
UG0450

User Guide
SmartFusion2 SoC and IGLOO2 FPGA System

Controller

50200450. 6.0 10/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 iii

Contents

1 Revision History . 1
1.1 Revision 6.0 . 1
1.2 Revision 5.0 . 1
1.3 Revision 4.0 . 1
1.4 Revision 3.0 . 1
1.5 Revision 2.0 . 1
1.6 Revision 1.0 . 1
1.7 Revision 0.0 . 2

2 System Controller 3
2.1 Introduction . 3
2.2 Functional Description . 4

2.2.1 Subsystems . 5
2.2.2 Interfaces . 5
2.2.3 System IP Interface (SII) Master . 5
2.2.4 Communication Block (COMM_BLK) . 5
2.2.5 Oscillator Control . 6
2.2.6 Random Number Generator . 6
2.2.7 Cryptographic Services . 6
2.2.8 JTAG . 6
2.2.9 User JTAG . 8
2.2.10 Dedicated Programming SPI Peripheral . 10
2.2.11 Device Reset . 10
2.2.12 USI Interface . 10
2.2.13 Clock Requirements . 11
2.2.14 System Controller Suspend Mode . 11

3 System Services . 14
3.1 Introduction . 14
3.2 Device and Design Information Services . 18

3.2.1 Serial Number Service . 18
3.2.2 USERCODE Service . 18
3.2.3 Device Certificate Service . 19
3.2.4 User Design Version Service . 19

3.3 Flash*Freeze Service . 20
3.4 Cryptographic Services . 21

3.4.1 AES Services . 21
3.4.2 SHA-256 Services . 23

3.5 DPA-Resistant Key-Tree Services . 25
3.5.1 Key-Tree Cryptographic Service . 26
3.5.2 Challenge-Response Cryptographic Service . 27

3.6 Elliptic Curve Cryptography Services . 27
3.6.1 ECC Point Multiplication Service . 28
3.6.2 ECC Point Addition Service . 29

3.7 SRAM-PUF Services . 30
3.7.1 Create User Activation Code . 30
3.7.2 Key Generation and Enrollment Services . 32
3.7.3 Key Reconstruction . 36
3.7.4 User-Enrolled SRAM-PUF Keys for Design Security . 37
3.7.5 SRAM-PUF Based True Random Number Seed Generation . 38

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 iv

3.8 Non-Deterministic Random Bit Generator (NRBG) Services . 40
3.8.1 Self Test Service . 41
3.8.2 Instantiate Service . 41
3.8.3 Generate Service . 42
3.8.4 Uninstantiate Service . 44
3.8.5 Reset Service . 44

3.9 Zeroization Service . 44
3.9.1 FPGA Fabric Configuration NVM . 45
3.9.2 User Security Keys and Settings . 45
3.9.3 Factory Security Keys and Configuration Settings . 45
3.9.4 System Controller Memory . 45
3.9.5 Digital Data Path . 45
3.9.6 Fabric Registers . 45
3.9.7 Fabric SRAM . 45
3.9.8 HPMS SRAM . 45
3.9.9 eNVM Memory Array and eNVM Registers . 45

3.10 Programming Service . 46
3.10.1 IAP Service . 47
3.10.2 ISP Service . 48

3.11 NVM Data Integrity Check Service . 49
3.12 Unrecognized Command Response . 50
3.13 Asynchronous Messages . 50

3.13.1 Power-on-Reset (POR) Digest Error . 50
3.14 How to Use System Services in SmartFusion2 . 51

3.14.1 Use Model 1: Fetching Device and Design Information . 52
3.15 How to Use System Services in IGLOO2 . 55

3.15.1 Configuring System Services . 57
3.15.2 Fetching Device and Design information . 60
3.15.3 Related Applications . 63

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 v

Figures

Figure 1 SmartFusion2 - System Controller Interfacing with AHB Bus Matrix . 3
Figure 2 IGLOO2 - System Controller Interfacing with AHB Bus Matrix . 4
Figure 3 SmartFusion2 - Interfacing of the System Controller with MSS and FPGA Fabric 4
Figure 4 IGLOO2 - Interfacing of the System Controller with HPMS and FPGA Fabric 5
Figure 5 TAP Controller State Machine . 7
Figure 6 UJTAG Macro . 8
Figure 7 UJTAG Usage Example in Test and Debug Applications . 10
Figure 8 FLASH_FREEZE Macro . 11
Figure 9 Enabling System Controller Suspended Mode in New Project Window . 12
Figure 10 Enabling System Services Suspend mode in Project Settings Window . 13
Figure 11 System Services Sample Projects . 51
Figure 12 Functional Block Diagram for Accessing System Services . 55
Figure 13 System Builder Window . 56
Figure 14 System Builder - Device Features Tab . 57
Figure 15 CoreSysServices IP to COMM_BLK Path . 58
Figure 16 System Builder - Clock Tab . 58
Figure 17 System Builder - Memory Map Tab . 59
Figure 18 SmartDesign Connections . 60
Figure 19 CORESYSSERVICES_0 Configuration . 61
Figure 20 HPMS Subsystem and CoreSysServices IP Connections . 61

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 vi

Tables

Table 1 Boundary Scan Opcodes . 8
Table 2 UJTAG Port Description . 9
Table 3 SmartFusion2 and IGLOO2 System Services . 15
Table 4 Device and Design Information Services Status . 18
Table 5 Serial Number Service Request . 18
Table 6 Serial Number Service Response . 18
Table 7 USERCODE Service Request . 18
Table 8 USERCODE Service Response . 18
Table 9 Device Certificate Service Request . 19
Table 10 Device Certificate Service Response . 19
Table 11 Design Version Service Request . 19
Table 12 Design Version Service Response . 19
Table 13 Flash*Freeze Request . 20
Table 14 FFOPTIONS . 20
Table 15 Flash*Freeze Service Response . 20
Table 16 Flash*Freeze Service Status . 20
Table 17 Cryptographic Services Status Codes . 21
Table 18 128-bit AES Service Request . 22
Table 19 AES128DATA Descriptor . 22
Table 20 MODE Parameter . 22
Table 21 OPMODE Parameter . 22
Table 22 128-bit AES Service Response . 22
Table 23 256-bit AES Service Request . 23
Table 24 AES256DATA Descriptor . 23
Table 25 256-bit AES Service Response . 23
Table 26 SHA-256 Service Request . 24
Table 27 SHA256DATA Structure . 24
Table 28 SHA-256 Service Response . 24
Table 29 HMAC Service Request . 24
Table 30 HMACDATA Structure . 24
Table 31 HMAC Service Response . 25
Table 32 DPA-Resistant Key-Tree Services Status Codes . 26
Table 33 Key-Tree Service Request . 26
Table 34 KEYTREEDATA Structure . 26
Table 35 KeyTree Service Response . 26
Table 36 Challenge-Response Service Request . 27
Table 37 CHRESP Structure . 27
Table 38 Challenge-Response Service Response . 27
Table 39 Challenge-Response Service Response . 28
Table 40 Elliptic Curve Point Multiplication Service Request . 29
Table 41 ECCPMULT Structure . 29
Table 42 ECCPMULT Structure . 29
Table 43 Elliptic Curve Point Addition Service Request . 29
Table 44 ECCPADD Structure . 30
Table 45 Elliptic Curve Point Addition Service Response . 30
Table 46 PUFUSERAC Service Request . 31
Table 47 PUFUSERAC Structure . 31
Table 48 Elliptic Curve Point Addition Service Response . 31
Table 49 PUFUSERAC Status . 31
Table 50 PUFUSERKC Service Request . 33
Table 51 PUFUSERKC Service Request . 33
Table 52 PUFUSERACKCEXPORT Memory Layout . 34
Table 53 PUFUSERACKCIMPORT . 35
Table 54 PUFUSERKC Service Response . 35

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 vii

Table 55 PUFUSERKC Service Response . 35
Table 56 PUFUSERKEY Service Request . 36
Table 57 PUFUSERKEY Structure . 36
Table 58 PUFUSERKC Service Response . 37
Table 59 USERPUFKEY Status . 37
Table 60 PUFPUBLICKEY Service Request . 37
Table 61 PUFPUBLICKEY Structure . 38
Table 62 PUFPUBLICKEY Structure . 38
Table 63 USERPUFKEY Status . 38
Table 64 PUFPUBLICKEY Structure . 38
Table 65 PUFPUBLICKEY Structure . 39
Table 66 USERPUFKEY Status . 39
Table 67 PUFSEED Status . 39
Table 68 NRBG Service Response Status Codes . 40
Table 69 DRBG Self Test Request . 41
Table 70 DRBG Self Test Response . 41
Table 71 DRBG Instantiate Request . 41
Table 72 DRBGINSTANTIATE Structure . 42
Table 73 DRBG Instantiate Service Response . 42
Table 74 DRBG Generate Request . 42
Table 75 DRBGGENERATE Structure . 42
Table 76 DRBG Reseed Request . 43
Table 77 DRBGRESEED Structure . 43
Table 78 DRBG Reseed Service Response . 43
Table 79 DRBG Generate Service Response . 43
Table 80 DRBG Uninstantiate Request . 44
Table 81 Uninstantiate Response . 44
Table 82 DRBG Reset Request . 44
Table 83 DRBG Reset Response . 44
Table 84 Zeroization Request . 44
Table 85 Zeroization Configuration Options . 45
Table 86 Programming Service Status Codes . 46
Table 87 Autherrcode . 46
Table 88 Errorcode . 47
Table 89 IAP Programming Service Request . 47
Table 90 OPTIONS . 47
Table 91 MODE . 48
Table 92 IAP Response . 48
Table 93 ISP Programming Service Request . 48
Table 94 ISP Response . 49
Table 95 NVM Data Integrity Check Service Request . 49
Table 96 OPTIONS . 49
Table 97 NVM Data Integrity Check Response . 49
Table 98 DIGESTERR . 50
Table 99 Unrecognized Command Message . 50
Table 100 POR Digest Error Message . 50
Table 101 System Services APIs for Fetching Device and Design Information . 52
Table 102 User Interface Signals . 62
Table 103 Command Codes for Device and Design Information Services . 62

Revision History

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 6.0
The following is a summary of the changes in revision 6.0 of this document.

• Updated System Controller Suspend Mode, page 11.
• Updated Figure 5.

1.2 Revision 5.0
Updated Dedicated Programming SPI Peripheral, page 10 and System Controller Suspend Mode,
page 11.

1.3 Revision 4.0
The following is a summary of the changes in revision 4.0 of this document.

• Added the Related Applications, page 63.
• Updated the Key-Tree Cryptographic Service, page 26.
• Updated the Challenge-Response Cryptographic Service, page 27.
• Added the Elliptic Curve Cryptography Services, page 27.
• Added the SRAM-PUF Services, page 30.
• Updated the Non-Deterministic Random Bit Generator (NRBG) Services, page 40.
• Added a note in Flash*Freeze Service, page 20about deep-power-down action.
• Updated Table 99, page 50 for command change.
• Updated the references as per the standard.

1.4 Revision 3.0
The following is a summary of the changes in revision 3.0 of this document.

• Updated value for OPMODE 3 in Table 21, page 22.
• Updated Reseed Service, page 43.
• Updated System Controller Suspend Mode, page 11.

1.5 Revision 2.0
The following is a summary of the changes in revision 2.0 of this document.

• Updated Table 3, page 15.
• Updated DPA-Resistant Key-Tree Services, page 25.
• Updated Non-Deterministic Random Bit Generator (NRBG) Services, page 40.
• Updated the Instantiate Service, page 41.
• Updated the Generate Service, page 42
• Updated the Reseed Service, page 43.
• Added Table 87, page 46, Table 88, page 47.
• Updated Figure 2, page 4 and Figure 4, page 5.
• Updated SYSRESET, page 10.
• Updated System Controller Suspend Mode, page 11.
• Added Clock Requirements, page 11.

1.6 Revision 1.0
The following is a summary of the changes in revision 1.0 of this document.

• Restructured the user guide.
• Updated Table 21, page 22, Table 56, page 36, Table 85, page 45.

Revision History

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 2

• Added How to Use System Services in IGLOO2, page 54 section.
• Updated Figure 2, page 4.
• Added System Controller Suspend Mode, page 11.

1.7 Revision 0.0
Revision 0.0 was the first publication of this document.

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 3

2 System Controller

2.1 Introduction
This chapter discusses the subsystems and interfaces in the SmartFusion2 and IGLOO2 System
Controller. The System Controller manages the programming of the device and handles system service
requests. The System Controller serves as the base on which the following system services (described in
the System Services, page 14) are made available with SmartFusion2 and IGLOO2 devices:

• Device and design information services
• Flash*Freeze services
• Cryptographic services
• DPA-resistant key tree services
• Non-deterministic random bit generator services
• Zeroization service
• Programming services
The following figure shows the connectivity of the SmartFusion2 System Controller to the AHB bus
matrix.

Figure 1 • SmartFusion2 - System Controller Interfacing with AHB Bus Matrix

AHB To AHB Bridge with Address Decoder

eSRAM_1eSRAM_0eNVM_1eNVM_0System
Controller

Cache
ControllerMDDR

Bridge

ARM Cortex-M3 Processor

MDDR

FIC_1 Triple Speed Ethernet
MAC SYSREG APB_0 FIC_2 (Peripheral Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

CAN

GPIO

RTC

COMM_BLK

FIC_0

HPDMA

MM4 MM5 MM6MS4

S D I

S D IC

IDC

DS

USB OTG

PDMAMM3

MS6 MM2 MM1 MM0 MM9 MS2 MS3 MS0 MS1

MM7

MM8MS5

AHB Bus Matrix

MS5_FIC

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

MS5_USB

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 4

The following figure shows the connectivity of the IGLOO2 System Controller to the AHB bus matrix.

Figure 2 • IGLOO2 - System Controller Interfacing with AHB Bus Matrix

2.2 Functional Description
The following figure shows the interfacing of the SmartFusion2 System Controller with MSS and the
FPGA fabric.

Figure 3 • SmartFusion2 - Interfacing of the System Controller with MSS and FPGA Fabric

System Controller

High Performance Memory Subsystem

AHB Bus Matrix

MS5

AHB To AHB Bridge with Address Decoder

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

APB_0SYSREG

FIC_1

MM4 MS4 MM5

SPI PDMA
Configuration

FIIC

COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

DDR

PDMA

MM9

APB_1FIC_0

eNVM_1

MS3

FPGA Fabric

System Controller MSS

Random Number
Generator

Cryptographic
Services

SPI

JTAG

Oscillator Control

COMM_BLK

RX FIFO

TX FIFO

SII Master

COMM_BLK

TX FIFO

RX FIFO

Reset Controller ARM Cortex-M3

Cache ControllerAPB_1

AHB SII Master AHB Bus Matrix

S S I
JTAG
SWD

D IC

POR

Oscillators

FPGA Fabric

S

USI UJTAG

DEVRST_N

SPI Signals for
Programming

JTAG
Signals

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 5

The following figure shows the interfacing of the IGLOO2 System Controller with HPMS and the FPGA
fabric.

Figure 4 • IGLOO2 - Interfacing of the System Controller with HPMS and FPGA Fabric

The SmartFusion2 and IGLOO2 System Controllers consist of the following subsystems and interfaces,
as shown in Figure 3, page 4 and Figure 4, page 5.

