ModelSim® Reference Manual

Software Version 10.1c

© 1991-2012 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form
http://www.mentor.com/trademarks

Table of Contents

Chapter 1
Syntax and CoNVENtIiONS. i e 11
Documentation CoNVENLIONSottt e e et 11
Fileand Directory Pathnames 12
Design ObjeCt NaIMESot 12
Object Name SyntaXxot 12
Tcl Syntax and Specification of Array Bitsand Slices. 13
SystemVerilog Scope Resolution Operator 14
SPECIfYINg NaMES.o 15
Environment Variablesand Pathnames 17
Name Case SENSITIVITYo e 17
Extended ldentifiersot 17
Wildcard CharaCters.o e e 17
Using the WildcardFilter PreferenceVariable i .. 18
Simulator Variables. 22
Simulation TIMe UNItS.o e 22
ArgUMENT FILES. . . . 23
Command SNOMCULS. oot e e e e e e e 24
Command History ShortCULS oo ettt 24
NUumbering ConVeNntions et e e e e e 25
VHDL Numbering ConventionS.ottt e e et e 25
Verilog Numbering Conventions oot 26
GUI_eXpression format.ou it e e 27
EXPressioN TYPING . .o e ettt e e e e e e 27
EXPressSioN SYNtaX.ottt 27
Signal and Subelement Naming Conventions. i, 34
Grouping and PreCedenCe. oot 34
Concatenation of Signalsor Subelements. i 35
Record Field Members 36
Searching for Binary Signal ValuesintheGUI 37

Chapter 2
COMMANGS. . . .ottt e e e 39
00 48
add dataflow o 49
A0 LISt . o 51
A0 MEMOTY . .. 55
00 MESSA0E . . . ottt 57
A0 WaLCN . . 59
B0 WAV . . .o 60
add cmdhelp. ... e 67
AlIBS. . 69

ModelSim Reference Manual, v10.1c 3

Table of Contents

ArChiVe l0oad. 70
A NIV W . . o ottt e e e e 71
batch mode. 72
DO, L e 73
bookmark add Wave e 75
bookmark deleteWave 77
bookmark gotowave. 78
booKmark lISEWaVE. o e 79
0] P 80
Call. o o 86
. o 88
Change. 89
ClasSiNfO . . oo 91
CONfIQUI. . . ottt e e e e e 95
JAASEt AlIaS. . . o vttt 101
Aatasel ClEar. e e 102
AataSel ClOSE . . .t e 103
dataset CONfIgo 104
Aatasel CUITENT oot e e e e e e 106
(0721 7= << A1 0 107
(0721 7= < <. = 108
JalaSEt O PN, . . .ot e 109
AataSEl FENAIME. ottt e e e e e 110
Aataset FESTAIottt 111
AataSEl SAVE 112
dataset SNAPSNOLo 113
[0 1< 1< (< 116
AESCIIDE. . . ot 117
disablebp. . .o 118
Q0. . 119
ANV S . . o 121
AUMPIOGBA . . . e 123
BCNI0 . ot e 124
<0 125
BNl . . e 126
BNCOTING . . . ottt 127
BNVITONMIENE .« . ettt e e e e e 128
BXAMINE. o o ot 130
EXIL. L o 135
107 136
fINd CONNECLIONSottt e e e e e e 141
FINA INFIIES. . . oo 142
FINA INSOUICE e e e e e e 143
FOMCE . . 145
oMM TIMIEttt e e e e 151
Bl . e 152
RS OrY . .o e 153
[y OUL. . . . e 154
(O . e 156

ModelSim Reference Manual, v10.1c

Table of Contents

[SNITt .. e 159
[SUDI St . . ottt e e 160
NEM COMPAIE .« . o ettt et et e et e et e e e e e e e e e e et 161
MEM AISPlAY ...t 162
M LIS, o o e e 165
MEM 0B, 166
[1 0172 Y/ 170
BN SEAICN . . o ottt e e e 173
messages clearfilter. 176
Messages Setfilter 177
MESSAgES WHITE . o . ottt ittt e e e e et e e 178
MNOOE S M. . e 179
NOMOICE . o o 180
MO0 . . oot 181
NOLEPA oot 183
[101YZ1=.Y,Y 2P 184
MOW NN o e 185
ONDIEAK . . . oo 186
ONEIADEITOr. 188
0] 1< 1 (] (S 189
(011121 1 191
072 1 192
PrECISION . . o ettt e e e e e e 193
DI BNV . . e e e e e e e e e 194
PrOCESS FEONT . . . o e ottt e et e e e e e e 195
0] 0] 1= oX P 196
PWA . o 199
QUIEHTY . .o 200
QUIT .« e 201
=7 G PPN 202
FAdiX AEFINE. . . . 204
FadiX AEl B . . . o 207
(17270 548 11 P 208
FA0iX NAMIES. . . ottt e e e 209
FadiX SIgNaAl . .. e 210
FEAOETS. . o oo 211
15070 212
(1= (1 214
TESUIME. . . o ittt et 216
TUN . 217
TUNSLALUS o 220
SBAICNIOg . . . oo 222
LS 225
S L. 1Y/ 226
SNITt . o 227
S 2761, 228
M AL Sottt 229
STACK OWN .« . e 231
StACK FraME . . oo 232

ModelSim Reference Manual, v10.1c 5

Table of Contents

StaCK Vel . . 233
SACK I . o 234
SACK UP . . oo e 235
SBUS et 236
=0 237
O 238
SUP P S, . .\ et et e e e e e e e e 239
L1 240
T o 241
L1110 110 244
transCript file. . ..o 245
tranSCriPt Path . . o . 247
transCript SIZEliMIt. . ..o 248
LSS5 174 1 01X 249
UL VVIMOOE ..o 250
UNSEIENV . . ottt et e e e et e e e e e e 252
Ve add . . .o 253
VCd ChECKPOINT . . . o 255
VOO COMMIBNE . . . ottt e e e e e e e e e e e e e e 256
VA AUMIPDPOIES. & . vttt et e e e e e e e e e e 257
ved dumpportsall. . ..o 260
ved dumpportsflush. ... 261
ved dumpportslimit. 262
ved dUMPPOIESOFT . . . o 263
VCA AUMPPOITSON. . . . ettt et e e e e e e e e e 264
VOO Il 265
VOO TS, L e 267
VA TIUSN . L 269
Ve Mt . L 270
VOO OFf . Lo 271
VOO O . L e e e 272
VOO 273
VOO . et e et e e e e e e e e e 275
VAL o 288
VAT L 290
A= 16 5/ o 293
1T 10 P 295
VOENCOMP .« e et et e e e et e e e e e et e e e e e 297
VNG L. . o 299
17 2 301
VIFTUBE COUNL . . . e e e e e e e 304
Virtual define. o 305
Virtual delete 306
virtual describeo 307
Virtual eXPando 308
virtual fUNCLiON 309
virtual hide 312
VIFUAL 10 . . oo 313
Virtual NONIdE 315

ModelSim Reference Manual, v10.1c

Table of Contents

VIFtUA NOLOQ . . . o 316
VIFTUA FOgION. . . et e 318
VIFUA SAVE . . oottt e e e 319
VIFUAl SNOW. . . o e 320
Virtual SIgnalo 321
VUl By P . o o 325
VI o 327
VI 00 . o 329
VMK . et e e e 347
111> P 349
£ V25" 10 351
VOIMKIN O . . o 381
VSIM DreaK . .. 382
£V 25 011 | o/ A 383
171722 Y/ 384
(VAT 2= Y[03 (== (= 388
WaAVE BOIL. . .ottt 394
WAV BXPOI . .« o e 397
WaAVE IMPOIT . . o et ettt e e e e e e e e e e e e 399
WaVE MOITY . . . 400
(VAT 22 Y/ 0 405
W L e e 406
W . e 414
WIT2l0g . . 415
W 2VCA 417
WA e 418
W TECOVEY . . o et e e e e e e 423
W T OIMIAL. © . . oottt e e e e e e e e 424
W LISt . . e 427
W PrEfErENCES. . . . oo e 428
LT LS = 0 1 AP 429
W TIMING. . ..o e e 432
W I ANSC I . . . ettt e e e e 434
LYY (= 435
W B WAV . . . vttt et e e e e e e e e e e e e 437
Index

End-User License Agreement

ModelSim Reference Manual, v10.1c 7

List of Examples

Example 1-1. SystemVerilog Scope Resolution Operator Example. 14

ModelSim Reference Manual, v10.1c

List of Figures

Figure 2-1. drivers Command Resultsin Transcript 121
Figure 2-2. find infilesExample 142
Figure2-3. findinsource Example. 144
Figure 2-4. readers Command Resultsin Transcript. 211

ModelSim Reference Manual, v10.1c 9

List of Tables

Table 1-1. Conventions for Command Syntax, 11
Table 1-2. Examplesof ObjeCct Namest e e 16
Table 1-3. Wildcard Charactersin HDL Object Names, 18
Table 1-4. WildcardFilter Argumentsttt e e 20
Table 1-5. WildcardFilter Argument Groupsoovii i e e 21
Table 1-6. Keyboard Shortcuts for Command History 24
Table 1-7. VHDL Number Conventions: Stylel 25
Table 1-8. VHDL Number Conventions: Style2 25
Table 1-9. Verilog Number Conventionst 26
Table 1-10. Constants Supported for GUI EXpresssionsovuinnnennn... 29
Table 1-11. Array Constants Supported for GUI EXpresssions 29
Table 1-12. Variables Supported for GUI EXpresssionsccoiiiinnnnn... 29
Table 1-13. Array Variables Supported for GUI EXpresssions 30
Table 1-14. Operators Supported for GUI EXPresssionscovvnennnnnn... 31
Table 1-15. Precedence of GUI Expression Operatorsoovvvi i i 32
Table 1-16. Casting Conversions Supported for GUI Expresssions 33
Table1-17. VHDL LogicVauesUsed inGUI Search 37
Table 1-18. Verilog Logic ValuesUsed inGUI Search 38
Table 2-1. Supported Commandsottt 39
Table2-2. Message Viewer Calegories v ittt ittt eeeee e 57
Table 2-3. runStatus Command SEateSot 220
Table 2-4. runStatus -full Command Information 220
Table 2-5. Warning Message Categoriesfor vcom-nowarn 284
Table2-6. Design Unit Propertiest e 291
Table 2-7. Warning Message Categoriesfor viog-nowarn 339
Table 2-8. Wave Window Commandsfor Cursorccoiiiiinninnen.nn. 384
Table 2-9. Wave Window Commands for Expanded TimeDisplay 384
Table 2-10. Wave Window Commands for Controlling Display 385
Table 2-11. Wave Window Commandsfor Zoomingcouvunun... 385

10 ModelSim Reference Manual, v10.1c

Chapter 1
Syntax and Conventions

Documentation Conventions
This manual uses the following conventions to define Model Sim command syntax.

Table 1-1. Conventions for Command Syntax

Syntax notation Description

< > angled brackets surrounding a syntax item indicate a
user-defined argument; do not enter the bracketsin
commands

[] sguare brackets generally indicate an optional item; if

the brackets surround several words, all must be
entered as a group; the brackets are not entered?

{ } braces indicate that the enclosed expression contains
one or more spaces yet should be treated as asingle
argument, or that the expression contains square
brackets for an index; for either situation, the braces
are entered

an ellipsisindicates items that may appear more than
once; the ellipsisitself does not appear in commands

| the vertical bar indicates a choice between items on
either side of it; do not include the bar in the command

monospaced type monospaced type is used in command examples

comments included with commands are preceded by
the number sign (#); useful for adding comments to
DO files (macros)

1. One exception to thisruleiswhen you are using Verilog syntax to designate an array
dice. For example,

add wave { vector1[4:0]}

The square bracketsin this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets asa Tcl command.

Note
Neither the prompt at the beginning of aline nor the <Enter> key that endsalineis

shown in the command examples.

ModelSim Reference Manual, v10.1c 11

Syntax and Conventions
File and Directory Pathnames

File and Directory Pathnames

Several Model Sim commands have arguments that point to files or directories. For example, the
-y argument to vlog specifies the Verilog source library directory to search for undefined
modules. Spacesin file pathnames must be escaped or the entire path must be enclosed in
quotes. For example:

vlog top.v -y C:/Documents\ and\ Settings/projects/dut

or

vlog top.v -y "C:/Documents and Settings/projects/dut”

Design Object Names

Design objects are organized hierarchically. Each of the following objects createsanew level in
the hierarchy:

®* VHDL — component instantiation statement, block statement, and package
® Verilog— module instantiation, named fork, named begin, task and function

®* SystemVerilog — class, package, program, and interface

Object Name Syntax

The syntax for specifying object namesin ModelSim is as follows:

[<dataset_name><datasetSeparator>] [<pathSeparator>] [<hierarchicalPath>]
<objectName> [<elementSelection>]

where

® dataset_name— isthe name mapped to the WLF file in which the object exists. The
currently active smulation isthe “sim” dataset. Any loaded WLF fileisreferred to by
the logical name specified when the WLF file was |oaded. Refer to the chapter
“Recording Simulation Results With Datasets” in the User’s Manual for more
information.

® datasetSeparator — isthe character used to terminate the dataset name. The default is
colon (:), though a different character (other than backslash (\)) may be specified as
the dataset separator viathe DatasetSeparator variable in the modelsim.ini file. This
character must be different than the pathSeparator character.

® pathSeparator — isthe character used to separate hierarchical object names. Normally,
abackdash (\) isused for VHDL and aperiod (.) isused for Verilog, although other
characters (except abackslash (\)) may be specified viathe PathSeparator variablein
the modelsim.ini file. This character must be different than the datasetSeparator. Neither

12 ModelSim Reference Manual, v10.1c

Syntax and Conventions
Design Object Names

(.) nor (/) can be used when referring to the contents of a SystemV erilog package or
class.

® hierarchicalPath — isaset of hierarchical instance names separated by a path
separator and ending in a path separator prior to the objectName. For example,
[top/proc/clk.

® objectName — isthe name of an object in adesign.
* eementSelection — indicates some combination of the following:

o Arrayindexing— Single array elements are specified using either parentheses (())
or square brackets ([]) around a single number. Y ou must also surround the object
and specified array element with curly braces ({}). Refer to Tcl Syntax and
Specification of Array Bitsand Slices for important information about using square
brackets and parentheses in Model Sim commands.

o Array dicing — Slices (or part-selects) of arrays are specified using either
parentheses (()) or square brackets ([]) around arange specification. A rangeis
two numbers separated by one of the following: " to ", " downto ", or acolon (:).
Y ou must aso surround the object and specified array slice with curly braces ({}).
Refer to Tcl Syntax and Specification of Array Bits and Slices for important
information about using square brackets and parentheses in Model Sim commands.

o Record field selection — A record field is specified using aperiod (.) followed by
the name of the field.

Tcl Syntax and Specification of Array Bits and Slices

Because Model Sim isaTcl-based tool, you must surround objects and signals with curly braces
({}) when specifying array bits or slices with parentheses (()), spaces, or square brackets
([1)- For example:

toggle add {datal[3:0]}
toggle add {data(3 to 0)}
force {busl[1l]} 1

Further Details

Because ModelSim is basd on Tcl, its commands follow Tcl syntax. One problem you may
encounter with Model Sim commands is the use of square brackets ([]), parentheses (()), or
spaces when specifying array bits and slices. As shown on the previous page, square brackets
are used to specify slices of arrays (for example, data[3:0]). However, in Tcl, square brackets
signify command substitution. Consider the following example:

set aluinputs [find -in alu/*]

ModelSim Reference Manual, v10.1c 13

Syntax and Conventions
Design Object Names

Model Sim evaluates the find command first and then sets variable aluinputs to the result of the
find command. Obviously you don’t want this type of behavior when specifying an array dlice,
so you would use curly brace escape characters:

add wave {/s/abc/data_in[10:1]1}
Y ou must aso use the escape charactersif using VHDL syntax with spaces:
add wave {/s/abc/data_in (10 downto 1)}

For complete details on Tcl syntax, refer to Tcl Command Syntax.

SystemVerilog Scope Resolution Operator

SystemV erilog offers the scope resol ution operator, double colon (::), for accessing classes
within a package and static data within a class. The example below shows various methods of
using this operator as well as alternatives using standard hierarchical references.

Example 1-1. SystemVerilog Scope Resolution Operator Example

package myPackage;
class packet;

static int af[0:1] = {1, 2};
int b[0:1];
int c;

function new;
b[0] = 3;
bll] = 4;
c = al0];

endfunction
endclass

endpackage : myPackage

module top;
myPackage: :packet my = new;
int myint = my.al[l];
endmodule

The following examine examples access data from the class packet.

examine myPackage: :packet::a
examine /top/my.a

Both of the above commands return the contents of the static array a within class packet.

examine myPackage: :packet::a(0)
examine /top/my.a(0)

Both of the above commands return the contents of the first element of the static array a
within class packet.

14 ModelSim Reference Manual, v10.1c

Syntax and Conventions
Design Object Names

examine /top/my.b

Return the contents of the instance-specific array b.

examine /top/my.b(0)
Return the contents of the first element of the instance-specific array b.

When referring to the contents of a package or class, you cannot use the standard path
separators, aperiod (.) or aforward slash (/).

Specifying Names

We distinguish between four "types' of object names: ssimple, relative, fully-rooted, and
absolute.

* Simple name— does not contain any hierarchy. It issimply the name of an object (e.g.,
clk or data[3:0]) in the current context.

* Relative name — does not start with a path separator and may or may not include a
dataset name or ahierarchical path (e.g., ul/data or view:clk). A relative nameisrelative
to the current context in the current or specified dataset.

® Fully-rooted name — starts with a path separator and includes a hierarchical path to an
object (e.g., /top/ul/clk).There is a specia case of afully-rooted name where the top-
level design unit name can be unspecified (e.g., /ul/clk). In this case, the first top-level
instance in the design is assumed.

* Absolute name — is an exactly specified hierarchical name containing a dataset name
and afully rooted name (e.g., sim:/top/ul/clk).

The current dataset is used when accessing objects where a dataset name is not specified as part
of the name. The current dataset is determined by the dataset currently selected in the Structure
window or by the last dataset specified in an environment.

The current context in the current or specified dataset is used when accessing objects with
relative or simple names. The current context is either the current process, if any, or the current
instance if there is no current process, or the current process is not in the current instance. The
situation of the current process not being in the current instance can occur, for example, by
selecting a different instance in the Structure tab or by using the environment to set the current
context to a different instance.

The current context is also the activation level of an automatic task, function, or block. Different
levels of activation may be selected by using the Call Stack window, or by using the 'stack up'
or 'stack down' commands.

For example, when you set a breakpoint on line 5 of the following code:

package p;

ModelSim Reference Manual, v10.1c 15

Syntax and Conventions
Design Object Names

int I;
function automatic int factorial (int n);
if (n==0)
return 1;
else
return n * factorial(n - 1);
endfunction : factorial
endpackage : p
module top;
initial begin
p::I=p::factorial(3);

Sdisplay(p::1I);
Sdisplay (p::factorial (4));
end
endmodule: top
When you issue the command:

examine n

the transcript returns:
0
However, when you issue the command:

stack up;examine n

the transcript returns:
1
Table 1-2 contains examples of various ways of specifying object names.

Table 1-2. Examples of Object Names

Object Name Description

clk specifies the object clk in the current context

Itop/clk specifies the object clk in the top-level design unit.

ltop/blockl/u2/clk | specifiesthe object clk, two levels down from the top-level
design unit

blockl/u2/clk specifies the object clk, two levels down from the current
context

array_sig[4] specifies an index of an array object

{array_sig(1to 10)} | specifiesadlice of an array object in VHDL ; see Tcl
Syntax and Specification of Array Bitsand Slicesfor more
information

16 ModelSim Reference Manual, v10.1c

Syntax and Conventions
Wildcard Characters

Table 1-2. Examples of Object Names (cont.)

Object Name Description

{mysignal[31:0]} specifiesadice of an array object in Verilog; see Tcl
Syntax and Specification of Array Bitsand Slicesfor more
information

record_sig.field specifiesafield of arecord

Environment Variables and Pathnames

Y ou can substitute environment variables for pathnames in any argument that requires a
pathname. For example:

vlog -v $lib_path/undl

Assuming you have defined $lib_path on your system, vlog will locate the source library file
undl and search it for undefined modules. Refer to Environment Variables for more
information.

Name Case Sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL names are not case sensitive
except for extended identifiersin VHDL 1076-1993 or later. In contrast, all Verilog names are
case sensitive.

Names in Model Sim commands are case sensitive when matched against case sensitive
identifiers, otherwise they are not case sensitive.

Extended Identifiers
The following are supported formats for extended identifiers for any command that takes an
identifier.

{\ext ident!\ }
Note that trailing space before closing brace is required

\\ext\ ident\!\\
All non-alpha characters escaped

Wildcard Characters

Y ou can use wildcard charactersin HDL object names for the following simulator commands:

®* add dataflow
® addlist

ModelSim Reference Manual, v10.1c 17

Syntax and Conventions
Wildcard Characters

® add memory
® add watch

* addwave

e find

* log

When you execute any of these commands with awildcard, the default behavior isto exclude
the following object types:

®* VHDL shared variablesin packages and design units, constants, generics, and
immediate assertions

® Verilog parameters, specparams, memories
®* PSL and SystemVerilog assertions, covers, and endpoints
® Signalsincells

Y ou can alter these exclusions with the WildcardFilter preference variable. Refer to the section
“Using the WildcardFilter Preference Variable” for more information.

Table 1-3 identifies these supported wildcard characters.

Table 1-3. Wildcard Characters in HDL Object Names
Character Syntax | Description

* matches any sequence of characters
? matches any single character
[matches any one of the enclosed

characters; a hyphen can be used to
specify arange (for example, a-z, A-Z,
0-9); can be used only with the find
command

Note
A wildcard character does not match a path separator. For example, /dut/* will match

/dut/siga and /dut/clk. However, /dut* will not match either of those.

Using the WildcardFilter Preference Variable

The WildcardFilter preference variable controls which object types are excluded when
performing wildcard matches with simulator commands. The WildcardFilter preference
variableisaTcl List and can be modified using Tcl commands. Y ou can add both individual

18 ModelSim Reference Manual, v10.1c

Syntax and Conventions
Wildcard Characters

(Figure 1-4) and group variables (Figure 1-5) to the current variable list, and you can remove
individual variables from the current list.

Note
D Y our WildcardFilter settings are persistent from one invocation to the next.

Procedure
Determining the Current WildcardFilter Variable Settings
Enter one of the following commands:

set WildcardFilter

or

echo $WildcardFilter
which returnsthe list of currently set variables.

Changing the WildcardFilter Settings from the Command Line

Refer to thelist of WildcardFilter argumentsin Table 1-4 and Figure 1-5 to determine what you
want to include in the wildcard matches.

®* Todefineanew list of values enter the following command:
set WildcardFilter “<argl arg2 ...>"
Note that you must enclose the space-separated list of arguments in quotation marks.
®* To add one or more valuesto the current list enter the following command:
lappend WildcardFilter <argl arg2 ...>
Note that you must not enclose the space-separated list of argumentsin quotation marks.

* Toremoveavauefrom thefilter use the set command with the Tcl Isearch command to
create the new list from the existing list. For example:

set WildcardFilter [Isearch -not -all -inline $WildcardFilter Endpoint]

Changing the WildcardFilter Settings back to the Default
Enter the following command:

set WildcardFilter default

Changing the WildcardFilter settings from the GUI
1. Choose Tools> Wildcard Filter from the main menu.

ModelSim Reference Manual, v10.1c 19

Syntax and Conventions
Wildcard Characters

2. Select theindividual Filters you want to exclude from wildcard searches (Table 1-4
describes each option), or select Composite Filtersto activate related filters (Table 1-5
describes each composite option).

3. Click OK.

Refer to the Tcl man pages (Help>Tcl Man Pages) for more information about the Isearch and
set commands.

WildcardFilter Argument Descriptions
Table 1-4 provides alist of the WildcardFilter arguments.

Table 1-4. WildcardFilter Arguments

Argument Description

Alias VHDL Alias

Assertion Concurrent SystemVerilog or PSL assertion

CdllInternal Signalsin cells, where a cell is defined as 1) amodule within a

‘celldefine 2) a Verilog module found with alibrary search
(using either vlog -v or vlog -y) and compiled with viog +libcell
or 3) amodule containing a specify block

Class Verilog class declaration

ClassReference SystemVerilog class reference

Compare Waveform comparison signal

Constant VHDL constant

Cover SystemVerilog or PSL cover statements

Covergroup SystemVerilog or PSL covergroup

Coverpoint Verilog coverpoint

Cross Verilog cross

Endpoint SystemV erilog assertion objects created for sequences on which

the method “ended/triggered” is used.
PSL assertion objects created for sequences for which the built
in function “ended()” is used.

Generic VHDL generic

ImmediateA ssert VHDL immediate assertions
Integer VHDL integer

Memory Verilog memories
NamedEvent Verilog named event

Net Verilog net

20 ModelSim Reference Manual, v10.1c

Syntax and Conventions
Wildcard Characters

Table 1-4. WildcardFilter Arguments (cont.)

Argument Description

Parameter Verilog parameter

Red Verilog real registers

Reg Verilog register

ScVariable SystemC variable

Signal VHDL signa

SpecParam Verilog specparam

Time Verilog time registers

Transaction Transaction stream and stream arrays
Variable VHDL shared variablesin packages and design units.
Virtual Expr Virtual expression

Virtual Signal Virtual signal

Table 1-5 provides alist of the group aliases of WildcardFilter arguments. Y ou can set a group
value with the set command. The expanded list of valuesis returned.

Table 1-5. WildcardFilter Argument Groups

Group Argument

Specific argumentsincluded

AllVHDL Signal, Variable, Constant, Generic, Alias

AllVerilogVars Parameter, Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, ClassReference

AllVerilog Net, Parameter, Reg, Integer, Time, Real, SpecParam,

Memory, NamedEvent, Class, Cross, Covergroup,
Coverpoint, ClassReference

VirtualSignals

VirtualSignal, Virtua Expr

SystemC ScVariable

AlIHDLSignals Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, Virtual Expr, ClassReference

AllVariables Variable, Constant, Generic, Alias, Parameter, Reg,

Integer, Time, Real, SpecParam, Memory, NamedEvent,
ClassReference

AlIHDLSignasVars

Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, Virtual Expr, ClassReference

ModelSim Reference Manual, v10.1c

21

Syntax and Conventions
Simulator Variables

Table 1-5. WildcardFilter Argument Groups (cont.)

Group Argument Specific argumentsincluded

AllSignals Signal, Net, Parameter, Reg, Integer, Time, Redl,
SpecParam, Memory, NamedEvent, VirtualSignal,
Virtual Expr, Endpoint, ClassReference

AllSignalsVars Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, Virtual Expr, Endpoint,
ScVariable, ClassReference

AllConstants Constant, Generic, Parameter, SpecParam

Default Variable, Constant, Generic, Parameter, SpecParam,
Memory, Assertion, Cover, Endpoint, ScVariable,
CellInternal, ImmediateAssert

Simulator Variables

Y ou can reference Model Sim variables in a simulator command by preceding the name of the
variable with the dollar sign ($) character. Model Sim uses global variables for simulator state
variables, simulator control variables, simulator preference variables, and user-defined
variables. Refer to modelsim.ini Variablesin the User’s Manual for more information on
variables.

The report command returns alist of current settings for either the simulator state or simulator
control variables.

Simulation Time Units

Y ou can specify the time unit for delaysin all ssmulator commands that have time arguments.
For example:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time unitsin a Model Sim command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always expressed
using the resolution units that are specified by the UserTimeUnit variable.

By default, the specified time units are assumed to be relative to the current time unless the
value is preceded by the character @, which signifies an absolute time specification.

22 ModelSim Reference Manual, v10.1c

Syntax and Conventions
Argument Files

Argument Files

Y ou can load additional arguments into some commands by using argument files, which are
specified with the -f argument. The following commands support the -f argument:

vlog vcom vencrypt vmake vsim

The -f <filename> argument specifies afile that contains additional command line arguments.
The following sections outline some syntax rules for argument files.

® Single Quotes (* *)— Allowsyou to group arbitrary characters so that no character
substitution occurs within the quotes, such as environment variable expansion or
escaped characters.

+acc=rn+'\mymodule’
//does not treat the '\’ as an escape character

® Double Quotes (“ “)— Allows you to group arbitrary characters so that Tcl-style
backsl ash substitution and environment variable expansion is performed.

+acc=rn+"\\mymodule\\SVAR"

// escapes the path separators (\) and substitues
// your value of ‘S$SVAR’

® Unqguoted — The following are notes on what occurs when some information is not
quoted:

o Tcl backdash substitution — Any unquoted backslash (\) will be treated as an
escape character.

+acc=rn\\mymodule
// the leading '\' is considered an escape character

o Environment variable expansion — Any unquoted environment variable, such as
$envname, will be expanded. Y ou can also use curly braces ({ }) inyour
environment variable, such as ${ envname} .

+acc=rn\\ SMODULE

// the leading '\' is considered an escape character and the
// variable $MODULE is expanded

® Newline Character — Y ou can specify arguments on separate linesin the argument file
with the line continuation character (\). Y ou must use a space before the backslash.

® Comments — Comments within the argument files follow these rules:
o All textinaline beginning with // to its end is treated as a comment.
o All text bracketed by /* ... */ istreated as a comment.

o All text inaline beginning with # to its end is treated as a comment.

ModelSim Reference Manual, v10.1c 23

Syntax and Conventions
Command Shortcuts

Command Shortcuts

Y ou may abbreviate command syntax, but there’ s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
Model Sim does not allow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

Multiple commands may be entered on one line if they are separated by semi-colons (;).
For example:

ModelSim> vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

Y ou probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command History Shortcuts

Y ou can review simulator command history or rerun previous commands by using keyboard
shortcuts at the Model Sim/VSIM prompt. Table 1-6 contains alist of these shortcuts.

Table 1-6. Keyboard Shortcuts for Command History

Shortcut Description

1 repeats the last command

In repeats command number n; nisthe VSIM prompt
number (e.g., for this prompt: VSIM 12>, n =12)

I<string> shows alist of executed commands that start with
<string>. Use the up and down arrows to choose from
thelist.

labc repeats the most recent command starting with "abc"

Axyzab™ replaces "xyz" in the last command with "ab"

up and down arrows| scrollsthrough the command history with the keyboard
arrows

click on prompt left-click once on a previous ModelSim or VSIM

prompt in the transcript to copy the command typed at
that prompt to the active cursor

24

ModelSim Reference Manual, v10.1c

Syntax and Conventions
Numbering Conventions

Table 1-6. Keyboard Shortcuts for Command History (cont.)

Shortcut Description

his or history shows the last few commands (up to 50 are kept)

Numbering Conventions

Numbers in Model Sim can be expressed in either VHDL or Verilog style. Y ou can use two
stylesfor VHDL numbers and one for Verilog.

VHDL Numbering Conventions
There are two types of VHDL number styles:

VHDL Style 1
[- 1 [radix #] value [#]
Table 1-7. VHDL Number Conventions: Style 1
Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

isadelimiter between the radix and the value; the first # sign is required
if aradix isused, the second is always optional

A ‘-’ can also be used to designate a"don’t care” element when you search for asignal value or
expression in the List or Wave window. If you want the ‘-’ to beread asa"don’t care”" element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you
would type "-0110--" as opposed to -0110--. If you don’t include the double quotes, ModelSim
will read the ‘-’ as anegative sign. For example:

16#FFcal23#
2#11111110
-23749

VHDL Style 2

base "value"

Table 1-8. VHDL Number Conventions: Style 2
Element Description

base specifies the base; binary: B, octal: O, hex: X; required

ModelSim Reference Manual, v10.1c 25

Syntax and Conventions
Numbering Conventions

Table 1-8. VHDL Number Conventions: Style 2 (cont.)

Element Description
"value" specifies digitsin the appropriate base with optional underscore
separators; default is decimal; required
For example:
B"11111110"
X"FFca23"

Searching for VHDL Arrays in the Wave and List Windows

Searching for signal valuesin the Wave or List window may not work correctly for VHDL
arraysif the target value isin decimal notation. Y ou may get an error that the valueis of
incompatible type. Since VHDL does not have aradix indicator for decimal, the target value
may get misinterpreted as a scalar value. Prefixing the value with the Verilog notation 'd should
eliminate the problem, even if the signal isVHDL.

Verilog Numbering Conventions
Verilog numbers are expressed in the style:

[-1 [size] [base] value

Table 1-9. Verilog Number Conventions

Element Description

- indicates a negative number; optional

size the number of bits in the number; optional

base specifiesthe base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘dor ‘D, hex: ‘h
or ‘H; optional

value specifies digits in the appropriate base with optional underscore separators;

default is decimal; required

A ‘-’ can also be used to designate a"don’'t care" element when you search for asignal value or
expression inthe List or Wave windows. If you want the ‘-’ to beread asa"don’'t care" element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you
would type "-0110--" as opposed to 7'b-0110--. If you don’t include the double quotes,
ModelSim will read the ‘-’ as a negative sign. For example:

11111110 811111110
"Hffca23 21'Hlfca23
-23749

26 ModelSim Reference Manual, v10.1c

Syntax and Conventions
GUI_expression_format

GUI_expression_format

The GUI_expression_format is an option of several simulator commands that operate within the
ModelSim GUI environment. The expressions help you locate and examine objects within the
List and Wave windows (expressions may also be used through the Edit > Sear ch menu in both
windows). The commands that use the expression format are:

configure, examine, searchlog, virtual function, virtual signal.

Expression Typing

GUI expressions are typed. The supported types consist of the following scalar and array types.

Scalar Types

The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration, and
signal state. Signal states are represented by the nine VHDL std_logic states.'U’ ' X’ 0" '1' *Z’
"W 'L’ 'H and’-.

Verilog states 0, 1, x, and z are mapped into these states and the Verilog strengths are ignored.
Conversion is done automatically when referencing Verilog nets or registers.

Array Types

The supported array types are signed and unsigned arrays of signal states. Thiswould
correspond to the VHDL std_logic_array type. Verilog registers are automatically converted to
these array types. The array type can be treated as either UNSIGNED or SIGNED, asin the
|EEE std_logic_arith package. Normally, referencing asignal array causesit to be treated as
UNSIGNED by the expression evaluator; to cause it to be treated as SIGNED, use casting as
described below. Numeric operations supported on arrays are performed by the expression
evaluator viaModel Sim’ s built-in numeric_standard (and similar) package routines. The
expression evaluator selects the appropriate numeric routine based on SIGNED or UNSIGNED
properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals may be
used in the expression as long as some variable of that enumeration typeis referenced in the
expression. Thisis useful for sub-expressions of the form:

(/memory/state == reading)

Expression Syntax

GUI expressions generally follow C-language syntax, with both VHDL-specific and Verilog-
specific conventions supported. These expressions are not parsed by the Tcl parser, and so do

ModelSim Reference Manual, v10.1c 27

Syntax and Conventions
GUI_expression_format

not support general Tcl; parentheses should be used rather than braces. Procedure calls are not
supported.

A GUI expression can include the following elements: Tcl macros, constants, array constants,
variables, array variables, signal attributes, operators, and casting.

Tcl Macros

Macros are useful for pre-defined constants or for entire expressions that have been previously
saved. The substitution is done only once, when the expression isfirst parsed. Macro syntax is:

S<name>

Substitutes the string value of the Tcl global variable <name>.

28 ModelSim Reference Manual, v10.1c

Syntax and Conventions
GUI_expression_format

Constants
Table 1-10. Constants Supported for GUI Expresssions
Type Values
boolean value truefalse TRUE FALSE
integer [0-9]+
real number ;]I nt>|([<int>].<int>[exp]) where the optional [exp] is: (e|E)[+]-][O-
+
time integer or real optionally followed by time unit
enumeration VHDL user-defined enumeration literal
single bit constants expressed as any of the following:
01xXzZUHLW'U'X''0'l’'Z "W 'L’'H '~ 1'b01'bl

Array Constants, Expressed in Any of the Following Formats

Table 1-11. Array Constants Supported for GUI Expresssions

Type Values

VHDL # notation | <int>#<al phanum>[#]
Example: 16#abcl23#

VHDL bitstring "(UIX|O|LIZ|W|L|H]-)*"
Example: "11010X11"

Verilog notation [-][<int>]" (b|B|o|O|d|D|h|H) <a phanum>

(where <alphanum> includes 0-9, a-f, A-F, and '-")

Example: 12'hc9l (Thisisthe preferred notation because it removes the
ambiguity about the number of bits.)

Based notation ox..., 0X..., 0o..., 00...,0b..., OB...
Model Sim automatically zero fills unspecified upper bits.

Variables

Table 1-12. Variables Supported for GUI Expresssions

Variable Type

Nameof asignal | The name may be asimple name, aVHDL or Verilog style extended
identifier, or aVHDL or Verilog style path. The signal must be one of
the following types:

-- VHDL signal of type INTEGER, REAL, or TIME

-- VHDL signal of type std_logic or bit

-- VHDL signal of type user-defined enumeration

-- Verilog net, Verilog register, Verilog integer, or Verilog real

ModelSim Reference Manual, v10.1c 29

Syntax and Conventions
GUI_expression_format

Table 1-12. Variables Supported for GUI Expresssions (cont.)
Variable Type

NOW Returns the value of time at the current location in the WLF file as the
WLF fileis being scanned (not the most recent simulation time).

Array variables

Table 1-13. Array Variables Supported for GUI Expresssions

Variable Type

Name of asignal | -- VHDL signals of type bit_vector or std_logic_vector

-- Verilog register

-- Verilog net array

A subrange or index may be specified in either VHDL or Verilog
syntax. Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4),
mysignal [4]

Signal attributes

<name>'event
<name>'rising
<name>'falling
<name>'delayed ()
<name>’"hasX

The’ delayed attribute lets you assign adelay toaVHDL signal. To assign adelay toasignal in
Verilog, use “#’ notation in a sub-expression (e.g., #-10 /top/signal A).

The hasX attribute lets you search for signals, nets, or registers that contains an X (unknown)
value.

See Examples of Expression Syntax below for further details on ’delayed and ’ hasX.

