, the sample buffer is continually overwritten
until manually interrupted by a stop command.

You can also perform qualified sampling using equivalent Identify debugger
Tcl commands. The following Identify debugger example command sequence
samples the data every N cycles beginning with the first trigger event.

iice sampler -samplemode qualified_fill
statemachine clear -iice IICE -all
statemachine addtrans -iice IICE -from 0 -to 1

-cond "true" -cntval 0

statemachine addtrans -iice IICE -from 1 -to 2
-cond "c0" -cntval 15 -trigger

statemachine addtrans -iice IICE -from 2 -to 2
-cond "! cntnull" -cnten

statemachine addtrans -iice IICE -from 2 -to 2
-cond "cntnull" -cntval 15 -trigger

Remote Triggering

Remote triggering allows one debugger executable to send a software trigger
event to terminate data collection in the other debugger executables, effec-
tively creating a remote stop button.

You can selectively set the remote trigger to:

• trigger all IICEs in all debugger executables

• trigger all IICEs in a specific debugger executable

• trigger a specific IICE in a specific debugger executable

A common design configuration is to trigger all FPGAs on a single board-level
event; when that event occurs, data collection is stopped and the sample data
is downloaded by the corresponding debugger executables for all FPGAs.

Remote triggering is a scripting application. The IICE/debugger targets are
defined by the Identify debugger remote_trigger command (see the command
description in the Reference Manual).

State Machine Triggering IICE Hardware Description

Identify User Guide © 2013 Synopsys, Inc.
June 2013 177

As an example, the Identify debugger scripting sequence

run ; remote_trigger -pid 12

waits for the trigger condition in the active IICE and then sends a trigger to all
IICE units in the debugger executable identified by process ID 12.

Importing External Triggers

An import external trigger capability can be used with trigger signals origi-
nating from on-board logic external to the FPGA or from an IICE module in a
second FPGA. For information on using this feature with state-machine
triggering, see the Importing External Triggers application note available on
SolvNet.

LO

 IICE Hardware Description State Machine Triggering

© 2013 Synopsys, Inc. Identify User Guide
178 June 2013

Identify User Guide © 2013 Synopsys, Inc.
June 2013 179

C H A P T E R 11

Connecting to the Target System

This chapter describes methods to connect the Identify debugger to the target
hardware system. The programmable device or devices in the target system
that contain the design to be debugged are usually placed on a printed circuit
board along with a number of other support devices. The difficulty is that the
boards differ greatly in the connections between their programmable devices,
the other components, and the external connections of the boards.

This chapter outlines how to connect the Identify debugger to most of the
common board configurations and addresses the following topics:

• Basic Communication Connection

• JTAG Communication

• JTAG Hardware in Instrumented Designs

• Using the Built-in JTAG Port

• Using the Synopsys Debug Port

• JTAG Communication Debugging

• UMRBus Communications Interface

• HAPS Board Bring-up Utility

LO

 Connecting to the Target System Basic Communication Connection

© 2013 Synopsys, Inc. Identify User Guide
180 June 2013

Basic Communication Connection
The components that make up the debugging system are:

• The host machine running the Identify tool set with a loaded project.

• The communication cable connecting the host machine to the program-
mable device.

• The programmable device or devices loaded with the instrumented
version of the design to be debugged.

Identify Debugger Communications Settings

Identify debugger communications settings are defined on the project window
and include selecting the cable type and setting the port parameters for the
selected cable.

Cable Type

The cable type is selected from a drop-down menu in the Communications
settings area of the Identify debugger project window (see following figure).

Basic Communication Connection Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 181

The following table lists the correspondence between cable-type setting and
the supported cables in the Identify debugger.

If you are using the command interface, set the com command’s cabletype
option to xilinxparallel, xilinxusb, xilinxauto, byteblaster, Microsemi_BuiltinJTAG,
JTAGTech3710, or demo according to the cable being used. Note that if you are
using the Altera builtin JTAG port, any Altera cable type can be used
(communications are controlled through the Quartus driver). If you are using
the soft JTAG port, you must use either a ByteBlaster or ByteBlaster MV
hardware cable.

A umrbus setting is also available for establishing communications between
HAPS hardware and the Identify debugger (see UMRBus Communications
Interface, on page 203).

Cable Type Setting Compatible Hardware Cables

xilinxparallel Xilinx Parallel III and Xilinx Parallel IV

xilinxusb Xilinx USB (Windows only)

byteblaster
(soft JTAG port)

Altera ByteBlaster and ByteBlaster MV

Microsemi_BuiltinJTAG Microsemi FlashPro, FlashProLite, or FlashPro3

Altera_BuiltinJTAG
(builtin JTAG port)

Altera MasterBlaster (parallel, serial, or USB) or
Altera USBBlaster

LO

 Connecting to the Target System Basic Communication Connection

© 2013 Synopsys, Inc. Identify User Guide
182 June 2013

Byteblaster Cable Setting

To configure a ByteBlaster cable, click the Port Settings button to display the
Configure Port Settings dialog box and select the appropriate port from the drop-
down menu (see following figure).

If you are using the command interface, set the com command’s cableoptions
byteblaster_port option to 1 (lpt1), 2 (lpt2), 3 (lpt3), or 4 (lpt4). Different
computers have their lpt ports defined for different address ranges so the port
you use depends on how your computer is configured.

The Identify debugger uses the “standard” I/O port definitions: lpt1: 0x378-
0x37B, lpt2: 0x278-0x27B, lpt3: 0x3BC-0x3BF, and lpt4: 0x288-0x28B if it
cannot determine the proper definitions from the operating system. If the
hardware address for your parallel port does not match the addresses for lpt1
through lpt4, you can use the setsys set command variable lpt_address to set
the hardware port address (for example, setsys set lpt_address 0x0378 defines
port lpt1).

Basic Communication Connection Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 183

Xilinx Parallel Cable Settings

To configure a Xilinx parallel cable, click the Port Settings button to display the
Configure Port Settings dialog box and select the appropriate port and communi-
cation speed frequency from the drop-down menu (see following figure).