2.2.1 Subsystems
• System IP Interface (SII) Master
• Communication Block (COMM_BLK)
• Oscillator Control
• Random Number Generator
• Cryptographic Services
• JTAG
• Dedicated Programming SPI Peripheral

2.2.2 Interfaces
• DEVRST_N
• SPI signals for programming
• JTAG signals
• User JTAG
• User services interface (USI)
The following sections provide short description of these sub-systems and interfaces.

2.2.3 System IP Interface (SII) Master
The system IP interface (SII) master connects the System Controller with all the internal elements. It is
used to transfer data to and from the MSS or HPMS memory space by the System Controller for system
services. It is also used for factory tests but not available for customer.

2.2.4 Communication Block (COMM_BLK)
The communication block (COMM_BLK) provides a bidirectional message passing facility between the
ARM® Cortex®-M3 processor/Fabric master and the System Controller. It is similar to a mailbox
communication channel that allows message bytes to be passed from the Fabric master to the System
Controller and vice versa. For more information, refer to the “Communication Block” chapter in the
UG0448: IGLOO2 High Performance Memory Subsystem User Guide and UG0331: SmartFusion2
Microcontroller Subsystem User Guide. The COMM_BLK is used to call system services. System

System Controller HPMS

Random Number
Generator

Cryptographic
Services

SPI

JTAG

Oscillator Control

COMM_BLK

RX FIFO

TX FIFO

SII Master

COMM_BLK

TX FIFO

RX FIFO

Reset Controller

APB_1

AHB SII Master AHB Bus Matrix

PO_RESET_N

Oscillators

FPGA Fabric

USI UJTAG

DEVRST_N

SPI Signals for
Programming

JTAG
Signals

FIC_0 FIC_1

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 6

services can be implemented using API functions. For more information, refer to the System Services,
page 14.

2.2.5 Oscillator Control
The oscillator control block manages the on-chip RC oscillators and crystal oscillators. It performs
oscillator initialization and control during device start-up. The on-chip oscillators are automatically
disabled if the users do not configure the blocks (System Controller, MSS/HPMS, and FPGA fabric logic)
that are required for them. If the subsystem is not configured for use, the oscillator is turned off
synchronously without generating runt clock pulses. The 50 MHz RC oscillator is the default clock
source; it is enabled after power-on reset. For more information about how to set up RC oscillators and
the main crystal oscillator as clock sources, refer to the “Oscillator Configuration” section in the UG0449:
SmartFusion2 and IGLOO2 Clocking Resources User Guide.

2.2.6 Random Number Generator
The System Controller contains a random number generator block which is available for user
cryptographic services. The Deterministic Random Bit Generator (DRBG) is implemented as defined in
National Institute of Standards and Technology (NIST) Special Publication 800-90. It provides the
following features:

• Designed to support AIS-31 random number generation requirement.
• Uses AES-256 CTR mode per NIST SP800-90 for the DRBG implementation.
• Built-in hardware tests for auto correlation and continuous random number generation testing

(CRNGT).
For more information, refer “Non-Deterministic Random Bit Generator (NRBG)” section in the UG0443:
SmartFusion2 and IGLOO2 FPGA Security Best Practices User Guide.

2.2.7 Cryptographic Services
The System Controller contains an AES encryption and decryption engine which can be dynamically
configured for key lengths of 128 or 256 bits. A NIST-approved SHA-256 authentication algorithm is also
provided. For more information, refer to the “Other Cryptographic Services” section in the UG0443:
SmartFusion2 and IGLOO2 FPGA Security Best Practices User Guide.

2.2.8 JTAG
The System Controller implements the functionality of a JTAG slave, with IEEE 1532 support, which also
implies IEEE 1149.1 compliance. JTAG communicates with the System Controller using a Command
register that conveys the JTAG instruction to be executed and a 128-bit data I/O buffer that transfers any
associated data. The JTAG interface is used for the following operations:

• In-system programming (ISP)
• For more information, refer UG0451: SmartFusion2 and IGLOO2 Programming User Guide.
• Serial wire JTAG debug port (SWJ-DP)/Serial Wire Debug (SWD) for the Cortex-M3 processor.
• For more information, refer to the “Debug Port” section in the UG0331: SmartFusion2

Microcontroller Subsystem User Guide.
• UJTAG
• Boundary scan

2.2.8.1 Boundary Scan
IEEE Standard 1149.1 defines a hardware architecture and the set of mechanisms for boundary scan
testing. JTAG operations are used during boundary scan testing. The basic boundary scan logic circuit is
composed of the TAP controller, test data registers, and instruction register.

SmartFusion2 and IGLOO2 devices support three types of test data registers: bypass, device
identification, and boundary scan. The bypass register is selected when no other register needs to be
accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit
device identification register is a shift register with four fields (LSB, ID number, part number, and version).
The boundary scan register observes and controls the state of each I/O pin, except SERDES I/Os. Each
I/O cell has three boundary scan register cells, each with serial-in, serial-out, parallel-in, and parallel-out
pins.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132014
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 7

2.2.8.1.1 TAP Controller State Machine
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 5. The 1s and 0s
represent the values that must be present on TMS at a rising edge of TCK for the given state transition to
occur. IR and DR indicate that the instruction register or the data register is operating in that state.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain High for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test
Logic-Reset state.

Figure 5 • TAP Controller State Machine

SELECT_DR

SHIFT_DR

CAPTURE_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

SELECT_IR

SHIFT_IR

CAPTURE_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

TEST_LOGIC_RESET

RUN_TEST_IDLE

1

0

0

1 1 1

0

0

1

0

1

1

0

0

1

0

1

1

1 1

0

1

0

0

1

0

0 0

1 0 1 0

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 8

2.2.8.2 Boundary Scan Opcodes
SmartFusion2 and IGLOO2 devices support all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction, as listed in the following table.

For more information about pin descriptions and board-level recommendations, refer to the “JTAG I/O”
section in the UG0445: IGLOO2 FPGA and SmartFusion2 SoC FPGA Fabric User Guide.

2.2.9 User JTAG
The user JTAG (UJTAG) interface is an extension to the external JTAG port of SmartFusion2 and
IGLOO2 devices, controlled by the TAP controller when it is not performing JTAG programming. It can be
used to shift in and shift out data/OPCODEs to and from the internal logic. The UJTAG functionality is
available by instantiating the UJTAG macro from the Libero® System-on-Chip (SoC) IP catalog in
SmartDesign or by instantiating it directly inside an HDL file. Using the UJTAG macro in a design enables
real-time updating and monitoring of the internal behavior of FPGA fabric. For more information about
UJTAG macro to shift in and shift out data, refer Flash UJTAG Application Note.

2.2.9.1 UJTAG Macro
A block symbol of the UJTAG macro is presented in the following figure. The TDI, TMS, TCK, TRSTB,
and TDO ports of the UJTAG macro are directly connected to the JTAG TAP controller and all other ports
are accessible by the FPGA fabric.

Figure 6 • UJTAG Macro

Table 1 • Boundary Scan Opcodes

Instruction Hex Opcode
EXTEST 00

HIGHZ 07

USERCODE 0E

SAMPLE/PRELOAD 01

IDCODE 0F

CLAMP 05

BYPASS FF

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129933

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 9

The following table lists the descriptions of the ports that can be accessed by the FPGA fabric.

2.2.9.2 UJTAG Operation
Understanding a few basic functions of the UJTAG macro is necessary before designing with it. The
fundamental concept of the UJTAG design is its connection with the TAP controller state machine. For
more information, refer to the TAP Controller State Machine, page 7.

UIREG [7:0] holds the contents of the JTAG instruction register. The UIREG vector value is updated
when the TAP controller state machine enters the Update_IR state. Instructions 16 to 127 are user-
defined and can be employed to encode multiple applications and commands within an application.
Loading new instructions into the UIREG vector requires sending appropriate logic to TMS to put the TAP
controller in a full IR cycle starting from the Select IR_Scan state and ending with the Update_IR state.

UTDI, UTDO, and UDRCK are directly connected to the JTAG TDI, TDO, and TCK ports, respectively.
The TDI input can be used to provide either data (TAP controller in the Shift_DR state) or the new
contents of the instruction register (TAP controller in the Shift_IR state).

UDRSH, UDRUPD, and UDRCAP are High when the TAP controller state machine is in the Shift_DR,
Update_DR, and Capture_DR states. Therefore, they act as flags to indicate the stages of the data shift
process. These flags are useful for applications in which blocks of data are shifted into the design from
JTAG pins. For example, an active UDRSH can indicate that UTDI contains the data bitstream, and
UDRUPD is a candidate for the end-of-data-stream flag.

2.2.9.3 Typical UJTAG Applications
Bi-directional access to the JTAG port from the FPGA fabric—without putting the device into test mode—
creates flexibility for implementing a variety of applications. This section describes one of these. This is
based on importing/exporting data through the UJTAG macro. However, the possible applications are not
limited to what is presented in this section. UJTAG can serve different purposes in many designs as an
elementary or auxiliary part of the design.

2.2.9.3.1 Silicon Testing and Debugging
In many applications, the design needs to be tested, debugged, and verified on real silicon or in the final
embedded application. To debug and test the functionality of designs, it is necessary to monitor some
internal logic (or nets) during device operation. The approach of adding design test pins to monitor the
critical internal signals has many disadvantages, such as limiting the number of users I/Os. Furthermore,
adding external I/Os for test purposes may require an additional or dedicated board area for testing and
debugging.

Table 2 • UJTAG Port Description

Port Direction Polarity Description
UIREG [7:0] Output – This 8-bit bus carries the contents of the JTAG instruction register of

each device. Instruction register values 16 to 127 are not reserved
and can be employed as user-defined instructions.

URSTB Output Low URSTB is an Active Low signal and is asserted when the TAP
controller is in Test-Logic-Reset mode. URSTB is asserted at power-
up, and a power-on reset signal resets the TAP controller. URSTB is
asserted until an external TAP access changes the TAP controller
state.

UTDI Output – This port is directly connected to the TAP's TDI signal.

UTDO Input – This port is the user TDO output. Inputs to the UTDO port are sent to
the TAP TDO output MUX when the IR address is in user range.

UDRSH Output High Active High signal enabled in the Shift_DR TAP state

UDRCAP Output High Active High signal enabled in the Capture_DR TAP state

UDRCK Output – This port is directly connected to the TAP's TCK signal.

UDRUPD Output High Active High signal enabled in the Update_DR TAP state

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 10

The UJTAG macro provides a flexible and cost-effective solution for silicon test and debug applications.
In this solution, the signals under test are shifted out to the TDO pin of the TAP controller. The main
advantage is that all the test signals are monitored from the TDO pin; no pins or additional board-level
resources are required. The following figure illustrates this technique.

Figure 7 • UJTAG Usage Example in Test and Debug Applications

Multiple test nets are brought into an internal MUX architecture. The selection of the MUX is done using
the contents of the TAP controller instruction register, where individual instructions (values from 16 to
127) correspond to different signals under test. The selected test signal can be synchronized with the
rising or falling edge of TCK (optional) and sent out to UTDO to drive the TDO output of JTAG.

2.2.9.4 How to Use UJTAG
Refer to the How To Use UJTAG application note.

2.2.10 Dedicated Programming SPI Peripheral
The System Controller contains an SPI block that is dedicated for programming. For more information,
refer to the “SPI-slave Programming” chapter in the UG0451: SmartFusion2 and IGLOO2 Programming
User Guide.

2.2.11 Device Reset
An input-only reset pad (DEVRST_N) is present on every device, which allows assertion of a full reset to
the chip at any time.

For more information, refer to the “Reset Controller” chapter in the UG0448: IGLOO2 FPGA High
Performance Memory Subsystem User Guide.

2.2.12 USI Interface
The User Services Interface (USI) is an interface between the FPGA fabric and the System Controller. It
consists of the SYSRESET signal and Flash*Freeze signals. The following section describes USI
interface signals.

2.2.12.1 SYSRESET
The POWER_ON_RESET_N signal is driven from the System Controller to the FPGA fabric. The
System Controller is initiating a reset due to power-on reset, assertion of DEVRST_N input, completion
of programming, or completion of zeroization. This is an active low signal that can be used in the user
design as a system power-on-reset for the FPGA fabric.

For more information, refer to the Reset Controller chapter in the UG0448: IGLOO2 FPGA High
Performance Memory Subsystem User Guide.

Instruction

Decode

To Scope Channel TDO

TDI

Internal Test Nets

D Q

CLK

TMS

TCK

TRST

UIREG[7:0]

URSTB

UDRUPD

UDRCK

UDRCAP

UDRSH

UTDI

UTDO

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129933
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132014
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132014
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 11

2.2.12.2 Flash*Freeze Signals
The USI interface provides two active high output signals (FF_TO_START and FF_DONE) related to
Flash*Freeze to the FPGA Fabric.

• FF_TO_START is asserted by the System Controller to indicate that the Flash*Freeze service is
about to start. Only 10 us are available to do housekeeping before the core is powered off.
Microsemi recommends the user to use this signal as part of the clock gating process to ensure that
any glitches do not cause a sequential element in the design to transition to an unwanted state when
entering Flash*Freeze.

• FF_DONE is asserted by the System Controller to indicate the completion of Flash*Freeze.
These signals are made available by instantiating the FLASH_FREEZE macro from the Libero SoC IP
catalog in SmartDesign or by instantiating it directly inside an HDL file. A block symbol of the
FLASH_FREEZE macro which exposes the FF_TO_START and FF_DONE are presented in the
following figure.

Figure 8 • FLASH_FREEZE Macro

For more information about Flash*Freeze, refer UG0444: SmartFusion2 and IGLOO2 Low Power Design
User Guide.

2.2.13 Clock Requirements
The System Controller is clocked by the on-chip 50 MHz RC oscillator.

It is powered by the VDD power pins and does not require external components for operation. The Chip
Oscillators macro need not to be instantiated in the design for System Controller operation since it has a
dedicated hardwired connection from the 50 MHz RC oscillator.

2.2.14 System Controller Suspend Mode
To protect the device from unintended behavior due to Single Event Upset (SEUs), the system controller
can be held in suspend mode after device initialization. The system controller is active if the device is
power-cycled or if a hard reset is applied. It returns to suspend mode once the initialization cycle is
completed. A flash bit that is programmed during device programming controls the system controller
suspend mode. This flash bit is not accessible from the customer design or by any external pin. The flash
bit is only accessible through the programming file loaded into the device.

As the control bit is stored in a flash cell, it is immune to radiation effects due to one of the following:

• Neutrons or alpha particles in the terrestrial and airborne applications
• Heavy ions in the space applications
In the system controller suspend mode, the device can be reprogrammed or debugged using the JTAG
port if the TRSTB pin is high. If the TRSTB pin is low, all the other JTAG input signals are blocked from
activating the system controller. For prototyping or debugging, the device can be forced out of suspend
mode by driving TRSTn high.

To restore normal operation, the device must be reprogrammed using the JTAG port with the system
controller suspend mode bit turned off, that is, disable the system controller suspend mode in the Libero
SoC software, regenerate the bitstream, and reprogram the device.