30 ModelSim Reference Manual, v10.1c

Syntax and Conventions
GUI_expression_format

Operators
Table 1-14. Operators Supported for GUI Expresssions

Operator Description Kind
+ arithmetic add arithmetic
/ arithmetic divide arithmetic
mod/MQOD arithmetic modulus arithmetic
* arithmetic multiply arithmetic
rem/REM arithmetic remainder arithmetic
- arithmetic subtract arithmetic
& concat arithmetic
<name>'del ayed(<time>) delayed signal (<time>) attributes
<name>'falling Falling edge attributes
<name>'rising Rising edge attributes
<name>'event Value change attributes
<name>'hasX Value hasan X attributes
and, AND bitwise and bitwise logical
nand, NAND bitwise nand bitwise logical
nor, NOR bitwise nor bitwise logical
or, OR bitwise or bitwise logical
xnor, XNOR bitwise xnor bitwise logical
xor, XOR bitwise xor bitwise logical
rol, ROL rotate left bitwise logical
ror, ROR rotate right bitwise logical
da, SLA shift left arithmetic bitwise logical
dl, SLL shift left logical bitwise logical
sra, SRA shift right arithmetic bitwise logical
srl, SRL shift right logical bitwise logical
not, NOT, ~ unary bitwise inversion bitwise logical
&& boolean and boolean
! boolean not boolean
| boolean or boolean

ModelSim Reference Manual, v10.1c

31

Syntax and Conventions
GUI_expression_format

Table 1-14. Operators Supported for GUI Expresssions (cont.)

Operator Description Kind

== equal boolean
=== exact equal’ boolean
I== exact not equalt boolean
> greater than boolean
>= greater than or equal boolean
< less than boolean
<= less than or equal boolean
I= /= not equal boolean
&<vector_expr> AND reduction reduction
|<vector_expr> OR reduction reduction
A<vector_expr> XOR reduction reduction

1. This operator is allowed to be compatible with other smulators.

Table 1-15. Precedence of GUI Expression Operators

Operator Kind
delayed(), 'falling, 'rising, 'event, 'hasX attributes

&, |, » unary

I, not, NOT, ~ boolean

/, mod, MOD, *, rem, REM arithmetic
nand, NAND, nor, NOR bitwise logical
and, AND bitwise logical
xor, XOR, xnor, XNOR bitwise logical
or, OR bitwise logical
+ - arithmetic

& concat

rol, ROL, ror, ROR, da, SLA, dll, SLL, sra, SRA, srl, SRL | bitwise logical
> >z < <= boolean

==, ===, == 1= /= boolean

&& boolean

32

ModelSim Reference Manual

,v10.1c

Syntax and Conventions
GUI_expression_format

Table 1-15. Precedence of GUI Expression Operators (cont.)

Operator Kind

[I boolean

Note
D Arithmetic operators use the std_logic_arith package.

Casting
Table 1-16. Casting Conversions Supported for GUI Expresssions

Casting Description
(bool) convert to boolean
(boolean) convert to boolean
(int) convert to integer
(integer) convert to integer
(redl) convert to real
(time) convert to 64-bit integer
(std_logic) convert to 9-state signal value
(signed) convert to signed vector
(unsigned) convert to unsigned vector
(std_logic_vector) convert to unsigned vector

Examples of Expression Syntax

/top/bus & Sbit_mask

This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’event && (/top/xyz == 1l6’'hffae)

This expression evaluates to a boolean true when signal clk changes and signal /top/xyz
isequal to hex ffag; otherwiseisfalse.

clk’rising && (mystate == reading) && (/top/u3/addr == 32'habcdl234)

Evaluates to a boolean true when signal clk just changed from low to high and signal
mystate is the enumeration reading and signal /top/u3/addr is equal to the specified
32-bit hex constant; otherwise isfalse.

ModelSim Reference Manual, v10.1c 33

Syntax and Conventions
GUI_expression_format

(/top/u3/addr and 32'hff000000) == 32'hac000000
Evaluates to a boolean true when the upper 8 bits of the 32-bit signal /top/u3/addr equals
hex ac.

/top/signalA'delayed (10ns)

This expression returns /top/signal A delayed by 10 ns.

/top/signalA'delayed (10 ns) && /top/signalB

This expression takes the logical AND of a delayed /top/signal A with /top/signal B.

virtual function { (#-10 /top/signalA) && /top/signalB}
mySignalB_AND_DelayedSignalA

Thisevaluates/top/signal A at 10 simulation time steps before the current time, and takes
thelogical AND of the result with the current value of /top/signal B. The '# notation uses
positive numbers for looking into the future, and negative numbers for delay. This

notation does not support the use of time units.

((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)

Evaluates to a boolean true when WLF filetimeis between 23 and 54 microseconds, clk
just changed from low to high, and signal mode is enumeration writing.

searchlog -expr {dbus'hasX} {0 ns} dbus

Searchesfor an’ X’ in dbus. Thisis equivalent to the expression: {dbus(0) == X' ||
dbus(1) == 'X} Thismakesit possible to search for X values without having to

write atype specific literal.

Signal and Subelement Naming Conventions

Model Sim supports naming conventionsfor VHDL and Verilog signal pathnames, VHDL array
indexing, Verilog bit selection, VHDL subrange specification, and Verilog part selection.

Examplesin Verilog and VHDL syntax:

top.chip.vlogsig
/top/chip/vhdlsig
vlogsig[3]
vhdlsig(9)
vlogsig[5:2]
vhdlsig (5 downto 2)

Grouping and Precedence

Operator precedence generally follows that of the C language, but we recommend liberal use of
parentheses.

34 ModelSim Reference Manual, v10.1c

Syntax and Conventions
GUI_expression_format

Concatenation of Signals or Subelements

Elements in the concatenation that are arrays are expanded so that each element in the array
becomes atop-level element of the concatenation. But for elementsin the concatenation that are
records, the entire record becomes one top-level element in the result. To specify that the
records be broken down so that their subelements become top-level elementsin the
concatenation, use the concat_flatten directive. Currently we do not support leaving full arrays
as elements in the result. (Please et us know if you need that option.)

If the elements being concatenated are of incompatible base types, aVVHDL-style record will be
created. The record object can be expanded in the Objects and Wave windows just like an array
of compatible type elements.

Concatenation Syntax for VHDL

<signalOrSliceNamel> & <signalOrSliceName2> & ...

Concatenation Syntax for Verilog

&{<signalOrSliceNamel>, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceNamel>}, <signalOrSliceName2>, ... }

Note that the concatenation syntax begins with "&{" rather than just "{". Repetition multipliers
are supported, asillustrated in the second line. The repetition element itself may be an arbitrary
concatenation subexpression.

Concatenation Directives

A concatenation directive (asillustrated below) can be used to constrain the resulting array
range of a concatenation or influence how compound objects are treated. By default, the
concatenation will be created with a descending index range from (n-1) down to O, wherenis
the number of elementsin the array.

(concat_range 31:0)<concatenationExpr> # Verilog syntax
(concat_range (31:0))<concatenationExpr> # Also Verilog syntax
(concat_range (31 downto 0))<concatenationExpr> # VHDL syntax

The concat_range directive completely specifies the index range.
(concat_ascending) <concatenationExpr>

The concat_ascending directive specifies that the index start at zero and increment
upwards.

(concat_flatten) <concatenationExpr>

The concat_flatten directive flattens the signal structure hierarchy.

(concat_noflatten) <concatenationExpr>

ModelSim Reference Manual, v10.1c 35

Syntax and Conventions
GUI_expression_format

The concat_noflatten directive groups signals together without merging them into one
big array. The signals become elements of arecord and retain their original names.
When expanded, the new signal looks just like a group of signals. The directive can be
used hierarchically with no limits on depth.

(concat_sort_wild_ascending) <concatenationExpr>

The concat_sort_wild_ascending directive gathers signals by name in ascending order
(the default is descending).

(concat_reverse) <concatenationExpr>

The concat_rever se directive reverses the bits of the concatenated signals.

Examples of Concatenation

&{ "mybusbasename*" }

Gathers al signals in the current context whose names begin with "mybusbasename”,
sorts those names in descending order, and creates a bus with index range (n-1) downto
0, where n isthe number of matching signals found. (Note that it currently does not
derive the index name from the tail of the one-bit signal name.)

(concat_range 13:4)&{ "mybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by name in
descending order.

(concat_ascending) &{ "mybusbasename*" }

Specifies an ascending range of 0 to n-1, with the signals gathered by namein
descending order.

(concat_ascending) ((concat_sort_wild_ascending) &{ "mybusbasename*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by namein ascending
order.

(concat_reverse) (busl & bus2)

Specifies that the bits of busl and bus2 be reversed in the output virtual signal.

Record Field Members

Arbitrarily-nested arrays and records are supported, but operators will only operate on onefield
at atime. That is, the expression {a == b} where a and b are records with multiple fields, is not
supported. Thiswould have to be expressed as:

{(a.fl == b.£f1l) && (a.f2 == b.£2) ...}

Examples:

36 ModelSim Reference Manual, v10.1c

Syntax and Conventions
GUI_expression_format

vhdlsig.fieldl
vhdlsig.fieldl.subfieldl
vhdlsig. (5) .field3
vhdlsig.field4 (3 downto 0)

Searching for Binary Signal Values in the GUI

When you use the GUI to search for signal values displayed in 4-state binary radix, you should
be aware of how Model Sim maps between binary radix and std_logic. The issue arises because
thereisno “un-initialized” value in binary, while thereisin std_logic. So, ModelSim relies on
mapping tables to determine whether a match occurs between the displayed binary signal value
and the underlying std_logic value.

This matching algorithm applies only to searching using the GUI. It does not apply to VHDL or
Verilog test benches.

For comparing VHDL std_logic/std_ulogic objects, Model Sim uses the table shown below. An
entry of “0” in thetableis“no match”; an entry of “1” isa“match”; an entry of “2” isamatch

only if you set the Tcl variable STDLOGIC_X_MatchesAnything to 1. Note that X will match
aU, and - will match anything.

Table 1-17. VHDL Logic Values Used in GUI Search

Search | Matches asfollows:
Entry X 0

C

U

Tl :E N|lFR|O| X

Rrlo|lo|lo|o|o|O|r|r
RIN|ININININ|N| R
RlO|r|lO|O|O|R|N|O
R|lRr|O|lO|lO|rR|O|IN|O]+
Rr|lo|lo|o|r|o|lo| N OIN
Plololr|lOolo|Oo|NIOls
R|lOo|lr|O|O|O|rRr|N| O]
R|lrRr|lO|lO|O|r|O|N|O|T
A T

ModelSim Reference Manual, v10.1c 37

Syntax and Conventions
GUI_expression_format

For comparing Verilog net values, Model Sim uses the table shown below. An entry of “2” isa
match only if you set the Tcl variable“VLOG_X_MatchesAnything” to 1.

Table 1-18. Verilog Logic Values Used in GUI Search

Search | Matchesasfollows:

Entry 0 1 7 X
0 1 0 0 2
1 0 1 0 2
z 0 0 1 2
X 2 2 2 1

38

ModelSim Reference Manual, v10.1c

Chapter 2
Commands

This chapter describes Model Sim commands that you can enter either on the command line of
the Main window or in a macro file. Some commands are automatically entered on the
command line when you use the graphical user interface.

Note that, in addition to the simulation commands listed in this chapter, you can also use the Tcl
commands described in the Tcl man pages (use the Main window menu selection: Help > Tcl

Man Pages).

Table 2-1 provides a brief description of each Model Sim command. For more information on
command details, arguments, and examples, click the link in the Command name column.

Table 2-1. Supported Commands

Command name Action

abort halts the execution of a macro file interrupted by a breakpoint or
error

add dataflow adds the specified object(s) to the Dataflow window

add list lists VHDL signals and variables, and Verilog nets and registers,
and their valuesin the List window

add log also known as the log command; see log

add memory opens the specified memory in the MDI frame of the Main
window

add message used within amacro or script and specifies a user defined runtime
message that is sent to the transcript and .wif files.

add watch adds signals or variables to the Watch window

add wave adds VHDL signals and variables, and Verilog nets and registers
to the Wave window

add _cmdhelp adds an entry to the command-line help; use the help command to
display the help text

alias creates anew Tcl procedure that evaluates the specified
commands

archive load allowsyou to load an archived debug database (.dbg) file that was
previously created with the archive write command

ModelSim Reference Manual, v10.1c

39

Commands

Table 2-1. Supported Commands (cont.)

Command name Action

archive write allows you to create a debug archive file, with the file extension
.dgb, that contains one or more WLF files, debug information
captured from the design library, an optional connectivity debug
database file, and optional HDL sourcefiles.

batch_mode returnsalif Model Sim is operating in batch mode, otherwise
returnsa0

bd del etes a breakpoint

bookmark add wave adds a bookmark to the specified Wave window

bookmark delete wave del etes bookmarks from the specified Wave window

bookmark goto wave zooms and scrolls a Wave window using the specified bookmark

bookmark list wave displays alist of available bookmarks

bp sets a breakpoint

call calls SystemVerilog static, package, and class functions

change modifies the value of aVHDL variable or Verilog register
variable

classinfo displays information about class types and instances

configure invokes the List or Wave widget configure command for the
current default List or Wave window

dataset dias assigns an additional name to a dataset

dataset clear clears the current ssimulation WLF file

dataset close closes a dataset

dataset config configures WLF file settings after dataset is open

dataset current opens the specified dataset and sets the GUI context to the last
selected context of the specified dataset.

dataset info reports information about the specified dataset

dataset list lists the open dataset(s)

dataset open opens a dataset and references it by alogical name

dataset rename changes the logical name of an opened dataset

dataset restart unloads specified or current dataset

dataset save saves data from the current WLF file to a specified file

dataset snapshot saves datafrom the current WLF file at a specified interval

delete removes objects from either the List or Wave window

40 ModelSim Reference Manual, v10.1c

Commands

Table 2-1. Supported Commands (cont.)

Command name Action

describe displays information about the specified HDL object

disablebp turns off breakpoints and when commands

do executes commands contained in a macro file

drivers displaysin the Main window the current value and scheduled
future values for all the drivers of a specified VHDL signal or
Verilog net

dumplog64 dumps the contents of the vsim.wif file in a readable format

echo displays a specified message in the Main window

edit invokes the editor specified by the EDITOR environment variable

enablebp turns on breakpoints and when commands turned off by the
disablebp command

encoding tranglates between Unicode Tcl strings and a named encoding

environment displays or changes the current dataset and region environment

examine examines one or more objects, and displays current values (or the
values at a specified previous time) in the Main window

exit exits the simulator and the Model Sim application

find displays the full pathnames of al objectsin the design whose
names match the name specification you provide

find infiles searches the specified files and prints to the Transcript window
those lines from the files that match the specified pattern.

find insource searches all source files related to the current design and prints to
the Transcript window those lines from the files that match the
specified pattern.

force applies stimulusto VHDL signals and Verilog nets

formatTime global format control for all time values displayed in the GUI

help displaysin the Main window abrief description and syntax for the
specified command

history lists the commands executed during the current session

layout allows you to perform operations on GUI layouts

log creates awave log format (WLF) file containing smulation data
for all objects whose names match the provided specifications

Ishift takesa Tcl list as an argument and shiftsit in-place one placeto
the left, eliminating the left-most element

ModelSim Reference Manual, v10.1c

41

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

Isublist

returns asublist of the specified Tcl list that matches the specified
Tcl glob pattern

mem compare

compares the selected memory to areference memory or file

mem display displays the memory contents of a selected instance to the screen

mem list displays aflattened list of al memory instancesin the current or
specified context after a design has been elaborated

mem load updates the simulation memory contents of a specified instance

mem save saves the contents of a memory instance to afilein any of the
supported formats: Verilog binary, Verilog hex, and MTI memory
pattern data

mem search finds and prints to the screen the first occurring match of a

specified memory pattern in the specified memory instance

messages clearfilter

removes any filter you have set in the Message Viewer

messages setfilter

performs the same action as the Message Viewer Filter Dialog
Box, lets you determine which messages are shown in the
Message Viewer

messages write prints the contents of the Message Viewer window to a specified
text file.

modelsim starts the Model Sim GUI without prompting you to load a design;
valid only for Windows platforms

noforce removes the effect of any active force commands on the selected
object

nolog suspends writing of datato the WLF file for the specified signals

notepad opens asimple text editor

noview closes awindow or set of windowsin the ModelSim GUI

nowhen deactivates selected when commands

onbreak specifies command(s) to be executed when running a macro that
encounters a breakpoint in the source code; in effect only during a
run command

onElabError specifies one or more commands to be executed when an error is
encountered during elaboration; in effect only during avsim
command

onerror specifies one or more commands to be executed when a Tcl

command in a dofile encounters an error; not dependent on arun
command

42

ModelSim Reference Manual, v10.1c

Commands

Table 2-1. Supported Commands (cont.)

Command name Action

onfinish controls simulator behavior when encountering $finish or
sc_stop() in the design code

pause interrupts the execution of amacro

precision determines how real numbers display in the GUI

printenv echoes to the Main window the current names and values of all
environment variables

process report creates textual report of all processes displayed in the Process
window

project performs common operations on New projects

pwd displays the current directory path in the Main window

quietly turns off transcript echoing for the specified command

quit exits the ssimulator

radix specifies the default radix to be used

radix define creates or modifies a user-defined radix

radix delete removes the radix definition from the named radix

radix list returns the complete definition of aradix

radix names returns alist of currently defined radix names

radix signal setsor inspectsradix valuesfor the specified signal in the Objects,
Locals, and Wave windows

report displays the value of al simulator control variables, or the value
of any simulator state variables relevant to the current ssmulation

restart reloads the current dataset if the current dataset is not the active
simulation ("sim") and resets the simulation time to zero, in effect
acting just like arestart of a simulation

resume continues execution of amacro file after a pause command or a
breakpoint

run advances the smulation by the specified number of timesteps

runStatus returns the current state of your simulation after issuing arun or
step command

searchlog searches one or more of the currently open logfiles for a specified
condition

see displays the specified number of source file lines around the
current execution line

ModelSim Reference Manual, v10.1c

43

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

Setenv sets an environment variable

shift shifts macro parameter values down one place

show lists objects and subregions visible from the current environment

simstats reports performance-related statistics about active simulations

stack down moves down the call stack

stack frame selects the specified call frame

stack level reports the current call frame number

stack th isan diasfor the tb command

stack up moves up the call stack

status lists al currently interrupted macros

step steps to the next HDL statement

stop stops simulation in batch files; used with the when command

suppress prevents the specified message(s) from displaying

tb displays a stack trace for the current processin the Transcript
window

Time performs various numerical comparisons, operations, and
conversions on simulation time values

transcript controls echoing of commands executed in a macro file; also
works at top level in batch mode

transcript file sets or queries the pathname for the transcript file

transcript path

returns the full pathname to the current transcript file

transcript sizelimit

sets or queries the current value for the transcript fileSizeLimit
value, saves file when limit is reached, and continues simulation

tssiZ2miti converts avector file in Technology Standard Events Format
(TSSI) into a sequence of force and run commands

ui_VVMode specifies behavior when encountering user interface registration
calls used by verification packages, such asAVM or OVM

unsetenv deletes an environment variable

ved add adds the specified objects to the VCD file

vcd checkpoint

dumps the current values of all VCD variablesto the VCD file

vced comment

inserts the specified comment in the VCD file

vcd dumpports

createsaVVCD file that captures port driver data

44

ModelSim Reference Manual, v10.1c

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

ved dumpportsall

creates acheckpoint in the VCD file that shows the current values
of all selected ports

ved dumpportsflush

flushes the VCD buffer to the VCD file

ved dumpportslimit

specifies the maximum size of the VCD file

vcd dumpportsoff

turns off VCD dumping and records all dumped port values as x

vcd dumpportson

turns on VCD dumping and records the current values of all
selected ports

vcd file specifies the filename and state mapping for the VCD file created
by avcd add command

vcd files specifies filenames and state mapping for the VCD files created
by the vcd add command; supports multiple VCD files

vcd flush flushes the contents of the VCD file buffer to the VCD file

ved limit specifies the maximum size of the VCD file

vcd of f turns off VCD dumping and records all VCD variable values as x

vcd on turns on VCD dumping and records the current values of all VCD
variables

ved2wlf trandlates VCD filesinto WLF files

vcom compiles VHDL design units

vdel deletes adesign unit from a specified library

vdir lists the contents of a design library

vencrypt encrypts Verilog code contained within encryption envelopes

verror prints a detailed description of a message number

vgencomp writes the equivalent VHDL component declaration for aVerilog
module to standard output

vhencrypt encrypts VHDL code contained within encryption envelopes

view opens a Model Sim window and bringsit to the front of the display

virtual count

counts the number of currently defined virtuals that were not read
in using amacro file

virtual define prints the definition of avirtual signal or function in the form of a
command that can be used to re-create the object
virtual delete removes the matching virtuals

virtual describe

prints a complete description of the data type of one or more
virtual signals

ModelSim Reference Manual, v10.1c

45

Commands

Table 2-1. Supported Commands (cont.)

Command name Action

virtual expand produces alist of all the non-virtual objects contained in the
virtual signal(s)

virtual function creates anew signal that consists of logical operations on existing
signals and simulation time

virtual hide causes the specified real or virtual signals to not be displayed in
the Objects window

virtual log causes the sim-mode dependent signals of the specified virtual
signals to be logged by the simulator

virtual nohide redisplays avirtual previously hidden with virtual hide

virtual nolog stops the logging of the specified virtual signals

virtual region creates a new user-defined design hierarchy region

virtual save saves the definitions of virtualsto afile

virtual show lists the full path names of all the virtuals explicitly defined

virtual signal creates anew signal that consists of concatenations of signals and
subelements

virtual type creates a new enumerated type

vlib createsadesign library

viog compiles Verilog design units and SystemV erilog extensions

vmake creates a makefile that can be used to reconstruct the specified
library

vmap defines a mapping between alogical library name and a directory

vsim loads a new design into the simulator

vsim<info> returns information about the current vsim executable

vsim_break stop the current simulation before completion

vsource specifies an alternative file to use for the current source file

wave commands for manipulating cursors, for zooming, and for
adjusting the wave display view in the Wave window

when instructs Model Sim to perform actions when the specified
conditions are met

where displays information about the system environment

wlif2log trandates aModelSim WLF fileto a QuickSim I1 logfile

wlif2vcd translatesaModelSm WLF fileto aVCD file

46

ModelSim Reference Manual, v10.1c

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

wlfman outputs information about or a new WLF file from an existing
WLFfile

wlfrecover attempts to repair an incomplete WLF file

write format records the names and display optionsin afile of the objects
currently being displayed in the List or Wave window

write list records the contents of the List window in alist output file

write preferences

saves the current GUI preference settingsto a Tcl preferencefile

write report

prints a summary of the design being simulated

write timing

prints timing information about the specified instance

write transcript

writes the contents of the Main window transcript to the specified
file

write tssi

records the contents of the List window ina“TSSI format” file

write wave

records the contents of the Wave window in PostScript format

ModelSim Reference Manual, v10.1c

47

Commands
abort

abort
This command halts the execution of amacro file interrupted by a breakpoint or error.

When macros are nested, you may choose to abort the last macro only, abort a specified number
of nesting levels, or abort all macros. Y ou can specify this command within a macro to return
early.

Syntax
abort [<n> | all]

Arguments
°* <n>

(optional) The number of nested macro levelsto abort. Specified as an integer greater than
0, where the default valueis 1.

e Al
(optional) Instructs the tool to abort all levels of nested macros.
Related Topics

® onbreak
* onElabError
® onerror

48 ModelSim Reference Manual, v10.1c

Commands
add dataflow

add dataflow

This command adds the specified process, signal, net, or register to the Dataflow window.
Wildcards are allowed.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

add dataflow <object> ... [-connect <source net> <destination_net>]

{[-in] [-out] [-inout] | [-ports]} [-internal] [-nofilter] [-recursive]

Arguments

<object> ...

(required unless specifying -connect) Specifies a process, signal, net, or register to add to
the Dataflow window. Wildcards are allowed. Multiple objects are specified as a space
separated list, Refer to the section “Wildcard Characters’ for wildcard usage asit pertainsto
the add commands. Must be specified as the first argument to the add dataflow command.

-connect <source net> <destination net>

(optional) Computes and displays in the Dataflow window all paths between two nets.
<source_net>— The net that originates the path search.
<destination_net> — The net that terminates the path search.

-in

(optional) Specifiesto add ports of mode IN.

-inout

(optional) Specifiesto add ports of mode INOUT.

-out

(optional) Specifiesto add ports of mode OUT.

-ports

(optional) Specifiesto add all ports. This switch has the same effect as specifying -in, -out,
and -inout together.

-internal
(optional) Specifiesto add internal (non-port) objects.
-nofilter

(optional) Specifiesthat the WildcardFilter Tcl preference variable be ignored when finding
signals or nets.

TheWildcardFilter Tcl preference variable identifies typesto ignore when matching objects
with wildcard patterns.

ModelSim Reference Manual, v10.1c 49

Commands
add dataflow

®* _recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If

omitted, the search is limited to the selected region.
Y ou can specify -r as an adias to this switch.

Examples

® Add all objectsin the design to the dataflow window.

add dataflow -r /*

® Add all objectsin the region to the dataflow window.

add dataflow *

Related Topics

® Automatically Tracing All Paths Between Two Nets
¢ Dataflow Window
® Using the WildcardFilter Preference Variable

50

ModelSim Reference Manual, v10.1c

Commands
add list

add list

This command adds the following objects and their values to the List window:

®* VHDL signalsand variables
® Verilog nets and registers
® User-defined buses

If you do not specify a port mode, such as-in or -out, this command displays al objectsin the
selected region with names matching the object name specification.

Refer to “Wildcard Characters’ for wildcard usage as it pertains to the add commands.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax
add list {<object> ... | <object_name> {sig ...}} [-allowconstants] [-depth <level>]

{[-in] [-inout] [-out] | [-ports]} [-internal] [-label <name>] [-nodelta]
[-<radix_type> | -radix <type>] [-radixenumnumeric | -radixenumsymbolic] [-recursive]
[-trigger | -notrigger] [-width <integer>]

Arguments

<object> ...

(required when <object_name>{sig ...} isnot specified.) Specifiesthe name of the object to
be listed. Multiple objects are entered as a space separated list. Wildcards are allowed. Refer
to the section “Wildcard Characters’ for wildcard usage as it pertains to the add commands.
Must be specified as the first argument to the add list command.

Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching objects with wildcard patterns.

Y ou can add variables as long as they are preceded by the process name. For example:
add list myproc/intl

Y ou must specify the <object> argument as the first argument to the add list command.

<object_name> {sig ...}

(required when <object> is not specified) Creates a user-defined bus with the specified
object name containing the specified signals (sig) concatenated within the user-defined bus.
Arguments, must be enclosed in braces ({ }). Must be specified as the second argument to
the add list command.

sig— A space-separated list of signals, enclosed in braces ({}), that areincluded in the
user-defined bus. The signals may be either scalars or various sized arrays as long as
they have the same element enumeration type.

For example:
add list {mybus {a b y}}

ModelSim Reference Manual, v10.1c 51

Commands
add list

-allowconstants

(optional) For use with wildcard searches. Specifies that constants matching the wildcard
search should be added to the List window.

This command does not add constants by default because they do not change.
-depth <level>

(optional) Restricts arecursive search, as specified with -recur sive, to a certain level of
hierarchy.

<level> — an integer greater than or equal to zero.

For example, if you specify -depth 1, the command descends only one level in the
hierarchy.

-in

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode IN if they match the object specification.

-inout

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode INOUT if they match the object specification.

-out

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode OUT if they match the object specification.

-ports

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include al ports. This switch has the same effect as specifying -in, -out, and -inout
together.

-interna

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include internal objects (non-port objects) if they match the object specification. VHDL
variables are not selected.

-label <name>
(optional) Specifies an aternative signal name to be displayed as a column heading in the
listing.
<name> — Specifies the label to be used at the top of the column. Y ou must enclose
<name> in braces ({}) if it includes any spaces.
This alternative name is not valid in aforce or examine command.
-nodelta

(optional) Specifies that the delta column not be displayed when adding signalsto the List
window. Identical to configurelist -delta none.

52

ModelSim Reference Manual, v10.1c

Commands
add list

* <radix_type>

(optional) Specifiesthe radix type for the objects that follow in the command. Valid entries
(or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic,
time, and default.

If noradix is specified for an enumerated type, the default radix is used. Y ou can change the
default radix for the current ssmulation using the radix command. Y ou can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, Model Sim converts each
signa valueto 1, 0, Z, or X.

* -radix <type>

(optional) Specifies a user-defined radix. The -radix <type> switch can be used in place of
the -<radix_type> switch. For example, -radix hexadecimal is the same as -hex.

<type> — binary, ascii, unsigned, decimal, octal, hex, symbolic, time, and default.

This option overridesthe global setting of the default radix (the DefaultRadix variablein the
modelsim.ini file) for the current ssimulation only.

®* _radixenumnumeric

Thisoption overrides the global setting of the default radix (the DefaultRadix variablein the
modelsim.ini file).

® -radixenumsymbolic

(optional) Reverses the action of -radixenumnumeric and sets the global setting of the
default radix (the DefaultRadix variable in the modelsim.ini file) to symboalic.

® _recursive

(optional) For use with wildcard searches. Specifies that the scope of the search isto
descend recursively into subregions. If omitted, the search is limited to the selected region.
Y ou can use the -depth argument to specify how far down the hierarchy to descend. You
can use"-r" as an aliasto this switch.

® -trigger | -notrigger
(optional) Specifies whether objects should be updated in the List window when the objects
change value.

-trigger — (default) Update objects in the List Window when their values change.
-notrigger — Do not update objectsin the List Window when their values change.
* -width <integer>
(optional) Formats the column width.
integer — A positive integer specifying the column width in characters.
Examples

® Listall objectsin the design.

ModelSim Reference Manual, v10.1c 53

Commands
add list

add list -r /*
List all objectsin the region.
add list *
List al input portsin the region.
add list -in *
Display aList window containing three columns headed a, sig, and array_sig(9 to 23).
add list a -label sig /top/lower/sig {array_sig(9 to 23)}
List clk, a, b, ¢, and d only when clk changes.
add list clk -notriggerab c d
Listsclk, a, b, ¢, and d every 100 ns.

config list -strobeperiod {100 ns} -strobestart {O ns} -usestrobe 1
add list -notriggerclk ab cd

Creates a user-defined bus named "mybus"’ consisting of three signals; the busis
displayed in hex.

add list -hex {mybus {msb {opcode(8 downto 1)} data}}

Liststhe object vecl using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vecd in decimal.

add list vecl -hex vec?2 -dec vec3 vec4

Related Topics

add wave

log

Extended Identifiers
Using the WildcardFilter Preference Variable

54

ModelSim Reference Manual, v10.1c

Commands
add memory

add memory

This command displays the contents and sets the address and data radix of the specified
memory in the MDI frame of the Main window.

Refer to “Wildcard Characters’ for wildcard usage as it pertains to the add commands.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax
add memory [-addressradix {decimal | hex}] [-dataradix <type>]
[-radixenumnumeric | -radixenumsymbolic] [-wordsperline <num>] <object_name> ...
Arguments
® -addressradix {decimal | hex}
(optional) Specifies the address radix for the memory display.
decimal — (default) Sets the radix to decimal. Y ou can abbreviate this argument to "d".
hex — Sets the radix to hexadecimal. Y ou can abbreviate this argument to "h".
® -dataradix <type>

(optional) Specifiesthe dataradix for the memory display. If you do not specify this switch,
the command uses the global default radix.

<type> — binary, ascii, unsigned, decimal, octal, hex, symbolic, time, and default.

If you do not specify aradix for an enumerated type, the command uses the symbolic
representation.

Y ou can change the default radix for the current ssmulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file. Changing the default radix does not change the radix of the currently
displayed memory. Use the add memory command to re-add the memory with the desired
radix, or change the display radix from the Memory window Properties dialog.

®* _radixenumnumeric

(optional) Causes Verilog and SystemC enumsto be displayed as numbers (formatted by the
current radix). This overrides the default behavior of always showing enums symbolically.

® -radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog and SystemC enums as
symbols by reversing the action of the -radixenumnumeric option.

® -wordsperline <num>

(optional) Specifies how many words are displayed on each line in the memory window. By
default, the information displayed will wrap depending on the width of the window.

num — Any positive integer

ModelSim Reference Manual, v10.1c 55

Commands
add memory

® <object_name> ...

(required) Specifiesthe hierarchical path of the memory to be displayed. Multiple memories

are specified as a space separated list. Must be specified as the final argument to the add
memory command.

Wildcard characters are allowed.

Note
The WildcardFilter Tcl preference variable identifies types to ignore when matching
objects with wildcard patterns.)

Related Topics

®* Memory List Window
® Using the WildcardFilter Preference Variable

56 ModelSim Reference Manual, v10.1c

Commands
add message

add message
This command is used within amacro or script and specifies a user defined runtime message

that is sent to the transcript and .wif files. Messages are displayed in the Message Viewer
window in the GUI. Refer to “Message Viewer Window” for information.

Syntax

add message <message _body> [-category <category>] [-efftime <time>] [-file <filename>]

[-id <id_number>] [-inling] [-line <linenumber>] [-noident] [-nolevel] [-objects <list>]
[-region region] [-severity { error | note | warning}]

Arguments

<message body>
(required) User specified message.
-category <category>

(optional) Sets the category for the message in the Message Viewer window where the
default is USER. The Message Viewer window Category column recognizes the following
keywords:

Table 2-2. Message Viewer Categories

DISPLAY FLI PA

PLI SDF TCHK

VCD VITAL WLF

MISC USER <user-defined>

-efftime <time>

(optional) Specifiesthe simulation time when the message is saved to the log file. Thetime
specified islisted in the Message Viewer window Time column when the messageis called.
Useful for placing messages at specific times in the ssmulation.

<time> — Specified as an integer or decimal number.
-file <filename>

(optional) Displays a user specified string in the File Info column of the Message Viewer
window.

-id <id_number>
(optional) Assigns an identification number to the message.

<id_number> — Any non-negative integer from 0 - 9999 where the default is 0. The
number specified is added to the base identification number of 80000.

-inline
(optional) Causes the message to also be returned to the caller asthe return value of the add
message command.

ModelSim Reference Manual, v10.1c 57

Commands
add message

®* .line <linenumber>

(optional) Displays the user specified number in File Info column of the Message Viewer
window.

® -noident

(optional) Preventsreturn of the ID number of the message.
* -nolevel

(optional) Prevents return of the severity level of the message.
* -objects<list>

(optional) List of related design items shown in the Objects column of the Message Viewer
window.

<Ii?§>")— A space separated list enclosed in curly braces ({}) or quotation marks
® -regionregion
(optional) Message is displayed in the Region column of the Message Viewer window.
® -severity {error | note | warning}
(optional) Sets the message severity level.
error — Model Sim cannot complete the operation.
note — (default) The message isinformational.
warning — There may be a problem that will affect the accuracy of the results.
Examples
® Create amessage numbered 80304.

add message -id 304 <message>

Related Topics

® displaymsgmode modelsim.ini variable
® msgmode modelsim.ini variable
®* Message Viewer Window

58 ModelSim Reference Manual, v10.1c

Commands
add watch

add watch

This command adds signals and variables to the Watch window in the Main window.

Refer to “Wildcard Characters’ for wildcard usage as it pertains to the add commands.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

add watch <object_name> ... [-radix <type>] [-radixenumnumeric | -radixenumsymbolic]

Arguments

<object_name> ...

(required) Specifies the name of the object to be added. Multiple objects are entered as a
space separated list. Must be specified as the first argument to the add watch command.

Wildcard characters are alowed. (Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.)

Variables must be preceded by the process name. For example,

add watch myproc/intl

-radix <type>

(optional) Specifies a user-defined radix. If you do not specify this switch, the command
uses the global default radix.

<type> — binary, ascii, unsigned, decimal, octal, hex, symbolic, time, and default.

Y ou can change the default radix for the current ssimulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

-radixenumnumeric

(optional) Causes Verilog and SystemC enumsto be displayed as numbers (formatted by the
current radix). This overrides the default behavior of always showing enums symbolically.

-radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog and SystemC enums as
symbols by reversing the action of the -radixenumnumeric option.

Related Topics

® Watch window ® Wildcard Characters
® Using the WildcardFilter Preference ® DefaultRadix variable
Variable

ModelSim Reference Manual, v10.1c 59

Commands
add wave

add wave
This command adds the following objects to the Wave window:

®* VHDL signalsand variables
® Verilog nets and registers
* SystemVerilog class objects

® Dividers and user-defined buses.

If no port mode is specified, this command will display all objectsin the selected region with
names matching the object name specification.

Refer to “Wildcard Characters’ for wildcard usage as it pertains to the add commands.

Argumentsto thiscommand are order dependent. Please read through the argument descriptions
for more information.

Syntax

add wave [-allowconstants] [-clampanalog {0 | 1}] [-color <standard_color _name>]

[-depth <level>] [[-divider [<divider_name> ...] [-expand <signal_name>]

[-format <type> | -<format>] [-group <group_name> [<sig_namel> ...]] [-height <pixels>]
{[-in] [-inout] [-out] | [-ports]} [-internal] [-label <name>][-max <real _num>]

[-min <real_num>][-noupdate] [-position <location>]

[-<radix_type> | -radix <type>] [-radixenumnumeric | -radixenumsymbolic] [-recursive]
[-time] [<object_name> ...] [{<object_name> {sigl sig2 ...}}]

Arguments

-allowconstants

(optional) For use with wildcard searches. Specifies that constants matching the wildcard
search should be added to the Wave window.

By default, constants are ignored because they do not change.
-clampanalog {0 | 1}

(optional) Clamps the display of an analog waveform to the values specified by -max and
-min. Specifying avalue of 1 prevents the waveform from extending above the value
specified for -max or below the value specified for -min.

0 — not clamped
1 — (default) clamped
-color <standard_color_name>
(optional) Specifiesthe color used to display a waveform.
<standard_color_name> — Y ou can use either of the following:
standard X Window color name — enclose 2-word namesin quotes ("), for example:

-color "light blue"

60

ModelSim Reference Manual, v10.1c

Commands
add wave

rgb value — for example:
-color #357f77
-depth <level>

(optional) Restricts arecursive search, as specified with -recur sive to a specified level of
hierarchy.