If you are using the command interface, set the com command’s port cableop-
tions xilinxparallel_port option to 1 (lpt1), 2 (lpt2), 3 (lpt3), or 4 (lpt4) and set the
xilinxparallel_speed option to 5000000 (5MHz), 2500000 (2.5 MHz), or 200000
(200kHz). Note that different computers have their lpt ports defined for
different address ranges so the port you use depends on how your computer
is configured.

The Identify debugger uses the “standard” I/O port definitions: lpt1: 0x378-
0x37B, lpt2: 0x278-0x27B, lpt3: 0x3BC-0x3BF, and lpt4: 0x288-0x28B if it
cannot determine the proper definitions from the operating system. If the
hardware address for your parallel port does not match the addresses for lpt1
through lpt4, you can use the setsys set command variable lpt_address to set
the hardware port address (for example, setsys set lpt_address 0x0378 defines
port lpt1).

LO

 Connecting to the Target System Basic Communication Connection

© 2013 Synopsys, Inc. Identify User Guide
184 June 2013

Xilinx USB Cable Setting

To configure a Xilinx USB cable, click the Port Settings button to display the
Configure Port Settings dialog box and select the appropriate communication
speed frequency from the drop-down menu (see following figure).

Note: The Xilinx USB cable is only supported on the Windows platform.
Using the older Xilinx USB black cable with a HAPS-70 system limits
the communication frequency. The newer Xilinx USB red cable does
not have this limitation.

If you are using the command interface, set the com command’s port cableop-
tions xilinxusb_speed option to 24000000 (24MHz), 12000000 (12 MHz),
6000000 (6 MHz), 3000000 (3 MHz), 1500000 (1.5MHz), or 750000 (750
kHz).

Xilinxauto Cable Settings

Selecting the Xilinxauto cable type allows the Identify debugger to dynamically
select the appropriate Xilinx cable (parallel or USB) for the hardware configu-
ration. From the project window, click the Port Settings button to display the
Configure Port Settings dialog box and select the appropriate parallel port and
communication speed frequencies for both the parallel and USB cables from
the drop-down menus (see following figure).

Basic Communication Connection Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 185

If you are using the command interface, set the com command’s port cableop-
tions xilinxparallel_port, xilinxparallel_speed, and xilinxusb_speed options described
previously in Xilinx Parallel Cable Settings, on page 183 and Xilinx USB
Cable Setting, on page 184.

JTAGTech3710 Cable Settings

To configure a JTAGTech3710 cable, click the Port Settings button to display
the Configure Port Settings dialog box (see following figure) and enter the corre-
sponding parameters (type, port, and tap number). If you are using the
command interface, use the com command’s cableoptions option to set the
cable-specific parameters – JTAGTech_type (takes values PCI and USB; default
is PCI), JTAGTech_port (takes values 0, 1, 2, ...; default value is 0), and
JTAGTech_tapnum (takes values 1, 2, 3, or 4; default is 1).

LO

 Connecting to the Target System Basic Communication Connection

© 2013 Synopsys, Inc. Identify User Guide
186 June 2013

Microsemi Actel_BuiltinJTAG cable Settings

To configure a Microsemi FlashPro, FlashProLite, or FlashPro3 cable, simply
select the Microsemi_BuiltinJTAG setting from the Cable type drop-down menu. If
you are using the command interface, you can additionally use the com
command’s cableoptions option to set the tristate pin parameter (see the com
command cableoptions option in the Reference Manual for the parameter
syntax).

Demo Cable Settings

The Port Settings button is disabled when the demo cable is selected.

Identify Debugger Configuration

All parts of the debugging system must be configured correctly to make a
successful connection between the Identify debugger and the instrumented
device or devices through the cable. In addition to selecting the cable type
and port parameters described in Identify Debugger Communications
Settings, on page 180, the following additional requirements must be met to
ensure proper communications.

JTAG Client-Server Configuration

The client-server configuration is set from a dialog box available by selecting
Options->Configure JTAG server in the Identify debugger. The default settings are
usually correct for most configurations and require changing only when the
default server port address is already in use or when the Identify debugger is
being run from a machine that is not the same machine connected to the
FPGA board/device (see Client-Server Configuration for Remote Debugging,
on page 188).

Basic Communication Connection Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 187

In the dialog box:

Cable type – the type of interface cable (see Cable Type, on page 180).

JTAG server address – the address of the server. The address localhost is
used when the Identify debugger is run on the same machine connected
to the FPGA device. The server address is set to the IP address of the
machine connected to the FPGA device/board when the Identify
debugger is run from a different machine.

JTAG client/server port – the port number of the server. For Xilinx cable
types, the default port number is 57015; for Microsemi cable types, the
default port number is 58015. For Altera devices, client-server port
configuration is part of the Altera driver and the setting is ignored.
Change the server port setting when there is a conflict with another tool
on the machine.

JTAG client/server logfile – the name of the log file.

Start JTAG server/Stop JTAG server – server control buttons for starting and
stopping the JTAG server. The Update log button adds a start/stop entry
to the log file.

LO

 Connecting to the Target System Basic Communication Connection

© 2013 Synopsys, Inc. Identify User Guide
188 June 2013

Client-Server Configuration for Remote Debugging

The Identify debugger uses a client-server architecture to communicate with
FPGAs over the JTAG interface. Client-server architecture lets you work
remotely with the Identify debugger using Ethernet as the backbone for
client-server communication. The Identify debugger can be configured in
either the client or server mode.

In the client-server architecture, the machine connected to the target FPGA
board is termed the server and any machine on the same network that is
used to launch the Identify debugger and connect to the server is termed the
client. You can use the Configure JTAG client/server settings dialog box described
in the previous section to set the IP address or the host name of the server so
that you can remotely debug the design. You can also specify the port for
client-server communication. Client-server communication uses the TCP/IP
communication protocol.

Client-Server Configuration

To establish a client-server connection:

1. Configure the target FPGA with the design to be debugged.

2. Start the server on the machine connected to the target FPGA board,
launch the debugger, and then configure the server-side debugger as
described below:

– Load the project file (design) to be debugged.