The System Controller Suspend mode feature can be configured (enable/disable) in Libero SoC software
in two ways.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 12

• The following figure shows the New Project dialog at the time of project creation.
Figure 9 • Enabling System Controller Suspended Mode in New Project Window

Note: Select the device family as SmartFusion2 or IGLOO2.

• The following figure shows the Project Settings dialog.

System Controller

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 13

Figure 10 • Enabling System Services Suspend mode in Project Settings Window

By enabling this option, System Controller places itself in a reset state once the device is powered-up.
This effectively suspends all the system services from being performed. For a list of system services,
refer to Table 3, page 15.

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 14

3 System Services

3.1 Introduction
This chapter describes the various system services implemented by the SmartFusion2 and IGLOO2
System Controller. The SmartFusion2 and IGLOO2 system services are System Controller actions
initiated by asynchronous events from the ARM Cortex-M3 processor or a master in the FPGA fabric.
Communication between the MSS/HPMS and the System Controller occurs through the communication
block (COMM_BLK). Refer to the Communication Block chapter in the IGLOO2 High Performance
Memory Subsystem User Guide and SmartFusion2 MSS User Guide for more information on
COMM_BLK.

System services are requested from the Cortex-M3 processor or fabric master by sending a command
byte describing the function to be performed, followed by command-specific sub-commands and/or data
through the COMM_BLK interface. Upon completion of the requested service, service responses are
sent to the ARM Cortex-M3 processor or the fabric master via the COMM_BLK interface. However, some
commands read or write data directly from/to address ranges given by the user in the service request
using the system IP interface master (SII Master), similar to the way DMA works. The SII master in the
System Controller transfers data to or from the MSS/HPMS memory mapped address located in eSRAM,
DDR DRAM, or FPGA fabric SRAM for most of the services. The location is dependent on the address
pointers provided in the service request. Each transfer is checked for an AHB bus HRESP error in which
MSS or HPMS memory access from the System Controller SII master is failed. If an MSS or a HPMS
memory access error occurs, the requested service is aborted and an error is flagged. Commands F0H
to FFH is used for high priority services. If a high priority command is received during execution of a low
priority command, then the low priority command is aborted and any other commands queued in the
COMM_BLK FIFO are discarded. High priority commands are only used for tamper detection purposes.

If a system service command arrives while a previous request is still in progress, the first service is
canceled and the new service command is processed. If multiple masters such as the Cortex-M3 and
FPGA Fabric master use the same system services, there should be some form of arbitration or
co-operation between the masters to ensure that the services are used successfully. All pointers and
multi-byte numeric arguments to the system services are little-endian type.

The system services are grouped into the following groups of services:

• Device and Design Information Services
• Flash*Freeze Service
• Cryptographic Services
• DPA-Resistant Key-Tree Services
• Elliptic Curve Cryptography Services
• SRAM-PUF Services
• Non-Deterministic Random Bit Generator (NRBG) Services
• Zeroization Service
• Programming Service
• NVM Data Integrity Check Service
• Asynchronous Messages
The following table lists all the SmartFusion2 and IGLOO2 system services with their command values.
Microsemi provides CoreSysServices soft IP core to access the system services. The following

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 15

subsections provide the details of each system service including service request format, data descriptor
layout, if applicable, and service response.

Table 3 • SmartFusion2 and IGLOO2 System Services1

Category System Service Name
Command
Value Response Status

Device and Design Information
Services

Serial Number Service 0x1 0: Successful
127: HPMS memory access error (HRESP)

USERCODE Service 0x4

Device Certificate Service 0x0

User Design Version
Service

0x5

Flash*Freeze Service Flash*Freeze Service 0x2 0: Successful
254: Service disabled by factory security
255: Service disabled by user security

Cryptographic Services 256-bit AES Cryptographic
Service

0x30x6 0: Successful
127: HPMS memory access error (HRESP)
253: Not licensed
254: Service disabled by factory security
255: Service disabled by user security

128-bit AES Cryptographic
Service

0x60x3

SHA-256 Cryptographic
Service

0xA

HMAC Cryptographic
Service

0xC

DPA-Resistant Key-Tree
Services

Key-Tree Cryptographic
Service

0x9 0: Successful
127: HPMS memory access error (HRESP)
253: Not licensed
254: Service disabled by factory security
255: Service disabled by user security

Challenge-Response
Cryptographic Service

0xE

Elliptic Curve Cryptography
Services

ECC Point Multiplication
Service

0x10 0: Success Completion
127: HRESP error occurred during
MSS/HPMS transfer
253: License not available in device
254: Service disabled by factory security
255: Service disabled by user security

ECC Point Addition
Service

0x11

SRAM-PUF Services Create or Delete User
Activation Code Service

0x19 0: Success completion
1: eNVM MSS/HPMS error
2: PUF error, when creating
3: Invalid subcmd
4: eNVM program error
7: eNVM verify error
127: HRESP error occurred during
MSS/HPMS transfer
253: License not available in device
254: Service disabled by factory security
255: Service disabled by user security

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 16

Key Generation and
Enrollment Services

0x1A 0: Success completion
1: eNVM MSS or HPMS error
2: PUF error, when creating
3: Invalid request or KC, when exporting or
importing
4: eNVM program error
5: Invalid hash
6: Invalid user AC
7: eNVM verify error
8: Incorrect keysize for renewing a kc
10: Private eNVM user digest mismatch
11: Invalid subcmd
12: DRBG error
127: HRESP error occurred during MSS or
HPMS transfer
253: License not available in device
254: Service disabled by factory security
255: Service disabled by user security

Fetch a User PUF Key
Service

0x1B 0: Success completion
2: PUF error, when creating
3: Invalid keynum or argument or exported
or invalid key
5: Invalid hash
10: Private eNVM user digest mismatch
127: HRESP error occurred during MSS or
HPMS transfer
253: License not available in device
254: Service disabled by factory security
255: Service disabled by user security

Fetch User PUF ECC
Public Key Service

0x1C 0: Success completion
3: No valid public key present in eNVM
10: Private eNVM user digest mismatch
127: HRESP error occurred during
MSS/HPMS transfer
253: License not available in device
254: Service disabled by factory security
255: Service disabled by user security

Get a PUF Seed Service 0x1D 0: Success completion
2: PUF error, when creating
127: HRESP error occurred during
MSS/HPMS transfer
253: License not available in device
254: Service disabled by factory security
255: Service disabled by user security

Table 3 • SmartFusion2 and IGLOO2 System Services1 (continued)

Category System Service Name
Command
Value Response Status

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 17

Non-Deterministic Random Bit
Generator (NRBG) Services

Self Test Service 0x28 0: Successful
1: Fatal error
2: Maximum instantiations exceeded
3: Invalid handle
4: Generate request too big
5: Maximum length of additional data
exceeded
127: HPMS memory access error (HRESP)
253: Not licensed
254: Service disabled by factory security
255: Service disabled by user security

Instantiate Service 0x29

Generate Service 0x2A

Reseed Service 0x2B

Uninstantiate Service 0x2C

Reset Service 0x2D

Zeroization Service Zeroization Service 0xF0 No response status is sent.

Programming Service IAP Service 0x14 Refer to Table 85, page 45

ISP Service 0x15 Refer to Table 86, page 46

The ISP Service is applicable only for the SmartFusion2 devices.

NVM Data Integrity Check
Service

NVM Data Integrity Check
Service

0x17 Digest error byte
Bits [7:3] – Reserved

Bits [2] – eNVM1 Error
0: ENVM1 digest check passed
1: ENVM1 digest check mismatch

Bits [1] – eNVM0 Error
0: ENVM0 digest check passed
1: ENVM0 digest check mismatch

Bits [0] – Fabric Error
0: Fabric FPGA configuration digest check
passed
1: Fabric FPGA configuration digest check
mismatch

Asynchronous Messages Power-on-Reset (POR)
Digest Error

0xF1 Digest error byte
Bits [7:3] – Reserved

Bits [2] – eNVM1 Error
0: ENVM1 digest check passed
1: ENVM1 digest check mismatch

Bits [1] – eNVM0 Error
0: ENVM0 digest check passed
1: ENVM0 digest check mismatch

Bits [0] – Fabric Error
0: Fabric FPGA configuration digest check
passed
1: Fabric FPGA configuration digest check
mismatch

1. The command values that are not listed in this table are treated as unrecognized commands. The System Controller's service
response includes only the valid status codes as specified in this table.

Table 3 • SmartFusion2 and IGLOO2 System Services1 (continued)

Category System Service Name
Command
Value Response Status

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 18

3.2 Device and Design Information Services
The device and design information services return information about the device and current user design.
The service request includes a service command and a pointer to a buffer in MSS or HPMS memory
space to receive the result. The requested information is copied to a user-specified buffer whose address
is included in the service request. The memory buffer can be located in eSRAM, DDR DRAM, or FPGA
fabric SRAM. The return status of these services can be either success or MSS or HPMS memory
access error, as listed in the following table.

3.2.1 Serial Number Service
This service fetches the 128-bit Device Serial Number (DSN). The DSN is a 128-bit quantity unique to
every device, set during manufacturing.

3.2.2 USERCODE Service
This service fetches the 32-bit JTAG USERCODE programmed by the user.

Table 4 • Device and Design Information Services Status

Status Description
0 Success

127 MSS or HPMS memory access error (HRESP)

Table 5 • Serial Number Service Request

Offset Length (bytes) Field Description
0 1 CMD = 1 Command

1 4 DSNPTR Pointer to 16-byte buffer to receive the 128-bit serial number

Table 6 • Serial Number Service Response

Offset Length (bytes) Field Description
0 1 CMD = 1 Command

1 1 STATUS Command status, see Table 4, page 18

2 4 DSNPTR Pointer to original buffer from request

Table 7 • USERCODE Service Request

Offset Length (bytes) Field Description
0 1 CMD = 4 Command

1 4 USERCODEPTR Pointer to 4-byte buffer to receive the 32-bit USERCODE

Table 8 • USERCODE Service Response

Offset Length (bytes) Field Description
0 1 CMD = 4 Command

1 1 STATUS Command status, see Table 4, page 18

2 4 USERCODEPTR Pointer to original buffer from request

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 19

3.2.3 Device Certificate Service
This service fetches the device certificate from eNVM. The device certificate is a digitally-signed X-509
certificate, signed by Microsemi Corp, programmed during the manufacturing process. The certificate is
used to guarantee the authenticity of a device and its characteristics. The certificate is cryptographically
validated before being delivered. For more information about the certificate and format, refer AC436:
Using Device Certificate System Service in SmartFusion2 Application Note.

3.2.4 User Design Version Service
This service fetches the 16-bit user design version. For more information about design versioning, refer
UG0443: SmartFusion2 and IGLOO2 FPGA Security Best Practices User Guide.

Table 9 • Device Certificate Service Request

Offset Length (bytes) Field Description
0 1 CMD = 0 Command

1 4 DEVICECERTPTR Pointer to 768-byte buffer to receive the device certificate

Table 10 • Device Certificate Service Response

Offset Length (bytes) Field Description
0 1 CMD = 0 Command

1 1 STATUS Command status, see Table 10, page 19.

2 4 DEVICECERTPTR Pointer to original buffer from request

Table 11 • Design Version Service Request

Offset Length (bytes) Field Description
0 1 CMD = 5 Command

1 4 DESIGNVERPTR Pointer to 2-byte buffer to receive the 16-bit design version

Table 12 • Design Version Service Response

Offset Length (bytes) Field Description
0 1 CMD = 5 Command

1 1 STATUS Command status, see Table 4, page 18.

2 4 DESIGNVERPTR Pointer to original buffer from request

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134926
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134926
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 20

3.3 Flash*Freeze Service
This service requests the System Controller to execute the Flash*Freeze entry sequence. For more
information about the Flash*Freeze entry sequence, refer “Flash*Freeze” chapter in the UG0444:
SmartFusion2 and IGLOO2 Low Power Design User Guide. Note that the Flash*Freeze service is only
available if the service has been enabled by the user as part of Libero hardware flow of the design
programmed into the device.

Note: Reserved bits indicate that even if the user writes these bits, it does not affect the functionality.

The following is a description of the FFOPTIONS mentioned in Table 14, page 20:

• If ENVM0PD is ‘1’ then eNVM module 0 is placed in its deep-power-down state. Refer to the
following note.

• If ENVM1PD is ‘1’ then eNVM module 1 is placed in its deep-power-down state (ignored if eNVM
module 1 is not present). Refer to the following note.

• If MPLLPD is ‘1’ then the MPLL is powered down for the duration of the Flash*Freeze period.
Note: System Services must not perform deep-power-down of eNVM0 and eNVM1. It is recommended to

perform a deep-power-down of eNVMs by System Registers before requesting for the Flash*Freeze
service.

When the Flash*Freeze service begins execution, the System Controller informs that a Flash*Freeze
shutdown is imminent by sending a command byte E0H to COMM_BLK. The service is stalled until this
command byte can be accepted by the COMM_BLK FIFO. Any new requests received during this time
are not processed until after the Flash*Freeze state has been exited.

When the Flash*Freeze shutdown sequence is complete, the System Controller responds with a service
response, as listed in the following tables.

Table 13 • Flash*Freeze Request

Offset Length (bytes) Field Description
0 1 CMD = 2 Command

1 1 FFOPTIONS Flash*Freeze options. Refer to Table 14, page 20.

Table 14 • FFOPTIONS

7 6 5 4 3 2 1 0
Reserved MPLLPD ENVM1PD ENVM0PD

Table 15 • Flash*Freeze Service Response

Offset Length (bytes) Field Description
0 1 CMD = 2 Command

1 1 STATUS Command status

Table 16 • Flash*Freeze Service Status

Status Description
0 Success

254 Service disabled by factory security

255 Service disabled by user security

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 21

3.4 Cryptographic Services
Selected devices of the SmartFusion2 or IGLOO2 family can access the built-in Advanced Encryption
Standard (AES) and secure hash standard (SHA-256) engines through cryptographic services. These
cryptographic services can be used for data security applications by the end user. These services can be
disabled by the factory or user security settings. Attempting to execute one of these services on devices
that do not support these advanced security features return the status as not licensed. For information
about which devices have the cryptographic services, refer to the “Highest Security Devices” section in
the PB0121: IGLOO2 FPGA Product Brief and PB0115: SmartFusion2 SoC FPGA Product Brief. The
possible service status values for the cryptographic services are listed in the following table.

3.4.1 AES Services
The System Controller AES engine is implemented as specified in federal information processing
standard (FIPS) publication 197, the AES. It is designed to support the following AES cipher operating
modes as recommended in National Institute of Standards and Technology (NIST) special publication
800-38A, Recommendation for Block Cipher Modes of Operation.

• Electronic codebook (ECB)
• Cipher-Block chaining (CBC)
• Output feedback (OFB)
• Counter (CTR)
The AES engine can be operated in 128-bit mode or 256-bit mode. The length of the AES key is 128 bits
in 128-bit mode and 256 bits in 256-bit mode. An AES service request includes a service command and
a pointer to a descriptor in MSS or HPMS memory space describing the transaction to be performed. The
descriptor is retrieved via the SII Master.