<level> — Any integer greater than or equal to zero. For example, if you specify
-depth 1, the command descends only one level in the hierarchy.

-divider [<divider_name> ...]

(optional) Adds a divider to the Wave window. If you do not specify this argument, the
command inserts an unnamed divider.

<divider_name> ... — Specifies the name of the divider, which appearsin the
pathnames column. Multiple objects entered as a space separated list.

When you specify more than one <divider_name> the command creates a divider for
each name.

Y ou can begin a name with a space, but you must enclose the name within quotes (")
or braces ({ }) Y ou cannot begin a name with a hyphen (-).

-expand <signal_name>

(optional) Instructs the command to expand a compound signal immediately, but only one
level down.

<signal_name> — Specifies the name of the signal. This string can include wildcards.
-format <type> | -<format>
(optional) Specifiesthe display format of the objects. Valid entries are:

-format <type> -<format> Display Format

-format literal -litera Literal waveformsare displayed
as a box containing the object
value.

-format logic -logic Logicsignasmay beU, X, 0, 1,
Z,W,L,H,or‘.

-format anal og-step -anal og-step Analog-step changesto the new

time before plotting the new Y.

-format analog-interpolated -analog-interpolated Analog-interpolated draws a
diagonal line.

-format anal og-backstep -anal og-backstep Analog-backstep plots the new
Y before moving to the new
time.

-format event -event Displays amark at every
transition.

ModelSim Reference Manual, v10.1c 61

Commands
add wave

The Y-axis range of analog signals is bounded by -max and -min switches.
-group <group_name> [<sig_namel> ...]
(optional) Creates awave group with the specified group_name.

<group_name> — Specifies the name of the group. Y ou must enclose this argument in
quotes (") or braces ({ }) if it contains any spaces.

<sig_name> ... — Specifiesthe signalsto add to the group. Multiple signals are entered
as aspace separated list. This command creates an empty group if you do not specify
any signal names.

-height <pixels>
(optional) Specifiesthe height of the waveform in pixels.
<pixels> — Any positive integer.
-in
(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode IN if they match the object_name specification.
-out

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode OUT if they match the object_name specification.

-inout

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode INOUT if they match the object_name specification.

-ports

(optional) For use with wildcard searches. Specifies that the scope of thelistingisto
include ports of modesIN, OUT, or INOUT.

-interna

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include internal objects (non-port objects) if they match the object_name specification.

-label <name>

(optional) Specifies an alternative name for the signal being added. For example,
add wave -label c clock

adds the clock signal, labeled as"c".

This alternative name is not valid in aforce or examine command.

-max <real_num>

(optional) Specifies the maximum Y -axis data value to be displayed for an analog
waveform. Used in conjunction with the -min switch; the value you specify for -max must
be greater than the value you specify for -min.

<rea_num>— Any integer that is greater than the value specified for -min.

62

ModelSim Reference Manual, v10.1c

Commands
add wave

® -min<rea_num>

(optional) Specifies the minimum Y -axis data value to be displayed for an analog
waveform. Used in conjunction with the -max switch; the value you specify for -min must
be less than the value you specify for -max.

<rea_num>— Any integer that is less than the value specified for -max.

For example, if you know the Y -axis data for a waveform varies between 0.0 and 5.0, you
could add the waveform with the following command:

add wave -analog -min 0 -max 5 -height 100 my_signal
Note

Although -offset and -scale are still supported, the -max and -min arguments provide an
easier way to define upper and lower limits of an analog waveform.

® -noupdate

(optional) Prevents the Wave window from updating when a series of add wave commands
are executed in series.

® -position <location>
(optional) Specifies where the command adds the signals.
<location> — Can be any of the following:
top — Adds the signals to the beginning of the list of signals.
bottom | end — Adds the signals to the end of the list of signals.

before | above — Addsthe signalsto the location before the first selected signal in the
wave window.

after | below — Adds the signals to the location after the first selected signal in the
wave window.

<integer> — Adds the signals beginning at the specified point in the list of signals.
* <radix_type>

(optional) Specifiesthe radix type for the objects that follow in the command. Valid entries
(or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic,
time, and default.

If noradix is specified for an enumerated type, the default radix is used. Y ou can change the
default radix for the current simulation using the radix command. Y ou can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, Model Sim converts each
signal valueto 1, 0, Z, or X.

* -radix <type>

(optional) Specifies a user-defined radix. The -radix <type> switch can be used in place of
the -<radix_type> switch. For example, -radix hexadecimal is the same as -hex.

ModelSim Reference Manual, v10.1c 63

Commands
add wave

<type> — binary, ascii, unsigned, decimal, octal, hex, symbolic, time, and default.

Thisoption overrides the global setting of the default radix (the DefaultRadix variablein the
modelsim.ini file) for the current simulation only.

-radixenumnumeric

(optional) Causes Verilog and SystemC enumsto be displayed as numbers (formatted by the
current radix). This overrides the default behavior of always showing enums symbolically.

-radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog and SystemC enums as
symbols by reversing the action of the -radixenumnumeric option.

-recursive

(optional) For use with wildcard searches. Specifies that the scope of the search isto
descend recursively into subregions.

If you do not specify this switch, the search islimited to the selected region. Y ou can use the
-depth argument to specify how far down the hierarchy to descend.

-time

(optional) Use time as the radix for Verilog objects that are register-based types (register
vectors, time, int, and integer types).

<object_name> ...

(required unless specifying {<object_name> {sigl sig2 ...}) Specifies the names of objects
to beincluded in the Wave window. Must be specified as the final argument to the add
wave command. Wildcard characters are allowed. Multiple objects are entered as a space
separated list. Note that the WildcardFilter Tcl preference variable identifies typesto ignore
when matching objects with wildcard patterns.

Variables may be added if preceded by the process name. For example,
add wave myproc/intl
{<object_name> {sigl sig2 ...}}

(required unless specifying <object_name>) Creates a user-defined bus with the specified
object name containing the specified signals (sigl and so forth) concatenated within the
user-defined bus. Must be specified as the final argument to the add wave command.

sig— A space-separated list of signals, enclosed in braces ({ }), that areincluded in the
user-defined bus. The signals may be either scalars or various sized arrays aslong as
they have the same element enumeration type.

Note

Y ou can also select Wave > Combine Signals (when the Wave window is selected) to
create a user-defined bus.

64

ModelSim Reference Manual, v10.1c

Commands
add wave

Examples

® Display an object named out2. The object is specified as being alogic object presented
in gold.

add wave -logic -color gold out2
® Display auser-defined, hex formatted bus named address.
add wave -hex {address {a_7a 6a 5a 4a 3a 2a 1la 0}}
® Add all wave abjectsin theregion.
add wave *
® Add all waveinput portsin the region.
add wave -in *

® Create a user-defined bus named "mybus" consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vectorl is of type std_logic_vector (7 downto 1). The
busis displayed in hex.

add wave -hex {mybus {scalarl vectorl scalar2}}

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:

add wave {vector3(1)}

add wave {vector3[1]}

add wave {vector3(4 downto 0)}
add wave {vector3[4:0]}

® Add the object vecl to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

add wave vecl -hex vec2 -dec vec3 vec4

® Addadivider with the name "-Example-". Note that for this to work, the first hyphen of
the name must be preceded by a space.

add wave -divider " -Example-"
®* Add an unnamed divider.

add wave -divider
add wave -divider ""
add wave -divider {}

ModelSim Reference Manual, v10.1c 65

Commands
add wave

Related Topics

add list

log

Concatenation Directives

Extended Identifiers

Using the WildcardFilter Preference Variable
Refer to Wave Window for more information on
analog formats of waveform signals.

66 ModelSim Reference Manual, v10.1c

Commands
add_cmdhelp

add_cmdhelp

This command adds the specified command name, description, and command arguments to the
command-line help. Y ou can then access the information using the help command.

To delete an entry, invoke the command with an empty command description and arguments.
See examples.

The arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
add_cmdhelp {<command_name>} {<command_description>} {<command_arguments>}
Arguments

* {<command_name>}

(required) Specifies the command name that will be entered as an argument to the help
command. Must be enclosed in braces ({ }). The command_name must not interfere with an
already existing command_name. Must be specified as the first argument to the
add_cmdhelp command.

¢ {<command_description>}

(required) Specifies a description of the command. Must be enclosed in braces ({ }). Must
be specified as the second argument to the add_cmdhelp command.

¢ {<command_arguments>}

(required) A space-separated list of arguments for the command. Must be enclosed in braces
({ 1. If the command doesn’t have any arguments, enter {}. Must be specified as the third
argument to the add_cmdhelp command.

Examples
® Add acommand named "date" with no arguments.
add_cmdhelp date {Displays date and time.} {}
Entering:
VSIM> help date

returns:

Displays date and time.
Usage: date

® Add the change date command.

add_cmdhelp {change date} {Modify date or time.} {-time|-date <arg>}
Entering:

VSIM> help change date

ModelSim Reference Manual, v10.1c 67

Commands
add_cmdhelp

returns:

Modify data or time.
Usage: change date -time|-date <arg>

® Deletes the change date command from the command-line help.
add_cmdhelp {change date} {} {}

68 ModelSim Reference Manual, v10.1c

Commands
alias

alias

This command displays or creates user-defined aliases. Any arguments passed on invocation of
the alias will be passed through to the specified commands.

Returns nothing. Existing commands (e.g., run, env, etc.) cannot be aliased.

Syntax
alias [<name> ["<cmds>"]]

Arguments
® <name>
(optional) Specifies the new procedure name to be used when invoking the commands.
* "<cmds>"

(optional) Specifiesthe command or commands to be evaluated when the alias isinvoked.
Multiple commands are specified as a semicolon (;) separated list. Y ou must enclose the
string in quotes (“*).

Examples
® Listall aliases currently defined.
alias
® Listtheadliasdefinition for the specified nameif one exists.
alias <name>

® CreateaTcl procedure, "myquit”, that when executed, writes the contents of the List
window to the file mylist.save by invoking write list, and quits Model Sim by invoking
quit.

alias myquit "write list ./mylist.save; quit -f

ModelSim Reference Manual, v10.1c 69

Commands
archive load

archive load

The archive load command allows you to load an archived debug database (.dbg) file that was
previously created with the archive write command.

Syntax
archive load <archive_name> [-dbgDir <directory _name>] -wlfFiles <wlf file_name>

Arguments
® <archive_name>
Specifies the name of the archived file to be opened for reading.
¢ -dbgDir <directory_name>

(optional) Specifies alocation to extract filesinto. Files are extracted on-demand when
Modelsim needs them. The current working directory is used if the switch is not specified.

* -wifFiles <wlf_file_name

(optional) Specifiesthe WLF filesto open for analysis. The argument can be asinglefile or
alist of files. A list of file names must be enclosed in curly braces{}. The name of the wif

file must be exactly the same as that specified in the archive write command, including the
pathname, if provided.

70 ModelSim Reference Manual, v10.1c

Commands
archive write

archive write

The archive write command allows you to create a debug archive file, with the file extension
.dgb, that contains one or more WLF files, debug information captured from the design library,
an optional connectivity debug database file, and optional HDL source files. With this archived
file, you can perform post-simulation debugging in different location from that which the
original simulation was run.

Syntax

archive write <archive_name> -wlf <wlf file_name> [-include_src] [-dbg <dbg _file name>]

Arguments
® <archive_name>
Specifies the name of the archived file to be created.
e -wif <wlf file_ name>

Specifies the name of the WLF file to use for post-simulation analysis. <wlf_file_name>
may be alist of filesenclosed in curly braces{} if you want to capture more than one WLF
fileinthe archive.

® -include src

(optional) Indicate if source files should be captured in the archive. Thisis off by default,
which means no source will be in the archive.

¢ -dbg<dbg file_ name>

(optional) Specifies the name of an existing debug database (.dbg) file to be included in the
archive.

ModelSim Reference Manual, v10.1c 71

Commands
batch_mode

batch_mode

This command returns“1” if ModelSim is operating in batch mode, otherwise it returns “0.” It
istypically used as a condition in an if statement.

Syntax
batch_mode

Arguments

None

Examples

Some GUI commands do not exist in batch mode. If you want to write ascript that will work in
or out of batch mode, you can use the batch_mode command to determine which command to
use. For example:

if [batch_mode] {
log /*

} else {
add wave /*

}
Related Topics

® Modes of Operation

72 ModelSim Reference Manual, v10.1c

Commands
bd

bd

This command deletes a breakpoint. Y ou can delete multiple breakpoints by specifying separate
information groupings on the same command line.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
bd { <filename> <line_number >}
bd {<id_number> | <label>} ...

Arguments
¢ <filename>

(required when not specifying <id_number> or <label>.) A string that specifies the name
of the source file in which the breakpoint is to be deleted. The filename must match the one
used previously to set the breakpoint, including whether you used afull pathname or a
relative name. Must be specified as the first argument to the bd command.

® <line number>
(required) A string that specifies the line number of the breakpoint to be del eted.
® <id_number> | <label>

(required when not specifying <filename>.) Specifies the identification of breakpoints
using markers assigned by the bp command. Must be specified as the first argument to the
bd command.

<id_number — A string that specifies the identification number of the breakpoint to be
deleted. The identification number is set with the -id argument to the bp command.

<label> — A string that specifiesthe label of the breakpoint to be deleted. The label is
set with the -label switch to the bp command.

Examples
® Delete the breakpoint at line 127 in the source file named alu.vhd.
bd alu.vhd 127
® Delete the breakpoint with id# 5.
bd 5
® Delete the breakpoint with the label top_bp

bd top_bp

® Delete the breakpoint with id# 6 and the breakpoint at line 234 in the source file named
alu.vhd.

ModelSim Reference Manual, v10.1c 73

Commands
bd

bd 6 alu.vhd 234

Related Topics

° bp
® onbreak

74 ModelSim Reference Manual, v10.1c

Commands
bookmark add wave

bookmark add wave

This command creates a named reference to a specific zoom range and scroll position in the
specified Wave window. Bookmarks are saved in the wave format file and are restored when
the format fileis read.

Y ou can aso interactively add a bookmark through the GUI by selecting the
Wave > Bookmar ks > Bookmar ks menu item.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

bookmark add wave <label> [[<range_start> [<unit>]] [<range_end> [<unit>]] [<topindex>]]

Arguments

<label>

(required) A string that specifies the name for the bookmark. Must be specified as the first
argument to the bookmark add wave command.

<range_start> [<unit>]

(optional) Specifiesthe beginning point of the zoom range where the default starting point is
zero (0).

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <limit> and <unit>
within curly braces ({}).

The complete grouping of <range start> and <range_end> must also be enclosed in braces
({ }) or quotes (" "), for example:

{{100 ns} {10000 ns}}
{10000}

<range_end> [<unit>]
(optional) Specifies the end point of the zoom range.
<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,

ms, sec, min, and hr. If <unit> is specified, you must enclose <limit> and <unit>
within curly braces ({}).

<topindex>

(optional) Aninteger that specifies the vertical scroll position of the window. Y ou must
specify azoom range to specify topindex. The number identifies which object the window
should be scrolled to. For example, specifying 20 means the Wave window will be scrolled
down to show the 20th object.

ModelSim Reference Manual, v10.1c 75

Commands
bookmark add wave

Examples

®* Add abookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th object in the
window.

bookmark add wave foo {{10 ns} {1000 ns}} 20

Related Topics

bookmark delete wave
bookmark goto wave
bookmark list wave
write format

76 ModelSim Reference Manual, v10.1c

Commands
bookmark delete wave

bookmark delete wave
This command deletes bookmarks from the specified Wave window.

Y ou can aso interactively delete a bookmark through the GUI by selecting the
Wave > Bookmar ks > Bookmar ks menu item.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
bookmark delete wave { <label> | -all}

Arguments
* <label>|-all

(required) Controls which bookmarks to delete. Must be specified as the first argument to
the bookmark delete wave command.

<label> — Specifies the name of the bookmark to delete.
-all — Specifiesthat al bookmarksin the window be deleted.

Examples
* Dedete the bookmark named "foo" from the current default Wave window.

bookmark delete wave foo

Related Topics

bookmark add wave
bookmark goto wave
bookmark list wave
write format

ModelSim Reference Manual, v10.1c 77

Commands
bookmark goto wave

bookmark goto wave
This command zooms and scrolls a Wave window using the specified bookmark.

Y ou can aso interactively navigate between bookmarks through the GUI by selecting the
Wave > Bookmar ks > Bookmar ks menu item.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
bookmark goto wave <label>

Arguments
* <label>
(required) Specifies the bookmark to go to. Must be specified as the first argument to the
bookmark goto wave command.
Related Topics

® bookmark add wave

* bookmark delete wave
® bookmark list wave

* write format

78 ModelSim Reference Manual, v10.1c

Commands
bookmark list wave

bookmark list wave

This command displays alist of available bookmarks in the Transcript window.
Syntax

bookmark list wave
Related Topics

* bookmark add wave

* bookmark delete wave
® bookmark goto wave
* write format

ModelSim Reference Manual, v10.1c 79

Commands
bp

bp
This command sets either afile-line breakpoint or returns alist of currently set breakpoints. It
allows enum names, as well as literal values, to be used in condition expressions.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
Setting an HDL breakpoint

bp { <filename> <line_number >} [-appendinst] [-cond "<condition_expression>"] [-disable]
[-id <id_number> | -label "<label>"] [-inst <region> [-inst <region> ...]] [<command>...]

Querying a breakpoint
bp [-query <filename> [<line_number>]]

Reporting all breakpoints

If you specify this command with no arguments, it returnsalist of al breakpointsin the
design containing information about each breakpoint. For example:

bp
returns:

bp top.vhd 70;# 2
o bp— an echo of the command
o <file_name>
o <line_number>
o #<id_number>

Arguments
* <filename>

(required to set an HDL breakpoint) Specifies the name of the source filein which to set the
breakpoint. Must be specified as the first argument to the bp command.

* <line_number>
(required to set an HDL breakpoint) Specifies the line number where the breakpoint isto be
set. Must be specified as the second argument to the bp command.

* -appendinst

(optional) When specifying multiple breakpoints with -inst, append each instance-path
condition to the earlier condition. This overrides the default behavior, in which each
condition overwrites the previous one.

80 ModelSim Reference Manual, v10.1c

Commands
bp

* -disable

(optional) Sets the breakpoint to a disabled state. Y ou can enable the breakpoint later using
the enablebp command. This command enables breakpoints by default.

* <command>...

(optional, must be specified asthe final argument) Specifies one or more commands that are
to be executed at the breakpoint. Y ou must separate multiple commands with semicolons (;)
or place them on multiple lines. Braces are required only if the string contains spaces.

Note
Y ou can also specify this command string by choosing Tools > Breakpoints... from the

main menu and using the M odify Breakpoints dialog box.

Any commands that follow arun or step command are ignored. A run or step command
terminates the breakpoint sequence. Thisrule also appliesif you use a macro within the
command string.

If many commands are needed after the breakpoint, you could place them in a macro file.
® -cond "<condition_expression>"
(optional) Specifies one or more conditions that determine whether the breakpoint is hit.

"<condition_expression>" — A conditional expression that resultsin atrue/false value.
Y ou must enclose the condition expression within braces ({}) or quotation marks
(“ ") when the expression makes use of spaces. Refer to the note below when setting
breakpoints in the GUI.

If the condition is true, the simulation stops at the breakpoint. If false, the smulation
bypasses the breakpoint. A condition cannot refer to aVHDL variable (only asignal).

The -cond switch re-parses expressions each time the breakpoint is hit. Thisallows
expressions with local references to work. Condition expressions referencing items outside
the context of the breakpoint must use absolute names. Thisisdifferent from the behavior in
previous Model Sim versions where arelative signal name was resolved at the time the bp
command was issued, allowing the breakpoint to work even though the relative signal name
was inappropriate when the breakpoint was hit.

Note
D Y ou can a'so specify this expression by choosing Tools > Breakpoints... from the main

menu and entering the expression in the Breakpoint Condition field of the M odify
Breakpoints dialog box. Do not enclose the condition expression in quotation marks
(“ ") orbraces({}).

The condition expression can use the following operators:

Operation Operator Syntax
equa|s == =

ModelSim Reference Manual, v10.1c 81

Commands

bp
Operation Operator Syntax
not equal I= /=
AND &&, AND
OR I, OR

The operands may be object names, signame’ event, or constants. Subexpressionsin
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1. The forma BNF syntax for an expressionis:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation
| relation

relation ::= Name = Literal

Name ' EVENT
(expression)
Literal ::= '<char>' | "<bitstring>" | <bitstring>

| Name /= Literal
|
|

The"=" operator can occur only between aName and a Literal. This means that you cannot
compare the value of two signals (for example, Name = Name is not valid).

Y ou can construct a breakpoint such that the simulation breaks when a SystemV erilog Class
Is associated with a specific handle, or address:

bp <filename> <line_number> -cond "this==<class_handle>"
bp <filename> <line_number> -cond "this!=<class_handle>"

where you can obtain the class handle with the examine -handle command. The string "this"
isalitera that refersto the specific line_number.

Y ou can construct a breakpoint such that the simulation breaks when aline number is of a
specific class type or extends the specified class type:

bp <filename> <line_number> -cond "this ISA <class_type_name>"

where class_type nameisthe actual class name, not avariable.
® -id <id_number> | -label "<label>"

(optional) Attemptsto assign an id number or |abel to the breakpoint. The command returns
an error if the id number you specify is already assigned.

-id <id_number> — Any positive integer that is not already assigned.

-label "<label>" — Associates a name or label with the specified breakpoint. Adds a
level of identification to the breakpoint. The label may contain specia characters.
Quotation marks (" ") or braces ({ }) arerequired only if <label> contains spaces or
specia characters.

82 ModelSim Reference Manual, v10.1c

Commands
bp

Note
D Id numbers for breakpoints are assigned from the same pool as those used for the when

command. So even if you have not specified a given id number for a breakpoint, that
number may still be used for awhen command.

® -inst <region> [-inst <region> ...]

(optional) Sets an HDL breakpoint so it applies only to the specified instance. To apply
multiple instance-path conditions on a single breakpoint, specify -inst <region> multiple
times. By default, this overrides the previous breakpoint condition (you can use the -
appendinst argument to append conditions instead).

<region> — The full path to the instance specified.

Note
Y ou can aso specify thisinstance by choosing Tools > Breakpoints... from the main

menu and using the M odify Breakpoints dialog box.

* -query <filename> [<line_number>]

(optional) Returns information about the breakpoint(s) set in the specified file. The
information returned varies depending on the condition of the breakpoint(s) in the specified
file. Returns a complete list of all breakpoints and whether they are enabled or not when
specified without <line_number>. Returns nothing if <line_number> is not executable.

<filename> — The name of the file containing the breakpoint.
<line_number> — The line number where a breakpoint has been set.
The output contains six fields of information. For example:
bp -query top.vhd 70
returns

1 1 top.vhd 70 2 1

{1 | 0} — Indicates whether a breakpoint exists at the location.

e}

0 — Breakpoint does not exit.
1 — Breakpoint exists.

o 1— alwaysreportsal.

o <file_name>

o <line_number>

o <id_number>

o {1]0} — Indicates whether the breakpoint is enabled.
0 — Breakpoint is not enabled.

ModelSim Reference Manual, v10.1c 83

Commands

bp

1 — Breakpoint is enabled.

Examples

List all existing breakpointsin the design, including the source file names, line numbers,
breakpoint id#s, labels, and any commands that have been assigned to the breakpoints.

bp

Set a breakpoint in the source file alu.vhd at line 147.
bp alu.vhd 147

Execute the macro.do macro file when the breakpoint is hit.
bp alu.vhd 147 {do macro.do}

Set a breakpoint on line 22 of test.vhd. When the breakpoint is hit, the values of
variables var1 and var2 are examined. This breakpoint isinitially disabled; it can be
enabled with the enablebp command.

bp -disable test.vhd 22 {echo [exa varl]; echo [exa var2]}
Set a breakpoint so that the simulation pauses whenever clk=1 and prdy=0:
bp test.vhd 14 -cond {clk=1 AND prdy=0}
Set a breakpoint with the label top_bp
bp top.vhd 14 -label top_bp
Set a breakpoint for line 15 of a.vhd, but only for the instance a2:
bp a.vhd 15 -inst "/top/a2"

Set multiple breakpoints in the source file test.vhd at line 14. The second instance will
overwrite the conditions of the first.

bp test.vhd 14 -inst /test/inst1 -inst /test/inst2

Set multiple breakpoints at line 14. The second instance will append its conditionsto the
first.

bp test.vhd 14 -inst /test/instl -inst /test/inst2 -appendinst
Set a breakpoint for a specific variable of a particular classtype:

set x [examine -handle my_class_var]

bp top.sv 15 -cond {this == $x}

List the line number and enabl ed/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.

bp -query testadd.vhd
List details about the breakpoint on line 48.
bp -query testadd.vhd 48

84

ModelSim Reference Manual, v10.1c

Commands
bp

* List all executablelinesin testadd.vhd between lines 2 and 59.
bp -query testadd.vhd 2 59

Note
Any breakpoints set in VHDL code and called by either resolution functions or functions

that appear in aport map are ignored.

Related Topics

bd

disablebp

enablebp

Editing File-Line Breakpoints
onbreak

when

ModelSim Reference Manual, v10.1c 85

Commands

call

call

This command calls SystemVerilog static functions and class functions directly from the vsim
command linein live simulation mode. Tasks are not supported.

Function return values are returned to the vsim shell asa Tcl string. If the function returns a
class reference, the classinstance ID is returned.

Syntax

Calling a function
call <pathToFunction> [classlnstancePath] [functionArgQ] [functionArgl] ...

Arguments

pathToFunction

(required) The name of afunction. The function name may be qualified in one of three

ways:

1. By specifying the path to the function declaration, through the structural hierarchy, or
declaration hierarchy. Hierarchical paths must be specified asafull path to afunction or

afunction that exists relative to the current context (as shown in the Structure window,
or returned by the environment command).

2. By specifying a class instance hierarchical path.
3. By specifying aclass instance id string.
classl nstancePath

(optional) Must be specified if the function path is a declaration path and the functionisa
non-static class function. Conversely, the class instance path name must not be specified if
the given function path is a class instance variable reference or a class instance namein the
format @<class_type>@nnn. Thisis because the class instance information can be
extracted from the pathname itself.

functionArgO functionArgl ...

(optional) All arguments required by the function are specified in a space separated list in
declaration order. If afunction has default arguments, the arguments may be omitted from
the command line provided that the arguments occur at the end of the declaration list.
Function input arguments can be constant valuesincluding integers, enumerated values, and
strings. A string containing spaces or specia characters must be enclosed in double quotes
(" ") orbraces({ }) or Tcl will try to interpret the string. For example: "my string" or { my
string} . Arguments can al so be design objects. Class references can be arguments, specified
by either their design instance path or classinstance id string. If afunction has type inout,
out, or ref arguments, suitable user design objects must be passed in as arguments. Any
passed in argument will first be tested to determineif it is an appropriate constant value. If it
is not, then the argument will be tested to determine if it is a design object. Consequently,
where there is ambiguity between a constant string and the name of a design object, the

86

ModelSim Reference Manual, v10.1c

Commands
call

constant will be given precedence. If in this case the design object is desired, the full
hierarchical path to the object can be supplied to differentiate it from the constant string.

Examples

Call using a static declaration path, where the function sf_voidstring() is a static class
function that accepts a string:

call sim:/user_pkg::myfcns::sf_voidstring first_string

Call using a class instance path to specify the function, where the function f_intint() of
the class type /utop/tmyfcns accepts an integer:

call /utop/tmyfcns.f_intint 37

Call using a class instance path to specify the function, and passin a class instance
(/utop/tmyfcnsis a class handle):

call /utop/tmyfcns.f_voidclasscolor /utop/tmyfcns

Call using aclassinstance path, and passin aclassinstance as an argument using a class
instance id string

call /Jutop/tmyfcns.f_voidclasscolor @myType@3

Call using aclass instance id string to specify the function:

call @myType@543.get_full_name

Call using a declaration path, where the function is non-static so a class instance must
also be supplied. The member function f_voidstring() accepts a string:

call sim:/user_pkg::myfcns::f voidstring /my/class/instance "some string"

Call using aclass instance id string to specify the function where the function returns a
string:

VSIM> call @uvm_sequencer__3@3.get_full_name
Returns:

test.e2_a.sequencer

Call using arelative class hierarchical name to specify the function where the function
returns a class handle:

VSIM> call moduleX.who_am _i

Returns:
@myClassX@4

ModelSim Reference Manual, v10.1c 87

Commands
cd

cd

This command changes the Model Sim local directory to the specified directory.

This command cannot be executed while asimulation isin progress. Also, executing acd
command will close the current project.

Syntax
cd [<dir>]
Arguments
* <dir>

(optional) Specifiesafull or relative directory path for QuestaSim to use as the local
directory. If you do not specify adirectory, the command changes to your home directory.

88 ModelSim Reference Manual, v10.1c

Commands
change

change

This command modifies the value of a:

®* VHDL constant, generic, or variable

* Verilog register or variable

Syntax

change <variable> <value>

Arguments

* <variable>

(required) A string that specifies the name of an object. The name can be afull hierarchical
name or arelative name, where arelative name isrelative to the current environment.

Wildcards are not permitted.

The following sections list supported objects:
e VHDL

O

Scalar variable, constant, or generics of all types except FILE.

Generates awarning when changing aVVHDL constant or generic. Y ou can suppress
thiswarning by setting the TCL variable WarnConstantChange to 0 or in the [vsim]
section of the modelsim.ini file.

Scalar subelement of composite variable, constant, and generic of all types except
FILE.

One-dimensional array of enumerated character types, including slices.

Accesstype. An accesstype pointer can be set to "null”; the value that an accesstype
points to can be changed as specified above.

* Veilog

@)

O

(@)

@)

@)

Parameter.
Register or memory.
Integer, real, realtime, time, and local variables in tasks and functions.

Subelements of register, integer, rea, realtime, and time multi-dimensional arrays
(al dimensions must be specified).

Bit-selects and part-sel ects of the above except for objects whose basic typeisreal.

The name can be afull hierarchical name or arelative name. A relative nameisrelative to
the current environment. Wildcards cannot be used.

ModelSim Reference Manual, v10.1c 89

Commands
change

* <vaue>

(required) Defines avalue for <variable>. The specified value must be appropriate for the
type of the variable. Y ou must place <value> within quotation marks (* “) or curly braces
({ }) if it contains spaces .

Note

D Theinitial type of <variable> determines the type of value that it can be given. For
example, if <variable> isinitially equal to 3.14 then only real values can be set onit.
Also note that changing the value of a parameter or generic will not modify any design
elements that depended on the parameter or generic during elaboration (for example,
Sizes of arrays).

Examples
® Changethe value of the variable count to the hexadecimal value FFFF.
change count 16#FFFF
® Change the value of the element of rega that is specified by theindex (i.e., 16).
change {rega[16]} O
® Change the value of the set of elements of foo that is specified by the slice (i.e., 20:22).
change {foo[20:22]} 011

* Setthe Verilog register file_nameto "test2.txt". Note that the quote marks are escaped
with'\".

change file_name \"test2.txt\"

® Set thetime value of the mytimegeneric variable to 500 ps. The time valueis enclosed
by curly braces (or quotation marks) because of the space between the value and the
units.

change mytimegeneric {500 ps}
Related Topics

* force

90 ModelSim Reference Manual, v10.1c

Commands
classinfo

classinfo

Thiscommand allows the user to access information about class types and instances availablein
the simulation. Y ou can view, find and report statistics about class instances.

The following table summarizes the class viewing options:

Command Description

classinfo find Reports on the current state of a particular classinstance, whether
it exists, has been destroyed, or has not yet been created.

classinfo instances Displaysthelist of classitemsin the specified class.

classinfo report Prints a detailed report of a set of classes and their usage.

classinfo stats Displays statistics about the number of class types and instances.

classinfo types Displaysthelist of classes that match or do not match the
specified pattern.

Syntax

classinfo find [-tcl] [-0 <outfile>] class-instance-name

classinfo instances [-tcl] [-0 <outfile>] classhame

classinfo report [-c [fntpc]] [-m <maxout>] [-0 <outfile>] [-sort [a| d][f [n|t]|p]|c]] [-tcl] [-Z]
classinfo stats [-tcl] [-0 <outfile>]

classinfo types [-tcl] [-n] [-0 <outfile>] [-X] pattern

Arguments
* -c[fntpc]

Display the report columnsin the specified order in areport. The default is to display al
columnsin the following order: Full Path, Class Name, Total, Peak, Current. Y ou can
specify one or more columnsin any order.

f — The Full Path column displays the full relative path name.
n — The Class Name column displays the name of the class instance.
t — The Total column displays the total number of instances of the named class.

p — The Peak column displays the maximum number of instances of the named class
that existed simultanously at any time in the simulation.

¢ — The Current column displays the current number of instances of the named class.
® class-instance-name
(required for classinfo find) Name of the class item in the following format @<name>@#.
® classname
(required for classinfo types) Name of the class or the full path of the class type.

ModelSim Reference Manual, v10.1c 91

Commands
classinfo

® -m<maxout>
Display the specified number of lines of the report.
<maxout> — Any non-negative integer.
®* -n

Returns class names only. Does not include the path unless required to resolve name
ambiguity.

® -o<outfile>
Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.
® pattern
A standard TCL glob expression used as a search string.
* -sort[ald][f[n|t|p]c]

Specifies whether the report information is sorted in ascending or descending order and
which column to sort by. Only one column can be specified for sorting.

a— Sort the entriesin ascending order.
d — Sort the entries in descending order.
f — Sort by the Full Path column

n— Sort by the Class Name column

t — Sort by the Total column

p — Sort by the Peak column

¢ — Sort by the Current column

* -tcl
Returns atcl list instead of formatted output.
* X

Display classes that do not match the pattern.
e -z
Remove al items from the report with atotal instance count of zero.
Example
® Listthefull path of the class typesthat do not match the pattern *uvm*.

vsim> classinfo types -x *uvm*

Returns:

/environment_pkg::test_predictor
/environment_pkg: :threaded_scoreboard
/mem_agent_pkg: :mem_agent

92 ModelSim Reference Manual, v10.1c

Commands
classinfo

/mem_agent_pkg: :mem_config
/mem_agent_pkg: :mem_driver

® Display the current number of class types, the maximum number, peak number and
current number of all classinstances.

vsim> classinfo stats

Returns:

class type count 451
class instance count (total) 2070
class instance count (peak) 1075
class instance count (current) 1058

® List the current instances for the class type mem_item.
vsim> classinfo instances mem_item

Returns:

@mem_item@140
@mem_item@139
@mem_item@138
@mem_1item@80
@mem_item@76
@mem_1item@72
@mem_item@68
@mem_item@64

HH H FH H HH HHF

® Createareport of al classinstancesin descending order in the Total column. Print the
Class Names, Total, Peak, and Current columns. List only the first six lines of that

report.
vsim> classinfo report -s dt -c ntpc -m 6
Returns:
Class Name Total Peak Current
uvm_pool_ 11 318 315 315
uvm_event 286 55 52
uvm_callback _iter_ 1 273 3 2
uvm_queue__ 3 197 13 10
uvm_object_string_pool__1 175 60 58
mem_item 140 25 23

® Find the class instance @mem_item@87
VSIM> classinfo find @mem_item@87
Returns:
@mem_item@87 has been destroyed
® Find the classinstance @mem_item@200

VSIM> classinfo find @mem_item @200

ModelSim Reference Manual, v10.1c 93

Commands
classinfo

Returns:

@mem_item@200 not yet created

Related Topics

® ClassDebug modelsim.ini variable
® vsim -classdebug

94 ModelSim Reference Manual, v10.1c

Commands
configure

configure

The configure command invokes the List or Wave widget configure command for the current
default List or Wave window.

To change the default window, use the view command.

Some arguments to this command are order-dependent. Please read through the arguments for
further information.

Syntax

configurelist | wave [<option> <value>]

---- List Window Arguments

[-delta[all | collapse | events | none]] [-gateduration [<duration_open>]]

[-gateexpr [<expression>]] [-usegating [off | on]] [-strobeperiod [<period>[<unit>]]]
[-strobestart [<start_time>[<unit>]]] [-usesignaltriggers [0 | 1]] [-usestrobe [0 | 1]]

---- Wave Window Arguments
[-childrowmargin [<pixels>]] [-cursorlockcolor [<color>]] [-gridauto [off | on]]
[-gridcolor [<color>]][-griddelta [<pixels>]] [-gridoffset [<time>[<unit>]]]
[-gridperiod [<time>[<unit>]]] [-namecolwidth [<width>]] [-rowmargin [<pixels>]]
[-signalnamewidth [<value>]] [-timecolor [<color>]] [-timeline [0 | 1]]
[-timelineunits [fs| ps| ns|us|ms|sec | min | hr]] [-valuecolwidth [<width>]]
[-vectorcolor [<color>]] [-waveselectcolor [<color>]] [-waveselectenable [0 | 1]]

Description

The command works in three modes:

® without options or valuesit returns alist of al attributes and their current values

® with just an option argument (without a value) it returns the current value of that
attribute

* with one or more option-value pairs it changes the values of the specified attributes to
the new values

The returned information has five fields for each attribute: the command-line switch, the Tk
widget resource name, the Tk class name, the default value, and the current value.

Arguments
* |ist | wave

(required) Controls the widget to configure. Must be specified as the first argument to the
configur e command.

list — Specifies the List widget.
wave — Specifies the Wave widget.

ModelSim Reference Manual, v10.1c 95

Commands
configure

<option> <value>
-bg <color> — (optional) Specifies the window background color.
-fg <color> — (optional) Specifiesthe window foreground color.

-sel ectbackground <color> — (optional) Specifies the window background color when
selected.

-sel ectforeground <color> — (optional) Specifies the window foreground color when
selected.

-font — (optional) Specifies the font used in the widget.
-height <pixels> — (optional) Specifies the height in pixels of each row. .