– In the debugger UI, Configure JTAG server from the Options drop-down
menu.

– Specify the server address, port number, and log file name in the
Configure JTAG client/server settings dialog box. The server address can
be either the name of the host machine or its IP address. If you do not
know the hostname or IP address, set it to localhost. Set the
client/server port according to the selected cable type. Configuring
the JTAG client-server parameters does not start the server.

– To start the server, select the Start JTAG server button in the dialog box.
Alternatively, you can run the com check command by selecting the
Comm check button in the debugger project view. If the server starts
successfully, you see the xilinxjtag or acteljtag process running in the
task manager. If the server cannot be started on the host machine, an
error message is displayed.

Basic Communication Connection Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 189

3. To debug the design from a remote machine (client), launch the
debugger on the client machine and load the project to be debugged.
Then configure the client-side debugger as described below:

– In the debugger UI, Configure JTAG server from the Options drop-down
menu.

– Specify the server address, port number, and log file name in the
Configure JTAG client/server settings dialog box. The server address can
be either the name of the host machine or its IP address. The port
number must be the same as the port number used to configure the
JTAG server.

The following is the syntax for the equivalent TCL command to configure the
JTAG server:

jtag_server set -addr {hostName/IP_address} -port {serverPort} -logf {logFfileName}

To view the existing JTAG server configuration settings, use the jtag_server get
Tcl command.

Check the client-server communication by running the com check command
by selecting the Comm check button in the debugger project view. If the client-
server communication cannot be established, an error message is displayed
in the debugger.

Once the client-server communication is running properly, you can debug
the design remotely.

Parallel/USB Port Drivers

The parallel port or USB driver must be installed and operating (see the
installation procedures in the release notes). Make sure the host machine on
which you are running the Identify debugger has the parallel port or USB
driver installed. If you are using the Altera builtin JTAG, the bin directory for
the Quartus software must be included in the users “path” variable.

LO

 Connecting to the Target System Basic Communication Connection

© 2013 Synopsys, Inc. Identify User Guide
190 June 2013

Communication Cable Connections

The communication cable must be connected correctly. There are two
connections:

• Cable-to-host – make sure that the parallel port you connect the cable to
corresponds to the lpt specified using the com port command.

The Identify debugger uses the “standard” I/O port definitions: lpt1:
0x378-0x37B, lpt2: 0x278-0x27B, lpt3: 0x3BC-0x3BF, and lpt4: 0x288-
0x28B if it cannot determine the proper definitions from the operating
system. If the hardware address for your parallel port does not match
the addresses for lpt1 through lpt4, you can use the setsys set command
variable lpt_address to set the hardware port address (for example, setsys
set lpt_address 0x0378 defines port lpt1).

• Cable-to-board – the cable must be connected correctly to the board that
contains the programmable device or devices to be debugged. The Altera
ByteBlaster cable connects with a 10-pin connector to a special
connector on the board. The Xilinx parallel cable (and similar cables)
have six flying leads. The leads connect to the four JTAG signals and
also to power and ground. Be sure to connect ALL six leads. When you
instrumented your design, you selected a JTAG connection to use:
builtin or Synopsys debug port (soft). If you selected the builtin option,
connect the cable to the same leads that you use for the JTAG based
programming of the chip. If you selected the Synopsys debug port (soft),
four JTAG signals were added to the top level of your design. You must
assign these signals to pins on the chip that are connected to accessible
probe points on your board. Once this is complete, connect the four
JTAG signals to the proper probe points, and make sure that you also
connect the power and ground leads.

JTAG Chain Description

If you are using the builtin JTAG connection and the device to be debugged is
part of a multi-device scan chain, the Identify debugger first attempts to
detect the devices in the scan chain. If auto-detection is unsuccessful,
describe the device chain to the Identify debugger using the chain command.

Chip Programming

Make sure that you program the device with the instrumented version of your
design, NOT the original version.

JTAG Communication Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 191

JTAG Communication
JTAG is a 4-wire communication protocol defined by the IEEE 1149.1
standard. The JTAG standard defines the names of the four connections as:
TCK, TMS, TDI, and TDO.

The JTAG-compliant devices can be connected to a host computer through a
JTAG cable. Such devices can be connected directly to the cable (see following
figure), or multiple devices can be connected in a serial chain as shown in the
figure on the following page.

Notice in the second figure that the TCK and TMS connections are connected
directly to both devices while the TDI and TDO connections route from one
device to the other and loop back to the JTAG cable.

JTAG
Cable

TCK
TMS

TDO

TAP
ControlTDI

LO

 Connecting to the Target System JTAG Communication

© 2013 Synopsys, Inc. Identify User Guide
192 June 2013

TAP
Control

TDO

TDI

TDO

TDI

TMS

TCK

JTAG
Cable

TAP
Control

JTAG Hardware in Instrumented Designs Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 193

JTAG Hardware in Instrumented Designs
The Identify tool set uses a JTAG connection to communicate with the instru-
mented design. To do this, the IICE must contain a TAP controller that imple-
ments the JTAG standard. The IICE JTAG connection currently can be imple-
mented in one of two ways:

• The IICE can be configured (using the builtin option) to use the JTAG
controller that is built into the programmable chip. This approach has
the advantage that the built-in TAP controller already has hard-wired
connections and four dedicated pins. Accordingly, employing the
Identify tool set does not cost extra pins. In addition, the built-in TAP
controller does not require any user logic resources because it usually is
implemented in hard-wired logic on the chip. Unfortunately, not all
devices have a usable built-in TAP controller.

• The IICE can be configured (using the soft JTAG port option) to include a
complete, JTAG-compliant TAP controller. The TAP controller is
connected to external signals by using four standard I/O pins on the
programmable device. Any programmable device family can utilize this
type of cable connection since it only requires four standard I/O pins.

The following sections provide more detail on these two communication
options.