The referenced key data and plain text/cipher text is then also retrieved via the SII Master. The resultant
cipher text/plain text is copied back to the MSS or HPMS memory space using the SII Master. The
SmartFusion2 and IGLOO2 AES and AES cipher mode services assume input data is in complete 128-
bit blocks, and provide only complete 128-bit output blocks. Adding any padding bits to incomplete plain
text blocks before calling the encryption service, and removing any padding bits after receiving the
results of the decryption service, is the responsibility of the user. The input and output data format of the
AES services is little-endian type. The first byte of the first block is at the lowest address and there are no
word alignment requirements.

The MODE parameter defined in the data descriptor specifies the cipher operating mode and whether
the source text must be encrypted or decrypted.

Table 17 • Cryptographic Services Status Codes

Status Description
0 Success

127 HRESP error occurred during HPMS transfer

253 Not licensed

254 Service disabled by factory security

255 Service disabled by user security

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131877
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=906929

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 22

3.4.1.1 128-bit AES Cryptographic Service
The 128-bit AES service provides the user design access to the System Controller AES engine in 128-bit
mode.

The layout of the data descriptor to be passed in this mode is listed in the following table

Note: Reserved bits indicate that even if the user writes these bits, it does not affect the functionality.

In the MODE parameter, if DECRYPT is 0 then the data at SRCADDRPTR field is treated as plain text for
encryption. If DECRYPT is 1 then the data at SRCADDRPTR field is treated as cipher text for decryption.
The OPMODE field specifies the operating mode for the AES engine.

The IV parameter is a 16-byte array containing the initialization vector that will be used as a part of the
requested encryption/decryption operation. Its use is different, depending on the mode. ECB mode
ignores the IV parameter and CTR mode uses the content of the IV parameter as its initial counter value.

Table 18 • 128-bit AES Service Request

Offset Length (bytes) Field Description
0 1 CMD = 3 Command

1 4 AES128DATAPTR Pointer to AES128DATA descriptor

Table 19 • AES128DATA Descriptor

Offset Length (bytes) Field Description
0 16 KEY Encryption key to be used

16 16 IV Initialization vector (Ignored for ECB mode)

32 2 NBLOCKS Number of 128-bit blocks to process (max 65535)

34 1 MODE Cipher operating mode. Refer to Table 20, page 22.

35 1 RESERVED Reserved

36 4 DSTADDRPTR Pointer to return data buffer

40 4 SRCADDRPTR Pointer to data to encrypt/decrypt

Table 20 • MODE Parameter

7 6 5 4 3 2 1 0
DECRYPT Reserve

d
OPMOD
E

Table 21 • OPMODE Parameter

OPMODE Cipher Mode Note
0 ECB Initialization vector (IV) parameter is ignored

1 CBC

2 OFB

3 CTR CTR0 = IV. Increment is modulo 2128. Counter is big-endian type.

Table 22 • 128-bit AES Service Response

Offset Length (bytes) Field Description
0 1 CMD = 3 Command

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 23

3.4.1.2 256-bit AES Cryptographic Service
The 256-bit AES service provides the user design access to the System Controller AES engine in 256-bit
mode.

The layout of the data descriptor to be passed in this mode is listed in the following table. The description
of the MODE parameter is the same as for the 128-bit AES service.

3.4.2 SHA-256 Services
The SHA-256 services provide the user design access to the System Controller SHA-256 engine. The
System Controller SHA-256 engine is implemented as specified in FIPS PUB 180-3, SHA. The service
request includes a service command and a pointer to a descriptor in MSS or HPMS memory space,
which includes the associated data.

3.4.2.1 SHA-256 Cryptographic Service
The SHA-256 cryptographic service provides the user design access to the System Controller SHA-256
engine. The service allows for lengths up to 232 bits of data to hash. If the message ends with a partial
byte, the significant bits are assumed to be at the LSB end of the byte. The unused MSBs of the final byte
is ignored. The input and output data format of the SHA-256 service is little-endian type. Input messages

1 1 STATUS Command status

1 4 AES128DATAPTR Pointer to AES128DATA descriptor

Table 23 • 256-bit AES Service Request

Offset Length (bytes) Field Description
0 1 CMD = 6 Command

1 4 AES256DATAPTR Pointer to AES256DATA descriptor

Table 24 • AES256DATA Descriptor

Offset Length (bytes) Field Description
0 32 KEY Encryption key to be used

32 16 IV Initialization vector, ignored for ECB mode

48 2 NBLOCKS Number of 128-bit blocks to process (maximum 65,535)

50 1 MODE Cipher operating mode. Refer to Table 20, page 22.

51 1 RESERVED Reserved

52 4 DSTADDRPTR Pointer to return data buffer

56 4 SRCADDRPTR Pointer to data to encrypt/decrypt

Table 25 • 256-bit AES Service Response

Offset Length (bytes) Field Description
0 1 CMD = 6 Command

1 1 STATUS Service status

2 4 AES256DATAPTR Pointer to AES256DATA descriptor

Table 22 • 128-bit AES Service Response (continued)

Offset Length (bytes) Field Description

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 24

are automatically padded with a minimum of 65 bits up to a maximum of 576 additional bits, depending
on the length of the user input message, as per the SHA-256 standard.

The layout of the data descriptor to be passed in this service is listed in the following table.

3.4.2.2 HMAC Cryptographic Service
The Keyed-Hash Message Authentication Code (HMAC) service implements the FIPS 198 HMAC
Algorithm using SHA-256 as the approved hash function. Key length up to 32 bytes (256 bits) can be
used to generate the message authentication code. If the key length is less than 256 bits, the unused
upper bits should be set to 0. The service allows for lengths up to 232 bits of data to hash. If the message
ends with a partial byte, then the significant bits are assumed to be at the LSB end of the byte. The
unused MSBs of the final byte is ignored. The input and output data format of the HMAC service is
a little-endian type. Input messages are automatically padded with a minimum of 65 bits up to a
maximum of 576 additional bits, depending on the length of the user input message, as per the SHA-256
standard.

The layout of the data descriptor to be passed in this service is listed in the following table.

Table 26 • SHA-256 Service Request

Offset Length (bytes) Field Description
0 1 CMD = 10 Command

1 4 SHA256DATAPTR Pointer to SHA256DATA structure

Table 27 • SHA256DATA Structure

Offset Length (bytes) Field Description
0 4 LENGTH Length of data pointed to by DATAINPTR field in bits (up to 232

bits).

4 4 HASHRESULTPTR Pointer to 32-byte buffer to receive 256-bit hash result.

8 4 DATAINPTR Pointer to data to be hashed

Table 28 • SHA-256 Service Response

Offset Length (bytes) Field Description
0 1 CMD = 10 Command

1 1 STATUS Command status

2 4 SHA256DATAPTR Pointer to SHA256DATA structure

Table 29 • HMAC Service Request

Offset Length (bytes) Field Description
0 1 CMD = 12 Command

1 4 HMACDATAPTR Pointer to HMACDATA structure

Table 30 • HMACDATA Structure

Offset Length (bytes) Field Description
0 32 KEY Key to use

32 4 LENGTH Length of data pointed to by DATAINPTR field in bytes

36 4 DATAINPTR Pointer to data to be hashed

http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 25

3.5 DPA-Resistant Key-Tree Services
Differential Power Analysis (DPA)-resistant services utilize a SHA-256 based key-tree algorithm
recommended by cryptography research inc (CRI). These services are only available on the advanced
security enabled devices. For information about devices have the DPA-Resistant Key-Tree Services,
refer to the Highest Security Devices section in the PB0121: IGLOO2 FPGA Product Brief and PB0115:
SmartFusion2 SoC FPGA Product Brief.

A common CRI-patented protocol-level construct for DPA-safe designs is the key tree. It is useful for
mixing a secret value such as a key with a public value such as an initialization vector, nonce, or hash
result. It takes as input a 256-bit secret that is hashed with one of two constants in a binary tree
arrangement, returning the result of the final hash. The decision as to which branch to take at each level
of the tree is determined by one bit of the public input. The public input is comprised of a 7-bit and a
128-bit portion. The side channel information leakage is bounded because each secret value in the tree
is used in several ways. At each level the hash operation mixes the secret, making any information an
adversary may have learned at one level essentially useless at the next level.

The Key Tree can be used for a number of applications, such as:

• A Message Authentication Code algorithm (from a key and a hash input)
• A key derivation function (from a root key and a key ID)
• To emulate an ideal PUF (from a PUF secret value and a challenge)
• In Challenge-Response protocols (from a key and a challenge)
• To generate pseudo-random bits (from a seed and a counter)
The SmartFusion2 and IGLOO2 devices have the following key-tree based services:

• Generic Key-Tree Cryptographic Service
• Challenge-Response Cryptographic Service

40 4 RESULTPTR Pointer to 32-byte buffer to receive 256-bit HMAC result.

Table 31 • HMAC Service Response

Offset Length (bytes) Field Description
0 1 CMD = 12 Command

1 1 STATUS Command status

2 4 HMACDATAPTR Pointer to HMACDATA structure

Table 30 • HMACDATA Structure (continued)

Offset Length (bytes) Field Description

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131877
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132721
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132721

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 26

The following table lists the possible service status values for the key-tree services.

3.5.1 Key-Tree Cryptographic Service
The generic key-tree service begins with a user-supplied 256-bit root key and derives a 256-bit output
key using the following two input parameters:

• a 7-bit optype value which can be used to separate up to 128 possible uses of the key-tree
• a 128-bit path input that is used to mix the root key pseudo-randomly over a 2128 output space
Both the 7-bit input parameter and the 128-bit path variable are assumed to be publicly known, and in
any case, it must not be assumed that there is any significant DPA resistance to learn them. The root key,
any intermediate keys calculated, and the output key exhibits good DPA resistance. One common use for
the output key is as a keyed validator, similar to a message authentication code tag.

The layout of the data descriptor to be passed in this service is listed in the following table.

Table 32 • DPA-Resistant Key-Tree Services Status Codes

Status Description
0 Success

127 HRESP error occurred during MSS or HPMS transfer

253 Not licensed

254 Service disabled by factory security

255 Service disabled by user security

Table 33 • Key-Tree Service Request

Offset Length (bytes) Field Description
0 1 CMD = 9 Command

1 4 KEYTREEDATAPTR Pointer to KEYTREEDATA structure

Table 34 • KEYTREEDATA Structure

Offset Length (bytes) Field Description
0 32 KEY 256-bit key (root key) to be modified or generated output key

32 1 OPTYPE Key-tree optype parameter (7-bits, MSB ignored)

33 16 PATH Path variable to be used

Table 35 • KeyTree Service Response

Offset Length (bytes) Field Description
0 1 CMD = 9 Command

1 1 STATUS Command status

2 4 KEYTREEDATAPTR Pointer to KEYTREEDATA structure

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 27

3.5.2 Challenge-Response Cryptographic Service
The challenge-response service performs a similar key-tree calculation using the input challenge with a
root key fixed as the internal device-unique key. The service accepts a challenge comprising a 7-bit
optype and 128-bit path and returns a 256-bit response unique to the given challenge and the device.

On premium S grade smaller SmartFusion2 or IGLOO2 devices from M2S050S or M2GL050S and
below, the challenge-response service is based a unique Pseudo-PUF key. The Pseudo-PUF key based
challenge-response service performs the key-tree calculation using a 256-bit static random key. The
static random key is generated and stored in the device during its manufacturing process as a starting
secret. The static secret key is never revealed during its manufacturing process or during its usage.

On premium S grade SmartFusion2 or IGLOO2 larger devices (M2S060S or M2GL060S
M2S090/M2GL090, and M2S150/M2GL150), the challenge-response service is based on a unique
SRAM-PUF ECC private key. Microsemi adds a completely random unique-per-device 384-bit ECC
private key during device manufacturing. This key is generated in the Microsemi FIP140-2 level 3 HSM
during the key provisioning steps of the device manufacturing process, and is not recorded or
re-constructible by Microsemi. It is imported into the device using a fully authenticated and encrypted
wrapper, so the private key is never visible in plaintext outside the security boundary of the HSM or the
device. This key is protected by SRAM-PUF hardware by enrolling it as an extrinsic key. Since this ECC
private key is protected by the intrinsic unclonable nano-scale properties unique to a single device, it
provides the strongest integrated circuit device key protection available.

The challenge-response service provides a mechanism for authenticating a device. To use it, several
challenges are generated, and the responses are recorded during the device enrollment phase. When
the user accesses the device later, the responses are confirmed with the recorded details of the device
for proof as it is the same device that was enrolled.

The following table lists the layout of the data descriptor to be passed in this service.

The following table lists the challenge-response service response.

3.6 Elliptic Curve Cryptography Services
The premium S grade SmartFusion2 or IGLOO2 larger devices (M2S060S or M2GL060S, M2S090S or
M2GL090S, and M2S150S or M2GL150S) have an ECC hardware accelerator to support asymmetric
cryptographic techniques for key establishment.

Table 36 • Challenge-Response Service Request

Offset Length (bytes) Field Description
0 1 CMD = 14 Command

1 4 CHRESPPTR Pointer to CHRESP structure

Table 37 • CHRESP Structure

Offset Length (bytes) Field Description
0 4 KEYADDRPTR Pointer to 32-byte buffer to receive result

4 1 OPTYPE Key-tree optype parameter (MSB ignored)

5 16 PATH Path variable to be used

Table 38 • Challenge-Response Service Response

Offset Length (bytes) Field Description
0 1 CMD = 14 Command

1 1 STATUS Command status

2 4 CHRESPPTR Pointer to CHRESP structure

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 28

The ECC hardware accelerator implements the NIST P-384 curve and provides support for point
multiplication and point addition with countermeasures against side-channel analysis (SCA). The NIST
P-384 curve's domain parameters are defined in NIST FIPS PUB 186-3 specification. The P-384 curve is
one of the elliptic curves included in the NIST Suite B list of approved algorithms for protecting classified
information up to and including the top secret.

Point Multiplication incorporates the strong intrinsic algorithmic and other DPA countermeasures. Point
Addition is not a DPA-resistant. It is designed to be a time-invariant to protect from timing attacks and
simple power attacks.

The ECC cryptosystem is based on the apparent difficulty of reversing the point multiplication operation
that is, given a scalar and a base point, it is easy to calculate the point resulting from multiplication. But
given the base point and the result point, it is very (that is, cryptographically) difficult to determine what
the scalar is. Based on the best known attacks, the security strength of an ECC cryptosystem is
estimated as half the number of bits in the private key, that is, the security strength of the P-384 system is
about 192 bits.

The built-in ECC hardware accelerator does not check that the point(s) given it as input(s) are legal
points on the NIST P-384 curve. Supplying illegal X-Y coordinates for a point results in garbage output.
However, if the legal input points are given, the accelerator outputs are guaranteed to be correct. If
needed, the provided point multiplication and addition services can be used to help check that a point is
on the curve.

The ECC system services provide access to the ECC hardware accelerator. Points on the curve are
encoded as two 384-bit big-endian numbers (X, Y), and stored in two consecutive blocks of 48-bytes,
with the X coordinate first. The point-at-infinity is represented by the point (0, 0). The following table lists
the service status codes for ECC services.