Arguments, List window only

-delta[all | collapse | events | none]

(optional) Specifies how information is displayed in the delta column. To use -delta,
-usesignaltrigger s must be set to 1 (on).

all — Displays anew line for each time step on which objects change.
collapse — Displays the final value for each time step.

events — Displays an "event" column rather than a"delta" column and sorts List
window data by event.

none — Turns off the display of the delta column.
-gateduration [<duration_open>]
(optional) Extends gating beyond the back edge (the last list row in which the expression
evaluates to true). The duration for gating to remain open beyond when -gateexpr (below)
becomes false, expressed in x number of timescale units. The default value for normal
synchronous gating is zero. If -gateduration is set to anon-zero value, a simulation value

will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gateduration to zero).

<duration_open>— Any non-negative integer where the default is O (values are not
displayed).
-gateexpr [<expression>]

(optional) Specifies the expression for trigger gating. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would normally
have displayed arow of data.

<expression> — An expression.
-usegating [off | on]

(optional) Enables triggers to be gated on or off by an overriding expression. (Use the
-gatexpr argument to specify the expression.) Refer to “Using Gating Expressions to
Control Triggering” for additional information on using gating with triggers.

off — (default) Triggers are gated off (avalue of 0).

96

ModelSim Reference Manual, v10.1c

Commands
configure

on — Triggers are gated on (avalue of 1).

-strobeperiod [<period>[<unit>]]

(optional) Specifiesthe period of the list strobe.
<period> — Any non-negative integer.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

-strobestart [<start_time>[<unit>]]
(optional) Specifiesthe start time of the list strobe.
<gtart_time> — Any non-negative integer.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

-usesignaltriggers [0 | 1]
(optional) Specifies whether or not signals are to be used as triggers.
0 — Signals are not used as triggers
1 — Signals are used astriggers
-usestrobe [0 | 1]
(optional) Specifies whether or not a strobe is used as atrigger.
0 — Strobe is not used to trigger.
1 — Strobeis used to trigger.

Arguments, Wave window only

-childrowmargin [<pixels>]

(optional) Specifiesthe distance in pixels between child signals. Related Tcl variableis
PrefWave(childRowMargin).

<pixels> — Any non-negative integer where the default is 2.
-cursorlockcolor [<color>]

(optional) Specifiesthe color of alocked cursor. Related Tcl variableis
PrefWave(cursorLockColor).

<color>— Any Tcl color where the default is red.

-gridauto [off | on]

(optional) Controls the grid period when in simulation time mode.
off — (default) user-specified grid period is used.

ModelSim Reference Manual, v10.1c 97

Commands
configure

on — grid period is determined by the major tick marks in the time line.
-gridcolor [<color>]

(optional) Specifies the background grid color. Related Tcl variableis
PrefWave(gridColor).

<color> — Any color where the default is grey50.
-griddelta [<pixels>]

(optional) Specifiesthe closest (in pixels) two grid lines can be drawn before intermediate
lineswill be removed. Related Tcl variable is PrefWave(gridDelta).

<pixels> — Any non-negative integer where the default is 40.
-gridoffset [<time>[<unit>]]

(optional) Specifiesthetime (in user time units) of the first grid line. Related Tcl variableis
PrefWave(gridOffset).

<time> — Any non-negative integer where the default is 0.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

-gridperiod [<time>[<unit>]]

(optional) Specifiesthe time (in user time units) between subsequent grid lines. Related Tcl
variable is PrefWave(gridPeriod).

<time>— Any non-negative integer where the default is 1.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

-namecolwidth [<width>]

(optional) Specifiesthe width of the name column in pixels. Related Tcl variableis
PrefWave(nameCol Width).

<width> — Any non-negative integer where the default is 150.
-rowmargin [<pixels>]

(optional) Specifies the distance between top-level signalsin pixels. Related Tcl variableis
PrefWave(rowMargin).

<pixels> — Any non-negative integer where the default is 4.
-signalnamewidth [<value>]

(optional) Controls the number of hierarchical regions displayed as part of asignal name
shown in the pathname pane. Related Tcl variable is PrefWave(SignalNameWidth). Can
also be set with the WaveSignalNameWidth variable in the modelsim.ini file.

98

ModelSim Reference Manual, v10.1c

Commands
configure

<vaue> — Any non-negative integer where the default is 0 (display the full path. For
example,1 displays only the leaf path element, 2 displays the last two path elements,
and so on.

® -timecolor [<color>]
(optional) Specifiesthe time axis color. Related Tcl variable is PrefWave(timeColor).
<color> — Any color where the default is green.
* -timeline[0]1]

(optional) Specifies whether the horizontal axis displays simulation time or grid period
count. Related Tcl variable is PrefWave(timeline).

0 — (default) Simulation time is displayed.
1 — Grid period count is displayed.
® -timelineunits[fs|ps|ns|us|ms|sec|min|hr]

(optional) Specifies units for timeline display. Does not affect the currently-defined
simulation time.

fs— femtosecond (10°1°

seconds)
ps — picosecond (1012 seconds)
ns — nanosecond (10'9 seconds) (default)
us — microsecond (1076 seconds)
ms — millisecond (10°3 seconds)
sec — second
min — minute (60 seconds)
hr — hour (3600 seconds)
® -valuecolwidth [<width>]

(optional) Specifiesthe width of the value column, in pixels. Related Tcl variableis
PrefWave(va ueCol Width).

<width> — Any non-negative integer where the default is 100.
® -vectorcolor [<color>]

(optional) Specifiesthe vector waveform color. Default is#b3ffb3. Related Tcl variableis
PrefWave(vectorColor).

<color>— Any color where the default is #b3ffb3.
* -waveselectcolor [<color>]

(optional) Specifies the background highlight color of a selected waveform. Related Tcl
variable is PrefWave(waveSel ectColor).

<color> — Any color where the default is grey30.

ModelSim Reference Manual, v10.1c 99

Commands
configure

* -waveselectenable[0| 1]

(optional) Specifies whether the waveform background highlights when an object is
selected. Related Tcl variable is PrefWave(waveSel ectEnabl ed).

0 — (default) Highlighting is disabled.
1 — Highlighting is enabled.

There are more options than are listed here. See the output of a configure list or configure wave
command for all options.

Examples
* Display the current value of the strobeperiod attribute.
config list -strobeperiod
® Set the period of thelist strobe and turnsit on.
config list -strobeperiod {50 ns} -strobestart 0 -usestrobe 1
® Set the wave vector color to blue.
config wave -vectorcolor blue
® Set thedisplay in the current Wave window to show only the leaf path of each signal.
config wave -signalnamewidth 1
Related Topics

* view
* Simulator GUI Preferences

100 ModelSim Reference Manual, v10.1c

Commands
dataset alias

dataset alias

This command maps an alternate name (alias) to an open dataset. A dataset can have any
number of aliases, but all dataset names and aliases must be unique even when more than one
dataset is open. Aliases are not saved to the .wif file and must be remapped if the dataset is
closed and then re-opened.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax
dataset alias <dataset_name> [<alias_name>]

Arguments
® <dataset name>

(required) Specifies a dataset name or currently assigned dataset alias. Must be specified as
the first argument to the dataset alias command. Returns alist of all aliases mapped to the
specified dataset file when specified without <dataset_alias>.

* <dias name>

(optional) Specifies string to assign to the dataset as an alias. Wildcard characters are
permitted.

Examples
Assign the alias name “bar” to the dataset named “gold.”

dataset alias gold bar

Related Topics

® dataset clear ® dataset open

® dataset close ® dataset rename
® dataset config ® dataset restart

® dataset info ® dataset save

® dataset list ® dataset snapshot

ModelSim Reference Manual, v10.1c 101

Commands
dataset clear

dataset clear

This command applies only to WLF based simulation datasets. It has no effect on coverage
(UCDB) datasets. All event data is removed from the current simulation WLF file, while
retaining all currently logged signals. Subsequent run commands will continue to accumulate
datain the WLF file.

If the command is executed when no design is loaded then the error: “ Dataset not found:sim” is
returned. If the command is executed when adesign isloaded, then the “sim:” dataset is cleared,
irrespective of which dataset is currently set. Clearing the dataset will clear any open wave
window based on the “sim:”.

Syntax
dataset clear

Examples

Clear datain the WLF file from time Ons to 100000ns, then log datainto the WLF file from
time 100000ns to 200000ns.

add wave *

run 100000ns
dataset clear
run 100000ns

Related Topics

® dataset alias ® dataset rename

® dataset close ® dataset restart

® dataset _config ® dataset save

® dataset info ® dataset snapshot

® dataset list °® log

® dataset open ® Recording Simulation Results With
Datasets

102 ModelSim Reference Manual, v10.1c

Commands
dataset close

dataset close
This command closes an active dataset. To open a dataset, use the dataset open command.
Syntax
dataset close { <dataset_name> | -all}
Arguments
® <dataset name> | -all
(required) Closes active dataset(s).
<dataset_name> — Specifies the name of the dataset or alias you wish to close.
-all — Closes al open datasets and the simulation.
Related Topics

® dataset dlias ® dataset open

® dataset clear ® dataset rename
® dataset config ® dataset restart

® dataset info ® dataset save

® dataset list ® dataset snapshot

ModelSim Reference Manual, v10.1c 103

Commands
dataset config

dataset config

This command configures WLF parameters for an open dataset and all aliases mapped to that
dataset. It has no effect on coverage datasets (UCDB).

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax
dataset config <dataset_name> [-wlfcachesize [<n>]] [-wlIfdeleteonquit [O | 1]] [-wifopt [0 | 1]]

Arguments

<dataset_name>

(required) Specifies a open dataset or dataset alias you wish to configure. Must be specified
as the first argument to the dataset config command.

-wlfcachesize [<n>]

(optional) Setsthe size, in megabytes, of the WLF reader cache. Does not affect the WLF
write cache.

<n>— Any non-negative integer, in MB where the default is 256.

If you do not specify avalue for <n>, this switch returns the size, in megabytes, of the WLF
reader cache.

-wlfdeleteonquit [O | 1]

(optional) Deletes the WLF file automatically when the simulation exits. Valid for the
current simulation dataset only.

0 — Disabled (default)
1— Enabled
If you do not specify an argument, this switch returns the current setting for the switch.
-wlifopt [0 | 1]
(optional) Optimizes the display of waveformsin the Wave window.
0 — Disabled
1 — Enabled (default)
If you do not specify an argument, this switch returns the current setting for the switch.

Examples

Set the size of the WLF reader cache for the dataset “gold” to 512 MB.

dataset config gold -wlfcachesize 512

104

ModelSim Reference Manual, v10.1c

Commands
dataset config

Related Topics

® dataset dias ® dataset rename

® dataset clear ® dataset restart

® dataset close ® dataset save

® dataset config ® dataset snapshot

® dataset info ®* \WLF File Parameter Overview
® dataset list ® ysm

® dataset open

ModelSim Reference Manual, v10.1c 105

Commands
dataset current

dataset current

This command activates the specified dataset and sets the GUI context to the last selected
context of the specified dataset. All context dependent GUI datais updated and all context
dependent CLI commands start working with respect to the new context.

Syntax
dataset current [<dataset_name>]

Arguments

® <dataset name>

(optional) Specifies the dataset name or dataset alias you want to activate. If no dataset
name or aiasis specified, the command returns the name of the currently active dataset.

Related Topics

® dataset dlias ® dataset rename

® dataset clear ® dataset restart

® dataset close * dataset save

® dataset info ® dataset snapshot

® dataset list ®* WLF File Parameter Overview
® dataset open ® vsm

106 ModelSim Reference Manual, v10.1c

Commands
dataset info

dataset info
This command reports a variety of information about a dataset.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax
dataset info {name | file | exists} <dataset _name>
Arguments
* {name|file|exists}
(required) Identifies what type of information you want reported.
Only one option per command is allowed. The current options include:

name — Returns the name of the dataset. Useful for identifying the real dataset name of
an dias.

file— Returns the name of the WLF file or UCDB file associated with the dataset.
exists — Returns "1" if the dataset is currently open, "0" if it does not.
Must be specified as the first argument to the dataset info command.
® <dataset name>

(optional) Specifies the name of the dataset or alias for which you want information. If you
do not specify a dataset name, Model Sim uses the dataset of the current environment.

Related Topics

® dataset dias ® dataset rename
® dataset clear ® dataset restart

® dataset close ® dataset save

® dataset c_onfig . data_lset snapshot
® dataset list ® environment

® dataset open

ModelSim Reference Manual, v10.1c 107

Commands
dataset list

dataset list
This command lists all active datasets.

Syntax
dataset list [-long]

Arguments
* -long
(optional) Lists the dataset name followed by the .wif file to which the dataset nameis
mapped.
Related Topics
® dataset dlias ® dataset open
® dataset clear ® dataset rename
® dataset close ® dataset restart
® dataset config ® dataset save
® dataset info ® dataset snapshot

108 ModelSim Reference Manual, v10.1c

Commands
dataset open

dataset open

This command opens a WLF file (either the currently running vsim.wif or a saved WLF file)
and/or UCDB file (representing coverage data) and assignsit the logical name that you specify.
The file may be the WLF file for a currently running simulation. To close a dataset, use dataset
close.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax
dataset open <file_name> [<dataset_name>|

Arguments
* <file_ name>

(required) Specifiesthe WLF file or UCDB file to open as a view-mode dataset. Must be
specified as the first argument to the dataset open command. Specify vsim.wif to open the
currently running WLF file.

® <dataset_name>

(optional) Specifiesaname for the open dataset. Thisis aname that will identify the dataset
in the current session. By default the dataset prefix will be the name of the specified WLF or
UCDB file.

Examples
Open the dataset file last.wif and assign it the name test.

dataset open last.wlf test

Related Topics

® dataset dias ® dataset list

® dataset clear ® dataset rename
® dataset close ® dataset restart

® dataset _config ® dataset save

® dataset info ® dataset snapshot

® vsim -view option

ModelSim Reference Manual, v10.1c 109

Commands
dataset rename

dataset rename
This command changes the name of a dataset to the new name you specify.

Arguments to this command are order dependent. Follow the order specified in the Syntax
section.

Syntax
dataset rename <dataset_name> <new_dataset_name>

Arguments
® <dataset name>
Specifies the existing name of the dataset.
® <new_dataset_name>
Specifies the new name for the dataset.
Examples
Rename the dataset file "test” to "test2".
dataset rename test test2

Related Topics

® dataset alias ® dataset list

® dataset clear ® dataset open

® dataset close ® dataset restart

® dataset config ® dataset save

® dataset info ® dataset snapshot

110 ModelSim Reference Manual, v10.1c

Commands
dataset restart

dataset restart

This command unloads the specified dataset or currently active dataset and rel oads the dataset
using the same dataset name. The contents of Wave and other coverage windows are restored
for UCDB datasets after areload.

Syntax
dataset restart [<file_name>]

Arguments
* <file_ name>

(optional) Specifiesthe WLF or UCDB file to open as a view-mode or coverage mode
dataset. If <filename> is not specified, the currently active dataset is restarted.

Related Topics

® dataset alias ® dataset list

® dataset clear ® dataset open

® dataset close ® dataset rename
® dataset _config ® dataset save

® dataset info ® dataset snapshot

ModelSim Reference Manual, v10.1c 111

Commands
dataset save

dataset save

This command writes data from the current simulation to the specified file. This lets you save
simulation data while the simulation is still in progress.

Arguments to this command are order dependent. Follow the order specified in the Syntax
section.

Syntax
dataset save <dataset_name> <file_name>

Arguments
® <dataset_name>
(required) Specifiesthe name of the dataset you want to save.
¢ <file_name>
(required) Specifies the name of thefile to save.
Examples
Save all current log data in the sim dataset to the file gold.wif.
dataset save sim gold.wlf

Related Topics

® dataset alias ® dataset list

® dataset clear ® dataset open

® dataset close ® dataset rename
® dataset _config ® dataset restart

® dataset info ® dataset snapshot

112 ModelSim Reference Manual, v10.1c

Commands
dataset snapshot

dataset snapshot

This command saves datafrom the current WLF file (vsim.wif by default) at a specified interval.
It provides you with sequential or cumulative "snapshots’ of your simulation data. This
command does not apply to coverage datasets (UCDB).

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax
dataset snapshot [-dir <directory>] [-disable] [-enable] [-file <file_name>]

[-filemode { overwrite | increment}] [-mode { cumulative | sequential}] [-report] [-reset]
{-size <file_size> | -time <n> [<unit>]}

Arguments

-dir <directory>

(optional) Specifies adirectory into which the files should be saved. Either absolute or
relative paths may be used. Default is to save to the current working directory.

-disable

(optional) Turns snapshotting off. All dataset snapshot settings from the current simulation
are stored in memory. All other options are ignored after you specify -disable.

-enable

(optional) Turns snapshotting on. Restores dataset snapshot settings from memory or from a
saved dataset. (default)

-file <file_name>
(optional) Specifies the name of the file to save snapshot data.

<file_name> — A specified file name where the default is vsim_snapshot.wif. The
suffix .wif will be appended to specified filename and, possibly, an incrementing
suffix.

When the duration of the ssmulation run is not amultiple of the interval specified by -size or
-time, the incomplete portion is saved in the file vsim.wif.

-filemode { overwrite | increment}
(optional) Specifies whether to overwrite the snapshot file each time a snapshot occurs.
overwrite — (default)

increment — A new fileis created for each snapshot. An incrementing suffix (Lton) is
added to each new file (for example, vsim_snapshot_1.wif).

-mode { cumulative | sequential}

(optional) Specifies whether to keep all data from the time signals are first logged.
cumulative — (default)
sequential — The current WLF file is cleared every time a snapshot is taken.

ModelSim Reference Manual, v10.1c 113

Commands
dataset snapshot

-report

(optional) Lists current snapshot settings in the Transcript window. All other options are
ignored if you specify -report.

-reset

(optional) Resets values back to defaults. The behavior isto reset to the default, then apply
the remainder of the arguments on the command line. See examples below. If specified by
itself without any other arguments, -reset disables dataset snapshot and resets the values.

-size <file_size>

(Required if -timeis not specified.) Specifies that a snapshot occurs based on WLF file size.
Must be specified as the final argument to the dataset snapshot command.

<file_size> — Size of WLFfilein MB.
-time <n> [<unit>]

(Required if -size is not specified.) Specifies that a snapshot occurs based on simulation
time. Must be specified as the final argument to the dataset snapshot command.

<n>— Any positive integer.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <limit> and <unit>
within curly braces ({}).

Examples

® Createthefilevsim snapshot_<n>.wif that iswritten to every timethe current WLF file
reaches amultiple of 10 MB (i.e,, at 10 MB, 20 MB, 30 MB, etc.).

dataset snapshot -size 10

® Similar to the previous example, but in this case the current WLF file is cleared every
timeit reaches 10 MB.

dataset snapshot -size 10 -mode sequential

® Assuming simulator time units are ps, this command saves afile called gold_<n>.wif
every 1000000 ps. If you run the simulation for 3000000 ps, three files are saved:
gold_1.wif with data from O to 1000000 ps, gold_2.wif with data from 1000000 to
2000000, and gold_3.wif with data from 2000000 to 3000000.

dataset snapshot -time 1000000 -file gold.wlf -mode sequential
-filemode increment

Because this example sets the time interval to 1000000 ps, if you run the simulation for
3500000 ps, afile containing the data from 3000000 to 3500000 psis saved as vsim.wif
(default).

* Enable snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

114

ModelSim Reference Manual, v10.1c

Commands
dataset snapshot

dataset snapshot -reset -time 10000

Related Topics

® dataset dlias ® dataset list

® dataset clear ® dataset open

® dataset close * dataset rename
® dataset config ® dataset restart
® dataset info ® dataset save

ModelSim Reference Manual, v10.1c 115

Commands
delete

delete

This command removes objects from either the List or Wave window. Arguments to this
command are order dependent.

Syntax
delete list [-window <wname>] <object_name>
delete wave [-window <wname>] <object_name>

Arguments
* list
Specifiesthe target isalist window.
* wave
Specifies the target is a wave window.
® -window <wname>

(optional) Specifiesthe name of the List or Wave window to target for the delete command.
(The view command allows you to create more than one List or Wave window.) If no
window is specified, the default window is used; the default window is determined by the
most recent invocation of the view command and has “ - Default” appended to the name.

® <object_name>...

(required) Specifies the name of an object. Must match an object name used in an add list or
add wave command. Multiple object names are specified as a space separated list. Wildcard
characters are allowed. Must be specified as the final argument to the delete list and delete
wave commands.

Examples
® Remove the object vec2 from the list2 window.
delete list -window list2 vec2
* Remove al objects beginning with the string /test from the Wave window.
delete wave /test*

Related Topics

® add list * Wildcard Characters
* add wave

116 ModelSim Reference Manual, v10.1c

Commands
describe

describe

This command displays information about the following types of simulation objects and design
regionsin the Transcript window:

* VHDL — signals, variables, and constants
®* Verilog— netsand registers
* Designregion
VHDL signals Verilog nets and registers can be specified as hierarchical names.
Syntax
describe <name>...
Arguments

® <name>...

(required) The name of an HDL object for which you want a description. Multiple object
names are specified as a space separated list. Wildcard characters are allowed. HDL object
names can be relative or full hierarchical names.

Examples
® Print the types of the three specified signals.
describe clk prw prdy
Related Topics

® add list ® Wildcard Characters
® add wave

ModelSim Reference Manual, v10.1c 117

Commands
disablebp

disablebp
This command turns off breakpoints and when commands. To turn on breakpoints or when
commands again, use the enablebp command.

Syntax
disablebp [<id#> | <label>]

Arguments
* <id#>
(optional) Specifiesthe ID number of abreakpoint or when statement to disable.
* <l|abel>
(optional) Specifiesthe label name of a breakpoint or when statement to disable.

If you do not specify either of these arguments, al breakpoints and when statements are
disabled.

Use the bp command with no arguments to find labels and D numbersfor al breakpointsin the
current simulation. Use the when command with no argumentsto find labels and 1D numbers of
all when statements in the current simulation.

Note
Id numbers for breakpoints and when statements are assigned from the same pool. Even if

you have not specified agiven id number for a breakpoint, that number may still be used
for awhen command.

Related Topics

® bd ® onbreak
® bp ® resume
® enablebp * when

118 ModelSim Reference Manual, v10.1c

Commands
do

do

This command executes the commands contained in a macro file.

A macro file can have any name and extension. An error encountered during the execution of a
macro file causes its execution to be interrupted, unless an onerror command or the
OnErrorDefaultAction Tcl variable is specified with the resume command. The onbreak
command is used to take action with source code breakpoint cases.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax

do <filename> [<parameter_value>...]

Arguments

<filename>

(required) Specifies the name of the macro file to be executed. The name can be a pathname
or arelative file name. Pathnames are relative to the current working directory. Must be
specified as the first argument to the do command.

If the do command is executed from another macro file, pathnames are relative to the
directory of the calling macro file. This allows groups of macro files to be stored in a
separate sub-directory.

<parameter_value>...

(optional) Specifies valuesthat are to be passed to the corresponding parameters $1 through
$9 in the macro file. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (for example, specify fewer parameter values
than the number of parameters actually used in the macro), you must use the argc simulator
state variable in the macro. Refer to “Making Macro Parameters Optional”.

Note

While there is no limit on the number of parameters that can be passed to macros, only
nine values are visible at one time. Use the shift command to see the other parameters.

Examples

® Execute the file macrog/stimulus and pass the parameter value 100 to $1 in the macro
file.

do macros/stimulus 100

Where the macro file testfile contains the line
bp $1 $2

place a breakpoint in the source file named design.vhd at line 127.

ModelSim Reference Manual, v10.1c 119

Commands
do

do testfile design.vhd 127

Related Topics

® Tcl and Macros (DO Files) ®* DOPATH variable
® Modes of Operation ® Saving a Transcript FileasaMacro (DO
® Using a Startup File file)

120 ModelSim Reference Manual, v10.1c

Commands
drivers

drivers

This command displays the names and strength of all drivers of the specified object.

Thedriver list is expressed relative to the top-most design signal/net connected to the specified
object. If the object isarecord or array, each sub-element is displayed individually.

The output from the drivers command, which is displayed in the Transcript window as a
hypertext link, allowing you to right-click to open a drop-down menu and quickly add signalsto

various windows. It includes a"View Declaration" item to open the source definition of the
signal.

Figure 2-1. drivers Command Results in Transcript

= Transcripk ——
WSIM 262 driwvers Stop/Sdut/enable -
Drivers for /topsdutsfenahle:

3tl @ Net Stop/dut/senahle

St-l : DIlVE]‘: _."'tl:lp_."llj.ut ANTAMT TOATT _TTTTT A - L B R TR |

#

_ e0pdut/ #IMPLICIT-WIRE(enable)#1

Wiew Dreclarakion

WSIM 27 =
Gdd boWave L‘E
I fdd Ea List
Mowe: 170,170 ns Delta: 3 Add Fo Schematic
Add ko Dakaflow
Copy

Syntax

drivers <object_name> [-source]
Arguments

® <object_name>

(required) Specifiesthe name of the signal or net whose drivers are to be shown. All signal
or net types are valid. Multiple names and wildcards are accepted.

® -source

(optional) Returns the source file name and line number for each driver of the specified
signal or net. If the source location cannot be determined, the value n/ais returned for that
driver.

Example
drivers /top/dut/pkt_cnt(4)

Drivers for /top/dut/pkt_cnt(4):
St0 : Net /top/dut/pkt_cnt[4]
St0 : Driver /top/dut/pkt_counter/#IMPLICIT-WIRE (cnt_out) #6

In some cases, the output may supply a strength value similar to 630 or 52x, which indicates an
ambiguous verilog strength.

ModelSim Reference Manual, v10.1c 121

Commands
drivers

Related Topics

® readers

® Verilog Language Reference Manual Std
1365-2005 section 7.10.2 "Ambiguous
strengths: sources and combinations"

122

ModelSim Reference Manual, v10.1c

Commands
dumplog64

dumplog64
This command dumps the contents of the specified WLF file in areadable format to stdout.

The WLF file cannot be opened for writing in a simulation when you use this command. This
command cannot be used inaDO file.

Syntax
dumplog64 <filename>

Arguments
e <filename>
(required) The name of the WLF file to be read.

ModelSim Reference Manual, v10.1c 123

Commands
echo

echo

This command displays a specified message in the Transcript window.
Syntax

echo [<text_string>]
Arguments

* <text_string>

(required) Specifies the message text to be displayed. If the text string is surrounded by
quotes, blank spaces are displayed as entered. If quotes are omitted, two or more adjacent
blank spaces are compressed into one space.

Examples
® If the current timeis 1000 ns, this command:
echo “The time is $now ns.”
returns the message:
The time is 1000 ns.
® |f the quotes are omitted:
echo Thetime is $now ns.
all blank spaces of two or more are compressed into one space.
The time is $now ns.”
® echo can aso use command substitution, such as:

echo The hex value of counter is [examine -hex counter].

If the current value of counter is 21 (15 hex), this command returns:

The hex value of counter is 15.

124 ModelSim Reference Manual, v10.1c

Commands
edit

edit

This command invokes the editor specified by the EDITOR environment variable. By default,
the specified filename will open in the Source window.

Syntax
edit [<filename>]
Arguments

* <filename>

(optional) Specifies the name of thefileto edit. If the <filename> argument is omitted, the
editor opens the current source file. If you specify anon-existent filename, it will open a
new file. Either absolute or relative paths may be used.

Related Topics

® notepad
* EDITOR environment variable

ModelSim Reference Manual, v10.1c 125

Commands
enablebp

enablebp

This command turns on breakpoints and when commands that were previously disabled.

Syntax
enablebp [<id#> | <label>]

Arguments
* <id#>
(optional) Specifies abreakpoint ID number or when statement to enable.
* <l|abel>
(optional) Specifiesthe label name of a breakpoint or when statement to enable.
If you do not specify either of these arguments, all breakpoints are enabled.
Use the bp command with no argumentsto find labels and ID numbersfor al breakpointsin the

current simulation. Use the when command with no argumentsto find labels and ID numbers of
all when statements in the current simulation.

Related Topics

* hd ® onbreak
®* bp ® resume
® disablebp * when

126 ModelSim Reference Manual, v10.1c

Commands
encoding

encoding

This command transl ates between the 16-bit Unicode characters used in Tcl strings and anamed
encoding, such as Shift-JIS. There are four encoding commands used to work with the encoding
of your character representations in the GUI.

® encoding convertfrom — Convert a string from the named encoding to Unicode.
® encoding convertto — Convert a string to the named encoding from Unicode.
® encoding names — Returns alist of all valid encoding names.

® encoding system — Changes the current system encoding to a named encoding. If anew
encoding is omitted the command returns the current system encoding. The system
encoding is used whenever Tcl passes strings to system calls.
Syntax

encoding convertfrom <encoding_name> <string>

encoding convertto <encoding_name> <string>

encoding names

encoding system <encoding_name>

Arguments
® string — Specifies a string to be converted.
® encoding_name — The name of the encoding to use.

ModelSim Reference Manual, v10.1c 127

Commands
environment

environment

This command has two forms, environment and env. It allows you to display or change the
current dataset and region/signal environment.

Syntax
environment [-dataset | -nodataset] [<pathname> | -forward | -back]

Arguments

-dataset

(optional) Displays the specified environment pathname with a dataset prefix. Dataset
prefixes are displayed by default.

-nodataset

(optional) Displays the specified environment pathname without a dataset prefix.
<pathname>

(optional) Specifies a new pathname for the region/signal environment.

If omitted the command causes the pathname of the current region/signal environment to be
displayed.

-forward

(optional) Displays the next environment in your history of visited environments.

-back

(optional) Displays the previous environment in your history of visited environments.

Examples

* Display the pathname of the current region/signal environment.
env

® Changeto another dataset but retain the currently selected context.
env test:

® Change all unlocked windows to the context "test:/top/foo".
env test:/top/foo

®* Movedown two levelsin the design hierarchy.
env blk1/u2

®* Moveto thetop level of the design hierarchy.

env /

128

ModelSim Reference Manual, v10.1c

Commands
environment

Related Topics

® Refer to Object Name Syntax for ® Refer to Setting your Context by
information on specifying pathnames. Navigating Source Files for more
information about -forward and -back.

ModelSim Reference Manual, v10.1c 129

Commands
examine

examine

This command has two forms, examine and exa. It examines one or more objects and displays
current values (or the values at a specified previous time) in the Transcript window.

It can also compute the value of an expression of one or more objects.
The following objects can be examined:
®* VHDL — signals, shared variables, process variables, constants, and generics

®* Verilog — nets, registers, parameters, and variables
To display a previous value, specify the desired time using the -time option.

To compute an expression, use the -expr option. The -expr and the -time options may be used
together.

Virtual signals and functions may also be examined within the GUI (actual signals are
examined in the kernel).

The following rules are used by the examine command to locate an HDL object:
* If the name does not include a dataset name, then the current dataset is used.

* |f the name does not start with a path separator, then the current context is used.

® If the nameisa path separator followed by a name that is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

® For arelative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

* If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

®* Thewildcards ™" and '? can be used at any level of a name except in the dataset name
and inside of a slice specification.

® A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’'t match either of those.

See Design Object Names for more information on specifying names.

Syntax

examine <name>... [-delta <delta>] [-env <path>] [-event <time>] [-handl€e] {[-in] [-out]
[-inout] | [-ports]} [-internal] [-maxlen <integer>] [-expr <expression>] [-name]

130 ModelSim Reference Manual, v10.1c

Commands
examine

[-<radix_type>] [-radix <type>] [-radixenumnumeric | -radixenumsymbolic] [-showbase]
[-time <time>] [-valug]

Arguments

<name>...
(required except when specifying -expr.) Specifies the name of any HDL object.

All object types are allowed, except those of the type file. Multiple names and wildcards are
accepted. Spaces, square brackets, and extended identifiers require curly braces; see
examples below for more details. To examine a VHDL variable you can add a process |abel
to the name. For example, (make certain to use two underscore characters):

exaline__36/i
-delta <delta>

(optional) Specifiesasimulation cycle at the specified time step from which to fetch the
value, where the default isto use the last delta of the time step. Y ou must |og the objects to
be examined using the add list, add wave, or log command for the examine command to be
able return avalue for arequested delta.

<delta> — Any non-negative integer.

-env <path>

(optional) Specifies a path in which to look for an object name.
<path> — The specified path to a object.

-event <time>

(optional) Specifies asimulation cycle at the specified event time from which to fetch the
value. The event <time> refers to the event time relative to events for all signalsin the
objects dataset at the specified time. Y ou must log the objects to be examined using the add
list, add wave, or log command for the examine command to be able return avalue for a
requested event.

-expr <expression>

(optional) Specifies an expression to be examined. Y ou must log the expression using the
add list, add wave, or log command for the examine command to return avalue for a
specified expression. The expression is evaluated at the current time simulation. If you also
specify the -time argument, the expression will be evaluated at the specified time. It is not
necessary to specify <name> when using this argument. See GUI_expression_format for the
format of the expression.

<expression> — Specifies an expression enclosed in braces ({}).
-handle

(optional) Returns the memory address of the specified <name>. Y ou can usethisvalueasa
tag when analyzing the simulation. This value also appears as the title of abox in the Watch
window. This option will not return any value if you are in -view mode.

ModelSim Reference Manual, v10.1c 131

Commands
examine

-in

(optional) Specifies that <name> include ports of mode IN.

-out

(optional) Specifiesthat <name> include ports of mode OUT.

-inout

(optional) Specifies that <name> include ports of mode INOUT.

-internal

(optional) Specifies that <name> include internal (non-port) signals.

-maxlen <integer>

(optional) Specifies the maximum number of charactersin the output of the command.
<integer> — Any non-negative integer where 0 is unlimited.

-ports

(optional) Specifies that <name> include all ports. Has the same effect as specifying -in,
-inout, and -out together.

-name
(optional) Displays object name(s) and value(s). Related switch is -value.
-<radix_type>

(optional) Specifiesthe radix type for the objects that follow in the command. Valid entries
(or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic,
time, and default.

If noradix is specified for an enumerated type, the default radix is used. Y ou can change the
default radix for the current ssmulation using the radix command. Y ou can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

-radix <type>

(optional) Specifies a user-defined radix. The -radix <type> switch can be used in place of
the -<radix_type> switch. For example, -radix hexadecimal is the same as -hex.

<type> — binary, ascii, unsigned, decimal, octal, hex, symbolic, time, and default.

Thisoption overrides the global setting of the default radix (the DefaultRadix variablein the
modelsim.ini file).

-radixenumnumeric

(optional) Causes Verilog and SystemC enumsto be displayed as numbers (formatted by the
current radix). This overrides the default behavior of always showing enums symbolically.

-radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog and SystemC enums as
symbols by reversing the action of the -radixenumnumeric option.

132

ModelSim Reference Manual, v10.1c

Commands
examine

® -showbase
(optional) Display the number of bits of the vector and the radix used, where:
binary = b
decimal = d
hexidecimal = h
ASCll =a
time=t
For example, instead of simply displaying a vector value of “31”, avalue of “16'h31" may
be displayed to show that the vector is 16 bits wide, with a hexidecimal radix.

® -time<time>
(optional) Specifies the time value between 0 and $now for which to examine the objects.

<time>— A non negative integer where the default unit is the current time unit. If the
<time> field uses a unit other than the current unit, the value and unit must be placed
in curly braces. For example, the following are equivalent for ps resolution:
exa -time {3.6 ns} signal_a
exa -time 3600 signal_a
If an expression is specified it will be evaluated at that time. The objects to be examined
must be logged viathe add list, add wave, or log command in order for the examine
command to be able to return avalue for arequested time.

* -vaue
(default) Returns value(s) as a curly-braces separated Tcl list. Use to toggle off a previous
use of -name.
Examples

® Return the value of /top/busl.
examine /top/bus1

® Return the value of the subelement of rega that is specified by the index (i.e., 16). Note
that you must use curly braces when examining subelements.examine

{rega[16]}

® Return the value of the contiguous subelements of foo specified by the slice (i.e., 20:22).
Note the curly braces.

examine {foo[20:22]}

* Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing \' and before the closing '} .

examine {/top/\My extended id\ }

* Inthisexample, the -expr option specifiesasignal path and user-defined Tcl variable.
The expression will be evaluated at 3450us.

ModelSim Reference Manual, v10.1c 133

Commands
examine

examine -time {3450 us} -expr {/top/bus and $bit_mask}

® Using the ${fifo} syntax limitsthe variable to the ssmple name fifo, instead of
interpreting the parenthesis as part of the variable. Quotes are needed when spaces are
involved; and by using quotes (* “) instead of braces, the Tcl interpreter will expand
variables before calling the command.

examine -time $t -name $fifo "${fifo}(1 to 3)" ${fifo}(1)

® Because-timeis not specified, this expression will be evaluated at the current
simulation time. Note the signal attribute and array constant specified in the expression.

examine -expr {clk’event && (/top/xyz == 16’hffae)}

Commands like find and examine return their resultsasaTcl list (just a blank-separated
list of strings). Y ou can do thingslike:

foreach sig [find sig ABC*] {echo "Signal $sig is [exa $sig]" ...}
if {{examine -bin signal_12] ==*“11101111XXXZ"}{...}
examine -hex [find *]

Related Topics

® Design Object Names °
® Wildcard Characters
® DefaultRadix modelsim.ini variable

134 ModelSim Reference Manual, v10.1c

Commands
exit

exit
This command exits the simulator and the Model Sim application.

If you want to stop the simulation using awhen command, use a stop command within your
when statement, do not use an exit command or a quit command. The stop command acts like a
breakpoint at thetime it is evaluated.

Syntax

exit [-force] [-code <integer>]
Argument

* -force

(optional) Quits without asking for confirmation. If this argument is omitted, ModelSim
asks you for confirmation before exiting. Y ou can also use -f as an alias for this switch.

® -code <integer>
(optional) Quits the simulation and issues an exit code.

<integer> — Thisisthe value of the exit code. Y ou should not specify an exit code that
already existsin thetool. Refer to the section "Exit Codes' in the User's Manual for a
list of existing exit codes. Y ou can also specify avariable in place of <integer>.

Y ou should always print a message before executing the exit -code command to explicitly
state the reason for exiting.

Examples

Y ou can use exit -code to instruct a vmake command to exit when it encounters an assertion
error. The onbreak command can specify commands to be executed upon an assert failure of

sufficient severity, after which the ssmulator can be made to return an exit status. Thisis shown
in the following example:

set broken 0
onbreak {
set broken 88
resume
}
run -all
if { Sbroken } {

puts "failure -- exit status Sbroken"
exit -code $broken
} else {

puts "success"
}
quit -f

The resume command gives control back to the commands following the run -all to handle the
condition appropriately.