Using the Built-in JTAG Port

Some programmable device families employ a built-in TAP controller as a
means for device configuration. In most cases, the IICE also can be config-
ured to use this built-in TAP controller. Using this TAP controller saves the
user logic necessary to implement the controller and also saves four I/O pins.

Using the built-in port is slightly more complicated than using the Identify
debug port because the built-in port usually has special board-level connec-
tions that facilitate the programming of the chip. Consequently, these
programming connections must be understood to properly connect the JTAG
cable to the board and to properly communicate with the IICE.

LO

 Connecting to the Target System JTAG Hardware in Instrumented Designs

© 2013 Synopsys, Inc. Identify User Guide
194 June 2013

Boards with Direct JTAG Connections

HAPS boards and other boards that connect the built-in JTAG port directly to
four header pins on the board allow the JTAG cable to simply be connected
directly to the header pins. This configuration works for both directly
connected devices and serially chained devices.

A common serial configuration is the combination of an EEPROM with a
programmable device. This configuration allows you to either directly
program the chip, or to program the EEPROM and then use the contents of
the EEPROM to program the device via some other connection (see following
figure).

This configuration is well suited to the Identify debugger and works just like
any other serially connected chain.

Similarly, when using the Identify tool set with the Certify tool and a HAPS
board in a multi-FPGA environment, the design is distributed among the
FPGAs and the instrumented logic is included in one or more of the FPGAs.
In this configuration, the IICE unit or units in each FPGA are individually
accessed to provide the required debugging capabilities for their associated
portion of the design logic.

TAP
Control

EEPROM

JTAG
Cable

TAP
Control

FPGA

TDO

TDI

TMS

TCK

JTAG Hardware in Instrumented Designs Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 195

Using the Synopsys Debug Port

By configuring the IICE using the soft JTAG port option, the design instrumen-
tation includes a complete, JTAG-compliant TAP controller. The Identify
debugger connects the TAP controller to four top-level I/O connections to the
design. The signal names for these connections are:

• identify_jtag_tck: the asynchronous clock signal

• identify_jtag_tms: the control signal

• identify_jtag_tdi: the serial data IN signal

• identify_jtag_tdo: the serial data OUT signal

Direct JTAG Connection

Commonly, the host computer is directly connected to the four JTAG signals
on the programmable chip as follows:

• The four JTAG I/O signals on the programmable chip are connected to a
header on the circuit board that contains the programmable chip.

• A standard JTAG cable is connected to the four pins on the circuit board
header.

• The other end of the JTAG cable is connected to the host computer.

TAP
Control

FPGA1

JTAG
Cable

TAP
Control

FPGA2

TDO

TDI

TMS

TCK

LO

 Connecting to the Target System JTAG Hardware in Instrumented Designs

© 2013 Synopsys, Inc. Identify User Guide
196 June 2013

Serial JTAG Connection

A programmable chip using the Synopsys FPGA Debug Port can also be
connected in a serial chain. To allow the Identify debugger to communicate
with the device, the configuration of the device chain must be successfully
auto-detected or declared using the chain command (see the Reference
Manual). The steps for making a serial cable connection are the same as a
direct cable connection described above.

JTAG Clock Considerations

The JTAG clock signal syn_tck on the Identify JTAG port drives many flip-flops
in the instrumentation logic – the number depends on the instrumentation,
but can be larger than 1000 flip-flops. Consequently, the clock signal on the
programmable device must be able to drive large numbers of flip-flops and
have low-skew properties. If the JTAG clock signal is not handled correctly, it
is likely that the instrumentation will act erratically.

Most programmable devices have the ability to route such high-fanout
signals using dedicated clock drivers and global clock distribution networks.
Different devices use different methods of accomplishing this and have
different names for this resource. Here are some simple guides:

• Some programmable devices have a number of dedicated clock I/O pins
that drive internal clock distribution networks. In this case, be sure to
connect the syn_tck signal to the chip using one of these clock I/O pins.

• Other programmable devices have clock buffers and clock distribution
networks that can use any internal signal as a clock signal. For these
technologies, the synthesis tool usually detects high-fanout signals and
implements them with a clock buffer. In this case, it is important to
make sure that the synthesis tool has worked correctly. If it does not put
the syn_tck signal into a global buffer, it may be necessary to manually
add a global buffer to this signal.

JTAG Hardware in Instrumented Designs Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 197

JTAG Registers

Xilinx-based designs allow JTAG boundary-scan registers to be user-defined
through the BSCAN_VIRTEX* library macro. After configuring the Xilinx
FPGA, these registers are accessible through the JTAG controller’s TAP pins.
The Virtex-4, Virtex-5, Virtex-6, and Virtex-7 devices include four boundary-
scan registers designated USER1, USER2, USER3, and USER4; the other
supported Xilinx devices include two registers designated USER1 and
USER2.

The Identify instrumentor requires two boundary-scan registers. For Virtex-4,
Virtex-5, Virtex-6, and Virtex-7 applications, you can specify which two regis-
ters are dedicated to Identify to avoid any contention among the available
registers for user applications (two BSCAN_VIRTEX* cells cannot share the
same address). By default, registers USER3 and USER4 are reserved for
Identify. To change the default register settings, use the xilinxjtagaddr1 and
xilinxjtagaddr2 options to the device command (see device, on page 39 of the
Reference Manual).

Boards Without Direct Built-in JTAG Connections

Some boards are designed so that the built-in JTAG port cannot be reached
from pins on the board. For example, a board may connect an EEPROM
directly to the built-in JTAG port on the programmable device. The EEPROM
is directly programmable from the JTAG connection (see following figure).

LO

 Connecting to the Target System JTAG Hardware in Instrumented Designs

© 2013 Synopsys, Inc. Identify User Guide
198 June 2013

In this case, the only connection that allows the Identify debugger to commu-
nicate with the programmable device is a soft JTAG Port. This configuration
requires a second JTAG cable to directly connect to the four I/O pins on the
programmable device as shown in the figure below.