3.6.1 ECC Point Multiplication Service
The ECC point multiplication service multiplies a point (P) by a scalar (d). The scalar is a 384-bit integer,
and points are defined by two integers depicting the points X and Y coordinates. All these integers are
restricted to the prime Galois Field defined by the P-384 domain parameters. The input point must be on
the Elliptic P-384 curve. The point multiplication results in point Q as follows:

Q = d * P

The ECC point multiplication is used to compute ECC public keys provided in the private key (per NIST
FIPS PUB 186-3 Appendix B.4). The ECC point multiplication is also commonly used for establishing a
shared secret (the x-coordinate of the resulting point) using the Diffie-Hellman protocol. Two parties
generate key pairs (private key and public key), as above, and exchange their public keys. Each
multiplies the public key they received (a point) with their own private key (a scalar). The resulting point
calculated by both parties is the same.

Other useful ECC public key operations include generating and validating digital signatures. The ECC
point multiplication and point addition functions, along with a hash function can be used to implement
digital signature operations. Generating an NIST approved digital signature having a security strength of
192 bits requires 384-bit ECC operations (which these devices have), and a 384-bit hash operation. The
hash operation is not part of the ECC hardware accelerator, but the built-in SHA-256 services can be
used for the hash operation.

Table 39 • Challenge-Response Service Response

Status Description
0 Success completion

127 HRESP error occurred during MSS/HPMS transfer

253 License not available in device

254 Service disabled by factory security

255 Service disabled by user security

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 29

The following table lists the ECC point multiplication service request format.

The following table lists the layout of the data descriptor (ECCPMULT) to be passed in the service
request.

In the ECCPMULT structure, if PPTR is 0:

Q = d * G

Where G is the generator point or base point for the NIST P-384 curve. This form of the service can be
used to create a public key from the private key, d. The domain parameters specify the base point to use.
The NIST P-384 curve's base point is built into the ECC hardware accelerator and need not be provided.
The public key is just the private key times the base point.

The following table lists the ECC point multiplication service response.

3.6.2 ECC Point Addition Service
The ECC Point addition is defined as like an arbitrary operation involving the (x, y) coordinates of both
input points and the elliptic curve equation, resulting in another (x, y) point on the curve. The inputs are
two (x, y) points (P and Q), each lying on the P-384 curve, and the result is another (x, y) point (R), which
is guaranteed to be on the curve (or be the point at infinity).

R = P + Q

The following table lists the ECC point addition service request format.

Table 40 • Elliptic Curve Point Multiplication Service Request

Offset Length (bytes) Field Description
0 1 CMD = 16 Command

1 4 ECCPMULTPTR Pointer to ECCPMULT structure

Table 41 • ECCPMULT Structure

Offset Length (bytes) Field Description
0 4 DPTR Pointer to 384-bit scalar, d (big endian)

4 4 PPTR Pointer to (X, Y) coordinates of P

8 4 QPTR Pointer to (X, Y) coordinates of result Q

Table 42 • ECCPMULT Structure

Offset Length (bytes) Field Description
0 1 CMD = 16 Command

1 1 STATUS Command status, (see Table 39, page 28)

2 4 ECCPMULTPTR Pointer to ECCPMULT structure

Table 43 • Elliptic Curve Point Addition Service Request

Offset Length (bytes) Field Description
0 1 CMD = 17 Command

1 4 ECCPADDPTR Pointer to ECCPADD structure

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 30

The following table lists the layout of the data descriptor (ECCPADD) to be passed in the service request.

The following table lists the ECC point addition service response.

3.7 SRAM-PUF Services
The SRAM-PUF services can be used for key generation and storage and device authentication.
SRAM-PUF uses the random start-up behavior of a dedicated 2 KB SRAM to determine an intrinsic
secret unique to each device. In each device, the SRAM turn-on behavior is essentially independent
(even down to the single-bit level), but from turn-on to turn-on in a single device there is sufficient
repeatability to reconstruct the same intrinsic secret each time.

The SRAM-PUF services can be used for generating keys in data security applications because of its
randomness and device individual fingerprint. The primary advantage of SRAM-PUF for the key
generation is that the keys are dynamically reconstructed without storing in memory. Keys are generated
only when needed on-the-fly. The SRAM-PUF is also used in design security. Although, the system
services are not used for design security, it is possible to retrieve the design security User PUF ECC
public key for device authentication purpose. The SRAM-PUF start-up value can also be used to
generate a seed for random number generator.

The SRAM-PUF is available in the larger SmartFusion2 or IGLOO2 devices (M2S060 or M2GL060,
M2S090 or M2GL090, and M2S150 or M2GL150) for design security applications. On premium S grade
larger SmartFusion2 or IGLOO2 devices (M2S060S or M2GL060S, M2S090S or M2GL090S, and
M2S150S or M2GL150S), the system services are used to access the SRAM-PUF hardware for data
security applications.

The following sections describe how to generate and store a key using SRAM PUF hardware:

• Create User Activation Code
• Key Generation and Enrollment Services
• Key Reconstruction

3.7.1 Create User Activation Code
The initial step for a key generation or key storage using SRAM-PUF is the user activation code creation
or device enrollment. A user activation code is created based on the start-up behavior of the dedicated
SRAM. The user activation code size is 1192 byte, stored in the eNVM private area. The user activation
code is used for key enrollment and key reconstruction. The user activation code is used to eliminate the
randomness of the SRAM-PUF power-up content in order to retrieve the PUF secret key.

The user activation code must be generated once, typically when the system containing the
SmartFusion2 or IGLOO2 device is commissioned. However, the device can be enrolled multiple times,
producing a new user activation code for each enrollment. In this case, previously enrolled keys using
the older activation code becomes invalid, making the key reconstruction is impossible. The user
activation code value is never exported in clear text from the device. The user activation code can be

Table 44 • ECCPADD Structure

Offset Length (bytes) Field Description
0 4 PPTR Pointer to (X, Y) coordinates of input point P

4 4 QPTR Pointer to (X, Y) coordinates of input point Q

8 4 RPTR Pointer to (X, Y) coordinates of result R

Table 45 • Elliptic Curve Point Addition Service Response

Offset Length (bytes) Field Description
0 1 CMD = 17 Command

1 1 STATUS Command status, (see Table 39, page 28)

2 4 ECCPADDPTR Pointer to ECCPADD structure

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 31

destroyed. This function would typically only be used when the system containing SmartFusion2 or
IGLOO2 device is decommissioned or re-purposed.

3.7.1.1 Create or Delete User Activation Code Service
The Create or Delete User Activation Code Service can be used to create a user activation code or
delete the existing user activation code and key codes by supplying a subcommand value.

In the data descriptor, the SUBCMD filed defines the user activation code creation or deletion. If
SUBCMD filed is 0 [CREATE_AC], the SRAM-PUF hardware is requested to enroll a new user activation
code. The dedicated SRAM is turned on before executing this command.

If SUBCMD filed is 1 [DELETE_AC], the user AC gets deleted together with all the user key codes and
ECC public key. The dedicated SRAM is not turned ON in this case since SRAM-PUF operations are not
involved.

The following table lists the service request format.

The following table lists the layout of the data descriptor (PUFUSERAC) to be passed in the service
request.

The following table lists the PUFUSERAC service response.

Table 46 • PUFUSERAC Service Request

Offset Length (bytes) Field Description
0 1 CMD = 25 Command

1 4 PUFUSERACPTR Pointer to PUFUSERAC structure

Table 47 • PUFUSERAC Structure

Offset Length (bytes) Field Description
0 1 SUBCMD Sub Command

0: CREATE_AC
1: DELETE_AC

Table 48 • Elliptic Curve Point Addition Service Response

Offset Length (bytes) Field Description
0 1 CMD = 25 Command

1 1 STATUS Command status, (see Table 49, page 31)

Table 49 • PUFUSERAC Status1

STATUS Description
0 Success completion

1 eNVM MSS/HPMS error

2 PUF error, when creating

3 Invalid subcmd

4 eNVM program error

7 eNVM verify error

127 HRESP error occurred during MSS or HPMS transfer

253 License not available in device

254 Service disabled by factory security

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 32

3.7.2 Key Generation and Enrollment Services
The SRAM-PUF can be used to store cryptographic keys. The keys are stored in a way that the key's
actual value does not appear in the system unless it is retrieved manually. A key code is stored in the
eNVM private area instead of the key's value. The key code is generated when a key is enrolled. The key
code value is created from the enrolled key value and the user activation code. The key's value can then
later be regenerated from the key code value and user activation code on request.

Keys can be either intrinsic keys or extrinsic keys. An intrinsic key is randomly generated by the
SRAM-PUF hardware during key enrollment. The intrinsic keys are useful where a security protocol
executing on SmartFusion2 and IGLOO2 requires to generate a key value and to store it for later use.
For example, you can request a 384-bit long intrinsic key to be enrolled and use it as a private key in an
elliptic curve Diffie-Hellman key exchange. An extrinsic key is supplied. For example, you can request an
symmetric key obtained from a key exchange protocol to be enrolled for later use. Multiple key codes can
be generated from multiple intrinsic or extrinsic keys. Keys are identified by a number and must be
enrolled sequentially. The first step in enrolling a new key is to determine how many keys are already
enrolled. The maximum number of keys supported is 58 that is, 0 to 57. The key size can vary from 64-bit
to 4096-bit in multiples of 64.

The first two key codes—(KC#0 and KC#1)—are reserved for user-enrolled design security keys. KC#0
and KC#1 are purely used by the bit-stream process to protect the design, which is programmed in the
device. The KC#0 and KC#1 are called Design Security Keys. These user-enrolled design security keys
are a 384-bit intrinsic User PUF ECC private key and a 256-bit extrinsic user symmetric PUF key.
Generation of the 384-bit intrinsic key, import of the 256-bit extrinsic key, generation of the user activation
code, and the two key codes occur as a result of loading a bit-stream with these options activated. After
the true random 384-bit intrinsic User PUF ECC private key is checked to be in the valid P-384 range and
enrolled, the device computes the corresponding ECC public key internally and exports the key along
with an authentication tag to prevent a man-in-the-middle attack. The User PUF ECC public key is stored
in plaintext in the eNVM private area. The User ECC private key is protected by the SRAM-PUF, and
neither it never leaves the device nor it is ever exported to the user of the device internally.

The key codes from KC#2 to KC#n are purely used for data security applications. The key codes from
KC#2 to KC#n are called data security keys since they protect the customer data. The system services
can create or delete data security keys. The data security keys of variable length might also be enrolled
using the system services. The data security keys can be reconstructed by SRAM-PUF and exported
from the System Controller to the design running in the device. The user activation code is the same for
both design security keys and data security keys.

3.7.2.1 Create or Delete User Key Code and Export or Import All Service
Create or Delete User Key Code and Export or Import All Service perform the key generation and
enrollment. They can be used for the following functions:

• Get number of enrolled keys
• Enroll an extrinsic user key
• Enroll an intrinsic key
• Export user activation code and all key codes
• Import user activation code and all key codes
• Delete a user key from enrolled keys

255 Service disabled by user security

1. Errors can occur when writing to the private eNVM for both subcommands.

Table 49 • PUFUSERAC Status1 (continued)

STATUS Description

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 33

The following table lists the PUFUSERKC service request format.

The following table lists the layout of the data descriptor (PUFUSERKC) to be passed in the service
request. In the data descriptor, the SUBCMD filed defines the function to be requested. Only one option
must be used at a time.

3.7.2.2 Get Number of Enrolled Keys
If SUBCMD filed is 0 [GET_NUMBER_OF_KC], the total number of user keys enrolled is returned in
KEYNUM filed. The number of enrolled keys is from 2 to 58. All valid and invalid keys are counted up to
the last valid key. In this context, an invalid key is one that got deleted since it is followed by a valid key.
You can only create new keys in the sequence from (KEYNUM) number. Use the SUBCMD = 0 option to
get in KEYNUM for creating the next key. The total number of keys is as a minimum of 2 (KC#0 and
KC#1), which are used by the bit-stream, and as a maximum of 58 (KC#0 to KC#57). The KEYNUM
returned is the total number of keys. The SUBCMD is 0 and the maximum valid key number is always
plus one. To create a KC, a key number from 2 to 57 must be provided, since 0 and 1 are reserved.

Table 50 • PUFUSERKC Service Request

Offset Length (bytes) Field Description
0 1 CMD = 26 Command

1 4 PUFUSERKCPTR Pointer to PUFUSERKC structure

Table 51 • PUFUSERKC Service Request

Offset Length (bytes) Field Description
0 1 SUBCMD Sub Command [INPUT]

0: GET_NUMBER_OF_KC
1: CREATE_EXT_KC
2: CREATE_INT_KC
3: EXPORT_ALL_KC
4: IMPORT_ALL_KC
5: DELETE_KC

1 4 PUFUSERKEYADDR PUF User Key Fetch address, when creating/enrolling a
key or PUF User KC address, to export to or import from
[INPUT]

5 4 USEREXTRINSICKEYADDR User Extrinsic Key address, when creating [INPUT]

9 1 KEYNUM Key number from 2 to 57 [INPUT] [OUTPUT]

10 1 KEYSIZE Key size 0 to 64: [INPUT]
0 means 4096 bit
1 means 64 bit
63 means 63*64 = 4032 bit

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 34

3.7.2.3 User Key (Extrinsic or Intrinsic) Enrollment
If SUBCMD is 1 [CREATE EXT_KC] or 2 [CREATE INT_KC], the SRAM-PUF is requested to generate a
new user key code for an extrinsic key or intrinsic key respectively. KC#0 and KC#1 keys can only be
generated from the bit-stream. But KC#2 to KC#57 can be created by the Cortex-M3 processor or an
FPGA fabric master. Keys can only be created in order. If the number of valid and invalid keys up to the
last valid key is M, you can request to create a key with the KEYNUM of M. A key can also be created
with a lower KEYNUM. If the KEYSIZE is the same as the original key, the total number of valid keys
remains the same. If the KEYSIZE is different, the service is denied.

The PUFUSERKEYADDR address is defined at the time of key enrollment (both intrinsic and extrinsic)
and is used when fetching a PUF user key. It must be unique and thus different for each key. When
importing the key codes, all keys are automatically generated and stored in memory pointed by these
addresses.

An intrinsic key is created by ignoring USEREXTRINSICKEYADDR. An extrinsic key is created by
enrolling the key pointed at by USEREXTRINSICKEYADDR. The keys can be managed and removed
from the memory, if they are no longer required. Both the KC and the 4 byte address
PUFUSERKEYADDR are stored in eNVM private area.

3.7.2.4 Exporting User Activation Code and All Key Codes
If SUBCMD is 3 [EXPORT_ALL_KC], the key codes from 0 to 57 are exported in encrypted form. The
stored user activation code and all key codes are first XOR'ed with the one-time pad and copied to
contiguous memory space, addressed by PUFUSERKEYADDR.

The following table lists the memory layout of the exported content.

The one-time pad is stored in its place in eNVM private area and is composed of a 32 byte hash
(SHA-256), and the remainder populated by random bits from the DRBG. Key codes vary in size between
44 and 524 bytes. Therefore, they are preceded by their key code size. If the key code size is 0, it means
that the key code is deleted. The following two bytes are the key code size of the next key. If the key code
size is 525, one more than the maximum key code size, all valid key codes are exported and this marks
the end. The maximum possible size of the complete export record is 1318 + 56 * 46 = 3894 bytes.