ModelSim Reference Manual, v10.1c 135

Commands
find

find
This command |ocates objects by type and name. Arguments to the command are grouped by
object type:

® Argumentsfor netsand signals

® Arguments for instances and blocks
* Argumentsfor virtuals

® Argumentsfor classes

® Argumentsfor objects

Syntax
find nets | signals <object_name> ... [-internal] [-nofilter] {[-in] [-inout] [-out] | [-ports]}
[-recursive]
find instances | blocks {<object_name> ... | -bydu <design_unit> | -file <file_name>}

[-recursive] [-nodu]
find virtuals <object_name> ... [-kind <kind>] [-unsaved)] [-recursive]
find classes [<class_name>]
find objects [-class <class name>] [-isa <class name>] [<object_name>|

Arguments for nets and signals

When searching for nets and signals, the find command returns the full pathname of al nets,
signals, registers, variables, and named events that match the name specification.

® <object name> ...

(required) Specifiesthe net or signal for which you want to search. Multiple nets and signals
and wildcard characters are allowed. Wildcards cannot be used inside of aslice
specification. Spaces, square brackets, and extended identifiers require specia syntax; see
the examples below for more details.

® -in
(optional) Specifies that the scope of the search is to include ports of mode IN.
® -inout
(optional) Specifiesthat the scope of the search is to include ports of mode INOUT.
® -interna
(optional) Specifies that the scope of the search isto include internal (non-port) objects.
* -nofilter

(optional) Specifiesthat the WildcardFilter Tcl preference variable be ignored when finding
signals or nets.

136 ModelSim Reference Manual, v10.1c

Commands
find

-out
(optional) Specifies that the scope of the search is to include ports of mode OUT.

-ports

(optional) Specifiesthat the scope of the searchiisto include al ports. Has the same effect as
specifying -in, -out, and -inout together.

-recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

Arguments for instances and blocks

When searching for instances, the find command returns the primary design unit name.

-bydu <design_unit>
Searches for adesign unit. Mutually exclusive with -file and <object_name>.

<design_unit>— Name of asingle design unit to search for. This argument matchesthe
pattern specified by primary <design_unit> of the instance only. Library and
Secondary names are not supported.

-file <file_name>

Writes acomplete list of the instances in adesign to afile. Mutually exclusive with -bydu
and <object_name>.

<file_name> — A string specifying the name for afile.
<object_name> ...

Specifies the name of an instance or block for which you want to search. Multiple instances
and wildcard characters are allowed. Mutually exclusive with -file and -bydu.

-recursive

(optional) Specifies that the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

-nodu

(optional) Removes the "du" string from the names of design units found with -bydu
argument.

Arguments for virtuals

When searching for virtuals, al optional arguments must be specified before any object names.

<object_name> ...

(required) Specifiesthe virtual object for which you want to search. Multiple virtuals and
wildcard characters are allowed.

-kind <kind>
(optional) Specifiesthe kind of virtual object for which you want to search.

ModelSim Reference Manual, v10.1c 137

Commands

find

<kind>— A virtual object of one of the following kinds:

® designs
* explicits
* functions
* implicits
® gignals.

-unsaved

Specifies that Model Sim find only virtuals that have not been saved to aformat file.

Arguments for classes

<class _name>

(optional) SpecifiestheincrTcl classfor which you want to search. Wildcard characters are
allowed. The options for class name include nets, objects, signals, and virtuals. If you do

not specify a class name, the command returns all classes in the current namespace context.
SeeincrTcl commandsin the Tcl Man Pages (Help > Tcl Man Pages) for more information.

Arguments for objects

-class <class_name>

(optional) Restricts the search to objects whose most-specific classis class name.
-isa<class_name>

(optional) Restricts the search to those objects that have class_name anywhere in their
heritage.

<object_name>

(optional) SpecifiestheincrTcl object for which you want to search. Wildcard characters are
allowed. If you do not specify an object name, the command returns all objectsin the
current namespace context. See incrTcl commandsin the Tcl Man Pages (Help > Tcl Man
Pages) for more information.

Description

The following rules are used by the find command to locate an object:

* |f the name does not include a dataset name, then the current dataset is used.
* |f the name does not start with a path separator, then the current context is used.

® |f the nameis apath separator followed by a name that is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

® For arelative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

138

ModelSim Reference Manual, v10.1c

Commands
find

® If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

® Thewildcards ™' and '? can be used at any level of a name except in the dataset name
and inside of a slice specification. Square bracket ([]) wildcards can also be used.

® A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won't match either of those.

® Because square brackets are wildcardsin the find command, only parentheses (()) can be
used to index or dlice arrays.

® TheWildcardFilter Tcl preference variable is used by the find command to exclude the
specified types of objects when performing the search.

See Design Object Names for more information on specifying names.

Examples
®* Findal signasin the entire design.
find signals -r /*
® Findal input signalsin region /top that begin with the letters "xy".
find nets -in /top/xy*

® Find al signalsin the design hierarchy at or below the region <current_context>/ul/u2
whose names begin with "cl".

find signals -r ul/u2/cl*

® Findasignal named s1. Note that you must enclose the object in curly braces because of
the square bracket wildcard characters.

find signals {s[1]}
® Findsignalssl, 2, or s3.
find signals {s[123]}

® Find the element of signal sthat isindexed by the value 1. Note that the find command
uses parentheses (()), not square brackets ([]), to specify a subelement index.

find signals s(1)

® Find a4-bit array named data. Note that you must use curly braces ({}) dueto the
spaces in the array slice specification.

find signals {/top/data(3 downto 0)}

ModelSim Reference Manual, v10.1c 139

Commands
find

* Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing \' and before the closing '} .

find signals {/top/\My extended id\}

® |f /dut/core/pclk exists, printsthe message "pclk doesexist” in the transcript. Thiswould
typicaly beruninaTcl script.

if {[find signals /dut/core/pclk] !=""}{
echo "pclk does exist"

® Find instances based on their names using wildcards. Send search results to atext file
that lists instance names, including the hierarchy path, on separate lines.

Search for all instances with ul in path
set pattern_match "*ul*"

Get the list of instance paths
set inst_list [find instances -r *] :

Initialize an empty list to strip off the architecture names
set ilist [1list]l ;

foreach inst $inst_list {
set ipath [lindex $inst 0]

if {[string match $pattern_match S$ipath]} {
lappend ilist S$ipath

}

}
At this point, ilist contains the list of instances only--
no architecture names
#
Begin sorting list
set ilist [lsort -dictionary $ilist]

Open a file to write out the list
set fhandle [open "instancelist.txt" w]
foreach inst $ilist {
Print instance path, one per line
puts S$fhandle Sinst
}

Close the file, done.
close $fhandle ;

Related Topics

® Design Object Names
® Wildcard Characters

140

ModelSim Reference Manual, v10.1c

Commands
find connections

find connections
This command returns the set of nets that are electrically equivalent to a specified net.

Syntax
find connections <net>

* <net>— (required) A net in the design. Returns alist of nets connected to the specified net.
For example:

find connections /top/p/strb

returns:

Connected nets for strb
output : /top/p/strb
internal : /top/pstrb

input : /top/c/pstrb

ModelSim Reference Manual, v10.1c 141

Commands
find infiles

find infiles

This command searches for a string in the specified file(s) and prints the results to the
Transcript window. The results are individually hotlinked and will open the file and display the
location of the string.

When you execute this command in command-line mode from outside of the GUI, the results
are sent to stdout with no hotlinks.

Arguments to this command are order dependent. Follow the order specified in the Syntax
section.

Syntax

find infiles<string_pattern> <file>...

Arguments

<string_pattern>

(required) The string you are searching for. You can use Tcl regular expression wildcardsto
further restrict the search capability.

<file>...

(required) The file(s) to search. You can use Tcl regular expression wildcards to further
restrict the search capability.

Example

Transcripk

Figure 2-2 shows a screen capture containing a few examples of the find infiles command
and the resullts.

Figure 2-2. find infiles Example

Y3IM 102 find infiles memory *,vhd ;I
CifQuestaTestcases/dataflow/cache vhdi 116; - #ekkksskkbsbobbbobk | oeg] MR memnory sk
CifQuestaTestcases/dataflow memory whd: 12 1entity memory is

CifQuestaTestcases/dataflow/memory vhid: 21:end entity memory;

i fQuestaTestcases/dataflow/memory . vhd: 25: architecture RTL of memory is

CifQuestaTestcases dataflow top, whd: 44, Component memory

CifQuestaTestcases/dataflow/top . vhd: 33 m: memory port mapiclk, saddr, sdata, srw, sstrb, sedyd;

YSIM 11 = find infiles "memory port" * . vhd

CifQuestaTestcases/dataflow/top whd: &30 me memory port mapiclk, saddr, sdata, sow, ssktrb, sedy];

W3IM 12 = find infiles wsim *.do

C:fuestaTestcases/dataflowrun.do: 28 vsim -voptargs="+acc" top fnemprof

| -1 Transcript

i K

142

ModelSim Reference Manual, v10.1c

Commands
find insource

find insource

This command searches for a string in the source files for the current design and prints the
results to the Transcript window. The results are hotlinked individually and will open the file
and display the location of the string.

When you execute this command in command-line mode from outside of the GUI, the results
are sent to stdout with no hotlinks.

Syntax

find insource <pattern> [-exact | -glob | -regex] [-inline] [-nocase]

Arguments

<pattern>

(required) The string you are searching for. Y ou can use regular expression wildcards to
further restrict the search. Y ou must enclose <pattern> in quotes (* “) if it includes spaces.
Y ou must specify the <pattern> at the end of the command line; any switches specified after
<pattern> will not be registered.

-exact | -glob | -regex
(optional) Defines the style of regular expression used in the <pattern>

-exact — Indicates that no characters have special meaning, thus disabling wildcard
features.

-glob — (default) Allows glob-style wildcard characters. For more information refer to
the Tcl documentation:

Help > Tcl Man Pages
Select “Tcl Commands”’, then “string”, then “string match”

-regex — Allows Tcl regular expressions. For more information refer to the Tcl
documentation:

Help > Tcl Man Pages
Select “Tcl Commands’, then “re_syntax”.
-inline
(optional) Returns the matches in the form of a Tcl list, which disables the hotlink feature
but allows for easier post-processing.
-nocase
(optional) Treats <pattern> as case-insensitive.

Example

Figure 2-3 shows a couple of examples of the find insource command and the results.

ModelSim Reference Manual, v10.1c 143

Commands
find insource

Figure 2-3. find insource Example

Transcripk
WSIM S find insource memory :I
EaChE.Vhd: 1 16: L e Ll:":al MRU FI'IEITIEII":." ****************J‘

top,whd 44
top.vhd:&3:

top,whdi &3

WSIM 7

memory whd: 12 ienkity memory is
memory vhd: 21end entity memory;
memary vhd: 25 architecture RTL of memory is

WSIM &= Find insource "memary port”

F l Transcripk

component memary
m: memory pork mapiclk, saddr, sdata, snw, sskrb, srdy);

m: memory pork maplclk, saddr, sdata, srw, sskrb, srdy;

Ll

Related Topics

DISABLE_ELAB_DEBUG environment
variable

144

ModelSim Reference Manual, v10.1c

Commands
force

force

This command allows you to apply stimulus interactively to VHDL signals, Verilog nets and
registers, and SystemC boundary types.

It is possible to create a complex sequence of stimuli when the force command isincluded in a
macro file.

There are anumber of constraints on what you can and cannot force.
Y ou can force:

®* VHDL signalsor parts of signals.

® Verilog nets and registers, bit-selects, part-selects, and field-sel ects. Refer to “ Force and
Release Statementsin Verilog” for more information.

® “Virtua Signals’ if the number of bits corresponds to the signal value.
®* Anadliasof aVHDL signal.
® Aninput port that is mapped at a higher level in VHDL and mixed models.

Y ou cannot force:

®* Virtual functions.

®* VHDL variables. Refer to the change command for information on working with VHDL
variables.

®* Aninput port that has a conversion function on the input or on the path up the network
mapped from the input.

This command provides additional information with the -help switch.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax

Forcing values, driver type, repetition time or stop time on an object

force {<object_name> <value> [[@]<time_info>][, <value> [@]<time_info>]...
[-deposit | -drive | -drive] [-cancel [@]<time_info>] [-repeat [@]<time_info>]

Reporting all force commands

If you specify this command without arguments, it returns alist of the most recently applied force
commands and a list of forces coming from the Signal Spy signal_force() and $signal_force()
calls from within VHDL, Verilog, and SystemC source code. For example, after executing:

force -freeze /top/p/addr 0 100, 1 150 -r 200 -cancel 2000
the times specified are relative to the current ssmulation time, in this case 2820 ns
entering:

ModelSim Reference Manual, v10.1c 145

Commands

force
force
returns:
force -freeze /top/p/addr 0 {@2920 ns} , 1 {@2970 ns}
-repeat {@3020 ns} -cancel {@4820 ns}
Note
The ssimulator trandlates the relative time you specify into absolute time when the force
command is executed.
Arguments

<object_name>

(required when forcing a value change) Specifies the name of the HDL object to be forced.
A wildcard is permitted only if it matches one object. Refer to Design Object Namesand Tcl
Syntax and Specification of Array Bitsand Slices for the full syntax of an object name. The
object name must specify ascalar type or aone-dimensional array of character enumeration.
Y ou may also specify arecord sub-element, an indexed array, or adliced array, aslong as

the type is one of the above. Must be specified as the first argument to the for ce command.

<value>

(required when forcing a value change) Specifies the value to which the object isto be
forced. The specified value must be appropriate for the type. Must be specified as the
second argument to the for ce command.

A one-dimensional array of character enumeration can be forced as a sequence of character
literals or as a based number with aradix of 2, 8, 10 or 16. For example, the following
values are equivalent for asignal of type bit_vector (0 to 3):

Description VHDL Value Verilog Value
character literal sequence 1111 1111
binary radix 2#1111 'b1111
octal radix 8#17 '0l7
decimal radix 10#15 'd15
hexadecimal radix 16#F 'hF

Note

For based numbersin VHDL, Model Sim translates each 1 or O to the appropriate value
for the number’ s enumerated type. The trandlation is controlled by the trandation tablein
the pref.tcl file. If Model Sim cannot find atranslation for O or 1, it uses the left bound of
the signal type (type' left) for that value.

Y ou can create a sequence of forced values on an object by specifying <value>
[@]<time_info> in a comma/space separated list.

146

ModelSim Reference Manual, v10.1c

Commands
force

For example:

force /top/p/addr 1 100ns, 0 200ns, 1 250ns

* -cancd [@]<time_info>
(optional) Cancels the for ce command at the time specified by <time_info>.
where:
<time_info> is[@]<time_value>[<time_unit>]
Refer to [@]<time_info> for more information about specifying time values.
® -drive

(optional) Attaches a driver to the object and drives the specified <value> until the object is
forced again or until it is unforced with the noforce command.

Thisoptionisillegal for unresolved signals.
® -deposit

(optional) Sets the object to the specified <value>. The <value> remains until the object is
forced again, there is a subsequent driver transaction, or it is unforced with a noforce
command.

Note
D If the -freeze, -drive, or -deposit options are not used, then -freeze is the default for

unresolved objects, and -driveisthe default for resolved objects. If you prefer -freeze as
the default for resolved and unresolved VHDL signals, change the DefaultForceKind
variable in the modelsim.ini file.

* _freeze

(optional) Freezes the object at the specified <value> until it isforced again or until itis
unforced with the noforce command.

Note
If you prefer -fr eeze as the default for resolved and unresolved VHDL signals, change the

DefaultForceKind variable in the modelsim.ini file.

* -repeat [@]<time_info>
(optional) Repeats a series of forced values and times at the time specified.
where:
<time_info> is[@]<time_vaue>[<time_unit>]
Refer to [@] <time_info> for more information about specifying time values.

Y ou must specify at least two <value> <time_info> pairs on the forced object before
specifying -repeat, for example:

force top/dut/p 1 0, 0 100 -repeat 200 -cancel 1000

ModelSim Reference Manual, v10.1c 147

Commands
force

A repeating force command will force a value before other non-repeating force commands
that occur in the same time step.

* [@]<time_info>

(optional) Specifies the relative or absolute simulation time at which the <value> isto be
applied.

where:
<time_info> is[@]<time_value>[<time_unit>]

@ — A prefix applied to <time_value> to specify an absolute time. By default, the
specified time units are assumed to be relative to the current time unlessthe valueis

preceded by the character "at" (@). Omit the "at" (@) character to specify relative
time. For example:

-cancel {520 ns} \\ Relative Time
-cancel {@ 520 ns} \\ Absolute Time

<time_value> — Thetime (either relative or absolute) to apply to <value>. Any non-
negative integer. A value of zero cancels the force at the end of the current time
period.

<time_unit>— An optional suffix specifying atime unit where the default is to use the
current simulator time by omitting <time_unit>. Valid time units are: fs. ps, ns, us,
ms, sec, min, and hr.

<time_value> and <time_unit> can be formatted in any of the following ways:

10ns
10 ns
{10 ns}
“10 ns”

Note

D If you specify a sequence of forces and use curly braces ({}) surrounding a<time_value>
and <time_unit> pair, you must place a space in front of the comma (,) separating the two
value/time pairs. For example:

force foo 1 {10 ns} , 0 {20 ns}

Examples
® Reporting al recently applied force commands

If you specify this command with no arguments, it returnsalist of all forced objects and the
changes applied. For example, after executing:

force -freeze /top/p/addr 0 100, 1 150 -r 200 -cancel 2000
where the times specified are relative to the current ssmulation time, in this case 2820 ns.
Entering:

force

148 ModelSim Reference Manual, v10.1c

Commands
force

returns:

force -freeze /top/p/addr 0 {@2920 ns} , 1 {@2970 ns}
-repeat {@3020 ns} -cancel {@4820 ns}

Note

Executing the force command trand ates the rel ative time you specified into absolute
time.

Force inputl to O at the current simulator time.
force inputl O

Force the fourth element of the array busl to 1 at the current simulator time.
force bus1(4) 1

Force busl to 01XZ at 100 nanoseconds after the current simulator time.
force bus1 01XZ 100 ns

Force busl to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

force busl 16#f @200

Forceinputl to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. Repeat this cycle every 100 time units after the
current ssimulation time, If the current smulation timeis 100 ns, the next transition isto
1lat 110 nsand 0 at 120 ns, this pattern to start repeating at 200 ns.

force inputl 110, 0 20 -r 100
Similar to the previous example, but also specifies the time units.
force inputl 110 ns, 0 20 ns -r 100 ns

Force signal sto alternate between values 1 and 0 every 100 time units until 1000 time
units have occurred, starting from time Now. Cancellation occurs at the last simulation
deltacycle of atime unit.

force s 1 0, 0 100 -repeat 200 -cancel 1000
3o,

force s 10 -cancel O
will force signal sto 1 for the duration of the current time period.
Force siga to decimal value 85 whenever the value on the signal is 1.

when {/Imydut/siga = 10#1} {
force -deposit /mydut/siga 10#85

}
Force one bit of arecord containing an array.

ModelSim Reference Manual, v10.1c 149

Commands
force

force structl.busl1(4) 1
®* Forceadliceof anarray.
force {bus1[2:5]} 'hF

Related Topics

® change ® Force Command Defaults
¢ DefaultForceKind ® noforce

® Design Object Names ® Virtual Signals

[)

Force and Release Statementsin Verilog

150 ModelSim Reference Manual, v10.1c

Commands
formatTime

formatTime

This command provides global format control for al time values displayed in the GUI. When
specified without arguments, this command returns the current state of the three arguments.

Syntax

formatTime [[+|-]commas] [[+]-]nodefunits] [[+]-]bestunits]

Arguments
® [+|-]Jcommas
(optional) Insert commas into the time value.
+ prefix — On
- prefix — Off. (default)
® [+|-]nodefunits
(optional) Do not include default unit in the time.
+ prefix — On
- prefix — Off. (default)
® [+]-]bestunits
(optional) Use the largest unit value possible.
+ prefix — On
- prefix — Off. (default)
Examples
® Display commasin time values.
formatTime +commas
Instead of displaying 6458131 ps, the GUI will display 6,458,131 ps.
® Uselargest unit value possible.
formatTime +bestunits

Displays 8 usinstead of 8,000 ns.

ModelSim Reference Manual, v10.1c 151

Commands
help

help

This command displays in the Transcript window a brief description and syntax for the
specified command.

Syntax
help [<command> | <topic>]

Arguments
* <command>

(optional) Specifies the command for which you want help. The entry is case and space
sensitive.

* <topic>

(optional) Specifies atopic for which you want help. The entry is case and space sensitive.
Specify one of the following six topics:

Topic Description

commands Listsall available commands and
topics

debugging Lists debugging commands

execution Lists commands that control
execution of your simulation.

Tcl Listsal available Tcl commands.

Tk Lists all available Tk commands

incrTCL Lists all availableincrTCL
commands

152 ModelSim Reference Manual, v10.1c

Commands
history

history

This command lists the commands you have executed during the current session. History isa
Tcl command. For more information, consult the Tcl Man Pages (Help > Tcl Man Pages).

Syntax
history [clear] [keep <value>]

Arguments
® clear
(optional) Clears the history buffer.
* keep <vaue>
(optional) Specifies the number of executed commands to keep in the history buffer.
<value> — Any positive integer where the default is 50.

ModelSim Reference Manual, v10.1c 153

Commands

layout

layout

This command allows you to perform anumber of editing operations on custom GUI layouts,
such as loading, saving, maximizing, and deleting.

The command options include:

Syntax

layout active — returns the current active window
layout current —lists the current layout

layout delete — removes the current layout from the .modelsimfile (UNIX/Linux) or
Registry (Windows)

layout load — opens the specified layout

layout names— lists al known layouts

layout normal — minimizes the current maximized window

layout maximized —return a 1 if the current layout is maximized, or a0 if minimized

layout restoretype — removesthe list of window type(s) that will not be restored when a
new layout is loaded.

layout save — saves the current layout to the specified name

layout showsuppresstypes — lists the window types that will not be restored when a
new layout is loaded.

layout suppresstype — adds the specified window type(s) to thelist of typesthat will not
be restored when alayout is rel oaded.

layout togglezoom — toggles the current zoom state of the active window (from
minimized to maximized or maximized to minimized)

layout zoomactive — maximizes the current active window

layout zoomwindow — maximizes the specified window

layout active

layout current

layout delete <name>

layout load <name>

layout names

layout normal

layout maximized

layout restoretype <window>

154

ModelSim Reference Manual, v10.1c

Commands
layout

layout save <name>

layout showsuppresstypes
layout suppresstype <window>
layout togglezoom

layout zoomactive

layout zoomwindow <window>

Arguments
®* <pame>
(required) Specifiesthe name of the layout.
® <window>

(required) The window specification can be any format accepted by the view command. The
window can be specified by itstype (i.e., wave, list, objects, etc.), by the windowobj name
(i.e., .main_pane.wave, .main_pain.library, etc.), or by the tab name (i.e., wavel, list3, etc.)

Related Topics

® Customizing the Simulator GUI Layout
¢ Configuring Default Windows for
Restored Layouts

ModelSim Reference Manual, v10.1c 155

Commands
log

log

This command creates awave log format (WLF) file containing simulation data for all HDL
objects whose names match the provided specifications. Objects that are displayed using the
add list and add wave commands are automatically recorded in the WLF file. By default thefile
isnamed vsim.wif and stored in the current working directory. Y ou can change the default name
using the -wlf option of the vsim command or by setting the WL FFilename variable in the
modelsim.ini file.

If no port mode is specified, the WLF file contains data for all objectsin the selected region
whose names match the object name specification.

The WLF file contains arecord of all data generated for the list and wave windows during a
simulation run. Reloading the WLF file restores all objects and waveforms and their complete
history from the start of the logged simulation run. See dataset open for more information.

For al transaction streams created through the SCV or Verilog APIs, logging is enabled by
default. A transaction islogged to the WLF fileif logging is enabled at the beginning of a
simulation run when the design calls ::begin_transaction() or $begin_transaction. The effective
start time of the transaction (the time passed by the design as a parameter to ::begin_transaction)
isirrelevant. For example, a stream could have logging disabled between T1 and T2 and still
record atransaction in that period, through retroactive logging after time T2. A transaction is
always either entirely logged or entirely ignored.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Note
D The log command is also known as the "add log" command.

Syntax

log [-howmany] {[-in] [-inout] [-out] | [-ports]} [-internal]
[-out] [-ports] [-recursive [-depth <level>]] <object_name> ...

log -flush [<object>]
Arguments
® -depth <level>

(optional) Restricts arecursive search (specified with the -recur sive argument) to a certain
level of hierarchy.

<level> — Any non-negative integer. For example, if you specify -depth 1, the
command descends only one level in the hierarchy.
® -flush [<object>]

(optional) Forced the WLF file to write all buffered region and event datato the WLF file.
By default, the region and event data is buffered and periodically written to the file, as
appropriate. If <object> is specified, that object isfirst logged and then the file is flushed.

156 ModelSim Reference Manual, v10.1c

Commands
log

® -howmany
(optional) Returns an integer indicating the number of signals found.
® -in

(optional) Specifiesthat the WLF fileisto include data for ports of mode IN whose names
match the specification.

®* _inout

(optional) Specifiesthat the WLF fileisto include data for ports of mode INOUT whose
names match the specification.

®* _interna

(optional) Specifiesthat the WLF fileisto include datafor internal (non-port) objects whose
names match the specification.

* -out

(optional) Specifiesthat the WLF fileisto include datafor ports of mode OUT whose
names match the specification.

* -ports

(optional) Specifies that the scope of the search isto include all ports, IN, INOUT, and
OUT.

®* _recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region. Y ou can use the -depth argument to
specify how far down the hierarchy to descend.

® <object_name>

(required) Specifies the object name that you want to log. Must be specified as the final
argument to the log command. Multiple object names are specified as a space separated list.
Wildcard characters are allowed. Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.

By default, wildcard card logging does not log the internals of cells. Refer to the +libcell |
+nolibcell argument of the vlog command for more information.

Examples
® Log al objectsin the design.
log -r /*
® Log all output portsin the current design unit.

log -out *

ModelSim Reference Manual, v10.1c 157

Commands
log

Related Topics

® add list ® dataset restart

® add wave ® dataset rename

® dataset alias ® dataset save

® dataset clear ® dataset snapshot

® dataset close * nolog

® dataset config ® Recording Simulation Results With
® dataset config Datasets

® dataset info ® vlog +libcell | +nolibcell

® dataset list ® Wildcard Characters

® dataset open

158 ModelSim Reference Manual, v10.1c

Commands
Ishift

Ishift

This command takes a Tcl list as an argument and shiftsit in-place, one place to the | eft,
eliminating the left-most element.

The number of shift places may also be specified. Returns nothing.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax
Ishift <list> [<amount>]

Arguments
* JJist>

(required) Specifiesthe Tcl list to target with Ishift. Must be specified as the first argument
to the Ishift command.

® <amount>
(optional) Specifiesthe number of places to shift where the default is 1.

Examples

proc myfunc args {
throws away the first two arguments
lshift args 2

}

Related Topics

® Refer to the Tcl man pages (Help > Tcl
Man Pages) for details.

ModelSim Reference Manual, v10.1c 159

Commands
Isublist

Isublist

This command returns a sublist of the specified Tcl list that matches the specified Tcl glob
pattern.

Arguments to this command are order dependent. Follow the order specified in the Syntax
section.

Syntax

Isublist <list> <pattern>

Arguments
* <list>

(required) Specifiesthe Tcl list to target with Isublist.
* <pattern>

(required) Specifies the pattern to match within the <list> using Tcl glob-style matching.
Examples
® Inthe example below, variable ‘t’ returns "structure signals source”.
set window_names "structure signals variables process source wave

list™
set t [lsublist Swindow_names s*]

Related Topics

® Theset commandisaTcl command. Refer
to the Tcl man pages (Help > Tcl Man
Pages) for details.

160 ModelSim Reference Manual, v10.1c

Commands
mem compare

mem compare

This command compares a selected memory to areference memory or file. Must have the "diff"
utility installed and visible in your search path in order to run this command.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax
mem compare { [-mem <ref_mem>] | [-file <ref_file>]} [actual_mem]

Arguments
® -mem <ref_mem>
(optional) Specifies areference memory to be compared with actual_mem.
<ref_mem>— A memory record.
e file<ref file>
(optional) Specifies areference file to be compared with actua_mem.
<ref_file> — A saved memory file.
* actua_mem

(required) Specifies the name of the memory to be compared against the reference data.
Must be specified as the final argument to the mem compar e command.

ModelSim Reference Manual, v10.1c 161

Commands
mem display

mem display

Thiscommand printsto the Transcript window the memory contents of the specified instance. If
the given instance path contains only asingle array signal or variable, the signal or variable
name need not be specified.

Y ou can redirect the output of the mem display command into afile for later use with the mem
load command. The output file can also be read by the Verilog $readmem system tasks if the
memory module is a Verilog module and Verilog memory format (hex or binary) is specified.

Address radix, data radix, and address range for the output can also be specified, aswell as
specia output formats.

By default, identical datalines are printed. To replace identical lineswith asingleline
containing the asterisk character, you can enable compression with the -compr ess argument.

Note
D The format settings are stored at the top of thisfile as a pseudo comment so that

subsequent mem load commands can correctly interpret the data. Do not edit this data
when manipulating a saved file.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Syntax
mem display [-addressradix [d | h]] [-compress] [-dataradix <radix_type>]
[-endaddress <end>][-format [bin | hex | mti]] [-noaddress] [-startaddress <st>]
[-wordsperline <n>] [<path>]
Arguments
® -addressradix [d | h]
(optional) Specifiesthe address radix for the default (MTI) formatted files.
d — Decimal radix. (default if -format is specified as mti.)
h — Hex radix.
® -compress

(optional) Specifiesthat identical lines not be printed. Reduces the file size by replacing
exact matches with a single line containing an asterisk. These compressed files are
automatically expanded during amem load operation.

® -dataradix <radix_type>

(optional) Specifiesthe dataradix for the default (MTI) formatted files. If unspecified, the
global default radix is used.

<radix_type> A specified radix type. Valid entries (or any unique abbreviations) are:
binary, decimal, unsigned, octal, hex, symbolic, and default. If no radix is specified
for an enumerated type, the symbolic representation is used.

162 ModelSim Reference Manual, v10.1c

Commands
mem display

Y ou can change the default radix type for the current simulation using the radix command
or make the default radix permanent by editing the DefaultRadix variable in the
modelsim.ini file.

® -endaddress <end>
(optional) Specifiesthe end address for arange of addresses to be displayed.

<end>— Any valid address in the memory. If unspecified, the default is the end of the
memory.

® -format [bin | hex | mti]
(optional) Specifies the output format of the contents.
bin— Specifies a binary output.
hex— Specifies a hex output.
mti — MTI format. (default).
® -noaddress
(optional) Specifies that addresses not be printed.
® -startaddress <st>
(optional) Specifiesthe start address for a range of addresses to be displayed.

<st>— Any valid address in the memory. If unspecified, the default is the start of the
memory.

® -wordsperline <n>
(optional) Specifies how many words are to be printed on each line.
<n>— Any positive integer where the default is an 80 column display width.
* <path>

(required) Specifiesthe full path to the memory instance. The default is the current context,
as shown in the Structure window. Indexes can be specified. Must be specified as the final
argument to the mem display command.

Examples

® Thiscommand displays the memory contents of instance /top/c/mru_mem, addresses 5
to 10:

mem display -startaddress 5 -endaddress 10 /top/c/mru_mem
returns;

5: 110 110 110 110 110 000

* Display the memory contents of the same instance to the screen in hex format, as
follows:

mem display -format hex -startaddress 5 -endaddress 10 /top/c/mru_mem

returns:

ModelSim Reference Manual, v10.1c 163

Commands
mem display

#5: 6 6 6 6 60

Related Topics

® For detailson MTI format, refer to the
mem load description.

164

ModelSim Reference Manual, v10.1c

Commands
mem list

mem list

This command displays aflattened list of all memory instances in the current or specified
context after a design has been elaborated.

Each instance lineis prefixed by "VHDL:" or "Verilog:", depending on the type of model.
Returns the signal/variable name, address range, depth, and width of the memory.

Syntax
mem list [-r] [<path>]
Arguments
°
(optional) Recursively descends into sub-modules when listing memories.
* <path>

(optional) The hierarchical path to the location the search should start where the default is
the current context, as shown in the Structure window.

Examples
® Recursively list all memories at the top level of the design.
mem list -r /
Returns:

Verilog: /top/m/mem[0:255] (2564 x 16w)
#

®* Recursively list all memoriesin /top2/uut.
mem list /top2/uut -r
Returns:

Verilog: /top2/uut/mem[0:255] x 16w

ModelSim Reference Manual, v10.1c 165

Commands
mem load

mem load

This command updates the simulation memory contents of a specified instance. Y ou can upload
contents either from a memory data file, amemory pattern, or both. If both are specified, the
pattern is applied only to memory locations not contained in thefile.

A relocatable memory fileis one that has been saved without addressinformation. Y ou can load
arelocatable memory file into the instance of amemory core by specifying an address range on
the mem load command line. If no address range (starting and ending address) is specified, the
memory is loaded starting at the first location.

The order in which the datais placed into the memory depends on the format specified by the
-format option. If you choose bin or hex format, the memory isfilled low to high, to be
compatible with $readmem commands. Thisisin contrast to the default MTI format, which
fills the memory according to the memory declaration, from left index to right index.

For Verilog objectsand VHDL integers and std_logic types: if the word width in afileiswider
than the word width of the memory, the leftmost bits (msb) in the data words are ignored. To
allow wide words use the -truncate option which will ignore the msb bits that exceed the
memory word size. If the word width in the file is less than the width of the memory, and the
leftmost digit of thefiledataisnot * X', then the leftmost bits are zero filled. Otherwise, they are
X-filled.

The type of datarequired for the -filldata argument is dependent on the -filltype specified: a
fixed value, or one that governs an incrementing, decrementing, or random sequence.

® For fixed pattern values, the fill pattern isrepeatedly tiled to initialize the memory block
specified. The pattern can contain multiple word values for this option.

® For incrementing or decrementing patterns, each memory word is treated as an unsigned
guantity, and each successive memory location isfilled in with a value one higher or
lower than the previous value. The initial value must be specified.

® For arandom pattern, arandom data sequence will be generated to fill in the memory
values. The data type in the sequence will match the type stored in the memory. For
std_logic and associated types, unsigned integer sequences are generated. A seed value
may be specified on the command line. For any given seed, the generated sequenceis
identical.

The interpretation of the pattern datais performed according to the default system radix setting.
However, this can be overridden with a standard Verilog-style ‘ <radix_char><data>
specification.

Syntax

mem load {-infile <infile> | -filldata <data_word> [-infile <infile>]}
[-endaddress <end>] [-fillradix <radix_type>] [-filltype {dec | inc | rand | value}]
[-format [bin | hex | mti]] [<path>] [-skip <Nwords>] [-startaddress <st>] [-truncate]

166 ModelSim Reference Manual, v10.1c

Commands
mem load

Arguments

-infile <infile>

(required unless the -filldata argument is used) Updates memory data from the specified
file.

<infile> — The name of amemory file.

-endaddress <end>

(optional) Specifiesthe end address for arange of addresses to be |oaded.
<end> — Specified as any valid address in the memory.

-filltype {dec | inc | rand | value}

(optional, use with the -filldata argument) Fillsin memory addresses in an algorithmic
pattern starting with the dataword specified in -filldata. If afill pattern is used without afile
option, the entire memory or specified address range is filled with the specified pattern. If
both are specified, the pattern is applied only to memory locations not contained in thefile.

dec — Decrement each succeeding memory word by one digit.
inc — Increment each succeeding memory word by one digit.

rand — Randomly generate each succeeding memory word starting with the word
specified by -filldata as the seed.

value — Vaue (default) Substitute each memory word in the range with the value
specified in -filldata.

-filldata <data word>

(required unless -infile is used) Specifies a data word used to fill memory addresses in the
pattern specified by -filltype.

<data_word> — Specifies adata word. Must be in the same format as specified by the
-fillradix switch.

-fillradix <radix_type>
(optional, use with -filldata) Specifies radix of the data specified by the -filldata switch.

<radix_type> — Valid entries (or any unique abbreviations) are: binary, decimal,
unsigned, octal, hex, symbolic, and default.

-format [bin | hex | mti]

(optional, use with -infile) Specifies the format of the file to be loaded.
bin — Specifies binary data format.
hex — Specifies hex format.
mti — MTI format. (default).

Specifiesthe format of the file to be loaded. The bin and hex values are the standard Verilog
hex and binary memory pattern file formats. These can be used with Verilog memories, and
with VHDL memories composed of std_logic types.

ModelSim Reference Manual, v10.1c 167

Commands
mem load

Inthe MTI memory datafile format, internal file address and data radix settings are stored
within the file itself. Thus, there is no need to specify these settings on the mem load
command line. If aformat specified on the command line and the format signature stored
internally within the file do not agree, the file cannot be loaded.

* <path>

(optional) The hierarchical path to the memory instance. If the memory instance nameis
unique, shorthand instance names can be used. The default is the current context, as shown
in the Structure window.

Memory address indexes can be specified in the instance name a so. If addresses are
specified both in the instance name and the file, only the intersection of the two address
ranges is populated with memory data.

® -skip <Nwords>

(optional) Specifiesthe number of wordsto be skipped between each fill pattern value. Used
with -filltype and -filldata.

<Nwords> — Specified as an unsigned integer.
® -startaddress <st>
(optional) Specifiesthe start address for arange of addresses to be loaded.
<st>— Any valid address in the memory.
® -truncate

(optional) Ignores any most significant bits (msb) in amemory word which exceed the
memory word size. By default, when memory word size is exceeded, an error results.