FPGA

TDO

TDI

TMS

TCK
TAP

Control

EEPROM

JTAG
Cable

TAP
Control

EEPROM

FPGASYN Debug Port

EEPROM
Configuration Port

TDO

TDI

TMS

TCK

JTAG
Cable

SYN TAP
Control

TDO

TDI

TMS

TCK

JTAG
Cable

U
se

r
IO

 P
in

s

Setting the JTAG Chain Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 199

Setting the JTAG Chain
JTAG connections on an FPGA board usually chain devices together to form a
serial chain of devices. This chain includes PROMs and other FPGA devices
present on the board.

The Identify debugger automatically detects the JTAG chain at the beginning
of the debug session. You can review the JTAG chain settings by clicking the
Show JTAG chain button in the Communications settings section of the project
window.

To enable the Identify debugger to properly communicate with the target
device, the device chain must be configured correctly. If, for some reason, the
JTAG chain cannot be successfully configured, you must manually specify
the chain through a series of chain instructions entered in the console
window.

Configuring a device chain is very similar to the steps required to program the
device with a JTAG programmer.

For the Identify debugger, the devices in the chain must be known and speci-
fied. The following information is required to configure the device chain:

• the number of devices in the JTAG chain

• the length of the JTAG instruction register for each device

Instruction register length information is usually available in the bsd file for
the particular device. Specifically, it is the Instruction_length attribute listed in
the bsd file.

LO

 Connecting to the Target System Setting the JTAG Chain

© 2013 Synopsys, Inc. Identify User Guide
200 June 2013

For the board used in developing this documentation, the following sequence
of commands was used to specify a chain consisting of a PROM followed by
the FPGA. The instruction length of the PROM is 8 while the instruction
length of the FPGA is 5. Note that the chain select command identifies the
instrumented device to the system. Identifying the instrumented device is
essential when a board includes multiple FPGAs.

Note: The names PROM and FPGA have no meaning to the Identify
debugger – they simply are used for convenience. The two devices
could be named device1 and device2, and the debugger would func-
tion exactly the same.

Again, the sequence of chain commands is specific to the JTAG chain on your
board; these commands are the chain commands for the board used to
develop this document – the board you use will most likely be different.

Type the following sequence in the console window of the Identify debugger:

chain clear
chain add prom 8
chain add fpga 5
chain select fpga
chain info

The following figure shows the results of the above command sequence.

JTAG Communication Debugging Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 201

JTAG Communication Debugging
The Identify debugger performs a number of diagnostic communication tests.
The first time the Identify debugger connects to the on-chip TAP controller, it
performs extensive communication tests. Later, every time the “run” function
is executed, either by clicking the Run button or executing the run command,
simpler and faster tests are executed.

Below is a list of communication related error messages with some additional
explanations.

Basic Communication Test

This test sends a pattern of ones and zeros to the chip and examines the
return values

• ERROR: Communication is stuck at zero. Please check the cable connection.
It is likely that the Identify debugger is unable to communicate with the
instrumented chip. This error is usually a cable connection problem, or
the cable type is not set correctly.

• ERROR: Communication is stuck at one. Please check the cable connection.
This has the same reasons as a stuck-at-zero communication error.

• ERROR: Communication is returning incorrect IR data. Please check the cable
connection.
If this error is received, then the previous two errors were NOT received
as the communication is returning a mixture of ones and zeroes.
However, the data is not coherent and again the communication connec-
tion is suspect.

• ERROR: Communication problem - data sent is not the same as data received.
This test verifies that the Identify debugger can shift data into the
instrumented chip and receive the same data back. If this error occurs,
there is again a problem with your cable connection or the cable type
setting is incorrect.

The last two errors can also be the result of a syn_tck signal that is not using a
high-fanout clock buffer resource, and thus may show large clock skew
properties. If you are using a parallel port, make sure that you have selected
the correct port.

LO

 Connecting to the Target System JTAG Communication Debugging

© 2013 Synopsys, Inc. Identify User Guide
202 June 2013

On-chip Identification Register

The Identify instrumentor adds hardware to implement an on-chip identifica-
tion register.

• ERROR: Cannot find valid instrumented design.
The Identify debugger cannot verify that the identification register on the
instrumented design is correct or even exists. This error usually means
that the design on the programmable chip is NOT the instrumented
version of the design.

• ERROR: Instrumented design on FPGA differs from design loaded into Identify
Debugger.
The Identify debugger verified that the chip is instrumented but the
instrumentation does not match the project that was loaded into the
Identify debugger.

JTAG Chain Tests

The Identify debugger attempts to verify the device chain (as defined by the
chain auto-detector or the chain command).

• ERROR: No hardware devices were found. Please check the cable connection.
No devices can be seen in the JTAG identification register chain.
Probably a bad cable connection, or the cable type is incorrect.

• ERROR: The actual number of devices differs from the defined number: ACTUAL: XX
DEFINED: YY
The number of devices seen in the JTAG chain is XX, but the Identify
debugger was expecting the number to be YY (as was defined using the
chain command). The chain description is incorrect.

• ERROR: The actual IR chain size differs from the defined size: ACTUAL: XX
DEFINED: YY
The total number of JTAG identification register bits is incorrect. The
Identify debugger measured the hardware to have XX bits, but was
expecting YY bits (as was defined using the chain command). Please
review your chain configuration.

UMRBus Communications Interface Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 203

• ERROR: Communication with device number XX is not correct. Please check your
chain setup.
If this error appears, the previous error does not appear. Thus, the total
JTAG instruction register length is correct, but the size of the instruc-
tion register of device number XX is incorrect. It is likely that the order
of your devices is incorrect. Review your chain settings.

UMRBus Communications Interface
The UMRBus is available as a communication interface between the HAPS
hardware and the host machine running the Identify debugger. With the
UMRBus, all communications are performed over the UMRBus communica-
tion system, and the JTAG port is no longer used. During instrumentation,
the top level of the user design is automatically extended with the additional
top-level ports for the UMRBus.

The UMRBus currently is available only for HAPS-60 series and HAPS-70
series systems and requires a HAPS UMRBus Interface Kit to replace the Xilinx
USB cable. The UMRBus supports only the internal_memory buffer type and
not hapssram. To enable the use of the UMRBus:

• In the Identify instrumentor, select umrbus from the Communication port
drop-down menu in the project view or set the device jtagport option to
umrbus in the console window.