The EXPORT operation can only be successful, if a CREATE operation is successful previously and no
prior EXPORT operation is carried out subsequently. The export option can be done only once. After
exporting, the importing operation can be done as many times as required. A user key cannot be fetched
after export. To get the key, perform import operation which returns all regenerated keys in the addresses
provided during create time.

Table 52 • PUFUSERACKCEXPORT Memory Layout

Offset Length (bytes) Field Description
0 1192 User AC User activation code, encrypted

1192 2 Size KC#0 Size in bytes of KC#0

1194 44 KC#0 KC#0 encrypted

1238 2 Size KC#1 Size in bytes of KC#1

1240 76 KC#1 KC#1 encrypted

1316 2 Size KC#2 Size in bytes of KC#2

1318 ?? KC#2 KC#2 encrypted

… … … …

?? 2 Size KC#n Size in bytes of KC#n

?? ?? KC#n KC#n encrypted

?? 2 End marker Is 525, one more than max

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 35

3.7.2.5 Importing User Activation Code and All Key Codes
If SUBCMD is 4 [IMPORT_ALL_KC], the user AC and all KCs are read from a contiguous memory space
addressed by PUFUSERKEYADDR, defined in the PUFUSERKC structure. The memory space is
identical to the structure, defined in Table 52, page 34.

The user AC and all the KCs are then verified to be last created by this device. This verification is
accomplished by first decrypting them (XOR with the one-time pad stored in its place in private eNVM)
and then comparing the computed SHA-256 hash result with the one stored in private eNVM. The KC#0
and KC#1 can also be imported, but you cannot do anything with it as they are reserved. The individual
private keys for KC#2 to KC#n are regenerated from the SRAM-PUF and are copied into the individual
memory address spaces, and PUFUSERKEYADDR is defined by the CREATE_EXT_KC or
CREATE_INT_KC SUBCMD.

Importing User Activation Code and All Key Codes operation is successful if an EXPORT operation is
successful previously, and no prior CREATE operation is carried out subsequently.

As a result of the import operation, the memory space addressed by PUFUSERKEYADDR has
addresses of all the user keys, and regenerated during the import operation for keys 2 to 57. If the
address is 0, the key is not imported into SRAM-PUF hardware.

The following table lists the memory layout addressed by PUFUSERKEYADDR.

3.7.2.6 Delete a User Key from the Enrolled Keys
If SUBCMD is 5 [DELETE_KC], the KC corresponding to KEYNUM is deleted from eNVM private. It
deletes a user key from the enrolled keys. Though the key index is maintained, all other keys that are still
valid maintain their index. For this command, the dedicated SRAM is not turned ON, if it is OFF, since
SRAM-PUF operations do not perform.

The following table lists the service response for Create or Delete User Key Code and Export or Import
All Service.

Table 53 • PUFUSERACKCIMPORT

Offset Length (bytes) Field Description
0 4 Key#2_address MSS/HPMS address where user Key #2 resides

4 4 Key#3 address MSS/HPMS address where user Key #3 resides

8 4 Key#4 address MSS/HPMS address where user Key #4 resides

… … … …

220 4 Key#57 address MSS/HPMS address where user Key #57 resides

Table 54 • PUFUSERKC Service Response

Offset Length (bytes) Field Description
0 1 CMD = 26 Command

0 1 STATUS Command status, (see Table 55, page 35)

1 4 PUFUSERKCPTR Pointer to original buffer from request

Table 55 • PUFUSERKC Service Response

STATUS Description
0 Success completion

1 eNVM MSS or HPMS error

2 PUF error, when creating

3 Invalid request or KC, when exporting or importing

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 36

3.7.3 Key Reconstruction
The keys have to be reconstructed as they are not stored anywhere in the system. The key code along
with the activation code and the SRAM-PUF start-up value are used to reconstruct the user enrolled key.
The value of the key is protected until it is fetched. It is not possible to reconstruct a user key, if the
EXPPORT operation is performed or the key is deleted. In both cases, a status code 3 is returned.

3.7.3.1 Fetch a User PUF Key Service
The Key Reconstruction is performed using Fetch a User PUF Key Service.

The following table lists the service request format for Fetch a User PUF Key Service.

The following table lists the layout of the data descriptor (PUFUSERKEY) to be passed in the service
request. In the data descriptor, the KEYNUM filed defines the key to be reconstructed.

4 eNVM program error1

5 Invalid hash2

6 Invalid user AC3

7 eNVM verify error1

8 Incorrect keysize for renewing a kc

10 Private eNVM user digest mismatch

11 Invalid subcmd

12 DRBG error4

127 HRESP error occurred during MSS or HPMS transfer

253 License not available in device

254 Service disabled by factory security

255 Service disabled by user security

1. These errors can occur when writing to the private eNVM for sub-commands 1, 2, 3 and 5.
2. Indeed the hash stored in private eNVM must match the SHA-256 of the decrypted AC after import.
3. Indeed an invalid AC could have been imported. Both AC and KC need to be valid.
4. This error can occur when getting the PUF seed for the DRBG initialization.

Table 56 • PUFUSERKEY Service Request

Offset Length (bytes) Field Description
0 1 CMD = 27 Command

1 4 PUFUSERKEYPTR Pointer to PUFUSERKEY structure

Table 57 • PUFUSERKEY Structure

Offset Length (bytes) Field Description
0 4 PUFUSERKEYADDR PUF User Key address [OUTPUT]

4 1 KEYNUM Key number from 2 to 57 [INPUT]

Table 55 • PUFUSERKC Service Response (continued)

STATUS Description

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 37

If fetch a user PUF key service is successful, the key is written at the address pointed by
PUFUSERKEYADDR. The PUFUSERKEYADDR address is returned by the service and it is the same as
the one that is defined at the time of key enrollment.

The following table lists the service response for Fetch a User PUF Key Service.

3.7.4 User-Enrolled SRAM-PUF Keys for Design Security
The User PUF ECC key pair can be used for initial user key loading or device authentication similar to
the Factory ECC keys or the Factory ECC PUF keys. When the keys are used, the appropriate public key
is exchanged with the programmer as part of the Elliptic Curve Diffie-Hellman (ECDH) protocol.

3.7.4.1 Fetch User PUF ECC Public Key Service
Fetch a PUF ECC Public Key Service returns the User PUF ECC public key internally to the design
running in the device. The public key can be used as appropriate and is certified in Public Key
Infrastructure (PKI). Since this key pair can be used with the built-in key confirmation protocol, it can
provide a convenient way to authenticate devices (and thus systems) with a key that is part of
User-managed PKI.

The Fetch a PUF ECC Public Key Service can be used to fetch User PUF ECC Public Key from eNVM
private area. The following table lists the service request format for Fetch User PUF ECC Public Key
Service.

The following table lists the layout of the data descriptor (PUFPUBLICKEY) to be passed in the service
request. If user PUF ECC public key is available and service is successful, it will be stored as 2x384 bit

Table 58 • PUFUSERKC Service Response

Offset Length (bytes) Field Description
0 1 CMD = 27 Command

1 1 STATUS Command status, (see Table 60, page 37)

2 4 PUFUSERKEYPTR Pointer to original buffer from request

Table 59 • USERPUFKEY Status

STATUS Description
0 Success completion

2 PUF error, when creating

3 Invalid keynum or argument or exported or invalid key

5 Invalid hash

10 Private eNVM user digest mismatch

127 HRESP error occurred during MSS or HPMS transfer

253 License not available in device

254 Service disabled by factory security

255 Service disabled by user security

Table 60 • PUFPUBLICKEY Service Request

Offset Length (bytes) Field Description
0 1 CMD = 28 Command

1 4 PUFPUBLICKEYPTR Pointer to PUFPUBLICKEY structure

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 38

(96 bytes) in MSS or HPMS memory pointed to by PUFPUBLICKEYADDR. This address is not changed
by the call.

The following table lists the service response and status codes for the Fetch User PUF ECC Public Key
Service.

3.7.5 SRAM-PUF Based True Random Number Seed Generation
From turn-on to turn-on, the SRAM generates a large number of repeatable bits-enough to be able to
regenerate the static intrinsic secret each time with the help of the base activation code. However, there
are also enough noisy bits from which the entropy can be harvested in order to generate a 256-bit full
entropy true random seed from each turn-on event. This is done under license from Intrinsic-ID with an
iRNG™ function.

3.7.5.1 Get a PUF Seed Service
The Get a PUF Seed system service generates a 256-bit true random seed using SRAM start-up values.

The following table lists the service request format for the Get a PUF Seed Service. If successful, the
PUF seed is written at the address pointed to by PUFSEEDADDR.

Table 61 • PUFPUBLICKEY Structure

Offset Length (bytes) Field Description
1 4 PUFPUBLICKEYADDR PUF Public Key address

Table 62 • PUFPUBLICKEY Structure

Offset Length (bytes) Field Description
0 1 CMD = 28 Command

1 1 STATUS Command status (see Table 63, page 38)

2 4 PUFPUBLICKEYPTR Pointer to original buffer from request

Table 63 • USERPUFKEY Status

STATUS Description
0 Success completion

3 No valid public key present in eNVM

10 Private eNVM user digest mismatch

127 HRESP error occurred during MSS or HPMS transfer

253 License not available in device

254 Service disabled by factory security

255 Service disabled by user security

Table 64 • PUFPUBLICKEY Structure

Offset Length (bytes) Field Description
1 4 PUFPUBLICKEYADDR PUF Public Key address

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 39

The following table lists the service response and status codes for the Fetch User PUF ECC Public Key
Service.

Table 65 • PUFPUBLICKEY Structure

Offset Length (bytes) Field Description
0 1 CMD = 28 Command

1 1 STATUS Command status (see Table 63, page 38)

2 4 PUFPUBLICKEYPTR Pointer to original buffer from request

Table 66 • USERPUFKEY Status

STATUS Description
0 Success completion

3 No valid public key present in eNVM

10 Private eNVM user digest mismatch

127 HRESP error occurred during MSS or HPMS transfer

253 License not available in device

254 Service disabled by factory security

255 Service disabled by user security

Table 67 • PUFSEED Status

Status Description
0 Success completion

2 PUF error, when creating

127 HRESP error occurred during MSS or HPMS transfer

253 License not available in device

254 Service disabled by factory security

255 Service disabled by user security

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 40

3.8 Non-Deterministic Random Bit Generator (NRBG)
Services
The NRBG services provide user access to the System Controller Deterministic Random Bit Generator
(DRBG), a part of the NRBG. The DRBG post-processes random seeds obtained from the SmartFusion2
and IGLOO2 true random entropy source and other possible user and device supplied seed inputs. In the
SmartFusion2 and IGLOO2 devices where the SRAM-PUF is available, the SRAM-PUF hardware can
generate a 256-bit full entropy true random seed from each turn-on event. It is done under a license from
Intrinsic-ID with an iRNG function. The true random seed is used to strengthen the NRBG by providing it
as additional entropy when seeding the DRBG. In the SmartFusion2/IGLOO2 devices, there are two
independent and quite different raw sources of entropy seeding the random bit generator, and providing
additional security and overall improved resistance to attacks.

The NRBG is designed to be compliant with the NIST SP800-90, NIST SP800-22, and BIS AIS-31
standards, including all required health monitors. All commands defined in the NIST SP800-90, such as
creating an instantiation, generating random bits, and reseeding, are supported at a design security
strength of 256 bits. Up to 1,024 random bits can be returned per call to an instantiation. The
SmartFusion2 and IGLOO2 DRBG mechanism are CTR_DRBG, as defined in NIST SP800-90A. It
generates random bits in a similar way that the AES counter mode generates a keystream. In addition, at
each call to the generate service, a mixing operation is performed on the instantiations internal state. For
more information about the NRBG, refer UG0443: SmartFusion2 and IGLOO2 FPGA Security Best
Practices User Guide.

The NRBG can have up to four independent instantiations of the DRBG.The System Controller reserves
DRBG instantiations for the following purposes: one DRBG for use in the bitstream and related
programming, passcode, and key verification protocols; one for DRBG self tests. Two independent
DRBG instantiations are available for user access. Accessing a non-user DRBG instantiation is treated
the same as if the DRBG instantiation did not exist that is invalid handle error. The NRBG services share
a common set of service response status codes, as shown in the following figure.

Table 68 • NRBG Service Response Status Codes

STATUS Description
0 Success (DRBGHANDLE is valid)

1 Fatal error

2 Maximum instantiations exceeded

3 Invalid handle

4 Generate request too big

5 Maximum length of additional data exceeded

127 HRESP error occurred during MSS or HPMS transfer

253 Not licensed

254 Service disabled by factory security

255 Service disabled by user security

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 41

3.8.1 Self Test Service
This service invokes all DRBG health tests. The health test function determines that the DRBG
mechanism continues to function correctly. If any health test fails, a fatal error condition is entered. It
requires device reset or user invocation of the DRBG reset service to recover from the fatal error.

3.8.2 Instantiate Service
The instantiate service instantiates a DRBG instance with optional personalization string. A maximum of
two concurrent user instances are available. The instantiate service acquires entropy input from true
entropy source, and combines it with a nonce and a personalization string to create a seed from which
the DRBG initial internal state is created. The user interacts with the DRBG portion of NRBG only. It is not
possible for the user to see the random seed inputs to the DRBG. The personalization string length must
be in the range 0-128 bytes inclusive. Microsemi recommends the user to use the personalization string
to differentiate a DRBG instantiation from another instantiation that might be created later. The
personalization string bits should be unique, and the user can also include secret information, if
necessary. If DRBG requires a level of protection that is greater than the intended security strength
(256 bits) of the DRBG instantiation, the secret information should not be used in the personalization
string. If this field is out of range, an error response is returned from the DRBG with a status code equal
to 5.

Table 69 • DRBG Self Test Request

Offset Length (bytes) Field Description
0 1 CMD = 40 Command

Table 70 • DRBG Self Test Response

Offset Length (bytes) Field Description
0 1 CMD = 40 Command

1 1 STATUS Command result status

Table 71 • DRBG Instantiate Request

Offset Length (bytes) Field Description
0 1 CMD = 41 Command

1 4 DRBGINSTANTIATEPTR Pointer to DRBGINSTANTIATE structure

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 42

The layout of the data descriptor to be passed in this service is shown in the following figure.

3.8.3 Generate Service
The generate service generates pseudorandom bits upon request, using the current internal state, and
generates a new internal state for the next request. It generates a random bit sequence up to 128 bytes
long.

The following table lists the layout of the data descriptor to be passed in this service. The
REQUESTEDLENGTH field must be in the range of 0–128 inclusive. An error response is returned from
the DRBG with a status code equal to 5 if this field is out of range. If PRREQ is non-zero, prediction
resistance is provided.

Prediction resistance means that a compromise of the DRBG internal state has no effect on the security
of future DRBG outputs. That is, an adversary who is given access to all of the output sequence after the
compromise cannot distinguish it from random output with less work than is associated with the security
strength of the instantiation; if the adversary knows only part of the future output sequence, he cannot
predict any bit of that future output sequence that he has not already known. When prediction resistance
is requested, the DRBG is reseeded at the start of the generate operation.

Table 72 • DRBGINSTANTIATE Structure

Offset Length (bytes) Field Description
0 4 PER_STRING_PTR Pointer to RBG personalization string

4 1 PER_STRING_LENGTH Length of personalization string in bytes. Length must
be in the range 0-128 bytes inclusive.