Examples

® Load the memory pattern from the file vals.mem to the memory instance /top/m/mem,
filling the rest of the memory with the fixed-value 1'bO0.

mem load -infile vals.mem -format bin -filltype value -filldata 1'b0
/top/m/mem

When you enter the mem display command on memory addresses O through 12, you see
the following:

mem display -startaddress 0 -endaddress 12 /top/m/mem

0: 0000000000000000 0000000000000001 0000000000000010 0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110 0000000000000111
8: 0000000000001000 0000000000001001 0000000000000000 0000000000000000
12: 0000000000000000

Load the memory pattern from the file vals.mem to the memory instance
/top/m/mru_mem, filling the rest of the memory with the fixed-value 16'Hbeef.

mem load -infile vals.mem -format hex -st 0 -end 12 -filltype value -filldata 16'Hbeef
ftop/m/mru_mem

168 ModelSim Reference Manual, v10.1c

Commands
mem load

® Load memory instance /top/mem?2 with two words of memory data using the Verilog
Hex format, skipping 3 words after each fill pattern sequence.

mem load -filltype value -filldata "16'hab 16'hcd" /top/mem2 -skip 3

® L oad memory instance /top/mem with zeros (0).
mem load -filldata O /top/mem

® Truncate the msb bits that exceed the maximum word size (specified in HDL code).
mem load -format h -truncate -infile data_files/data.out /top/m_reg_inc/mem

Related Topics

® mem save

ModelSim Reference Manual, v10.1c 169

Commands
mem save

mem Save

This command saves the contents of a memory instance to afilein any of the supported
formats. Verilog binary, Verilog hex, and MTI memory pattern data.

This command worksidentically to the mem display command, except that its output iswritten
to afilerather than adisplay.

The order in which the datais placed into the saved file depends on the format specified by the
-format argument. If you choose bin or hex format, the fileis populated from low to high, to be
compatible with $readmem commands. Thisisin contrast to the default mti format, which
populates the file according to the memory declaration, from left index to right index.

Y ou can use the mem save command to generate rel ocatable memory datafiles. The
-noaddr ess option omits the address information from the memory datafile. Y ou can later load
the generated memory data file using the memory load command.

Syntax

mem save -outfile <filename> [-addressradix {dec | hex}] [-dataradix <radix_type>]
[-format { bin | hex | mti}] [-compress | -noaddress] [<path>]
[-startaddress <st> -endaddress <end>] [-wordsperline <Nwords>]
Arguments
* -outfile <filename>
(required) Specifies that the memory contents are to be stored in afile.

<filename> — The name of the file where the specified memory contents are to be
stored.

® -addressradix {dec | hex}
(optional) Specifies the address radix for the default mti formatted files.
dec — Decimal (default).
hex — Hexadecimal.
® -compress

(optional) Specifiesthat only unique lines are printed, identical lines are not printed.
Mutually exclusive with the -noaddr ess switch.

¢ -dataradix <radix_type>
(optional) Specifiesthe dataradix for the default mti formatted files.

<radix_type> — Valid entries (or any unique abbreviations) are: binary, decimal,
unsigned, octal, hex, and symbalic.

Y ou can change the default radix for the current simulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

170 ModelSim Reference Manual, v10.1c

Commands
mem save

® -endaddress <end>
(optional) Specifies the end address for arange of addresses to be saved.
<end>— Any valid address in the memory.
® -format {bin | hex | mti}
(optional) Specifiesthe format of the output file.
bin— Binary data format.
hex— Hexadecimal format.
mti — MTI format. (default).

The bin and hex values are the standard V erilog hex and binary memory pattern file formats.
These can be used with Verilog memories, and with VHDL memories composed of
std_logic types.

Inthe MTI memory datafile format, internal file address and data radix settings are stored
within thefile itself.

®* _noaddress

(optional) Prevents addresses from being printed. Mutually exclusive with the -compress
switch.

L <path>

(optional) The hierarchical path to the location of the memory instance. The default isthe
current context, as shown in the Structure window.

® -startaddress <st>
(optional) Specifiesthe start address for arange of addresses to be saved.
<st> — Any valid address in the memory.
® -wordsperline <Nwords>
(optional) Specifies how many memory values are to be printed on each line.
<Nwords> — Any unsigned integer where the default assumes an 80 character display

width.
Examples
® Savethe memory contents of the instance /top/m/mem(0: 10) to memfile, written in the
mti radix.

mem save -format mti -outfile memfile -start 0 -end 10 /top/m/mem

The contents of memfile are as follows:

// memory data file (do not edit the following line - required for mem
load use)

// format=mti addressradix=d dataradix=s version = 1.0

0: 0000000000000000 0000000000000001 0000000000000010 0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110 0000000000000111
8: 0000000000001000 0000000000001001 XXXXXXXXXXXXXXXX

ModelSim Reference Manual, v10.1c 171

Commands
mem save

Related Topics

* mem display
* mem load

172

ModelSim Reference Manual, v10.1c

Commands
mem search

mem search

This command finds and prints to the screen the first occurring match of a specified memory
pattern in the specified memory instance. Shorthand instance hames are accepted.

Optionally, you can instruct the command to print all occurrences. The search pattern can be
one word or a sequence of words.

Syntax

mem search {-glob <word> [<word>...] | -regexp <word> [<word>...]}

[-addressradix { dec | hex}] [-dataradix <radix_type>] [-all] [-replace <word> [<word>...]]
[-startaddress <address>] [-endaddress <address>] [<path>]

Arguments

-glob <word> [<word>...]

(required unless using -regexp) Specifies the value of the pattern, accepting glob pattern
syntax for the search.

<word>— Any word pattern. Multiple word patterns are specified as a space separated
list. Wildcards are accepted in the pattern.

This argument and -regexp are mutually exclusive arguments.
-regexp <word> [<word>...]

(required unless using -glob) Specifies the value of the pattern, accepting regular expression
syntax for the search.

<word> — Any word pattern. Wildcards are accepted in the pattern. Multiple word
patterns are specified as a space separated list.

This argument and -glob are mutually exclusive arguments.
-addressradix { dec | hex}
(optional) Specifiesthe radix for the address being displayed.
dec — Decimal (default).
hex — Hexadecimal.
-al

(optional) Searches the specified memory range and returns all matching occurrences to the
transcript. By default only the first matching occurrence is printed.

-dataradix <radix_type>
(optional) Specifies the radix for the memory data being displayed.

<radix_type> — Can be specified as symbolic, binary, octal, decimal, unsigned, or hex. By
default the radix displayed is the system default.

ModelSim Reference Manual, v10.1c 173

Commands
mem search

Y ou can change the default radix for the current ssmulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

-endaddress <address>

(optional) Specifiesthe end address for arange of addresses to search.
<address> — Any valid address in the memory.

<path>

(optional) Specifiesthe hierarchical path to the location of the memory instance. The default
is the current context, as shown in the Structure window.

-replace <word> [<word>...]
(optional) Replaces the found patterns with a designated pattern.

<word> — A word pattern Multiple word patterns are accepted, separated by asingle
space. No wildcards are allowed in the replaced pattern.

-startaddress <address>
(optional) Specifiesthe start address for a range of addresses to search.
<address> — Any valid address in the memory.

Examples

® Search for and print to the screen all occurrences of the pattern 16°Hbeef in
/uut/u0/mem3:

mem search -glob 16‘'Hbeef -dataradix hex /uut/u0/mem3
Returns:
#7845: beef

#7846: beef
#100223: beef

® Search for and print only the first occurrence of 16'Hbeef in the address range
7845:150000, replacing it with 16'Hcafe in /uut/ul/mem3:

mem search -glob 16'Hbeef -d hex -replace 16'Hcafe -st 7846 -end 150000

/uut/ul/mem3
Returns:
#7846: cafe

® Replaceall occurrences of 16'Hbeef with 16'Habe in /uut/ul/mem3:
mem search -glob 16'Hbeef -r 16'Habe -addressadix hex -all /Juut/ul/mem3

Returns:

174

ModelSim Reference Manual, v10.1c

Commands
mem search

#leab5: 2750
#leab: 2750
#1877f£: 2750

® Search for and print the first occurrence any pattern ending in f:
mem search -glob "*f"

® Search for and print the first occurrence of this multiple word pattern:
mem search -glob "abe cafe" /uut/ul/mem3

® Search for patterns "0000 0000" or 0001 0000" in m/mem:
mem search -data hex -regexp {000[0|1] 0{4}} m/mem -all

® Search for a pattern that has any number of Os followed by any number of 1sasa
memory location, and which has a memory location containing digits as the value:

mem search -regexp {*0+1+$\d+} m/mem -all
® Searchfor any initialized location in aVHDL memory:

mem search -regexp {[*U]} -all <vhdl_memory>

ModelSim Reference Manual, v10.1c 175

Commands
messages clearfilter

messages clearfilter

This command removes any filter you have set in the Message Viewer. Refer to the section
“Message Viewer Filter Dialog Box” for additional information about filtering in the Message
Viewer.

Syntax
messages clearfilter

Arguments
* Noarguments

176 ModelSim Reference Manual, v10.1c

Commands
messages setfilter

messages setfilter

This command performs the same action as the Message Viewer Filter Dialog Box, which
controls which messages are shown in the Message Viewer.

The ideal workflow for using this command is through the GUI:
1. View >Message Viewer.
2. Right-click in the Message Viewer and select Filter.
The Message Viewer Filter dialog box is displayed
3. Createyour filter.
4. OK or Apply.

The Message Viewer updates based on your filter and a messages setfilter command,
which is equivalent to your settings, is output to the transcript.

5. Retain the messages setfilter command from the transcript for future use.
Syntax
messages setfilter <tcl_list>
Arguments

® <tcl_list>— Thetcl_list argument is acomplex string of tcl code that controls the filter
Settings.

Examples
® Severity iserror and timeis greater than or equal to 100 ns
messages setfilter {{} \

(Severity Contains {Case Insensitive} error)} \
{AND (Time >= 100 ns)}

® Theobjectsfield contains neither clock or reset

messages setfilter {{} \
(Object Contains {Case Sensitive} clock)} \
{NOR (Object Containg {Case Sensitive} data)}

® The message string either containsreg_str2 or reg_strl

messages setfilter {{} \
(Message Contains {Case Insensitive} reg_str2)} \
{OR (Message Contains {Case Insensitive} reg_strl)}

ModelSim Reference Manual, v10.1c 177

Commands
messages write

messages write

This command prints the contents of the Message Viewer window to a specified text file.
Syntax

messages write <filename>

Arguments

¢ <filename> — (required) Specifies the name of the file where the contents of the Message
Viewer window are to be saved.

Related Topics

¢ displaymsgmode modeslim.ini variable ® “Message Viewer Window”
® msgmode modeslim.ini variable

178 ModelSim Reference Manual, v10.1c

Commands
modelsim

modelsim
The modelsim command starts the Model Sim GUI without prompting you to load a design.
This command is valid only for Windows platforms and may be invoked in one of three ways:
® from the DOS prompt
® from aModel Sim shortcut
® from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the properties of that
shortcut. (As expected, arguments also work on the DOS command line.)

Y ou can invoke the ssmulator from either the Model Sim> prompt after the GUI starts or from a
DO file called by modelsim.

Syntax
modelsim [-do <macrofile>] [<license_option>] [-nosplash]

Arguments
® -do<macrofile>
(optional) Executes a DO file when modelsim isinvoked.
<macrofile> — The name of aDO file

Note
In addition to the macro called by this argument, if aDO file is specified by the
STARTUP variable in modelsim.ini, it will be called when the vsim command is invoked.

* <license_option>
(optional) Restricts the search of the license manager.
® -nosplash
(optional) Disables the splash screen.
Related Topics

* do ® Using a Startup File
® vsm

ModelSim Reference Manual, v10.1c 179

Commands
noforce

noforce

This command removes the effect of any active force commands on the selected HDL objects.
and also causes the object’ s value to be re-eval uated.

Syntax
noforce <object_name> ...

Arguments
® <object_name>

(required) Specifies the name of an object. Must match an object name used in a previous
force command. Multiple object names may be specified as a space separated list. Wildcard
characters are allowed.

Related Topics

* force
* Wildcard Characters

180 ModelSim Reference Manual, v10.1c

Commands
nolog

nolog

This command suspends writing of data to the wave log format (WLF) file for the specified
signals.

A flag iswritten into the WLF file for each signal turned off, and the GUI displays"-No Data-"
for the signal(s) until logging (for the signal(s)) is turned back on. Logging can be turned back
on by issuing another log command or by doing anolog -r eset.

Because use of the nolog command adds new information to the WLF file, WLF files created
when using the nolog command cannot be read by older versions of the simulator.

Transactions written in SCV or Verilog are logged automatically, and can be removed with the
nolog command. A transaction is logged into the .wif fileif logging is enabled (in other words,
if no nolog command has disabled it) for that stream at the time when the transaction was
begun. An entire span of atransaction is either logged or not logged, regardless of the begin and
end times specified for that transaction.

Syntax
nolog [-all] [-depth <level>] [-howmany] [-in] [-inout] [-internal] [-out] [-ports] [-recursive]
[-reset] [<object_name>...]
Arguments
e -l
(optional) Turns off logging for all signals currently logged.
® -depth <level>

(optional) Restricts arecursive search (specified with the -recur sive argument) to a certain
level of hierarchy.

<level>— Aninteger greater than or equal to zero. For example, if you specify -depth 1,
the command descends only one level in the hierarchy.

® -howmany
(optional) Returns an integer indicating the number of signals found.

® -n
(optional) Turns off logging only for ports of mode IN whose names match the
specification.

® -inout

(optional) Turns off logging only for ports of mode INOUT whose names match the
specification.

* _interna

(optional) Turns off logging only for internal (non-port) objects whose names match the
specification.

ModelSim Reference Manual, v10.1c 181

Commands

nolog
® -out
(optional) Turns off logging only for ports of mode OUT whose hames match the
specification.
® -ports

(optional) Specifies that the scope of the search isto include al ports.
® -recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region. Y ou can use the -depth argument to
specify how many levels of the hierarchy to descend.

* -reset
(optional) Turnslogging back on for all unlogged signals.
® <object_name>...

(optional) Specifies the object name which you want to unlog. Multiple object names may
be specified as a space separated list. Wildcard characters are allowed.

Examples
® Unlog al objectsin the design.
nolog -r /*
® Turnlogging back on for all unlogged signals.
nolog -reset

Related Topics

® addlist * log
* add wave

182 ModelSim Reference Manual, v10.1c

Commands
notepad

notepad

This command opens a simple text editor. It may be used to view and edit ASCI| files or create
new files.

This mode can be changed from the Notepad Edit menu.
Returns nothing.

Syntax
notepad [<filename>] [-r | -edit]

Arguments

e <filename>
(optional) Name of the file to be displayed.

* .
(optional) Specifies read-only mode.
* -edit

(optional) Specifies editing mode. Will not save changes to an existing file that has the
Read-only attribute turned on. (default)

ModelSim Reference Manual, v10.1c 183

Commands
noview

noview

This command closes a window in the Model Sim GUI. To open awindow, use the view
command.

Syntax
noview <window_name>...

Arguments
® <window_name>...

(required) Specifies the window(s) to close. Multiple window types may be specified in a
space separated list. Wildcards permitted. At least one type (or wildcard) is required.

Refer to the view command for a complete list of possible arguments.
Y ou can a'so close Source windows using the tab or file name.
Examples
® Close the Wave window named "wavel".
noview wavel
® Closeal List windows.
noview List

Related Topics

® view

184 ModelSim Reference Manual, v10.1c

Commands
nowhen

nowhen
This command deactivates sel ected when commands.

Syntax
nowhen [<label>]

Arguments

* <label>

(optional) Specifies an individual when command. Wildcards may be used to select more
than one when command.

Examples
® Deactivate the when command labeled 99.
nowhen 99
® Deactivate all when commands.
nowhen *

Related Topics

* when

ModelSim Reference Manual, v10.1c 185

Commands
onbreak

onbreak

This command is used within amacro and specifies one or more scripts to be executed when
running a macro that encounters a breakpoint in the source code.

The onbreak setting will effect any run commands that follow the onbreak statement until
another onbreak command isissued. If a.do fileisexecuted from within the macro, the .do file
script will inherit the onbreak setting specified prior to execution unless and until another
onbreak command is given, in which case, that onbreak setting will be in effect until the .do file
script completes at which point execution will return to the calling macro and the calling
macro's onbreak setting is restored. The script must be followed by arun command to take
effect.

Use an empty string to change the onbreak command back to its default behavior:

onbreak ""
In this case, the macro will be interrupted after a breakpoint occurs (after any associated bp
command string is executed).

If you specify this command in a macro without a script, the default behavior is to pause and

return control to the command line. Y ou can then enter onbreak without arguments on the

command line after the macro has paused to return the current onbreak command string.
Syntax

onbreak <script>; <script>...

Arguments
® <script>

(optional) Any command or script can be used as an argument to onbreak. If you want to
use more than one command or script, use a semicolon to separate them or place them on
multiple lines and enclose the entire script in curly braces ({}) or quotation marks (“). You
must use the onbreak command beforearun, run -continue, or step command. If arun or
step comand isissued within an onbreak script, the script will return immediately and any
following commands will not be executed. It isan error to execute any commands within an
onbreak command string following any of the run commands. This restriction appliesto
any macros or Tcl procedures used in the onbreak command string.

Examples

® Examine the value of the HDL object data when a breakpoint is encountered. Then
continue the run command.

onbreak {exa data ; cont}
®* Resume execution of the macro file on encountering a breakpoint.

onbreak resume

186 ModelSim Reference Manual, v10.1c

Commands
onbreak

This set of commands test for assertions. Assertions are treated as breakpoints if the
severity level is greater than or equal to the current BreakOnA ssertion variable setting

(refer to modelsim.ini Variables). By default aseverity level of failure or above causes a

breakpoint; a severity level of error or below does not.

set broken 0
onbreak {
lassign [runStatus -full] status fullstat
if {$status eq "error"} {
Unexpected error, report info and force an error exit
echo "Error: $fullstat"
set broken 1
resume
} elseif {$status eq "break"} {
If this is a user break, then
issue a prompt to give interactive
control to the user
if {[string match "user_*" Sfullstat]} {
pause
} else {
Assertion or other break condition
set broken 2
resume
}
} else {
resume
}
}
run -all
if {Sbroken == 1} {
Unexpected condition. Exit with bad status.
echo "failure"
quit -force -code 3
} elseif {$broken == 2} {
Assertion or other break condition
echo "error"
quit -force -code 1
} else {
echo "success!"
}

quit -force

Related Topics

® abort ¢ Useful Commands for Handling
® bp Breakpoints and Errors

® do ® Macros (DO Files)

® onerror

® resume

® status

ModelSim Reference Manual, v10.1c

187

Commands
onElabError

onElabError

This command specifies one or more commands to be executed when an error is encountered
during the elaboration portion of avsim command. The command is used by placing it within a
macro.

Use the onElabError command without arguments to return to a prompt.
Syntax

onElabError {[<command> [; <command>] ...]}
Arguments

* <command>

(optional) Any command can be used as an argument to onElabError. If you want to use
more than one command, use a semicolon to separate the commands, or place them on
multiple lines. The entire command string must be placed in curly braces ({}).

Related Topics

® do

188 ModelSim Reference Manual, v10.1c

Commands
onerror

onerror

This command is used within a macro before arun command,; it specifies one or more
commands to be executed when a running macro encounters an error.

Using the onerror command without arguments will return the current onerror command
string. Use an empty string (onerror “*) to change the onerror command back to its default
behavior. Use onerror with aresume command to allow an error message to be printed without
halting the execution of the macro file.

Y ou can also set the global OnErrorDefaultAction Tcl variable to dictate what action Model Sim
takes when an error occurs. To set the variable on a permanent basis, you must define the
variable in amodelsim.tcl file (Refer to “The modelsim.tcl File” for details).

When your onerror command is successful, the macro will continue normally, unless your
command instructs the tool to quit, for example:

onerror {quit -f}

or
onerror {break}

However, if your onerror command is not successful, the simulator will be halted, for example:
onerrror {add wave b}

when you don’t have asignal named b.

The onerror command is executed when a Tcl command (for example, break.) encounters an
error in the macro file that contains the onerror command (note that arun command does not
necessarily need to be in process). Conversely, OnErrorDefaultAction will run even if the
macro does not contain alocal onerror command. This can be useful when you run a series of
macros from one script, and you want the same behavior across all macros.

Syntax
onerror {[<command> [; <command>] ...]}

Arguments
* <command>

(optional) Any command can be used as an argument to onerror. If you want to use more
than one command, use a semicolon to separate the commands, or place them on multiple
lines. The entire command string must be placed in curly braces ({}).

Example
® Forcethe simulator to quit if an error is encountered while the macro is running.

onerror {quit -f}

ModelSim Reference Manual, v10.1c 189

Commands
onerror

Related Topics

® abort ¢ Useful Commands for Handling
* do Breakpoints and Errors

® onbreak ® Macros (DO Files)

® resume

® status

190 ModelSim Reference Manual, v10.1c

Commands
onfinish

onfinish

This command controls simulator behavior when encountering $finish or sc_stop() in the design
code. When you specify this command without an argument, it returns the current setting.

Syntax
onfinish [ask | exit | final | stop | default]
Arguments

ask — (optional) In batch mode, the ssmulation will exit; in GUI mode, the user is
prompted for action.

exit — (optional) The simulation exits without asking for any confirmation.
final — (optional) The simulation executes all finish blocks before exiting.

stop — (optional) The simulation ends but remains loaded in memory, allowing for
easier post-simulation tasks.

default — (optional) Uses the current setting for the OnFinish variable in the
modelsim.ini file.

Related Topics

® OnFinish modelsim.ini variable ® vsim -onfinish

ModelSim Reference Manual, v10.1c 191

Commands
pause

pause

This command interrupts the execution of a macro and alows you to perform interactive
debugging of amacro file. The command is placed within the macro to be debugged.

Syntax

pause

Arguments

* None.
Description

When a macro isinterrupted during execution, the macro returns the prompt:

VSIM (paused) >

This“pause” prompt notifies you that a macro has been interrupted.

When amacro is paused, you can invoke another macro. If the second macro isinterrupted, you
can continue invoking macros up to anesting level of 50 macros.

The status command lists summary information about all interrupted macros.

Use the resume command to resume execution of the macro. Use the abort command to stop
execution of some or al of the macros.

Related Topics

® abort
do
resume
run
status

192 ModelSim Reference Manual, v10.1c

Commands
precision

precision

This command determines how real numbers display in the graphic interface (e.g., Objects,
Wave, Locals, and List windows). It does not affect the internal representation of areal number
and therefore precision values over 17 are not allowed.

Executing the precision command without any arguments returns the current precision setting.
Syntax
precision [<digits>[#]]
Arguments
* <digits>[#]
(optional) Specifiesthe number of digits to display where the default is 6.
#— A suffix that forces the display of trailing zeros. See examples for more details.
Examples
® Resultsin 4 digits of precision.

precision 4

For example:

1.234 or 6543

® Resultsin 8 digits of precision including trailing zeros.

precision 8#

For example:

1.2345600 or 6543.2100

® Resultsin 8 digits of precision but doesn't print trailing zeros.

precision 8

For example:

1.23456 or 6543.21

ModelSim Reference Manual, v10.1c 193

Commands
printenv

printenv

This command prints to the Transcript window the current names and values of all environment
variables.

If variable names are given as arguments, returns only the names and values of the specified
variables.

Syntax
printenv [<var>...]
Arguments
* <var>...
(optional) Specifies the name(s) of the environment variable(s) to print.
Examples
® Print al environment variable names and their current values.

printenv

Returns:
CC = gcc
DISPLAY = srl1:0.0
® Print the specified environment variables:

printenv USER HOME

Returns:
USER = vince
HOME = /scratch/srl/vince

194 ModelSim Reference Manual, v10.1c

Commands
process report

process report

This command creates a textual report of al processes displayed in the Process Window.
Syntax

process report [-file <filename>] [-append]
Arguments

¢ -file<filename>

(optional) Creates an external file where raw process datawill be saved. If -fileis not
specified, then the output is redirected to stdout.

<filename> — A user-specified name for thefile.

® -append

(optional) Specifiesthat process dataisto be appended to the current process report file. If
this option is not used, the process data will overwrite the existing process report file.

ModelSim Reference Manual, v10.1c 195

Commands
project

project
This command is used to perform common operations on projects.

Prerequisites

Some arguments to this command require a project to be opened with either the project new or
project open command. Some argument must be used outside of a simulation session. Please
read the argument descriptions for more information.

Syntax

project [addfile <filename> [<file_type>] [<folder_name>]] | [addfolder <foldername>
[<folder_parent>]] | [calculateorder] | [closg] | [compileall [-n]] | [compileorder] |
[compileoutofdate [-n]] | [delete <filename>] | [filenames] | [env] | [history] | [new
<home_dir> <proj_name> [<defaultlibrary>] [<intialini>] [0 | 1]] | [open <project>] |
[removefile <filename>]

Arguments

* addfile <filename> [<file_type>] [<folder_name>]

(optional) Adds the specified file to the current project. Requires a project to be open.
<filename> — (required) The name of an existing file.

<file_type> — (optional) The HDL file type of thefile being added. For example do for
a.dofile.

<folder_name> — (optional) Places the filein an existing folder created with project
addfolder command. If no folder name is specified the file will be placed in the top
level folder.

* addfolder <foldername> [<folder_parent>]
(optional) Creates a project folder within the project. Requires a project to be open.
<foldername> — (required) Any string.

<folder_parent>— (optional) Places <foldername> in an existing parent folder. If
<folder_parent> is unspecified, <foldername> is placed at the top level.

® calculateorder

(optional) Determines the compile order for the project by compiling each file, then moving
any compilesthat fail to the end of thelist. Thisis repeated until there are no more compile
errors.

* close
(optional) Closes the current project.
* compileall [-n]
(optional) Compiles all filesin the project using the defined compile order.

-n — (optional) Returns alist of the compile commands this command would execute,
without actually executing the compiles.

196 ModelSim Reference Manual, v10.1c

Commands
project

® compileorder
(optional) Returns the current compile order list.
® compileoutofdate [-n]

(optional) Compiles dll filesthat have a newer date/time stamp than the last time thefilewas
compiled.

-n— Returns alist of the compile commands this command would execute, without
actually executing the compiles.

* delete <filename>
(optional) Deletes a project file.
<filename> — Any .mpf file.
* filenames
Returns the absol ute pathnames of all files contained in the currently open project.
* enw
(optional) Returns the current project file and path.
® history
(optional) Lists ahistory of manipulated projects. Must be used outside of asimulation
session.
® new <home_dir> <proj_name> [<defaultlibrary>] [<intiaini>] [0] 1]

(optional) Creates anew project under a specified home directory with a specified name and
optionally a default library. The name of the work library will default to "work" unless
specified. A new project cannot be created while a project is currently open or a simulation
isin progress.

<home_dir> — The path to the new project directory within the current working
directory.

<proj_name> — Specifies a name for the new project. The file will be saved as an .mpf
file

<defaultlibrary> — Specifies a name for the default library.

<intialini>— An optiona modelsim.ini file can be specified as a seed for the project file
by using theinitialini option. If initialini is an empty string, then Model Sim uses the
current modelsim.ini file when creating the project. Y ou must specify adefault library
if you want to specify initialini.

0 — (default) Copies all library mappings from the specified <initialini> file into the
new project.

1 — Copieslibrary mappings referenced in an "others' clausein theinitia .ini file.

ModelSim Reference Manual, v10.1c 197

Commands
project

® open <project>

(optional) Closes any currently opened project and opens a specified project file (must be a
valid .mpf file), making it the current project. Changes the current working directory to the
project's directory. Must be used outside of a simulation session.

* removefile <filename>
(optional) Removes the specified file from the current project.
Examples

® Make /user/george/design/test3/test3.mpf the current project and changes the current
working directory to /user/george/design/test3.

project open /user/george/design/test3/test3.mpf

® Execute current project library build scripts.

project compileall

198 ModelSim Reference Manual, v10.1c

Commands
pwd

pwd
This Tcl command displays the current directory path in the Transcript window.

Syntax
pwd

Arguments
®* None

ModelSim Reference Manual, v10.1c 199

Commands
quietly

quietly

This command turns off transcript echoing for the specified command.
Syntax

quietly <command>

Arguments
® <command>

(required) Specifies the command for which to disable transcript echoing. Any results
normally echoed by the specified command will not be written to the Transcript window. To
disable echoing for all commands use the transcript command with the -quietly option.

Related Topics

® transcript

200 ModelSim Reference Manual, v10.1c

Commands
quit

quit

This command exits the simulator.

If you want to stop the simulation using awhen command, you must use a stop command within
your when statement, you must not use an exit or aquit command. The stop command acts like
abreakpoint at the timeit is evaluated.

Syntax

quit [-f | -force] [-sim] [-code <integer>]

Arguments

-f | -force

(optional) Quits without asking for confirmation. If omitted, Model Sim asks you for
confirmation before exiting. (The -f and -force arguments are equivalent.)

-sim

(optional) Unloads the current design in the ssmulator without exiting ModelSim. All files
opened by the simulation will be closed including the WLF file (vaim.wif).

-code <integer>

(optional) Quits the simulation and issues an exit code.

<integer> — Thisisthe value of the exit code. Y ou should not specify an exit code that
already existsin Model Sim. Refer to the section "Exit Codes' in the User’s Manua
for alist of existing exit codes. Y ou can also specify avariable in place of <integer>.

Y ou should always print a message before running the quit -code command to explicitly
state the reason for exiting.

Examples

Refer to the Examples section of the exit command for an example of using the -code argument.
The quit and exit commands behave similarly in this regard.

ModelSim Reference Manual, v10.1c 201

Commands

radix

radix

This command specifies the default radix to be used for the current simulation. Specifying the
command with no argument returns the current radix setting.

The command can be used at any time. The specified radix is used for all commands (force,
examine, change, etc.) aswell asfor displayed valuesin the Objects, Locals, Dataflow, List, and
Wave windows, as well as the Source window in the source annotation view.

Alternate methods for changing the default radix:

* |nthe modelssm.ini file, edit the DefaultRadix variable.

® Choose Simulate > Runtime Options from the main menu, click the Defaults tab,
make your selection in the Default Radix box.

Syntax

radix [-binary | -fpoint | -octal | -decimal | -hexadecimal | -unsigned | -ascii | -time]

[-enumnumeric | -enumsymbolic | -showbase | -symbolic |]

Arguments

Y ou can abbreviate the following arguments to any length. For example, -dec is equivalent to
-decimal.

-ascii

(optional) Display aVerilog object as a string equivalent using 8-bit character encoding.
-binary

(optional) Displays valuesin binary format.

-enumnumeric

(optional) Causes Verilog and SystemC enums to be displayed as numbers (formatted by the
current radix). This overrides the default behavior of always showing enums symbolically.

-enumsymbolic

(optional) Restores the default behavior of displaying Verilog and SystemC enums as
symbols by reversing the action of the -enumnumeric option.

-fpoint
(optional) Displays values in fixed-point format.
-decimal

(optional) Displays valuesin decimal format. Y ou can specify -signed as an dliasfor this
argument.

-hexadecimal

(optional) Displays values in hexadecimal format.

202

ModelSim Reference Manual, v10.1c

Commands
radix

-octal
(optional) Displays valuesin octal format.
-time
(optional) Displays values of time for register-based typesin Verilog.
-showbase
(optional) Display the number of bits of the vector and the radix used, where:
binary = b
decimal =d
hexidecimal = h
ASCll =a
time=t

For example, instead of simply displaying a vector value of “31", avalue of “16'h31" may
be displayed to show that the vector is 16 bits wide, with a hexidecimal radix.

-symbolic

(optional) Displays valuesin aform closest to their natural form.

-unsigned

(optional) Displays values in unsigned decimal format.

Related Topics

User-Defined Radices
radix define

radix delete

radix names

radix list

radix signal

ModelSim Reference Manual, v10.1c 203

Commands
radix define

radix define

Thiscommand is used to create or modify a user-defined radix. A user definable radix isused to
map bit patternsto a set of enumeration labels. User-defined radices are available for use in the
Wave and List windows or with the examine command.

Syntax

radix define <name> <definition_body> [-color <value>]

Arguments

<name>

(required) User-specified name for the radix.

<definition_body>

(required) A list of number pattern, label pairs. The definition body has the form:
{

<numeric-value> <enum-label>,
<numeric-value> <enum-label>
-default <radix_type>

}

A <numeric-value> is any legitimate HDL integer numeric literal. To be more specific:

<base>#<base-integer># --- <base> is 2, 8, 10, or 16
<base>"bit-value" --- <base> is B, 0O, or X

<integer>

<size>'<base><number> --- <gize> is an integer, <base> is b, d, o,
or h.

Refer to the Verilog and VHDL Language Reference Manuals for exact definitions of these
numeric literals.

The commay(,) in the definition body is optional. The <enum-label> isany arbitrary string. It
should surrounded by quotation marks (""), especialy if it contains spaces.

The -default entry is optional. If present, it defines the radix to use if amatch is not found
for agiven value. The -default entry can appear anywhere in the list, it does not have to be
at the end.

-color <value>
(optional) Designates a color for the waveform and text in the Wave window.

<value> — The color value may be a color name or its hex value (see example below).

Example

® Theradix define command used to create aradix called “ States,” which will display
state valuesin the List, Watch, and Wave windows instead of numeric values.

radix define States {

11'b00000000001 "IDLE"

204

ModelSim Reference Manual, v10.1c

Commands
radix define

11'b00000000010 "CTRL",
11'b00000000100 “WT_WD_1",
11'b00000001000 "WT_WD_2",
11'b00000010000 "WT_BLK_1",
11'b00000100000 "WT_BLK_2",
11'b00001000000 "WT_BLK_3",
11'b00010000000 "WT_BLK_4",
11'b00100000000 “WT_BLK_5",
11'b01000000000 “RD_WD_1",
11'b10000000000 “RD_WD_2",

-default hex

® Thefollowing example illustrates how to specify the radix color:
radix define States {

11'b00000000001 "IDLE" -color yellow,
11'b00000000010 "CTRL" -color #ffee00,
11'b00000000100 "WT_WD_1" -color orange,
11'b00000001000 "WT_WD_2" -color orange,
11'b00000010000 "WT_BLK_1",
11'b00000100000 "WT_BLK_2",
11'000001000000 "WT_BLK_3",
11'000010000000 "WT_BLK_4",
11'b00100000000 "WT_BLK_5",
11'b01000000000 "RD_WD_1" -color green,
11'b10000000000 "RD_WD_2" -color green,
-default hex

-defaultcolor white

If apattern/label pair does not specify a color, the normal wave window colors will be
used. If the value of the waveform does not match any pattern, then the -default radix
and -defaultcolor will be used.

ModelSim Reference Manual, v10.1c 205

Commands
radix define

To specify arange of values, wildcards may be specified for bits or characters of the
value. The wildcard character is*?, similar to the iteration character in aVerilog UDP,
for example:

radix define {
6'b01?7?00 "Write" -color orange,

6'b10?700 "Read" -color green
}

In this example, the first pattern will match "010000", "010100", "011000", and
"011100". In case of overlaps, the first matching pattern is used, going from top to
bottom.

Related Topics

User-Defined Radices
radix

radix delete

radix names

radix list

radix signal

206 ModelSim Reference Manual, v10.1c

Commands
radix delete

radix delete
This command will remove the radix definition from the named radix.

Syntax
radix delete <name>

Arguments
®* <npame>
(required) Removes the radix definition from the named radix.

Related Topics

User-Defined Radices
radix

radix define

radix list

radix names

radix signal

ModelSim Reference Manual, v10.1c 207

Commands
radix list

radix list

This command will return the complete definition of aradix, if anameisgiven. If no nameis
given, it will list all the defined radices.

Syntax
radix list [<name>]
Arguments

® <name>
(optional) Returns the compl ete definition of the named radix.

Related Topics

User-Defined Radices
radix

radix define

radix delete

radix names

radix signal

208 ModelSim Reference Manual, v10.1c

Commands
radix names

radix names
This command returns alist of currently defined radix names.

Syntax
radix names

Arguments
None

Related Topics

User-Defined Radices
radix

radix define

radix delete

radix list

radix signal

ModelSim Reference Manual, v10.1c 209

Commands

radix

signal

radix signal

This command sets or inspects radix values for the specified signal in the Objects, Locals,
Schematic, and Wave windows.

Note

O

Theintent isfor this command to be used for a small number of signals. If the majority of
signalsin adesign areto use a particular radix value, then set that value as the default
radix with the radix command, and use the radix signal command for the rest.

When no argument is used, the radix signal command returns alist of all signalswith aradix.

Syntax

radix signal [<signa_name> [<radix_value>]] [-fpoint <decimal>] [-showbase]

Arguments

<signal_name>

(optional) Name of the signal for which the radix will be set (if <radix_value> is specified)
or inspected.

<radix_value>

(optional) Value of the radix to be set for the specified signal. Use empty quotation marks
("") to unset the radix for the specified signal.
-fpoint <decimal>
(optional) Designates a fixed point radix with “decimal” specifying the number of decimal
places of the radix.
-showbase
(optional) Display the number of bits of the vector and the radix used, where:
binary = b
decimal =d
hexidecimal = h
ASCIl =a
time=t

For example, instead of simply displaying a vector value of “31”, avalue of “16'h31" may
be displayed to show that the vector is 16 bits wide, with a hexidecimal radix.

Related Topics

User-Defined Radices
radix

radix define

radix list

radix delete

210

ModelSim Reference Manual, v10.1c

Commands
readers

readers

This command displays the names of all readers of the specified object.

The reader list is expressed relative to the top-most design signal/net connected to the specified
object.

The output from the readers command, which is displayed in the Transcript window as a
hypertext link, allows you to right-click to open adrop-down menu and to quickly add signalsto

various windows. It includes a"View Declaration" item to open the source definition of the
signal.

Figure 2-4. readers Command Results in Transcript

= Transcripk ————————————————

W3IM 27 = readers Stopsdut/enable -

Beaders for /top/dutsenable:

Net @ Jtop/dutsenable

¥ Beader : Atop/dut/#ALTAVI#1AR

_ Jtop/dut/#ALWAYSZ16E_
‘Wiews Declaration

WSIM 28 | Ly
Add|bo Wave

Mow: 170,170 ns Delka: 3 i Add b Lisk

Add to Schematic
Add to Dakaflow

Copy

Syntax

readers <object_name> [-source]

Arguments
® <object name>

(required) Specifies the name of the signal or net whose readers are to be shown. All signal
or net types are valid. Multiple names and wildcards are accepted.