• In the Identify debugger, select umrbus from the Cable type drop-down
menu in the project view or set the com cabletype option to umrbus in the
console window.

LO

 Connecting to the Target System HAPS Board Bring-up Utility

© 2013 Synopsys, Inc. Identify User Guide
204 June 2013

HAPS Board Bring-up Utility
Identify users with a HAPS-60 or HAPS-70 series system can use the HAPS
board bring-up utility to help define and verify their board configuration.

Before you can use the HAPS board bring-up utility, the following software
must be installed:

• Current version of the Identify tool set

• ConfPro GUI

The board bring-up utility is launched directly from the command prompt
using the -board_bringup option to the indentify_debugger command:

identify_debugger -board_bringup

The above command opens a special Identify debugger window with the
board bring-up utility GUI displayed in the upper left corner of the window as
shown below.

The board bring-up utility also can be launched directly from the Certify GUI
which requires both a project and an Identify implementation to be defined
for that project. A HAPS-60 or HAPS-70 board (vb) file must be included in
the defined project (an HDL design is not required, but an initial board file
must be present).

HAPS Board Bring-up Utility Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 205

To launch the HAPS Board Bring-up Utility from the Certify GUI, highlight
the Identify implementation in the Certify GUI and, with the right mouse
button, select Launch Identify in Board Bring Up and Query Mode to display the
board bring-up utility GUI in the Identify debugger.

Setting Initial Values

The following table describes the selections and fields in the Identify debugger
bring-up utility.

ConfPro GUI

The ConfPro GUI is launched from the board bring-up utility in the Identify
debugger GUI. When you click the ConfPro button, the HAPS Configuration Tool
menu shown below is displayed.

Function Description

UMRBus Device Selects the type and location of the UMRBus device. Eight PCIe
and eight UMRBus devices can be selected from the drop-down
menu.

ConfPro Selects the ConfPro GUI. If the location of the ConfPro GUI is not
specified, you are prompted for the install location. For more
information on the ConfPro GUI, see ConfPro GUI, on page 205.

Board/System Selects the type of board/system connected to the host. The
allowed selections are haps6x (HAPS-60 system) and haps7x
(HAPS-70 system) which are available from the drop-down
menu.

Utils & Tests Selects the query/test to be run based on the type of board
system selected. For more information on the available utilities
and tests, see Utility and Board-Test Commands, on page 207

Run Runs the selected query/test to be executed.

LO

 Connecting to the Target System HAPS Board Bring-up Utility

© 2013 Synopsys, Inc. Identify User Guide
206 June 2013

The HAPS Configuration Tool dialog box includes both a File and a Platform top-
level menu as well as the top-level Help menu. Complete ConfPro GUI
documentation is available by selecting Help->Contents from the top-level
menu. The location of the ConfPro installation is specified by selecting
Options->Configure Confpro from the Identify debugger menu.

HAPS Board Bring-up Utility Connecting to the Target System

Identify User Guide © 2013 Synopsys, Inc.
June 2013 207

Utility and Board-Test Commands

Sets of utility and board test commands are available from the Utils & Tests
drop-down menu. This menu is board/system dependent and remains
disabled until a board/system selection is made. Selecting a command from
the drop-down menu displays a description of the selected command, and
clicking the Run button executes the command. The individual commands
have Tcl equivalents that can be run from the command prompt (see haps, on
page 45 of the reference manual). The following sections describe the
individual utility and test commands.

board

Displays the board status to the console window. Status includes clock and
voltage settings, reset condition, daughter card connections, firmware
version, and board serial number.

prog

Programs the FPGA specified in the FPGA ID field with the contents of the
selected bin file. Click the Open button to browse to the bin file location. The
FPGA ID selection ranges from 1 to 16.

setvcc

Sets the I/O voltage for the board regions. The voltage value and region are
selected from the corresponding drop-down menus and differ with the
board/system selected. Multiple regions can be selected using the Ctrl key.

setclk

Sets the frequency for the global input clock identified by the Clock name entry
with the frequency specified in the Frequency field. The frequency value is in
kHz unless specified otherwise.

restart

Restarts the board.

LO

 Connecting to the Target System HAPS Board Bring-up Utility

© 2013 Synopsys, Inc. Identify User Guide
208 June 2013

confscr

Runs confprosh Tcl scripts. For example, the confprosh command can be used
to source a HAPS clock and voltage-region configuration script; the user
could then run clock checks to verify the on-board clock configuration. The
name of the script is entered in the TCL script field; use the Open button to
browse to the script location.

vbgen

Queries the HAPS system and generates a corresponding Tcl file for Certify
board file generation. The output Tcl file is written to the filename specified in
the Output TCL file field. Clicking the Save button prompts for an alternate
location to save the Tcl file (by default, the Tcl file is saved to the current
working directory).

clock_check

Reports the clock frequency of each GCLK output to allow all of the GCLK
frequencies to be verified. As an option, the location of a Tcl script can be
specified to execute any of the individual haps commands.

con_speed

Verifies the connectivity between HapsTrak connectors as well as the speed at
which HSTDM can run. The test speed is selected from the Speed drop-down
menu. The Mode drop-down menu sets the run mode. The default is fast
mode. When Mode is set to sweep, the test sweeps every channel of the
connection which can require up to four hours to complete.

umr_check

Verifies the basic functionality of the UMRBus for the FPGA specified in the
FPGA ID field. The GCLK1 frequency is specified in the Frequency field and
unless specified otherwise, is in kHz (the default is 140000 kHz).

self_test

Replaces the traditional, STB2 test card self test. The self_test is only avail-
able with haps6x board/system selection.