5 1 RESERVED Reserved

6 1 DRBGHANDLE Returned DRBG handle

Table 73 • DRBG Instantiate Service Response

Offset Length (bytes) Field Description
0 1 CMD = 41 Command

1 1 STATUS Command status

2 4 DRBGINSTANTIATEPTR Pointer to DRBGINSTANTIATE structure

Table 74 • DRBG Generate Request

Offset Length (bytes) Field Description
0 1 CMD = 42 Command

1 4 DRBGGENERATEPTR Pointer to DRBGGENERATE structure

Table 75 • DRBGGENERATE Structure

Offset Length (bytes) Field Description
0 4 REQUESTEDDATAPTR Pointer to buffer to receive generated random data

4 4 ADDITIONALINPUTPTR Pointer to additional input data

8 1 REQUESTEDLENGTH Number of bytes of random data to generate. Length
must be in the range 0-128 bytes inclusive.

9 1 ADDITIONALINPUTLENGTH Length of additional input in bytes. Length must be in the
range 0-128 bytes inclusive.

10 1 PRREQ Prediction resistance request. If PRREQ is non-zero,
prediction resistance is provided.

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 43

3.8.3.1 Reseed Service
Reseed service acquires a new entropy input and combines it with the current internal state and any
additional input that is provided to create a new seed and a new internal state. Reseed service is used to
reseed the random bit generator identified by the DRBG handle that is provided in the service request.
The reseed service is used to force a reseed operation.

The layout of the data descriptor to be passed in this service is listed in the following table.

11 1 DRBGHANDLE DRBG handle specifies which random bit generator
instance is to be used to generate the random data. The
value of DRBG handle is obtained as a result of a call to
the DRBG instantiate service.

Table 76 • DRBG Generate Service Response

Offset Length (bytes) Field Description
0 1 CMD = 42 Command

1 1 STATUS Command status

2 4 DRBGGENERATEPTR Pointer to DRBGGENERATE structure

Table 77 • DRBG Reseed Request

Offset Length (bytes) Field Description
0 1 CMD = 43 Command

1 4 DRBGRESEEDPTR Pointer to DRBGRESEED structure

Table 78 • DRBGRESEED Structure

Offset Length (bytes) Field Description
0 4 ADDITIONALINPUTPTR Pointer to additional input parameter in MSS or HPMS

address space

4 1 ADDITIONALINPUTLENGTH Length of additional input in bytes. Length must be in
the range 0-128 bytes inclusive.

5 1 DRBGHANDLE DRBG handle specifies which random bit generator
instance to reseed. The value of DRBG handle is
obtained as a result of a call to the DRBG instantiate
service.

Table 79 • DRBG Reseed Service Response

Offset Length (bytes) Field Description
0 1 CMD = 43 Command

1 1 STATUS Command status

2 4 DRBGRESEEDPTR Pointer to DRBGRESEED structure

Table 75 • DRBGGENERATE Structure (continued)

Offset Length (bytes) Field Description

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 44

3.8.4 Uninstantiate Service
The uninstantiate operation removes a previously instantiated DRBG and releases the associated
memory resources for later use by a new instantiation. The working state of the DRBG instantiation is
zeroized before being released.

3.8.5 Reset Service
The reset service removes all DRBG instantiations and resets the DRBG. This service is the only
mechanism by which to recover from a catastrophic DRBG error without physically resetting the device.
All active instantiations are automatically destroyed.

3.9 Zeroization Service
Zeroization service is a high priority service which destroys sensitive information on the device. The
zeroization service is configured by user flash bits as part of the Libero hardware flow of the design
programmed into the device. For more information about zeroization, refer UG0443: SmartFusion2 and
IGLOO2 FPGA Security Best Practices User Guide.

The state of SmartFusion2 and IGLOO2 internal memories affected by zeroization services are
described as follows. One of the user configuration options is to disable zeroization. In this case a
zeroization command has no effect. If one of the active zeroization configuration options is set, the data
in the following memories is destroyed either by setting or clearing all bits in that memory to the same
logical and physical state.

Table 80 • DRBG Uninstantiate Request

Offset Length (bytes) Field Description
0 1 CMD = 44 Command

1 1 DRBGHANDLE DRBG Handle

Table 81 • Uninstantiate Response

Offset Length (bytes) Field Description
0 1 CMD = 44 Command

1 1 STATUS Command status

2 1 DRBGHANDLE DRBG handle uninstantiated

Table 82 • DRBG Reset Request

Offset Length (bytes) Field Description
0 1 CMD = 45 Command

Table 83 • DRBG Reset Response

Offset Length (bytes) Field Description
0 1 CMD = 45 Command

1 1 STATUS Command status

Table 84 • Zeroization Request

Offset Length (bytes) Field Description
0 1 CMD = F0H Command

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 45

3.9.1 FPGA Fabric Configuration NVM
The state of the nonvolatile memory holding the FPGA fabric and I/O configuration is destroyed.

3.9.2 User Security Keys and Settings
The state of the nonvolatile memory holding the user keys and security settings is destroyed.

3.9.3 Factory Security Keys and Configuration Settings
Which factory non-volatile memory segments are zeroized depends upon the user-selected zeroization
configuration. There is one option to disable zeroization and three active options as described in the
following table.

3.9.4 System Controller Memory
The crypto engine, bitstream frame buffers and all variable storage used for storing secrets are written to
zero.

3.9.5 Digital Data Path
All programming/read data latches are reset or written to zero.

3.9.6 Fabric Registers
FPGA register content is destroyed.

3.9.7 Fabric SRAM
Fabric SRAMs are cleared.

3.9.8 HPMS SRAM
eSRAM_0 and eSRAM_1 are cleared to zero.

3.9.9 eNVM Memory Array and eNVM Registers
The eNVM0 and eNVM1 arrays (if present) are cleared. The eNVM registers and read buffers are
cleared to zero.

Table 85 • Zeroization Configuration Options

Option Description Notes
No Zeroization Zeroization is disabled No effect of Zeroization service

Like New The factory security keys and factory
configuration segments data is preserved and
all other internal memories content is
destroyed.

Similar to a new part from the factory

Recoverable The factory configuration segments data only
preserved and all other internal memories
content is destroyed.

Requires a new factory key file to recover the
device

Unrecoverable Nothing stays Device is permanently disabled (“bricked”) and
cannot be recovered.

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 46

3.10 Programming Service
Programming services include in-application programming (IAP) and in-system programming services.
For more information about IAP and ISP, refer UG0451: SmartFusion2 and IGLOO2 Programming User
Guide. Programming service status codes are shown in the following table.

Table 86 • Programming Service Status Codes

STA
TUS Description
7 6 5 4 3 2 1 0

0 Success

0 AUTHERRCODE Authentication error, (see Table 87, page 46).

1 0 ERRORCODE Programming error, (see Table 88, page 47).

255 Service disabled

Table 87 • Autherrcode

Autherrcode Description
0 No error

1 Validator or hash chaining mismatch

2 Unexpected data received

3 Invalid/corrupt encryption key

4 Invalid component header

5 Back level not satisfied

6 This bit is not used for any IAP service status.

7 DSN binding mismatch

8 Illegal component sequence

9 Insufficient device capabilities

10 Incorrect DEVICEID

11 Unsupported bitstream protocol version (regeneration required)

12 Verify not permitted on this bitstream

13 Invalid (or inaccessible) Device Certificate

127 Abort

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132014
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132014

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 47

3.10.1 IAP Service
The IAP service requests the System Controller to reprogram the device using a bitstream already
programmed into flash memory connected to MSS SPI0 or HPMS SPI. When the IAP service is invoked,
the System Controller automatically reads the bitstream from the SPI flash memory connected to the
MSS SPI0 or HPMS SPI and programs the device. The SPI peripheral must be configured by the user
before initiating this request (also accounting for any change in clock frequency due to fabric power
down). At the time the request is initiated, the user must guarantee exclusive access of MSS SPI0 or
HPMS SPI. The MSS SPI0 or HPMS SPI core is accessed directly through the SII Master. A single read
operation (SPI command 0BH) is sent to the SPI flash and bytes are then read via the SII Master and
passed along to the programming engine.

In SmartFusion2, the Cortex-M3 processor remains active and can continue to operate during IAP
service execution, but it requires to execute the code from eSRAM if the eNVMs are being
reprogrammed.

Note: Reserved bits indicate that even if the user writes these bits, it does not affect the functionality.

Table 88 • Errorcode

Errorcode Name Description
0 SUCCESS No error encountered (ERROR=0)

1 NVMVERIFY Fabric verification failed

2 PROTECTED Device security prevented operation

3 NOTENA Programming mode not enabled

4 ENVMPROG eNVM programming operation failed

5 ENVMVERIFY eNVM verify operation failed

6 MSSACCESS MSS or HPMS access error

7 PUFERROR PUF access error

8 BADCOMPONENT An internal error has been detected in a component payload

Table 89 • IAP Programming Service Request

Offset Length (bytes) Field Description
0 1 CMD = 20 Command

1 1 OPTIONS Refer to Table 90, page 47.

2 4 SPIADDR Base address of bitstream in MSS SPI0 or HPMS SPI (MS byte ignored)

Table 90 • OPTIONS

OPTIONS
7 6 5 4 3 2 1 0

Reserved MODE. Refer to Table 91, page 48.

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 48

If MODE is AUTHENTICATE, the fabric and MSS/HPMS are left operational while the bitstream is
authenticated. If MODE is VERIFY, the device is automatically placed in the Flash*Freeze state for the
duration of the verify operation and automatically awakened upon completion. The service response is
sent after the Flash*Freeze exit stage.

If MODE is PROGRAM, the device is automatically placed in the Flash*Freeze state before programming
commences. The MSS and Cortex-M3 processor or HPMS gets reset upon completion of the
PROGRAM operation. The service response is sent after the MSS/HPMS reset. If the programming
operation is successful, the user design is automatically restarted to initialize the new version of the
design. If the programming operation fails, the design is left in the Flash*Freeze configuration and allows
to recover from the problem. In this mode, the device components (FPGA fabric, eNVM, and security
settings) are programmed based on the payload data available in a bitstream file that is stored in the SPI
Flash memory. For example, if the bitstream file contains only FPGA fabric payload data, then this
service programs only FPGA fabric portion of the device.

3.10.2 ISP Service
The ISP service allows the Cortex-M3 processor to directly provide a bitstream for programming. The
ISP service is unique in that all communication utilizes the COMM_BLK interface such that the system
controller receives the entire bitstream as a continuous stream of bytes.

The Cortex-M3 processor must continue to operate for the duration of the programming operation. If the
bitstream reprograms the code region being used, the Cortex-M3 processor must copy its code to RAM
and execute it from there.

Since the size of the bitstream is variable, the length of the bitstream data, BSLENGTH, can only be
determined by analyzing all component headers in the bitstream. Since the component header formats

Table 91 • MODE

MODE Operation
0 AUTHENTICATE

1 PROGRAM

2 VERIFY

Table 92 • IAP Response

Offset Length (bytes) Field Description
0 1 CMD = 20 Command

1 1 STATUS Command status

Table 93 • ISP Programming Service Request

Offset Length (bytes) Field Description
0 1 CMD = 21 Command

1 1 OPTIONS See Table 90, page 47

2 BSLENGTH BSDATA Bitstream Data

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 49

are fixed, the Cortex-M3 processor can determine how much data it needs to send for each component.
Any excess data received is ignored.

3.11 NVM Data Integrity Check Service
The NVM data integrity check service recalculates and compares cryptographic digests of the selected
NVM component(s)—fabric, ENVM0, and ENVM1— to those previously computed and saved in NVM.

The contents of all the nonvolatile configuration memory segments are digested (hashed) using the
SHA-256 algorithm. The results are compared to values stored in dedicated nonvolatile memory words
located in each segment. If the contents are unchanged from when the digests were computed and
stored during the original programming steps—that is, if the current and stored digests match—the test
will pass; otherwise a failure is flagged.

The OPTIONS field in the NVM data integrity check service request selects the NVM components (fabric
configuration, eNVM0, and eNVM1) for data integrity check, as shown in the following table.

Note: Reserved bits indicate that even if the user writes these bits, it does not affect the functionality.

If the bit FABRIC is set to 1 then FPGA fabric configuration digest is performed. For FPGA fabric
configuration digest, if the fabric is powered up, it is first placed in the Flash*Freeze state. The requester
must, therefore, be prepared for an immediate Flash*Freeze shutdown if the fabric digest is to be
checked. The Flash*Freeze shutdown follows the exact shutdown sequence for a normal Flash*Freeze
request, except that the wake-up mechanism is not armed. The wake-up happens automatically after
completion of the data integrity check service.

If the bits ENVM0/1 are set to 1 then the corresponding eNVM digests are checked. The eNVM digests
are computed over eNVM pages that have been declared as static by the user, as if those pages were
ROM. Pages that are not flagged as ROM (that is, as write-protected in the original programming
bitstream) are not included in the eNVM digest calculation.

If no digest is present, the result is a digest mismatch for the requested NVM block.

Table 94 • ISP Response

Offset Length (bytes) Field Description
0 1 CMD = 21 Command

1 1 STATUS Command Status

Table 95 • NVM Data Integrity Check Service Request

Offset Length (bytes) Field Description
0 1 CMD = 23 Command

1 1 OPTIONS Service options. See Table 96, page 49

Table 96 • OPTIONS

7 6 5 4 3 2 1 0
Reser
ved

ENVM1 ENVM0 FABRIC

Table 97 • NVM Data Integrity Check Response

Offset Length (bytes) Field Description
0 1 CMD = 23 Command

1 1 DIGESTERR Pass/fail flags. See Table 98, page 50

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 50

If a digest mismatch occurs, DIGESTERR indicates which of the selected digests are in error.

Note: NVM data integrity check can be automatically performed on power-up by setting a flash bit at
programming stage using Libero Security Policy Manager in the Libero SoC design software. For more
information, refer Libero user guide.

3.12 Unrecognized Command Response
If an unrecognized command is received, which is not listed in Table 3, page 15, the System Controller
generates a response which includes the command value and status code equal to 252. The status code
252 indicates an unrecognized command.

3.13 Asynchronous Messages
Asynchronous messages are sent when certain events are detected, allowing the user design or System
Controller to take remedial or defensive action. No response is required from the user design or System
Controller. These messages may simply be discarded if desired.

3.13.1 Power-on-Reset (POR) Digest Error
The user may choose to have the device verify stored digests as part of its start-up sequence. When this
feature is enabled, user-specified NVM data digests are recalculated and compared against their stored
values and any inconsistency results in a POR digest error message. Refer to the following table.

If an error is detected, the system is still allowed to boot as normal, but messages are sent to the fabric
indicating the failure.