® -source

(optional) Returns the source file name and line number for each driver of the specified

signal or net. If the source location cannot be determined, the value n/ais returned for that
driver.

Related Topics

® drivers

ModelSim Reference Manual, v10.1c 211

Commands
report

report
This command displays information relevant to the current simulation.

Syntax
report files
report where [ini] [pwd] [transcript] [wif] [project]
report simulator control
report simulator state

Arguments
* files

Returnsalist of all source files used in the loaded design. Thisinformation is aso available
in the Specified Path column of the Files window.

® where[ini] [pwd] [transcript] [wif] [project]

Returnsalist of configuration fileswhere the argumentslimit the list to those fil es specified.
If specified without arguments, returns alist of all configuration filesin the current
simulation.

ini — (optional) Returns the location of the modesim.ini file.
pwd — (optional) Returns the current working directory.
transcript — (optional) Returns the location for saving the transcript file.
wlIf — (optional) Returns the current location for saving the .wif file.
project — (optional) Returns the current location of the project file.
® simulator control
Displays the current values for all ssmulator control variables.
® gsimulator state
Displays the simulator state variables relevant to the current simulation.

Examples
* Display configuration file information
report where

Returns:

INI {modelsim.ini}
PWD ./Testcases/
Transcript transcript
WLF vsim.wlf

Project {}

HH H FH H HF

® Display al smulator control variables.

212 ModelSim Reference Manual, v10.1c

Commands
report

report simulator control

Returns:
UserTimeUnit =

RunLength =
IterationLimit

IgnoreNote = 0
IgnoreWarning

IgnoreFailure
IgnoreSVAInfo=

TgnoreSVAError

IgnoreSVAFatal

DefaultRadix =

WLFTimeLimit =
WLFSizeLimit =

HoH F o H o FH o H S HFH H H O HHH

IgnoreError = 0

ns

= 50

BreakOnAssertion =
DefaultForceKind =

0

0
0

=0
=0

CheckpointCompressMode
NumericStdNoWarnings =
StdArithNowWarnings = 0
PathSeparator = /

00
3
default

IgnoreSVAWarning = 0

=1
0

symbolic

DelayFileOpen = 1
WLFFilename = vsim.wlf

0
0

* Display all simulator state variables. Only the variables that relate to the design being

simulated are displayed:

report simulator state

Returns:

now = 0.
delta =
library

I o o

work

architecture =

H H FH H H H

Viewing preference variables

full

resolution = 1lns

entity = type_clocks

Preference variables have more to do with the way things look (but not entirely) rather than
controlling the simulator. Y ou can view preference variables from the Preferences dial og box.

Select Tools > Edit Preferences (Main window).

Related Topics

®* modelsim.ini Variables
* Simulator GUI Preferences

ModelSim Reference Manual, v10.1c

213

Commands
restart

restart

This command rel oads the design elements and resets the simulation time to zero. Only design
elements that have changed are reloaded. (Note that SDF files are always reread during a
restart.)

® If nodesignisloaded, therestart command produces a message to that effect and takes
no further action.

* |f asimulation isloaded, the restart command restarts the simulation.

® |If multiple datasets are open, including a simulation, the environment is changed to the
simulation context and the simulation is restarted.

Shared libraries are handled as follows during a restart:

® Shared libraries that implement VHDL foreign architectures only are reloaded at each
restart when the architecture is elaborated (unless vsim -keeploaded is used).

® Shared libraries|oaded from the command line (-for eign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded (unless vsim -keeploaded is used).

® Shared librariesthat implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for aforeign architecture.

Y ou can configure defaults for the restart command by setting the DefaultRestartOptions
variable in the modelsim.ini file. Refer to “ Restart Command Defaults’.

To handle restarts with Verilog PLI applications, you need to define aVerilog user-defined task
or function, and register amisctf class of callback. To handle restarts with Verilog VPI
applications, you need to register reset callbacks. To handle restarts with VHDL FLI
applications, you need to register restart callbacks. Refer to “Verilog Interfacesto C” for more
information on the Verilog PLI/VPI/DPI and the Model Sm FLI Reference for moreinformation
on the FLI.

Syntax

restart [-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Arguments
* -force

(optional) Specifiesthat the simulation will be restarted without requiring confirmation in a
popup window.
® -nobreakpoint

(optional) Specifiesthat all breakpoints will be removed when the simulation is restarted
where the default is for all breakpoints to be reinstalled after the ssmulation is restarted.

214 ModelSim Reference Manual, v10.1c

Commands
restart

* -nolist

(optional) Specifiesthat the current List window environment will not be maintained after
the simulation is restarted where the default isfor all currently listed HDL objects and their
formats to be maintained.

* -nolog

(optional) Specifies that the current logging environment will not be maintained after the
simulation is restarted where the default isfor all currently logged objects to continue to be
logged.

® -nowave

(optional) Specifiesthat the current Wave window environment will not be maintained after
the smulation is restarted where the default isfor all objects displayed in the Wave window
to remain in the window with the same format.

Related Topics

® vsim

ModelSim Reference Manual, v10.1c 215

Commands
resume

resume

This command is used to resume execution of amacro (DO) file after a pause command or a
breakpoint.

This command may be input manually or placed in an onbreak command string. (Placing a
resume command in abp command string does not have this effect.) The resume command can
also be used in an onerror command string to alow an error message to be printed without
halting the execution of the macro file.

Syntax
resume

Arguments
®* None

Related Topics

abort

do

onbreak

onerror

pause

Useful Commands for Handling
Breakpoints and Errors

216 ModelSim Reference Manual, v10.1c

Commands
run

run

This command advances the ssmulation by the specified number of timesteps.

Syntax

run [<timesteps>[<time_units>]] | -al | -continue | -init | -next | -over |

-step [-inst <full _path>] [-out] [-over] [-this "this==<class_handle>"]]

Arguments

No arguments
Runs the simulation for the default time (100 ns).

Y ou can change the default <timesteps> and <time_units> in the GUI with the Run Length
toolbar box in the Simulate toolbar or from the modelsim.ini file: RunLength and
UserTimeUnit variables.

<timesteps>[<time_units>]

(optional) Specifies the number of timesteps for the simulation to run. The number may be
fractional, or may be specified as absolute by preceding the value with the character @.

<time_units> — Any valid time unit: fs, ps, ns, us, ms, or sec where the default isto use
the current time unit.

-all

(optional) Causes the simulator to run the current simulation forever, or until it hitsa
breakpoint or specified break event.

-continue

(optional) Continues the last simulation run after arun -step, run -step -over command or a
breakpoint. A run -continue command may be input manually or used as the last command
in abp command string.

-final

(optional) Instructs the simulator to run al final blocks then exit the simulation.

-init

(optional) Initializes non-trivial static SystemVerilog variables before beginning the
simulation, for example, expressions involving other variables and function calls,. This

could be useful for when you want to initialize values before executing any force, examine,
or bp commands.

Y ou cannot userun -init after any other run commands or if you have specified vaim
-runinit on the command line because all variables would have been initialized by that
point.

-next
(optional) Causes the simulator to run to the next event time.

ModelSim Reference Manual, v10.1c 217

Commands
run

[] _gep

(optional) Steps the simulator to the next HDL . Current values of local HDL variables may
be observed at thistime using the Locals window. Y ou can specify the following arguments
when you use -step:

-inst <full_path>

(optional) Instructs the simulation to step into a specific instance, process, or thread.
<full_path> — Specifiesthe full path to an instance, process or thread.
-out

(optional) Instructs the simulation to step out of the current function or procedure and
return to the caler.

-over

(optional) Directs ModelSim to run VHDL procedures and functions, Verilog tasks
and functions but to treat them as simple statements instead of entering and tracing
them line by line.

Y ou can use the -over argument to skip over aVHDL procedures or functions,
Verilog task or functions. When await statement or end of process is encountered,
time advances to the next scheduled activity. Model Sim then updates the Process and
Source windows to reflect the next activity.

-this "this==<class_handle>"

(optional) Instructs the simulation to step into a method of a SystemVerilog class
when “this’ refersto the specified class handle. To obtain the handle of the class, use
the examine -handle command.

<class_handle> — Specifies a SystemVerilog class. Note that you must use
quotation marks (" ") with this argument.

® -over

(optional) Directs ModelSim to run VHDL procedures and functions, Verilog tasks and
functions but to treat them as simple statements instead of entering and tracing them line by
line.

Examples
® Advance the ssmulator 1000 timesteps.

run 1000

® Advance the ssimulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run 10.4 ms

® Advance the simulator to timestep 8000.

run @8000

218 ModelSim Reference Manual, v10.1c

Commands
run

® Advance the simulator into the instance /top/p.

run -step -inst /top/p

Related Topics

® Simulate Toolbar

ModelSim Reference Manual, v10.1c 219

Commands
runStatus

runStatus

This command returns the current state of your simulation to stdout after issuing arun or step
command.

Syntax
runStatus [-full]
Arguments
e full
(optional) Appends additional information to the output of the runStatus command.
Returns

Table 2-3 (runStatus Command States) and Table 2-4 (runStatus -full Command Information)
show outputs of the runStatus command.

Table 2-3. runStatus Command States

State Description

ready The design isloaded and is ready to run.

break The simulation stopped before completing the requested run.
error The simulation stopped due to an error condition.

loading The simulation is currently elaborating.

nodesign There is no design loaded.

checkpoint A checkpoint is being created, do not interrupt this process.
cready The design isloaded and is ready to run in C debug mode.
initializing The user interface initialization isin progress.

Table 2-4. runStatus -full Command Information

-full Information Description

bkpt stopped at breakpoint

bkpt_builtin stopped at breakpoint on builtin process

end reached end of requested run

fatal_error encountered fatal error (such as, divide by 0)
iteration_limit iteration limit reached, possible feedback loop
silent_halt mti_BreakSilent() called,

step run -step completed

step_builtin run -step completed on builtin process

220 ModelSim Reference Manual, v10.1c

Commands

runStatus
Table 2-4. runStatus -full Command Information (cont.)
-full Information Description
step_wait_suspend | run -step completed, time advanced.
user_break run interrupted do to break-key or *C (SIGINT)
user_halt mti_Break() called.
user_stop stop or finish requested from vpi, stop command, etc.
gate_oscillation Verilog gate iteration limit reached.
simulation_stop pli stop_simulation() called.

ModelSim Reference Manual, v10.1c 221

Commands
searchlog

searchlog
This command searches one or more of the currently open logfiles for a specified condition.

It can be used to search for rising or falling edges, for signals equal to a specified value, or for
when a generalized expression becomes true.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

searchlog [-command <cmd>] [-count <n>] [-deltas] [-endtime <time> [<unit>]] [-env <path>]
[-event <time>] [-expr { <expr>}] [-reverse] [-rising | -falling | -anyedge]
[-startDelta <num>] [-value <string>] <startTime> [<unit>] <pattern>
Description

If at least one match isfound, it returns the time (and, optionally, delta) at which the last match
occurred and the number of matches found, inaTcl list:

{{<time>} <matchCount>}

where <time> isin the format <number > <unit>. If the -deltas option is specified, the delta of
the last match is aso returned:

{{<time>} <delta> <matchCount>}
If no matches are found, aTCL_ERROR isreturned. If one or more matches are found, but less

than the number requested, it is not considered an error condition, and the time of the farthest
match is returned, with the count of the matches found.

Arguments
¢ -command <cmd>
(optional) SpecifiesaTcl command that will be called for each event on the specified signal.

<cmd>— A Tcl command that receives four arguments and returns one of three values:
Ul n mnn (m]pty).

"continue", "stop", or
The command will be passed four arguments: the reason for the call, the time of the event,
the deltafor the event, and the value. The reason value will be one of WLF_STARTLOG,
WLF_ENDLOG, WLF_EVENT, or WLF_WAKEUP. The function is expected to return
"continue", "stop”, or "" (empty). If "continue" or "" (empty) is returned, the search
continues, making additional callbacks as necessary. If "stop" is returned, the search stops
and control is returned to the caller of the searchlog command.

Only searching for asingle signal is supported.
® -count <n>
(optional) Specifiesto search for the nth occurrence of the match condition.
<n>— Any positive integer.

222 ModelSim Reference Manual, v10.1c

Commands
searchlog

®* _deltas

(optional) Indicates to test for a match on simulation delta cycles. Otherwise, matches are
only tested for at the end of each simulation time step.

® -endtime <time> [<unit>]
(optional) Specifiesthe simulation time at which to end the search. By default no end timeis
specified.
<time> — Specified as an integer or decimal number. Current ssmulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and
<unit> within curly braces ({}).

* -env <path>

(optional) Indicates to test for a match on simulation delta cycles. Otherwise, matches are
only tested for at the end of each simulation time step.ath> — A path to adesign region.
Wildcards not allowed.

* _event <time>

(optional) Indicates to test for a match on a simulation event. Otherwise, matches are only
tested for at the end of each simulation time step.

* -expr{<expr>}

(optional) Specifies a search for agenera expression of signal values and simulation time.
sear chlog will search until the expression evaluates to true.

{<expr>} — An expression that evaluates to a boolean true. See
GUI_expression_format for the format of the expression.

* -reverse
(optional) Specifiesto search backwards in time from <startTime>.

® -rising
(optional) Specifiesasearch for rising edge on ascalar signal. This option isignored for
compound signals.

e -fdling

(optional) Specifies a search for falling edge on a scalar signal. This option isignored for
compound signals.

* -anyedge

(optional) Specifies a search for arising or falling edge on ascalar signal. This optionis
ignored for compound signals. (default)

* -startDelta<num>
(optional) Indicates a simulation delta cycle on which to start.

ModelSim Reference Manual, v10.1c 223

Commands
searchlog

<num> — Any positive integer.
* -vaue<string>
(optional) Specifies amatch of asingle scalar or compound signal against a specified string.
<string> — Specifies a string to be matched.
* <gartTime> [<unit>]

(required) Specifies the simulation time at which to start the search. The time is specified as
an integer or decimal number. Must be placed immediately before the <patter n> argument.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and
<unit> within curly braces ({}).

* <pattern>

(Required unless the -expr argument is used.) Specifies one or more signal names or
wildcard patterns of signal names to search on. Must be specified as the final argument to
the sear chlog command.

Related Topics

virtual signa

virtual log

virtual nolog
GUI_expression_format

224 ModelSim Reference Manual, v10.1c

Commands
see

sSee

This command displays the specified number of source file lines around the current execution
line and places a marker to indicate the current execution line. If specified without arguments,
fivelines will be displayed before and four lines after.

Syntax

see [<n> | <pre> <post>]
Arguments

* <>

(optional) Designates the number of lines to display before and after the current execution
line.

* <pre>
(optional) Designates the number of lines to display before the current execution line.
® <post>
(optional) Designates the number of lines to display after the current execution line.
Example
* Display 2 lines before and 5lines after the current execution line.
see25

Returns:

92 :

93 : if (verbose) $display("Read/Write test done");
->94 : $stop(1);

95 end

96 : end

97 :

98 : or2 il (

99 .y (t_set),

HH H FH H HH HHF

ModelSim Reference Manual, v10.1c 225

Commands
setenv

setenv

This command changes or reports the current value of an environment variable. The setting is
valid only for the current Model Sim session.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

setenv <var name> [<value>|

Arguments
* <varname>

(required) The name of the environment variable you wish to set or check. Must be specified
asthe first argument to the setenv command.

* <vaue>

(optional) The new value for <varname>. If you do not specify avalue, Model Sim reports
the variable’s current value.

Related Topics

® unsetenv
® printenv

226 ModelSim Reference Manual, v10.1c

Commands
shift

shift

This command shifts macro parameter values |eft one place, so that the value of parameter \$2 is
assigned to parameter \$1, the value of parameter \$3 is assigned to \$2, and so on. The previous
value of \$1 is discarded.

The shift command and macro parameters are used in macro files. If amacro file requires more
than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc variable.

Syntax
shift

Arguments
®* None

Description

For amacro file containing nine macro parameters defined as $1 to $9, one shift command
shifts all parameter values one place to the left. If more than nine parameters are named, the
value of the tenth parameter becomes the value of $9 and can be accessed from within the
macro file.

Related Topics

® do

ModelSim Reference Manual, v10.1c 227

Commands
show

show
This command lists HDL objects and subregions visible from the current environment.
The objects listed include:
®* VHDL — signals, processes, constants, variables, and instances.
* Verilog — nets, registers, tasks, functions, instances, variables, and memories.

The show command returns formatted results to stdout. To eliminate formatting (to use the
output in a Tcl script), use the Show form of the command instead.

Syntax
show [-all] [<pathname>]

Arguments
e -l
(optional) Displays all names at and below the specified path recursively.
® <pathname>

(optional) Specifies the pathname of the environment for which you want the objects and
subregions to be listed; if omitted, the current environment is assumed.

Examples
® List the names of all the objects and subregion environments visible in the current
environment.
show

® List the names of all the objects and subregions visible in the environment named /uut.
show /uut

® List the names of all the objects and subregions visible in the environment named
sub_region whichisdirectly visible in the current environment.

show sub_region
® List the names of all the objects and subregions visiblein all top-level environments.

show -all /

Related Topics

® environment
* find

228 ModelSim Reference Manual, v10.1c

Commands
simstats

simstats

This command returns performance-related statistics about elaboration and ssmulation. The
statistics measure the simulation kernal process (vsimk) for a single invocation of vsim. If you
invoke vsim asecond time, or restart the simulation, the current statistics are discarded and new
values are collected.

If executed without arguments, the command returns alist of pairs similar to the following:

{{elab memory} 0} {{elab working set} 7245824} {{elab time} 0.942645}
{{elab cpu time} 0.190274} {{elab context} 0} {{elab page faults} 1549}
{memory 0} {{working set} 0} {time 0} {{cpu time} 0} {context 0}

{{page faults} 0}

The elaboration statistics are measured one time at the end of elaboration. The simulation
memory statistics are measured at the time you invoke simstats. The simulation time statistics
are updated at the end of each run command. See the arguments below for descriptions of each
statistic.

Units for time values are in seconds. Units for memory values vary by platform:
® For SunOS and Linux, the memory sizeisreported in Kbytes

® For Windows, the memory sizeisreported in bytes.

Some of the values may not be available on all platforms and other values may be approximates.
Different operating systems report these numbers differently.

Syntax

simstats [memory | working | time | cpu | context | faults]

Arguments
®* memory
(optional) Returns the amount of virtual memory that the OS has allocated for vaimk.
* working

(optional) Returns the portion of allocated virtual memory that is currently being used by
vsimk. If this number exceeds the actual memory size, you will encounter performance
degradation.

* time
(optional) Returns the cumulative “wall clock” time of all run commands.
®* cpu

(optional) Returns the cumulative processor time of all run commands. Processor time
differsfrom wall clock timein that processor time is only counted when the cpu is actually
running vsaimk. If vaimk is swapped out for another process, cpu time does not increase.

ModelSim Reference Manual, v10.1c 229

Commands
simstats

® context

(optional) Returns the number of context swaps (vsimk being swapped out for another
process) that occurred during all run commands.

* faults
(optional) Returns the number of page faults that occurred during all run commands.

230 ModelSim Reference Manual, v10.1c

Commands
stack down

stack down
This command moves down the call stack.

If invoked without arguments, the command moves down the call stack by 1 level. The Locals
window displays local variables at the level.

Syntax
stack down [n]
Arguments
* n
(optional) Moves down the call stack by n levels. The default valueis 1 level.
Related Topics

stack frame stack tb
stack level stack up

ModelSim Reference Manual, v10.1c 231

Commands
stack frame

stack frame

This command selects the specified call frame.
Syntax

stack frame <n>
Arguments

®* <nN>

Selects call frame number n. The currently executing frameis zero (also called the
innermost) frame, frame one is the frame that called the innermost, and so on. The highest
numbered frame s that of main.

Related Topics

stack down stack tb
stack level stack up

232 ModelSim Reference Manual, v10.1c

Commands
stack level

stack level

This command reports the current call frame number.

Syntax
stack level

Arguments

* None

Related Topics

stack down stack tb
stack frame stack up

ModelSim Reference Manual, v10.1c 233

Commands
stack tb

stack tb

The stack tb command is an dias for the tb command.

Refer to the tb command for a complete syntax description.

234 ModelSim Reference Manual, v10.1c

Commands
stack up

stack up
This command moves up the call stack.

If invoked without arguments, the command moves up the call stack by 1 level. The Locals
window displays local variables at the level.

Syntax
stack up [n]
Arguments
* n
(optional) Moves up the call stack by n levels. The default valueis 1 level.
Related Topics

stack down stack level
stack frame stack tb

ModelSim Reference Manual, v10.1c 235

Commands
status

status
This command lists summary information about currently interrupted macros.

If invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak or onerror commands that have been defined for each interrupted macro.

Syntax
status [file | ling]
Arguments
e file
(optional) Reports the file pathname of the current macro.
* line
(optional) Reports the line number of the current macro.
Examples

The transcript below contains examples of resume, and status commands.

VSIM (paused)> status
Macro resume_test.do at line 3 (Current macro)

command executing: "pause"

is Interrupted

ONBREAK commands: "resume"

Macro startup.do at line 34

command executing: "run 1000"

processing BREAKPOINT

is Interrupted

ONBREAK commands: "resume"

VSIM (paused)> resume

Resuming execution of macro resume_test.do at line 4

Related Topics

® abort
* do

® pause
® resume

236 ModelSim Reference Manual, v10.1c

Commands
step

step
The step command is an alias for the run command with the -step switch.

Refer to the run command for a complete syntax description.

ModelSim Reference Manual, v10.1c 237

Commands
stop

stop
This command is used with the when command to stop simulation in batch files.

The stop command has the same effect as hitting a breakpoint. The stop command may be
placed anywhere within the body of the when command.

Syntax
stop [-sync]
Arguments
® -sync
(optional) Stops the currently running simulation at the next time step.
Description

Use run -continue to continue the simulation run, or the resume command to continue macro
execution. If you want macro execution to resume automatically, put the resume command at
the top of your macro file:

onbreak {resume}

Note
D If you want to stop the simulation using awhen command, you must use a stop command

within your when statement. DO NOT use an exit command or a quit command. The stop
command acts like a breakpoint at the timeit is evaluated.

Related Topics

bp
resume
run
when

238 ModelSim Reference Manual, v10.1c

Commands
suppress

suppress

This command prevents one or more specified messages from displaying. Y ou cannot suppress
Fatal or Internal messages. The suppress command used without arguments returns the
message numbers of all suppressed messages.

Edit the suppress variable in the modelsim.ini file to set a permanent default. Refer to
“Changing Message Severity Level” for more information.

Syntax

suppress [-clear <msg_number>[,<msg_number>,...]] [<msg_number>[,<msg_number>,...]]
[<code_string>[, <code_string>,...]]

Arguments
® -clear <msg_number>[,<msg_number>,...]
(optional) Clears suppression of one or more messages identified by message number.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

® <msg_number>[,<msg_number>,...]

(optional) A number identifying the message to be suppressed. Multiple message numbers
are specified as a comma separated list.

® <code_string>[, <code_string>,...]

(optional) A string identifier of the message to be suppressed. Disables warning messagesin
the category specified by <CODE>. Warnings that can be disabled include the <CODE>
name in square brackets in the warning message.

Examples
® Return the message numbers of all suppressed messages.
suppress
® Suppress messages by message number:
suppress 8241,8242,8243,8446,8447
® Suppress messages by numbers and code categories:
suppress 8241, TFMPC,CNNODP,8446,8447
® Clear message suppression for the designated messages:
suppress -clear 8241,8242
® Return the message numbers of all suppressed messages and clear suppression for al:

suppress -clear [suppress]

ModelSim Reference Manual, v10.1c 239

Commands
tb

th

This (traceback) command (traceback) displays a stack trace for the current processin the
Transcript window. This lists the sequence of HDL function calls that have been entered to
arrive at the current state for the active process.

Syntax
th

Arguments
®* None

240 ModelSim Reference Manual, v10.1c

Commands
Time

Time
These commands allow you to perform comparisons between, operations on, and conversions
of, time values.

When [unit] isleft unspecified the commands assume the current simulation time unit, as
defined by the Resolution variable in the modelsim.ini file or the vsim -t command. Units of
time (ns, us, and so forth) can be specified independently for each <time[1 | 2]> specified for
most of the commands. See the description of each command and examples for more
information.

Arguments to this command are order dependent. Follow the order specified in the Syntax for
each command.

Syntax

eqTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> and <time2> are equal.
neqTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> and <time2> are not equal.
[tTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> islessthan <time2>.
gtTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> is greater than <time2>.
[teTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> islessthan or equal to <time2>.
gteTime <timel>[unit] <time2>[unit]

Returnsal (true) or O (false) if <timel> is greater than or equal to <time2>.
addTime <timel>[unit] <time2>[unit]

Returns the sum of adding <timel> to <time2>
subTime <timel>[unit] <time2>[unit]

Returns the value of subtracting <time2> from <timel>
mul Time <timel>[unit] <integer>

Returns the value of multiplying <timel> by an <integer>
divTime <timel>[unit] <time2>[unit]

Returns an integer, that is the value of dividing <timel> by <time2>. Specifying O for
<time2> resultsin an error.

intToTime <high_32bit_int> <low_32bit_int>

ModelSim Reference Manual, v10.1c 241

Commands
Time

Returns a 64-bit time value based on two 32-bit parts of a 64-bit integer. This command is
useful when you’ ve performed an integer calculation that resultsin a 64-bit value and need
to convert it to a time unit.

scaleTime <timel>[unit] <scale factor>
Returns atime value scaled by areal number and truncated to the current time resolution.
Rea ToTime <real>

Returns a time value equivalent to the specified real number and truncated to the current
time resolution.

vaidTime <time>

Returnsal (true) or O (false) if the given string isavalid time for use with any of these
Time calculations.

formatTime {+ | -} commas | {+ | -}nodefunit | {+ | -}bestunits
Sets display properties for time values.

Arguments
* <timel>[unit] ...

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are:

fs— femtosecond (10%° seconds)
ps — picosecond (1012 seconds)
ns — nanosecond (10°° seconds)
us — microsecond (10'6 seconds)
ms — millisecond (102 seconds)
sec — second

min — minute (60 seconds)

hr — hour (3600 seconds)

Note that if you put a space between the values, you must enclose the argument in braces
({ }) or quotation marks (").

® <high 32bit_int> | <low_32bit_int>
<high_32bit_int>— The "high" part of the 64-bit integer.
<low_32hit_int>— The "low" part of the 64-bit integer.
® <scae factor>— area number to be used as scaling factor. Common values can include:
0.25, 0.5, 1.5, 2, 10, 100

242 ModelSim Reference Manual, v10.1c

Commands
Time

¢ {+]|-} commas— controls whether commas are displayed in time values.
+commas — time values include commas
-commas — time values do not include commas

® {+]|-}nodefunit — controls whether time values display time units

+nodefunit — time values do not include time units and will be in current time
resolution

-nodefunit — time values may include time units

® {+|-}bestunits— controls whether time values display the largest possible time unit, for
example 8 usinstead of 8,000 ns.

+bestunits — time values display the largest possible time unit
-bestunits — time values display the default time unit
Examples
>|tTime 100ns 1ms
Returns:
1
>addTime {1545 ns} {455 ns}
Returns:
2 us
>gteTime "1000 ns" "1 us"
Returns:
1
>divTime 1us 10ns
Returns:
100
>formatTime +bestunit
Returns:
-commas -nodefunit +bestunits
>scaleTime 3ms 1000
Returns:
3 sec
>RealToTime 1.345e04

Returns:
13450 ns

ModelSim Reference Manual, v10.1c 243

Commands
transcript

transcript
This command controls echoing of commands executed in a macro file.

If no option is specified, the current setting is reported.

Syntax

transcript [on | off | -q | quietly]
Arguments

* on

(optional) Specifiesthat commandsin amacro file will be echoed to the Transcript window
asthey are executed.

o Off

(optional) Specifiesthat commandsin amacro file will not be echoed to the Transcript
window as they are executed.

* q
(optional) Returns"0" if transcripting is turned off or "1" if transcripting is turned on.
Useful inaTcl conditional expression.

® quietly

(optional) Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command.

Examples

® Commands within amacro file will be echoed to the Transcript window as they are
executed.

transcript on

® If issued immediately after the previous example, the message:
transcript

Returns

Macro transcripting is turned ON.

Related Topics

® Transcript Window
® echo

244 ModelSim Reference Manual, v10.1c

Commands
transcript file

transcript file

This command sets or queries the current PrefMain(file) Tcl preference variable. Y ou can use
this command to clear atranscript in batch mode or to limit the size of atranscript file. It offers
an alternative to setting the PrefMain(file) Tcl preference variable through the GUI.

Syntax
transcript file [<filename>]

Arguments
* <filename>

(optional) Specifies a name for the transcript file. Wildcard characters are allowed, and
“stdout” or “stderr” are valid file names. If you specify anew file, the existing transcript file
Is closed and a new transcript file opened. If you specify an empty string ("), the existing
fileis closed and no new fileis opened. If you don’t specify this argument, the current
filename is returned.

Note
D Y ou can prevent overwriting older transcript files by including a pound sign (#) in

<filename> when <filename> is arepeated string. The simulator replaces the pound
character (#) with the next avail able sequence number when saving a new transcript file.

Examples

® Closethe current transcript file and stops writing data to the file. Thisis a method for
reducing the size of your transcript.

transcript file ""

® Closethe current transcript file named transl.txt and open a new transcript file,
incrementing the file name by 1.

transcript file trans#.txt

Closes transl.txt and opens trans2.txt.

® Thisseries of commands resultsin the transcript containing only data from the second
millisecond of the simulation. Thefirst transcript file command closes the transcript so
no datais being written to it. The second transcript file command opens a new
transcript and records data from 1 msto 2 ms.

transcript file ""

run 1 ms

transcript file transcript
run 1 ms

ModelSim Reference Manual, v10.1c 245

Commands
transcript file

Related Topics

® "Creating a Transcript File"

® "Setting Preference Variables from the
GuI"

® Transcript Window

® transcript path
® transcript sizelimit

246

ModelSim Reference Manual, v10.1c

Commands
transcript path

transcript path
This command returns the full pathname to the current transcript file.

Syntax
transcript path

Arguments

* None

Related Topics

® "Creating a Transcript File" ® “Transcript Window”
® "Setting Preference Variables from the ® transcript file
GuI"

ModelSim Reference Manual, v10.1c 247

Commands
transcript sizelimit

transcript sizelimit

Thiscommand sets or queriesthe current preference value for the transcript fileSizeLimit value.
If the size limit is reached, the transcript file is saved and simulation continues.

Syntax

transcript sizelimit [<size>]
Arguments

* <gze>

(optional) Specifiesthe size, in KB, of the transcript file where the default is 0 or unlimited.
The actual file size may be larger by as much as one buffer size (usually about 4k),
depending on the operating system default buffer size and the size of the messages written
to the transcript.

Note

D Y ou can set the size of the transcript file with the $PrefMain (fileSizeLimit) Tcl variable
in the Preferences dialog. Refer to " Setting Preference Variables from the GUI™ for more
information.

Related Topics

® "Creating a Transcript File" ® “Transcript Window”
® "Setting Preference Variables from the ® transcript file
GuI"

248 ModelSim Reference Manual, v10.1c

Commands
tssiZ2mti

tssizmti

This command is used to convert avector file in TSSI Format into a sequence of force and run
commands.

The stimulusis written to the standard output.
The source code for tssi2mti is provided in the examples directory as:
<install_dir>/examples/tssi2mti/tssi2mti.c
Syntax
tssi2mti <signal_definition_file> [<sef_vector_file>]
Arguments
® <signa_definition_file>

(required) Specifiesthe name of the TSSI signal definition file describing the format and
content of the vectors.

® <sef vector file>

(optional) Specifies the name of the file containing vectors to be converted. If noneis
specified, standard input is used.

Examples

® The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mti trigger.def trigger.sef > trigger.do
®* Thisexampleisthe same as the previous one, but uses the standard input instead.
tssi2mti trigger.def < trigger.sef > trigger.do

Related Topics

* force
® run
® writetss

ModelSim Reference Manual, v10.1c 249

Commands
ui_VVMode

ui_VVMode

This command specifies behavior when encountering Ul registration calls used by verification
packages, such as AVM or OVM. Returns the current setting when specifies without an
argument.

Syntax

ui_VVMode [full | logclass | logobj | nolog | off]

Arguments

full

(optional) Enables the context registration of the Ul registration call and automatically logs
both the class type and the registered object to the WLF file.

logclass

(optional) Enables the context registration of the Ul registration call and automatically logs
the class type of the registered object to the WLF file.

logobj

(optional) Enables the context registration of the Ul registration call and automatically logs
the registered object to the WLF file

nolog

(optional) Enables the context registration of the Ul registration call, but does not
automatically log the registration to the WLF file. (default)

off

(optional) Disables context registration and automatic logging when encountering Ul
registration calls.

Description

Ul registration calls, Verilog system tasks specific to this product, are typically included in
verification packages such as AVM and OVM so that key information about the packagesis
available when debugging the simulation. The Ul registration calls include:

* $ui_VVInstallnst() — Defines aregion in the context tree, which will appear in the
Structure window.

® $uiVVInstallObj() — Adds an object to the defined parent, which will appear in the
Objects window when the parent instance is selected in the Structure window.

® $uiVVinstallPort() — Addsaport that is an object that connects to another component,
which will appear in the Objects window when the parent instance is selected in the
Structure window.

* $ui_VVSetFilter() — Specifies which class properties should not be shown in the GUI.

250

ModelSim Reference Manual, v10.1c

Commands
ui_VVMode

* $ui VVSetAllow() — Specifies which class properties should be retained that were
filtered out with $ui_VV SetFilter.

ModelSim Reference Manual, v10.1c 251

Commands
unsetenv

unsetenv

This command del etes an environment variable. The deletion is not permanent —it isvalid only
for the current Model Sim session.

Syntax
unsetenv <var name>

Arguments
® <varname>
(required) The name of the environment variable you wish to delete.
Related Topics

® setenv
® printenv

252 ModelSim Reference Manual, v10.1c

Commands
vcd add

vcd add
This command adds the specified objectsto aVCD file.

The allowed objects are Verilog nets and variables and VHDL signals of type bit, bit_vector,
std _logic, and std_logic_vector (other types are silently ignored). The command works with
mixed HDL designs.

All ved add commands must be executed at the same simulation time. The specified objects are
added to the VCD header and their subsequent value changes are recorded in the specified VCD
file. By default all port driver changes and internal variable changes are captured in thefile.

Y ou can filter the output using arguments detailed below.

Related Verilog tasks: $dumpvars, $fdumpvars

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

ved add [-dumpports] [-file <filename>] [[-in] [-out] [-inout] | [-ports]] [-internal]

[-r | -r -optcells] <object_name> ...

Arguments

-dumpports

(optional) Specifies port driver changes to be added to an extended VCD file. When the vcd
dumpports command cannot specify all port driver changes that will appear within the
VCD file, multiple ved add -dumpports commands can be used to specify additional port
driver changes.

-file <filename>

(optional) Specifiesthe name of the VCD file. This option should be used only when you
have created multiple VCD files using the vcd files command.

<filename>— A .vcd file.
-in
(optional) Includes only port driver changes from ports of mode IN.
-out
(optional) Includes only port driver changes from ports of mode OUT.
-inout
(optional) Includes only port driver changes from ports of mode INOUT.
-ports
(optional) Includes only port driver changes. Excludes internal variable or signal changes.
-internal
(optional) Includes only internal variable or signal changes. Excludes port driver changes.

ModelSim Reference Manual, v10.1c 253

Commands
vcd add

-r | -r -optcells

(optional) Specifiesthat signal and port selection occurs recursively into subregions. If
omitted, included signals and ports are limited to the current region. When -r is used with
-optcellsit allows Verilog optimized cell ports to be visible when using wildcards. By
default Verilog optimized cell ports are not selected even if they match the specified

wildcard pattern.
<object_name> ...

(required) Specifiesthe Verilog or VHDL object or objectsto add to the VCD file. Multiple
objects may be specified by separating names with spaces. Wildcards are accepted. Must be
specified as the final argument to the ved add command.

Related Topics

vcd checkpoint

ved comment

vcd dumpports

vcd dumpportsall
vcd dumpportsflush
vcd dumpportslimit
ved dumpportsoff
vcd dumpportson
vcd file

vcd files

vcd flush

ved limit

vcd of f

vcd on

ved2wlf

DumpportsCollapse

Value Change Dump (VCD) Files
Verilog tasks are documented in the
Language Reference Manual |EEE 1364
standard.

254

ModelSim Reference Manual, v10.1c

Commands
vcd checkpoint

vcd checkpoint

This command dumps the current values of all VCD variables to the specified VCD file. While
simulating, only value changes are dumped.

Related Verilog tasks: $dumpall, $fdumpall
Syntax

vcd checkpoint [<filename>]

Arguments
* <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on the
file designated by the vcd file command or dump.ved if ved file was not invoked.

Related Topics

® vcd add ® vcd files

® vcd comment ® vcd flush

® vcd dumpports ® vcd limit

¢ vcd dumpportsall ® vcd off

¢ vcd dumpportsflush ® vcd on

4 vcg gumppor:slifr}wit 4 \ISCdZWIf <l

¢ vcd dumpportso ® DumpportsCollapse

¢ vcd dumpportson ¢ Value Change Dump (VCD) Files
* vcdfile ® Verilog tasks are documented in the

Language Reference Manual 1EEE 1364
standard.

ModelSim Reference Manual, v10.1c 255

Commands
vcd comment

vcd comment

This command inserts the specified comment in the specified VCD file.

Arguments to this command are order dependent. Please read the argument descriptions for

more information.

Syntax

vced comment <comment string> [<filename>]

Arguments
® <comment string>

(required) Comment to be included in the VCD file. Must be enclosed by double quotation
marks or curly braces. Must be specified as the first argument to the ved comment

command.
* <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on the
file designated by the vcd file command or dump.ved if ved file was not invoked.

Related Topics

vcd add

vcd checkpoint

vcd dumpports

vcd dumpportsall
vcd dumpportsflush
vcd dumpportslimit
ved dumpportsoff
vcd dumpportson
vcd file

vcd files

vcd flush

ved limit

vcd of f

vcd on

ved2wlf

DumpportsCollapse

Value Change Dump (VCD) Files
Verilog tasks are documented in the
Language Reference Manual |EEE 1364
standard.