Identify User Guide, June 2013 209

Index

A
activations

auto-saving 123
loading 122
saving 121

always-armed triggering 40
asynchronous clocks 165

B
bitfile 146
bitgen command (Xilinx) 147
black boxes 68
blocks

controller 21
JTAG communication 149
probe 21
sampling 152

board query 204
board-test commands 207
board-utility commands 207
boundary-scan registers 197
breakpoint icon

color coding 85
breakpoints

activating 108
combined with watchpoints 152
finding 94
folded 111
in folded hierarchy 84
instance selection 85
listing all 94
listing available 94
listing instrumented 94
multiple 151
selecting 84

bring-up utility 204
buckets

sample and trigger 146

buffer type
hapssram 48

buses
instrumenting partial 75

Byteblaster cable settings 182

C
cable compatibility 181
cable type 180
cable type settings

Byteblaster 182
JTAGTech3710 185
Microsemi 186
Xilinx parallel 183
Xilinx USB 184
Xilinxauto 184

cables
connection 190

client-server configuration 186
clocks

asynchronous 165
edge selection 42
sample 41
SRAM 50

commands
bitgen (Xilinx) 147

communication cable
settings 30

communications settings 180
complex counter 153

cycles mode 155
disabling 155
events mode 155
modes 153
pulsewidth mode 155
size 153
watchdog mode 155

complex triggering 44
condition operators 162

Index

210 Identify User Guide, June 2013

Configure IICE dialog box 38, 137
IICE Controller tab 43
IICE Sampler tab 38

ConfPro 205
ConfPro installation 206
console window 70, 102

operations 141
console window operations 96
controller block 21
convenience functions 164
conventions

design hierarchy 14
file system 13
syntax 12
text 12
tool 13

cross triggering 123, 128, 165
commands 165
enabling 165
state machine commands 166

cycles mode
complex counter 155

D
data compression 114

masking 115
Debugger tool

invoking 98
debugger tool

opening projects 29
debugging

on separate machines 127
design hierarchy conventions 14
designs

writing instrumented 90
devices

supported families 35
dialog boxes

Configure IICE 38, 137
directories

instrumentation 92

E
encrypting source files 91
environment variables

PAR_BELDLYRPT 144

events mode
complex counter 155

external memory
self test 52

external sample memory 47

F
file system conventions 13
files

bitfile 146
encrypting source 91
idc 82
IICE core 92
last_run.adb 123
ncd 145
project 24, 26, 27
script 72, 105
syn_trigger_utils.tcl 164

folded breakpoints 111
folded hierarchy 80
folded signals 119
folded watchpoints 110

H
HAPS

board bring-up 204
HAPS deep trace debug 47
hapssram buffer type 48
hardware

skew-resistant 36
HDL source

including in project 91
hierarchy

folded 80
hierarchy browser

popup menu 67
hierarchy browser window 66
hierarchy separator 15

I
idc file

editing 82
identification register 202
IICE

configuration 33

Index

Identify User Guide, June 2013 211

cross triggering 165
JTAG connection 193
operation 21
technology settings 35

IICE Controller tab 43
IICE core file

compiling 92
IICE parameters

buffer type 39
common 35
individual 38, 137
JTAG port 36

IICE Sampler tab 38
IICE selection

multi-IICE 39, 43
IICE settings

sample clock 41
sample depth 40

IICE units
cross triggering 123

incremental flow 143
restrictions 144

instances
finding 94

instrumentation
partial records 77

instrumentation directory 92
instrumenting partial buses 75

J
JTAG

chain tests 202
communication 191
communication block 149
communication test 201
connections 197
debugging 201
direct connection 195
serial connection 196

JTAG chain
settings 31

JTAG port
IICE parameter 36

JTAG registers 197
JTAGTech3710 cable settings 185

L
last_run.adb file 123

limitations
Verilog instrumentation 58, 61
VHDL instrumentation 56

M
macros

st_snapshot_fill 175
st_snapshot_intr 176

Microsemil
cable type settings 186

mixed language considerations 55
modes

cross triggering 124
multi-IICE

tabs 38, 137
multiple signal values 119, 120
multiplexed groups

assigning 79
selecting 109

N
ncd file 145

O
objects

finding 94
operators

condition 162
original source

including 91
original source files

searchpath 127
original sources 127

P
PAR_BELDLYRPT variable 144
parameterized modules

instrumenting 82
parameters

IICE 33
IICE common 35

partial buses
instrumenting 75

passwords
encryption/decryption 91

path names 15

Index

212 Identify User Guide, June 2013

path separator 13
.prj files 24, 26
probe block 21

contents 22
project files 27
projects

importing Synplify 24, 26
instrumenting 27
opening 26
opening in debugger 29
saving 31

pulsewidth mode
complex counter 155

Q
qualified sampling 40, 174

R
radix

sampled data 117
RAM resources 39, 153
records

partially instrumented 77
registers

boundary scan 197
remote triggering 176
resource estimation 70
run command 113

S
sample and trigger buckets 146
sample buffer 117

trigger position 115
sample clock 41
sample memory 47
sample modes 175
sampled data

changing radix 117
compressing 114
display controls 117
masking 115

sampling
in folded hierarchy 80
qualified 40

sampling block 152
sampling signals 72, 80, 84, 86, 89, 90, 93, 94,

101
saving a project 31
script file 72
script files 105
searches

objects 94
separator

hierarchy 15
settings

cable 30
IICE technology 35
JTAG chain 31
sample clock 41
sample depth 40

signal values
displaying multiple 119, 120

signals
disabling sampling 74
exporting trigger 45
finding 94
folded 119
instance selection 81
listing all 93
listing available 93, 101
listing instrumented 93, 94, 101
multiply instrumented 119, 120
partially instrumented 120
replacing 143
sampling selection 72, 80, 84, 86, 89, 90, 93,

94, 101
status 160

simple triggering 44
skew-resistant hardware 36
source files

copying 127
encrypting 91

SRAM clocks 50
st_snapshot_fill macro 175
st_snapshot_intr macro 176
state machines

transitions 161
triggering 157, 160

statemachine command 160
state-machine editor 167
state-machine triggering 44
status reporting 160
stop command 116, 160
syn_trigger_utils.tcl file 164
syntax conventions 12