Table 98 • DIGESTERR

Bit Number Name Description
[7:3] RESERVED Reserved

2 ENVM1ERR 0 - ENVM1 digest check passed
1 - ENVM1 digest mismatch

1 ENVM0ERR 0 - ENVM0 digest check passed
1 - ENVM0 digest mismatch

0 FABRICERR 0 - FPGA fabric configuration digest check passed
1 - FPGA fabric configuration digest mismatch

Table 99 • Unrecognized Command Message

Offset Length (bytes) Field Description
0 1 CMD Command

1 1 STATUS = 252 Unrecognized command

Table 100 • POR Digest Error Message

Offset Length (bytes) Field Description
0 1 CMD = 241 Command

1 1 DIGESTERR See Table 98, page 50

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132044

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 51

3.14 How to Use System Services in SmartFusion2
Microsemi provides system services firmware drivers to access the system services implemented by the
System Controller. The SmartFusion2 system services driver can be downloaded from the Firmware
Catalog. The system services driver provides APIs to access the system services. The system services
APIs must be called in the user application code to access system services. The system services driver
provides the MSS_SYS_init() API to initialize the communication with the System Controller. The
MSS_SYS_init() function can be used to register a system services event handler. Each system service
API returns a service response to know the status of the service. For the list of system services APIs and
their descriptions, refer UG0837: IGLOO2 and SmartFusion2 FPGA System Services Simulation User
Guide.

The system services driver package includes sample projects to show the usage of system services
driver. The sample projects are available for three different tool chains: IAR Embedded Work, Keil-MDK,
and SoftConsole. The sample project can be generated by right clicking on the system services driver
and selecting the Generate sample project, as shown in the following figure.

Figure 11 • System Services Sample Projects

https://www.microsemi.com/document-portal/doc_download/1243499-ug0837-igloo2-and-smartfusion2-fpga-system-services-simulation-user-guide
https://www.microsemi.com/document-portal/doc_download/1243499-ug0837-igloo2-and-smartfusion2-fpga-system-services-simulation-user-guide

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 52

3.14.1 Use Model 1: Fetching Device and Design Information
This use model shows the usage of System Services driver to fetch the device and design information.
System Services drivers provide the following APIs to execute system services for fetching the device
and design information.

The following example application code fetches the device serial number and displays it on the UART
terminal. This application code is targeted at SmartFusion2 design which has MMUART0 enabled and
connected to the host PC for serial communication. The same application code can be extended to fetch
the JTAG user code, design version and device certificate by calling the corresponding APIs. Refer to the
sample project provided with the system services driver for a complete project.

#include <stdio.h>

#include "drivers/mss_sys_services/mss_sys_services.h"

#include "drivers/mss_uart/mss_uart.h"

/*==
====

 Private functions.

 */

static void display_hex_values

(

 const uint8_t * in_buffer, uint32_t byte_length

);

/*==
====

 UART selection. MMUART0 is selected.

 */

mss_uart_instance_t * const gp_my_uart = &g_mss_uart0;

/*==
====

 Main function.

 */

Table 101 • System Services APIs for Fetching Device and Design Information

System Services API Description
MSS_SYS_get_serial_number() Fetches the 128-bit device serial number and writes at address passed as the

function argument.

MSS_SYS_get_user_code() Fetches the 32-bit JTAG user code and writes at address passed as the
function argument.

MSS_SYS_get_design_version() Fetches the 16-bit design version and writes at address passed as the
function argument.

MSS_SYS_get_device_certificate() Fetches the 768 bytes device certificate from the eNVM and writes at address
passed as the function argument.

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 53

int main()

{

 uint8_t serial_number[16];

 uint8_t status;

 /*---

 * Initilize the system services communication with the System Controller.

 */

 MSS_SYS_init(MSS_SYS_NO_EVENT_HANDLER);

 /*---

 * Initilize the MMUART with required configuration

 */

 MSS_UART_init(gp_my_uart,

 MSS_UART_57600_BAUD,

MSS_UART_DATA_8_BITS | MSS_UART_NO_PARITY | MSS_UART_ONE_STOP_BIT);

 /*---

 * Fetch the Device Serial Number (DSN).

 */

 status = MSS_SYS_get_serial_number(serial_number);

 /*---

 * Check the service status for SUCCESS and then display the DSN on UART
terminal

 */

 if(MSS_SYS_SUCCESS == status)

 {

 MSS_UART_polled_tx_string(gp_my_uart,

 (const uint8_t*)"Device serial number: ");

 display_hex_values(serial_number, sizeof(serial_number));

 }

 for(;;)

 {

 ;

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 54

 }

 return 0;

}

/*==
====

 Display content of buffer passed as parameter as hex values

 */

static void display_hex_values

(

 const uint8_t * in_buffer,

 uint32_t byte_length

)

{

uint8_t display_buffer[128];

 uint32_t inc;

 if(byte_length > 16u)

 {

 MSS_UART_polled_tx_string(gp_my_uart,(const uint8_t*)"\r\n");

 }

 for(inc = 0; inc < byte_length; ++inc)

 {

 if((inc > 1u) &&(0u == (inc % 16u)))

 {

 MSS_UART_polled_tx_string(gp_my_uart,(const uint8_t*)"\r\n");

 }

 snprintf((char *)display_buffer, sizeof(display_buffer), "%02x ",
in_buffer[inc]);

 MSS_UART_polled_tx_string(gp_my_uart, display_buffer);

 }

}

Note: For more information, refer to the Related Applications, page 63.

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 55

3.15 How to Use System Services in IGLOO2
This section describes how to use system services. Microsemi provides CoreSysServices soft IP to
access the system services implemented by the System Controller. The CoreSysServices soft IP
provides a user interface for each of the system services and an Advanced High-performance Bus
(AHB)-Lite master interface on the Fabric Interface Controller (FIC) side. The core communicates with
the COMM_BLK through the FIC_0 interface.

CoreSysServices soft IP decodes the command values received from the user logic and translates the
user logic transactions to the AHB-Lite master transactions. For more information about the
CoreSysServices soft IP, refer CoreSysServices Handbook. The following figure shows the functional
block diagram for accessing system services.

Figure 12 • Functional Block Diagram for Accessing System Services

To configure the IGLOO2 device features and to build a complete IGLOO2 system, use the System
Builder graphical design wizard in the Libero software.

The following figure shows the initial System Builder window where you can select the device features
that you require. For details on how to launch the System Builder wizard and a detailed information on
how to use it, refer IGLOO2 System Builder User Guide.

COMM_BLK APB_1 eSRAM

AHB Bus Matrix

HPMS

System
Controller

APB_1

User Logic CoreSysServices
Soft IP

CoreAHB-Lite
Soft IP

Fabric

IGLOO2

http://soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 56

Figure 13 • System Builder Window

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 57

3.15.1 Configuring System Services
1. Check the HPMS System Services check box under the Device Features tab and leave the other

check boxes unchecked. The following figure shows the System Builder - Device Features tab.
Figure 14 • System Builder - Device Features Tab

2. Checking the HPMS System Services check box establishes a path for connecting the
CoreSysServices soft IP to the COMM_BLK though the FIC_0 interface. After selecting the
CoreSysServices block, the color of the CoreSysServices block changes to a darker color indicating
that the function is enabled in the System Builder. The following figure shows the path between the
COMM_BLK and the CoreSysServices soft IP.

Note: The System Builder does not automatically instantiate the CoreSysServices soft IP but allows you to
connect it with the FIC_0 master interface port.

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 58

Figure 15 • CoreSysServices IP to COMM_BLK Path

3. Go to Clocks tab and configure the required FIC_0 clock frequency. The following figure shows the
System Builder - Clocks tab.

Figure 16 • System Builder - Clock Tab

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 59

4. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs.
Click Finish to complete the system builder flow. The following figure shows the System Builder -
Memory Map tab.

Figure 17 • System Builder - Memory Map Tab

5. Instantiate the CoreSysServices soft IP in SmartDesign canvas and configure it for the required
System Services features.

6. Connect
• The CoreSysServices master interface port to the system builder generated a top-level

component master interface port.
• The COMM_BLK_INT signal of CoreSysServices to the COMM_BLK_INT signal of system

builder generated a top-level component.

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 60

Figure 18 • SmartDesign Connections

3.15.2 Fetching Device and Design information
This section describes the usage of the CoreSysServices soft IP to fetch the device and design
information.

1. Right-click on the CORESYSSERVICES_0 instance to open the Configuring
CORESYSSERVICES_0 dialog.

2. Check all the check boxes under Device and Design Information Services to configure the
CoreSysServices soft IP for Device and Design Information services. The following figure shows
the Device and Design Information Services dialog.

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 61

Figure 19 • CORESYSSERVICES_0 Configuration

3. Make the SmartDesign connections, as shown in the following figure.
Figure 20 • HPMS Subsystem and CoreSysServices IP Connections

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 62

4. The CoreSysServices soft IP provides the following user interface signals and Command codes to
execute the system services and to fetch the device and design information.

The following table lists the required user interface signals that the user is responsible for while executing
the system services for the Device and Design Information Services.

For more information about port description and timing diagrams, refer CoreSysServices Handbook.

The following table lists the Command Codes for Device and Design Information Services.

For other services Command values, refer Table 3, page 15.

5. The user logic must adhere to the following:
• Monitor the SERV_BUSY signal. When this signal is Low, a service can be requested.
• Drive the SERV_ENABLE _REQ signal HIGH and write corresponding command values to the

SERV_CMDBYTE_REQ[7:0] signal.
• Capture the requested service data SERV_DATA_R[31:0] when SERV_DATA_RVALID signal is

HIGH.
• Capture the SERV_STATUS_RESP[7:0] response signal when SERV_STATUS_VALID signal

is HIGH. Check the response and verify the status.

Table 102 • User Interface Signals

Port Type Description
Handshaking Signals
SERV_BUSY Out Service busy

When de-asserted, indicates that no service has been requested.
When asserted, indicates that the current service is in progress.

SERV_DATA_RVALID Out Data Valid for User Read Data

SERV_DATA_R[31:0] Out User Read Data

User Interface Signals: Request Signals
SERV_ENABLE _REQ In Active high request to start the service

SERV_CMDBYTE_REQ[7:0] In Command byte to indicate the type of system service.
Command byte for each of the requested

User Interface Signals: Response Signals
SERV_STATUS_RESP[7:0] Out Response status of the requested service

SERV_STATUS_VALID Out Response Status valid

Table 103 • Command Codes for Device and Design Information Services

System Service Name Command Value
Serial Number Service 1

USERCODE Service 4

Device Certificate Service 0

User Design Version Service 5

http://soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf

System Services

Microsemi Proprietary and Confidential UG0450 User Guide Revision 6.0 63

3.15.3 Related Applications
For more information, refer to the following application notes:

• AC436: Using Device Certificate System Service in SmartFusion2
• AC433: Using Zeroization in SmartFusion2 and IGLOO2 Devices
• AC432: Using SHA-256 System Services in the SmartFusion2 and IGLOO2
• AC434: Using SRAM PUF System Service in SmartFusion2
• AC435: Using ECC System Service in SmartFusion2
• AC410: Using AES System Services in SmartFusion2 and IGLOO2 Devices
• AC407: Using NRBG Services in SmartFusion2 SoC and IGLOO2 FPGA Devices

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134926
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134859
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134398
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134545
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134547
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133780
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132861

	1 Revision History
	1.1 Revision 6.0
	1.2 Revision 5.0
	1.3 Revision 4.0
	1.4 Revision 3.0
	1.5 Revision 2.0
	1.6 Revision 1.0
	1.7 Revision 0.0

	2 System Controller
	2.1 Introduction
	2.2 Functional Description
	2.2.1 Subsystems
	2.2.2 Interfaces
	2.2.3 System IP Interface (SII) Master
	2.2.4 Communication Block (COMM_BLK)
	2.2.5 Oscillator Control
	2.2.6 Random Number Generator
	2.2.7 Cryptographic Services
	2.2.8 JTAG
	2.2.8.1 Boundary Scan
	2.2.8.1.1 TAP Controller State Machine

	2.2.8.2 Boundary Scan Opcodes

	2.2.9 User JTAG
	2.2.9.1 UJTAG Macro
	2.2.9.2 UJTAG Operation
	2.2.9.3 Typical UJTAG Applications
	2.2.9.3.1 Silicon Testing and Debugging

	2.2.9.4 How to Use UJTAG

	2.2.10 Dedicated Programming SPI Peripheral
	2.2.11 Device Reset
	2.2.12 USI Interface
	2.2.12.1 SYSRESET
	2.2.12.2 Flash*Freeze Signals

	2.2.13 Clock Requirements
	2.2.14 System Controller Suspend Mode

	3 System Services
	3.1 Introduction
	3.2 Device and Design Information Services
	3.2.1 Serial Number Service
	3.2.2 USERCODE Service
	3.2.3 Device Certificate Service
	3.2.4 User Design Version Service

	3.3 Flash*Freeze Service
	3.4 Cryptographic Services
	3.4.1 AES Services
	3.4.1.1 128-bit AES Cryptographic Service
	3.4.1.2 256-bit AES Cryptographic Service

	3.4.2 SHA-256 Services
	3.4.2.1 SHA-256 Cryptographic Service
	3.4.2.2 HMAC Cryptographic Service

	3.5 DPA-Resistant Key-Tree Services
	3.5.1 Key-Tree Cryptographic Service
	3.5.2 Challenge-Response Cryptographic Service

	3.6 Elliptic Curve Cryptography Services
	3.6.1 ECC Point Multiplication Service
	3.6.2 ECC Point Addition Service

	3.7 SRAM-PUF Services
	3.7.1 Create User Activation Code
	3.7.1.1 Create or Delete User Activation Code Service

	3.7.2 Key Generation and Enrollment Services
	3.7.2.1 Create or Delete User Key Code and Export or Import All Service
	3.7.2.2 Get Number of Enrolled Keys
	3.7.2.3 User Key (Extrinsic or Intrinsic) Enrollment
	3.7.2.4 Exporting User Activation Code and All Key Codes
	3.7.2.5 Importing User Activation Code and All Key Codes
	3.7.2.6 Delete a User Key from the Enrolled Keys

	3.7.3 Key Reconstruction
	3.7.3.1 Fetch a User PUF Key Service

	3.7.4 User-Enrolled SRAM-PUF Keys for Design Security
	3.7.4.1 Fetch User PUF ECC Public Key Service

	3.7.5 SRAM-PUF Based True Random Number Seed Generation
	3.7.5.1 Get a PUF Seed Service

	3.8 Non-Deterministic Random Bit Generator (NRBG) Services
	3.8.1 Self Test Service
	3.8.2 Instantiate Service
	3.8.3 Generate Service
	3.8.3.1 Reseed Service

	3.8.4 Uninstantiate Service
	3.8.5 Reset Service

	3.9 Zeroization Service
	3.9.1 FPGA Fabric Configuration NVM
	3.9.2 User Security Keys and Settings
	3.9.3 Factory Security Keys and Configuration Settings
	3.9.4 System Controller Memory
	3.9.5 Digital Data Path
	3.9.6 Fabric Registers
	3.9.7 Fabric SRAM
	3.9.8 HPMS SRAM
	3.9.9 eNVM Memory Array and eNVM Registers

	3.10 Programming Service
	3.10.1 IAP Service
	3.10.2 ISP Service

	3.11 NVM Data Integrity Check Service
	3.12 Unrecognized Command Response
	3.13 Asynchronous Messages
	3.13.1 Power-on-Reset (POR) Digest Error

	3.14 How to Use System Services in SmartFusion2
	3.14.1 Use Model 1: Fetching Device and Design Information

	3.15 How to Use System Services in IGLOO2
	3.15.1 Configuring System Services
	3.15.2 Fetching Device and Design information
	3.15.3 Related Applications