Index

Identify User Guide, June 2013 213

synthesizing designs 92

T
TAP controller 193
technology settings

IICE 35
text conventions 12
tool conventions 13
tool descriptions 22
tools

invoking Debugger 98
transition watchpoint 106
trigger conditions 156
trigger signal

exporting 45
triggering

advance mode 157
always-armed 40
between IICEs 165
complex 44
modes 156
remote 176
simple 44
state machine 44, 157, 160

triggers
complex 153

U
UMRBus 203

V
value watchpoint 106
variables

PAR_BELDLYRPT 144
Verdi waveform viewer 136
Verilog

hierarchy 15
instrumentation limitations 58, 61

VHDL
hierarchy 15
instrumentation limitations 56

W
watch command 160
watch icon

color coding 81

watchdog mode
complex counter 155

watchpoints 151
activating 105, 108
combined with breakpoints 152
deactivating 107
folded 110
hexadecimal values 107
listing 125
multiple 152
transition 106
value 106

waveform display 134
waveform viewers 134

Verdi 136
wildcards

in hierarchies 16
in path names 14

windows
console 70, 102
hierarchy browser 66

X
Xilinx parallel cable settings 183
Xilinx USB cable settings 184
Xilinxauto cable settings 184

Index

214 Identify User Guide, June 2013

	User Guide
	Copyright Notice and Proprietary Information
	Right to Copy Documentation
	Destination Control Statement
	Disclaimer
	Registered Trademarks (®)
	Trademarks (™)
	Service Marks (sm)

	Getting Started
	Manual Conventions
	Text Conventions
	Syntax Conventions

	Tool Conventions
	File System Conventions
	Design Hierarchy Conventions

	System Overview
	The Debugging System
	The Design Flow
	System Components
	IICE
	Identify Instrumentor
	Identify Debugger

	Project Handling
	Projects in the Identify Instrumentor
	Integrated Identify Instrumentor Projects
	Assisted Identify Instrumentor Projects
	Viewing a Compiled File
	Instrumenting and Saving a Project
	Projects with Distributed Instrumentation

	Identify Debugger Projects
	Opening an Identify Debugger Project
	Configuring an Identify Debugger Project
	Saving a Project

	IICE Configuration
	Multiple IICE Units
	Adding an IICE Unit
	Deleting an IICE Unit

	Common IICE Parameters
	Device Family
	Communication Port
	Board Type
	Use Skew-Resistant Hardware
	Prepare Incremental

	Individual IICE Parameters
	IICE Sampler Tab
	IICE Controller Tab

	HAPS Deep Trace Debug
	External Memory Instrumentation and Configuration Steps
	SRAM Clocks
	Sample Depth Calculation
	Sample Clock Calculation
	Hardware Configuration Verification

	Support for Instrumenting HDL
	VHDL Instrumentation Limitations
	Verilog Instrumentation Limitations
	SystemVerilog Instrumentation Limitations

	Identify Instrumentor
	Identify Instrumentor Windows
	Instrumentation Window
	Project Window
	Console Window

	Commands and Procedures
	Opening Projects
	Executing Script Files
	Selecting Signals for Data Sampling
	Instrumenting Buses
	Partial Instrumentation
	Multiplexed Groups
	Sampling Signals in a Folded Hierarchy
	Instrumenting Signals Directly in the idc File
	Selecting Breakpoints
	Selecting Breakpoints Residing in Folded Hierarchy
	Configuring the IICE
	Real-time Debugging
	Writing the Instrumented Design
	Synthesizing Instrumented Designs
	Listing Signals
	Searching for Design Objects
	Console Text

	Identify Debugger
	Invoking the Identify Debugger
	Synthesis Tool Launch
	Operating System Invocation

	Identify Debugger Windows
	Instrumentation Window
	Console Window
	Project Window

	Commands and Procedures
	Opening and Saving Projects
	Executing a Script File
	Activating/Deactivating an Instrumentation
	Selecting Multiplexed Instrumentation Sets
	Activating/Deactivating Folded Instrumentation
	Run Command
	Sampled Data Compression
	Sample Buffer Trigger Position
	Stop Command
	Sampled Data Display Controls
	Displaying Data from Folded Signals
	Displaying Data for Partial Buses
	Displaying Data for Partial Instrumentation
	Saving and Loading Activations
	Cross Triggering
	Listing Watchpoints and Signals
	Show Watchpoint/Breakpoint Icons

	Debugging on a Different Machine
	Simultaneous Debugging
	Identify-Analyst Integration
	Waveform Display
	Logic Analyzer Interface Parameters
	Logic Analyzer Scan Tab
	Logic Analyzer Properties Tab
	Logic Analyzer Submit Tab
	IICE Assignments Report Tab

	Console Text

	Incremental Flow
	Requirements
	Setting up the Original Design
	Creating the Incremental Instrumentation
	Redefining the Instrumented Signals
	Generating the Bitfile
	Debugging the Incremental Version

	IICE Hardware Description
	JTAG Communication Block
	Breakpoint and Watchpoint Blocks
	Breakpoints
	Watchpoints
	Multiply Activated Breakpoints and Watchpoints

	Sampling Block
	Complex Counter
	Creating a Complex Counter
	Debugging with the Complex Counter
	Disabling the Counter

	State Machine Triggering
	Simple or Advanced Triggering
	Advanced Triggering Mode
	State-Machine Editor
	State-Machine Examples

	Connecting to the Target System
	Basic Communication Connection
	Identify Debugger Communications Settings
	Identify Debugger Configuration

	JTAG Communication
	JTAG Hardware in Instrumented Designs
	Using the Built-in JTAG Port
	Using the Synopsys Debug Port
	Boards Without Direct Built-in JTAG Connections

	Setting the JTAG Chain
	JTAG Communication Debugging
	Basic Communication Test
	On-chip Identification Register
	JTAG Chain Tests

	UMRBus Communications Interface
	HAPS Board Bring-up Utility
	Setting Initial Values
	ConfPro GUI
	Utility and Board-Test Commands

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