256

ModelSim Reference Manual, v10.1c

Commands
vcd dumpports

vcd dumpports
This command creates aVCD file that includes port driver data.

By default all port driver changes are captured in the file. Y ou can filter the output using
arguments detailed below. Related Verilog task: $dumpports

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

ved dumpports [-compress)] [-direction] [-file <filename>] [-force_direction] [-in] [-out] [-

inout]
[-no_strength_range] [-unique] [-vcdstim] <object_name> ...

Arguments

-compress

(optional) Produces a compressed VCD file. Model Sim uses the gzip compression
algorithm. It is not necessary to specify -compressif you specify a.gz extension with the
-file <filename> argument

-direction
(optional) Includes driver direction datain the VCD file.
-file <filename>

(optional) Creates a VCD file. Defaults to the current working directory and the filename
dumpports.ved. Multiple filenames can be opened during a single simulation.

<filename> — Specifies a filename. When specified with a.gz extension, thefileis
compressed.

-force_direction

(optional) Causes ved dumpportsto use the specified port direction (instead of driver
location) to determine whether the value being dumped is input or output. This argument
overrides the default use of the location of driverson the net to determine port direction (this
is because Verilog port direction is not enforced by the language or by Model Sim).

-in

(optional) Includes ports of mode IN.

-out

(optional) Includes ports of mode OUT.
-inout

(optional) Includes ports of mode INOUT.

ModelSim Reference Manual, v10.1c 257

Commands
vcd dumpports

®* -no_strength _range

(optional) Ignores strength ranges when resolving driver values. This argument is an
extension to the |EEE 1364 specification. Refer to Resolving Values for additional
information.

® -unique

(optional) Generates unique VCD variable namesfor ports even if those ports are connected
to the same collapsed net.

® _ycdstim

(optional) Ensuresthat port name order in the VCD file matches the declaration order in the
instance module or entity declaration. Refer to Port Order Issues for further information.

® <object_name> ...

(required) Specifies one or more Verilog, VHDL, or SystemC objects to add to the VCD
file. Y ou can specify multiple objects by separating names with spaces. Wildcards are
accepted. Must be specified as the final argument to the ved dumpports command.

Examples
® CreateaVCD file named counter.vcd of al IN portsin the region /test_design/dut/.
vcd dumpports -in -file counter.vcd /test_design/dut/*

® These two commands resimulate adesign from aVCD file. Refer to Simulating with
Input Valuesfrom aVCD Filefor further details.

vcd dumpports -file addern.vcd /testbench/uut/*
vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

® Thisseries of commands creates VCD filesfor the instances proc and cache and then re-
simulates the design using the VCD filesin place of the instance source files. Refer to
Replacing Instances with Output Values from aVVCD File for more information.
vcd dumpports -vedstim -file proc.ved /top/p/*
vcd dumpports -vcdstim -file cache.ved /top/c/*
run 1000

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd

258 ModelSim Reference Manual, v10.1c

Commands
vcd dumpports

Related Topics

vcd add

vcd checkpoint

vcd comment

ved dumpportsall
ved dumpportsflush
ved dumpportslimit
vcd dumpportsoff
vcd dumpportson
vcd file

vcd files

vcd flush

ved limit

vcd off

vcd on

ved2wlf

DumpportsCollapse

Vaue Change Dump (VCD) Files
Verilog tasks are documented in the
Language Reference Manual |EEE 1364
standard.

ModelSim Reference Manual, v10.1c

259

Commands
vcd dumpportsall

vcd dumpportsall

This command creates a checkpoint in the VCD file which shows the value of al selected ports
at that time in the simulation, regardless of whether the port values have changed since the last
timestep.

Related Verilog task: $dumpportsall
Syntax

ved dumpportsall [<filename>]
Arguments

* <filename>

(optional) Specifiesthe name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics

* vcd add ® vcd files

¢ vcd checkpoint ¢ vcd flush

® vcd comment ® vcd limit

¢ vcd dumpports ® vcd off

¢ vcd dumpportsflush ® vcdon

. ch gumppor:slifrpit . \ISCdZW” <l

® vcd dumpportso ® DumpportsCollapse

¢ vcd dumpportson ® Vaue Change Dump (VCD) Files
* vcdfile ® Verilog tasks are documented in the

Language Reference Manual |EEE 1364
standard.

260 ModelSim Reference Manual, v10.1c

Commands
vcd dumpportsflush

vcd dumpportsflush
This command flushes the contents of the VCD file buffer to the specified VCD file.
Related Verilog task: $dumpportsflush

Syntax
vcd dumpportsflush [<filename>]
Arguments

* <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics

® vcd add ® vcdfiles

® vcd checkpoint ¢ vcd flush

® vcd comment ® vcd limit

¢ vcd dumpports ® vcd off

¢ vcd dumpportsall ® vcdon

° vcg gumpportslifrpit ° \I:I)Cd2W|f ol

® vcd dumpportso ® DumpportsCollapse

¢ vcd dumpportson ¢ Value Change Dump (VCD) Files
* vcdfile ® Verilog tasks are documented in the

Language Reference Manual |EEE 1364
standard.

ModelSim Reference Manual, v10.1c 261

Commands
vcd dumpportslimit

vcd dumpportslimit

This command specifies the maximum size of the VCD file (by default, limited to available disk
space). When the size of the file exceeds the limit, a comment is appended to the file and VCD

dumping is disabled.
Related Verilog task: $dumpportslimit

Arguments to this command are order dependent. Please read the argument descriptions for

more information.

Syntax
ved dumpportslimit <dumplimit> [<filename>]

Arguments
® <dumplimit>

(required) Specifies the maximum VCD file size in bytes. Must be specified as the first
argument to the ved dumpportslimit command.

* <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all

open VCD files.
Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall
ved dumpportsflush
vcd dumpportsoff
vcd dumpportson
vcd file

vcd files

vcd flush

ved limit

vcd off

ved on

ved2wlf

DumpportsCollapse

Vaue Change Dump (VCD) Files
Verilog tasks are documented in the
Language Reference Manual |1EEE 1364
standard.

262

ModelSim Reference Manual, v10.1c

Commands
vcd dumpportsoff

vcd dumpportsoff

This command turns off VCD dumping and records all dumped port values as Xx.

Related Verilog task: $dumpportsoff

Syntax

vcd dumpportsoff [<filename>]

Arguments

* <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all

open VCD files.
Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall
ved dumpportsflush
vcd dumpportslimit
vcd dumpportson
vcd file

vcd files

vcd flush

ved limit

vcd off

ved on

ved2wlf

DumpportsCollapse

Vaue Change Dump (VCD) Files
Verilog tasks are documented in the
Language Reference Manual |EEE 1364
standard.

ModelSim Reference Manual, v10.1c

263

Commands
vcd dumpportson

vcd dumpportson

This command turns on VCD dumping and records the current values of all selected ports. This
command is typically used to resume dumping after invoking vcd dumpportsoff.

Related Verilog task: $dumpportson

Syntax
vcd dumpportson [<filename>]

Arguments
* <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics

® vcd add ® vcd files

* vcd checkpoint ¢ vcd flush

® vcd comment ® vcd limit

® vcd dumpports ® vcd off

¢ vcd dumpportsall ® vcdon

4 vcg gumpporgf_l us}: 4 \ISCdZWIf <l

¢ vcd dumpportslimi ® DumpportsCollapse

¢ vcd dumpportsoff ¢ Value Change Dump (VCD) Files
* vcdfile ® Verilog tasks are documented in the

Language Reference Manual 1EEE 1364
standard.

264 ModelSim Reference Manual, v10.1c

Commands
vcd file

vcd file

This command specifies the filename and state mapping for the VCD file created by avcd add
command. The vcd file command is optional. If used, it must be issued before any ved add
commands.

Related Verilog task: $dumpfile

Syntax

vcd file [-dumpports] [-direction] [<filename>] [-map <mapping pairs>] [-no_strength_range]

[-nomap] [-unique]

Arguments

-dumpports

(optional) Capture detailed port driver datafor Verilog ports and VHDL std_logic ports.
This option works only on ports, and any subsequent ved add command will accept only
qualifying ports (silently ignoring all other specified objects).

-direction

(optional) Includes driver direction datain the VCD file.

<filename>

(optional) Specifiesthe name of the VCD file that is created where the default is dump.ved.

-map <mapping pairs>
(optional) Overrides the default mappings. Affects only VHDL signals of type std_logic.

<mapping pairs> — Specified as alist of character pairs. The first character in apair
must be one of the std_logic characters UX01ZWLH- and the second character isthe
character you wish to be recorded in the VCD file. The Tcl convention for command
strings that include spacesisto enclose them in quotation marks (" "). For example, to
map L and H to z:

vcd file-map "L zH z"
-no_strength_range

(optional) Ignores strength ranges when resolving driver values. This argument is an
extension to the IEEE 1364 specification. Refer to Resolving Values for additional
information.

-nomap

(optional) Affectsonly VHDL signals of type std_logic. It specifies that the values recorded
inthe VCD file shall usethe std_logic enumeration characters of UX01ZWLH-. Thisoption
results in a non-standard VV CD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

ModelSim Reference Manual, v10.1c 265

Commands

vcd file

VHDL VCD VHDL VCD
U X W X

X X L 0

0 0 H 1

1 1 - X

Z z

® -unique

(optional) Generates unique V CD variable names for ports even if those ports are connected
to the same collapsed net.

Related Topics

* vcd add ® vcdfiles

* vcd checkpoint ¢ vcd flush

® vcd comment ® vcd limit

® vcd dumpports ® vcd off

¢ vcd dumpportsall ® vcdon

4 vcg gumpporgf_l us}: 4 \ISCdZWIf <l

¢ vcd dumpportslimi ® DumpportsCollapse

¢ vcd dumpportsoff ¢ Value Change Dump (VCD) Files
[) [)

vcd dumpportson Verilog tasks are documented in the
Language Reference Manual 1EEE 1364

standard.

266 ModelSim Reference Manual, v10.1c

Commands
vcd files

vcd files

This command specifies filenames and state mapping for VCD files created by the ved add
command. The vcd files command is optional. If used, it must be issued before any ved add
commands.

Related Verilog task: $fdumpfile

Syntax

vcd files [-compress] [-direction] <filename> [-map <mapping pairs>] [-no_strength _range]

[-nomap] [-unique]

Arguments

-compress

(optional) Produces a compressed VCD file. Model Sim uses the gzip compression
algorithm. If you specify a.gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compr ess argument.

-direction
(optional) Includes driver direction datain the VCD file.
<filename>

(required) Specifies the name of aVCD fileto create. Multiple files can be opened during a
single simulation; however, you can create only onefile at atime. If you want to create
multiple files, invoke vcd files multiple times.

-map <mapping pairs>
(optional) Overrides the default mappings. Affects only VHDL signals of type std_logic.

<mapping pairs> — Specified as alist of character pairs. The first character in apair
must be one of the std_logic characters UX01ZWLH- and the second character isthe
character you wish to be recorded in the VCD file. The Tcl convention for command
strings that include spacesisto enclose them in quotation marks ("). For example, to
map L and H to z:

ved file-map "L zH z"
-no_strength_range
(optional) Ignores strength ranges when resolving driver values. Thisargument isan
extension to the |EEE 1364 specification. Refer to “Resolving Values’ for additional
information.
-nomap

(optional) Affectsonly VHDL signals of type std_logic. It specifies that the values recorded
inthe VCD file shall usethe std_logic enumeration characters of UX01ZWLH-. Thisoption

ModelSim Reference Manual, v10.1c 267

Commands
vcd files

results in a non-standard V CD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

VHDL VCD VHDL VCD
U X W X
X X L 0
0 0 H 1
1 1 - X
Z z
® -unique

(optional) Generates unique VCD variable names for ports even if those ports are connected
to the same collapsed net.

Examples

The following example shows how to "mask” outputs from aVCD file until a certain time after
the start of the simulation. The example uses two vcd files commands and the ved on and
vcd off commands to accomplish this task.

vcd files in_inout.ved

vcd files output.ved

vcd add -in -inout -file in_inout.ved /*
vcd add -out -file output.ved /*

vcd off output.ved

run 1lus

vcd on output.ved

run -all

Related Topics

® vcd add ® vcd flush

® vcd checkpoint ® vcd limit

® vcd comment ® vcd off

¢ vcd dumpports ® vcdon

¢ vcd dumpportsall ® vcd2wlf

¢ vcd dumpportsflush ® DumpportsCollapse

¢ vcd dumpportslimit ® Value Change Dump (VCD) Files

¢ vcd dumpportsoff ® Verilog tasks are documented in the

¢ vcd dumpportson Language Reference Manual |EEE 1364
® vcdfile standard.

268 ModelSim Reference Manual, v10.1c

Commands
vcd flush

vcd flush

This command flushes the contents of the VCD file buffer to the specified VCD file. This
command is useful if you want to create a complete VCD file without ending your current
simulation.

Related Verilog tasks: $dumpflush, $fdumpflush
Syntax

ved flush [<filename>]
Arguments

* <filename>

(optional) Specifiesthe name of the VCD file. If omitted, the command is executed on the
file designated by the ved file command or dump.ved if ved file was not invoked.

Related Topics

* vcd add ® vcd files

® vcd checkpoint ® vcd limit

® vcd comment ® vcd off

¢ vcd dumpports ® vcdon

¢ vcd dumpportsall ® vcd2wlf

¢ vcd dumpportsflush ® DumpportsCollapse

¢ vcd dumpportslimit ¢ Vaue Change Dump (VCD) Files

¢ vcd dumpportsoff ® Verilog tasks are documented in the

¢ vcd dumpportson Language Reference Manual |EEE 1364
* vcdfile standard.

ModelSim Reference Manual, v10.1c 269

Commands
ved limit

ved limit

This command specifies the maximum size of aVCD file (by default, limited to available disk
space).

When the size of the file exceedsthe limit, acomment is appended to thefile and VCD dumping
is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

ved limit <filesize> [<filename>]

Arguments
* <filesize>

(Required) Specifies the maximum VCD file size, in bytes. The numerical value of
<filesize> can only be awhole number. Must be specified as the first argument to the vcd
limit command.

Y ou can specify aunit of Kb, Mb, or Gb with the numerical value (units are case
insensitive). Do not insert a space between the numerical value and the unit (for example,
400Mb, not 400 Mb).

* <filename>

(Optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the vcd file command or dump.ved if ved file was not invoked.

Example

® Specify amaximum VCD file size of 6 gigabytes and a VCD file named
my_vcd file.ved.

ved limit 6gb my_ved_file.ved

Related Topics

® vcd add * vcd files

¢ vcd checkpoint ¢ vcd flush

® vcd comment ¢ vcd off

® vcd dumpports ® vcdon

¢ vcd dumpportsall ® vcd2wlf

¢ vcd dumpportsflush ¢ DumpportsCollapse

¢ vcd dumpportslimit ® Value Change Dump (VCD) Files

¢ vcd dumpportsoff ® Verilog tasks are documented in the

® vcd dumpportson Language Reference Manual 1EEE 1364
* vcdfile standard.

270 ModelSim Reference Manual, v10.1c

Commands
vcd off

vcd off

This command turns off VCD dumping to the specified file and records all VCD variable values
asX.

Related Verilog tasks: $dumpoff, $fdumpoff
Syntax

ved off [<filename>]

Arguments
* <filename>

(optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the vcd file command or dump.ved if ved file was not invoked.

Related Topics

® vcd add ® vcd files

* vcd checkpoint ¢ vcd flush

® vcd comment ® vcd limit

® vcd dumpports ® vcdon

¢ vcd dumpportsall ® vcd2wlf

¢ vcd dumpportsflush ® DumpportsCollapse

¢ vcd dumpportslimit ® Value Change Dump (VCD) Files

¢ vcd dumpportsoff ® Verilog tasks are documented in the

¢ vcd dumpportson Language Reference Manual |1EEE 1364
* vcdfile standard.

ModelSim Reference Manual, v10.1c 271

Commands
ved on

vcd on

This command turns on VCD dumping to the specified file and records the current values of all
VCD variables.

By default, ved on is automatically performed at the end of the simulation time that the ved add
command performed.

Related Verilog tasks: $dumpon, $fdumpon
Syntax

vcd on [<filename>]
Arguments

* <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on the
file designated by the vcd file command or dump.ved if ved file was not invoked.

Related Topics

® vcd add ® vcdfiles

® vcd checkpoint ¢ vcd flush

® vcd comment ® vcd limit

¢ vcd dumpports ® vcd off

¢ vcd dumpportsall ® vcd2wlf

¢ vcd dumpportsflush ® DumpportsCollapse

¢ vcd dumpportslimit ® Vaue Change Dump (VCD) Files

¢ vcd dumpportsoff ® Verilog tasks are documented in the

¢ vcd dumpportson Language Reference Manual |EEE 1364
* vcdfile standard.

272 ModelSim Reference Manual, v10.1c

Commands
ved2wlf

vcd2wlf

Thiscommand isautility that translatesaVVCD (Vaue Change Dump) fileinto aWLF file that
you can display in Model Sim using the vaim -view argument. This command only works on
V CD files containing positive time values.

Description

The ved2wlf command functions as simple one-pass converter. If you are defining abusin a
VCD file, you must specify al bus bits before the next $scope or $upscope statement appearsin
the file. The best way to ensure that bits get converted together as abusisto declare them on
consecutive lines.

For example:
Line 21 : Svar wire 1 $ in [2] Send
Line 22 : S$var wire 1 Su in [1] $end
Line 23 : Svar wire 1 # in [0] Send

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax
ved2wilf [-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>] [-nocase]
{<vcd filename> | -} <wiIf filename>
Arguments
* -golitio
(optional) Specifies that extended VCD port values are to be split into their corresponding
input and output components by creating two signals instead of just one in the resulting .wif

file. By default the new input-component signal keeps the same name as the original port
name while the output-component name is the original name with"_ 0" appended to it.

* -gplitio_in_ext <extension>
(optional) Adds an extension to input-component signal names created by using -splitio.
<extension> — Specifies a string.
® -splitio_out_ext <extension>
(optional) Adds an extension to output-component signal names created by using -splitio.
<extension> — Specifies a string.
® -nocase
(optional) Converts all alphabetic identifiers to lowercase.

ModelSim Reference Manual, v10.1c 273

Commands
ved2wlf

* {<vcdfilename> |-}

(required) Specifies the name of the VCD file, or standard input (-), you want to translate
into aWLF file. Must be specified immediately preceding the <wlf filename> argument to
the ved2wlIf command.

e <wlif filename>

(required) Specifies the name of the output WLF file. Must be specified as the final
argument to the ved2wlf command.

Example

® Concatenate my.vcd file and pipe standard input to ved2wlf and save output to my.wif
file.

cat my.ved | ved2wlf - my.wif

® Redirect input from the file my.ved file to ved2wlf and save the output to my.wif file.

ved2wlf - my.wlf <my.vcd

Related Topics

* vcd add ® vcdfiles

¢ vcd checkpoint ® vcd flush

® vcd comment ® vcd limit

¢ vcd dumpports ® vcd off

¢ vcd dumpportsall ® vcdon

¢ vcd dumpportsflush ® DumpportsCollapse

¢ vcd dumpportslimit ¢ Vaue Change Dump (VCD) Files

¢ vcd dumpportsoff ® Verilog tasks are documented in the

¢ vcd dumpportson Language Reference Manual |EEE 1364
* vcdfile standard.

274 ModelSim Reference Manual, v10.1c

Commands
vcom

vcom

The vcom command compiles VHDL source code into a specified working library (or to the
work library by default).

Y ou can invoke vcom either from within Model Sim or from the command prompt of your
operating system. Y ou can invoke this command during simulation.

Compiled libraries are dependent on the major version of Model Sim. When moving between
major versions, you must refresh compiled libraries using the -r efr esh argument to vcom. This
is not required for minor versions (letter rel eases).

All arguments to the vcom command are case-sensitive. For example, -WORK and -work are
not equivalent.

This command provides additional information with the -help switch.

Syntax
vcom [options] <filename> [<filename> ...]
[options]:
[-87 | -93|-2002 | -2008]

[-addpragmaprefix <prefix>]
[-allowProtectedBeforeBody] [-amsstd | -noamsstd]

[-bindAtCompile] [-bindAtL oad]

[-check synthesis]

[-debugV A] [-deferSubpgmCheck | -noDefer SubpgmCheck]
[-error <msg_number>[,<msg_number>,...]] [-explicit]

[-f <filename>] [-fata <msg_number>[,<msg_number>,...]]
[-force_refresh <design_unit>] [-fsmimplicittrans | -nofsmimplicittrans]
[-fsmresettrans | -nofsmresettrans | [-fsmsingle | -nofsmsingle]
[-fsmverbose [b |t | w]]

[-gen_xml <design_unit> <filename>]

[-ignoredefaultbinding] [-ignorepragmaprefix <prefix>] [ignoreStandardReal V ector]
[-ignorevitalerrorg] [-initoutcompositeparam | -noinitoutcompositeparam)|

[-just abcep]

[-I <filename>] [-line <number>] [-lint] [-lower] [-IrmVHDLConfigVig|

[-mixedsvvh [b || | r][i]] [-modelsimini <ini_filepath>]

[-n01164] [-noaccel <package name>] [-nocasestaticerror] [-nocheck] [-nodbgsym]
[]-nof prangecheck [-noFunctionlnling] [-noindexcheck] [-nologo] [-nonstddriverinit]
[-noothersstaticerror]

[-note <msg_number> [,<msg_number>, ...]] [-novital] [-novital check]
[-nowarn <category_number>]

[-oldconfigvis]

ModelSim Reference Manual, v10.1c 275

Commands

vcom

[-pedanticerrors] [-performdefaultbinding] [-preserve]

[-quiet]

[-rangecheck | -norangecheck] [-refresh]

[-5] [-separateConfigLibrary] [-skip abcep] [-source]

[-suppress <msg_number>[,<msg_number>,...]]

[-time]

[-version] [-vmake]

[-warning <msg_number>[,<msg_number>,...]] [-work <library_name>]
Arguments

-87 | -93 | -2002 | -2008

(optional) Specifies which LRM-specific compiler to use. Y ou can aso control this
behavior with the VHDL 93 variable in the modelsim.ini file. Refer to “ Differences Between
Versions of VHDL"” for more information.

-87 — Enables support for VHDL 1076-1987.

-93 — Enables support for VHDL 1076-1993.

-2002 — Enables support for VHDL 1076-2002. (default)

-2008 — Enables support for VHDL 1076-2008.
-addpragmaprefix <prefix>

(optional) Enables recognition of synthesis and coverage pragmas with a user specified
prefix. If thisargument is not specified, pragmas are treated as comments. All regular
synthesis and coverage pragmas are honored.

<prefix> — Specifies a user defined string where the default is no sting, indicated by
quotation marks.

Y ou may also set this with the AddPragmaPrefix variable in the vcom section of the
modelsim.ini file.

-allowProtectedBeforeBody
(optional) Allows avariable of a protected type to be created prior to declaring the body.
-amsstd | -noamsstd

(optional) Specifies whether vcom adds the declaration of REAL_VECTOR to the
STANDARD package. Thisisuseful for designersusing VHDL-AMSto test digital parts of
their model.

-amsstd — REAL_VECTOR isincluded in STANDARD.
-noamsstd — REAL_VECTOR isnot included in STANDARD (default).

Y ou can also control this with the AmsStandard variable or the MGC_AMS HOME
environment variable.

276

ModelSim Reference Manual, v10.1c

Commands
vcom

® -bindAtCompile

(optional) Forces Model Sim to perform default binding at compile time rather than at load
time. Refer to “ Default Binding” for more information. Y ou can change the permanent
default by editing the BindAtCompile variable in the modelsim.ini.

* _bindAtLoad

(optional) Forces Model Sim to perform default binding at load time rather than at compile
time. (Default)

® -check synthesis

(optional) Turns on limited synthesis rule compliance checking. Specifically, it checksto
see that signals read by a process are in the sensitivity list. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis variable in the modelsim.ini
file to set a permanent default.

®* -debugVA

(optional) Prints a confirmation if aVITAL cell was optimized, or an explanation of why it
was not, during VITAL level-1 acceleration.

® -deferSubpgmCheck

(optional) Forces the compiler to report array indexing and length errors as warnings
(instead of as errors) when encountered within subprograms. Subprograms with indexing
and length errors that are invoked during simulation cause the simulator to report errors,
which can potentially slow down simulation because of additional checking.

® -error <msg_number>[,<msg_number>,...]

Optional) Changes the severity level of the specified message(s) to "error." Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.
e -explicit

(optional) Directs the compiler to resolve ambiguous function overloading by favoring the
explicit function definition over the implicit function definition. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools choose
explicit operators over implicit operators. Using this switch makes Model Sim compatible
with common industry practice.

* f<filename>

(optional) Specifies afile with more command-line arguments. Allows complex argument
strings to be reused without retyping. Allows gzipped input files. Nesting of -f optionsis
allowed.

<filename> —
Refer to the section "Argument Files' for more information.

ModelSim Reference Manual, v10.1c 277

Commands

vcom

-fatal <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "fatal." Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

-force refresh <design_unit>

(optional) Forcesthe refresh of all specified design units. By default, the work library is
updated; use -work <library_name>, in conjunction with -for ce_refresh, to update a
different library (for example, vcom -work <your _lib_name> -force _refresh).

<design_unit> —

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -r efr esh argument. An example of such a message follows:

** Error: (vsim-13) Recompile /u/test/dware/dware_6le_beta.dwpackages
because /home/users/questasim/linux/../synopsys.attributes has changed.

The -for ce_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -r efr esh argument.

A more conservative approach to working around -r efr esh dependency checksisto
recompile the source code, if it isavailable.

-fsmimplicittrans | -nofsmimplicittrans

(optional) Toggles recognition of implied same state transitions, which is off by default
(-nofsmimplicittrans).

-fsmresettrans | -nofsmresettrans

(optional) Toggles recognition of sychronous or asynchronous reset transitions, and ison by
default (-fsmresettrans). This includes/excludes reset transitions in coverage results.

-fsmsingle | -nofsmsingle

(optional) Toggles the recognition of VHDL FSMs where the current state variable of type
std_logic, bit, boolean, or single-bit std logic_vector/bit_vector and Verilog single-bit
FSMs.

-fsmverbose[b |t | w]

(optional) Provides information about FSMs detected, including state reachability analysis.
b — displays only basic information.
t — displays atransition table in addition to the basic information.
w — displays any warning messages in addition to the basic information.

When you do not specify an argument, this switch reports all information similar to:

278

ModelSim Reference Manual, v10.1c

Commands

vcom
** Note: (vcom-1947) FSM RECOGNITION INFO
Fsm detected in : ../fpu/rtl/vhdl/serial_mul.vhd
Current State Variable : s_state :
../fpu/rtl/vhdl/serial_mul.vhd(76)
Clock : clk_i
Reset States are: { waiting , busy }
State Set is : { busy , waiting }
Transition table is

busy => waiting Line : (114 => 114)
busy => busy Line : (111 => 111)
waiting => waiting Line : (120 => 120) (114 => 114)
waiting => busy Line : (111 => 111)
L ____

When you do not specify this switch, you will receive a message similar to:

** Note: (vcom-143) Detected 'l' FSM/s in design unit
'serial mul.rtl'.

® -gen_xml <design_unit> <filename>

(optional) Produces an XML -tagged file containing the interface definition of the specified
entity.

<design_unit>— The name of an entity or design unit in the Work library. Wildcards
and multiple design unit names are not allowed.

<filename> — A user-specified name for thefile.
For example:
This option requires a two-step process where you must:
1) compile <filename> into alibrary with vcom (without -gen_xml) then
2) execute vcom with the -gen_xml switch.

vlib work
vcom counter.vhd
vcom -gen_xml counter counter.xml

® -ignoredefaultbinding

(optional) Instructs the compiler not to generate a default binding during compilation. Y ou
must explicitly bind all componentsin the design to use this switch.
® -ignorepragmaprefix <prefix>

(optional) Directs vcom to ignore synthesis and coverage pragmas with the specified
prefixname. All affected pragmas will be treated as regular comments. Edit the
IgnorePragmaPrefix modelsim.ini variable to set a permanent default.

<prefix>— Specifies a user defined string.
® ignoreStandardReal Vector

(optional) Instructs ModelSim to ignore the REAL_VECTOR declaration in package
STANDARD when compiling with vcom -2008. Edit the ignoreStandardReal \VV ector
modelsim.ini variable to set a permanent default. For more information refer to the
REAL_VECTOR section in Help > Technotes > vhdl2008migr ation.

ModelSim Reference Manual, v10.1c 279

Commands

vcom

-ignorevitalerrors

(optional) Directs the compiler to ignore VITAL compliance errors. The compiler still
reportsthat VITAL errorsexist, but it will not stop the compilation. Y ou should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

-initoutcompositeparam

(optional) Causesinitialization of subprogram parameters for array and record types when
the subprogram is executed in designs compiled with LRM 1076-2002 and earlier. This
argument forces the output parametersto their default initial (“left”) values when entering a
subprogram. By default, -initoutcompositepar am is enabled for designs compiled with
vcom -2008 and later. Y ou can aso enable this by setting the InitiOutCompositeParam
variable to 1 in the modelsim.ini file.

-noinitoutcompositeparam

(optional) Disablesinitialization of subprogram parameters for array and record types when
the subprogram is executed in designs compiled with LRM 1076-2002 and earlier. By
default, designes compiled with LRM 1076-2008 and later do not initialize subprogram
parameters for array and record types when the subprogram is executed. Y ou can also
disableinitialization of subprogram parameters for array and record types by setting the
InitiOutCompositeParam variable to 2 in the modelsim.ini file.

-just abcep
(optional) Directs the compiler to include only the following:
a— architectures
b — bodies
c — configurations
e— entities
p — packages

Any combination in any order can be used, but you must specify at least one choiceif you
use this switch.

-| <filename>
(optional) Generates alog file of the compile.
-line <number>

(optional) Starts the compiler on the specified linein the VHDL source file. By default, the
compiler starts at the beginning of thefile.

<number> —
-lint

(optional) Performs additional static checks on case statement rules and enables warning
messages for the following situations:

280

ModelSim Reference Manual, v10.1c

Commands
vcom

o Theresult of the built-in concatenation operator ("&") isthe actual for a subprogram
formal parameter of an unconstrained array type.

o If you specify the -BindAtCompile switch with vcom, the entity to which a
component instantiation is bound has a port that is not on the component, and for
which there is no error otherwise.

o A direct recursive subprogram call.

o Incasesinvolving class SIGNAL formal parameters, as described in the IEEE
Standard VHDL Language Reference Manual entitled "Signal parameters’. This
check only appliesto designs compiled using -87. If you compile using -93, it would
be flagged as awarning or error, even without the -lint argument. Can also be
enabled using the Show_Lint variable in the modelsim.ini file.

°* _lower

(optional) Forces vcom to convert uppercase letters in object identifiersto lowercase. Y ou
can also enable this by setting the PreserveCase variable to 0 in the modelsim.ini file.

* -IrmVHDLConfigVis

(optional, default) Forces vcom to use visibility rulesthat comply with the Language
Reference Manual when processing VHDL configurations. Refer to vcom -oldconfigvis or
the oldVHDL ConfigurationVisibility variable in the modelsim.ini file for more information.

e -mixedswh b |l |r][i]

(optional) Facilitates using VHDL packages at the SystemVerilog-VHDL boundary of a
mixed-language design. When you compile a VHDL package with -mixedsvvh, the
package can be included in a SystemVerilog design as if it were defined in SystemVerilog
itself.

Executing -mixedsvvh without arguments compiles VHDL vectorsin the following ways:
®* VHDL bit_vectors are treated as SystemVerilog bit vectors.

®* VHDL std_logic_vectors, std_ulogic_vectors, and vl_logic_vectors are treated as
SystemVerilog logic vectors.

b — treats all scalars and vectors in the package as SystemVerilog bit type
| — treats all scalars and vectorsin the package as SystemVerilog logic type
r — treats all scalars and vectors in the package as SystemVerilog reg type

I — ignores the range specified with VHDL integer types. Can be specified together
with b, |, or r, spaces are not alowed between arguments.

® -modelsimini <ini_filepath>

(optional) Loads an dternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODEL SIM environment variable.

<ini_filepath> — Specifies either an absolute or relative path to the initialization file.
On Windows systems the path separator should be a forward slash (/).

ModelSim Reference Manual, v10.1c 281

Commands

vcom

-noll64

(optional) Causes the source files to be compiled without taking advantage of the built-in
version of the IEEE std_logic_1164 package. Thiswill typically result in longer simulation
times for VHDL programs that use variables and signals of type std_logic.

-noaccel <package name>

(optional) Turns off acceleration of the specified package in the source code using that
package.

<package name>— A VHDL package name.
-nocasestaticerror

(optional) Suppresses case statement static warnings. VHDL standards require that case
statement alternative choices be static at compile time. However, some expressions which
are globally static are allowed. This switch prevents the compiler from warning on such
expressions. If the -pedanticerrors switch is specified, this switch isignored.

-nocheck

(optional) Disables index and range checks. Y ou can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

-nodbgsym

(optional) Disables the generation of the symbols debugging database in the compiled
library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at
the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

Y ou should only specify this switch if you know that anyone using the library will not
require thisinformation for design analysis purposes.

-noDefer SubpgmCheck

(optional) Causes range and length violations detected within subprogramsto be reported as
errors (instead of aswarnings). As an alternative to using this argument, you can set the
NoDeferSubpgmCheck variable in the modelsim.ini file to avalue of 1.

-nof prangecheck
(optional) Disables range checks on floating type values only.
-noFunctioninline

(optional) Turns off VHDL subprogram inlining for design units using alocal copy of a
VHDL package. This may be needed in case the local package has the same nameasan MTI
supplied package.

282

ModelSim Reference Manual, v10.1c

Commands
vcom

®* _noindexcheck

(optional) Disables checking on indexing expressions to determine whether indexes are
within declared array bounds.

* -nologo
(optional) Disables display of the startup banner.
® -nonstddriverinit

(optional) Forces Model Sim to match pre-5.7¢ behavior ininitializing driversin aparticular
case. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly initialized
driversif the port did not have an explicit initialization value and the actual signal connected
to the port had explicit initial values. Depending on a number of factors, Model Sim could
incorrectly use the actual signa'sinitial value when initializing lower level drivers. Note
that the argument does not cause all lower-level driversto use the actual signal’sinitial
value. It does this only in the specific cases where older versions used the actual signal's
initial value.

® _noothersstaticerror

(optional) Disables warnings that result from array aggregates with multiple choices having
"others' clausesthat are not locally static. If -pedanticerrorsis specified, this switch is
ignored.

® -norangecheck

(optional) Disables run time range checking. In some designs, thisresults in a2X speed
increase. Range checking is enabled by default or, once disabled, can be enabled using
-rangecheck. If you run a simulation with range checking disabled, any scalar values that
are out of range areindicated by showing the value in the following format: 2(N) whereN is
the current value. Refer to “Range and Index Checking” for additional information. |

® -note <msg_number> [,<msg_number>, ...]

(optional) Changes the severity level of the specified message(s) to "note. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

* _novital

(optional) Causes vcom to use VHDL code for VITAL procedures rather than the
accelerated and optimized timing and primitive packages built into the simulator kernel.
Allows breakpointsto be set in the VITAL behavior process and permits single stepping
through the VITAL procedures to debug your model. Also all of the VITAL data can be
viewed in the Locals or Objects windows.

®* _novitalcheck

(optional) Disables Vital level 1 and Vital level O checks defined in section 4 of the Vital-95
Spec (IEEE Std 1076.4-1995).

ModelSim Reference Manual, v10.1c 283

Commands
vcom

® -nowarn <category number>

(optional) Selectively disables a category of warning messages. Warnings may be disabled
for all compiles viathe Main window Compile > Compile Options menu command or the
modelsim.ini file (Refer to modelsim.ini Variables).

<category_number> — Specifies one or more numbers corresponding to the categories
in Table 2-5 Multiple message categories are specified as a comma separated list.

Table 2-5. Warning Message Categories for vcom -nowarn

Category | Description

number

1 unbound component

2 process without await statement

3 null range

4 no space in time literal

5 multiple drivers on unresolved signal

6 VITAL compliance checks (*VitalChecks’ aso works)
7 VITAL optimization messages

8 lint checks

9 signal value dependency at elaboration

10 VHDL-1993 constructsin VHDL-1987 code
13 constructs that coverage can't handle

14 locally static error deferred until simulation run

® -oldconfigvis

(optional) Forces vcom to process visibility of VHDL component configurations consistent
with prior releases. Default behavior isto comply with Language Reference Manual
visibility rules. Refer to vcom -IrmVHDL ConfigVis or the modelsim.ini variable
OldVHDL ConfigurationVisibility for more information.

® -pedanticerrors

(optional) Forces display of an error message (rather than awarning) on avariety of
conditions. Refer to “Enforcing Strict 1076 Compliance” for a complete list of these
conditions. This argument overrides -nocasestaticerror and -noother sstaticerror (see
above).

® -performdefaultbinding

(optional) Enables default binding when it has been disabled viathe
RequireConfigForAllDefaultBinding option in the modelsim.ini file.

284 ModelSim Reference Manual, v10.1c

Commands
vcom

* _preserve

(optional) Forces vcom to preserve the case of lettersin object identifiers. Can also be
enabled by setting the PreserveCase variable to 1 in the modelsim.ini file.

® -quiet
(optional) Disables ‘Loading’ messages.
® -rangecheck

(default) Enables run time range checking. Range checking can be disabled using the
-norangecheck argument. Refer to “Range and Index Checking” for additional information.

* _refresh

(optional) Regenerates alibrary image. By default, the work library is updated. To update a
different library, use -work <library_name> with -refresh (for example, vcom -wor k
<your_lib_name> -refresh). If a dependency checking error occurs which prevents the
refresh, use the vcom -force_refresh argument. Refer to the vcom Examples for more
information. Y ou may use a specific design name with -r efr esh to regenerate a library
image for that design, but you may not use a file name.

* s

(optional) Instructs the compiler not to load the standar d package. This argument should
only be used if you are compiling the standar d package itself.

® -separateConfigLibrary

Allows the declaration of aVVHDL configuration to occur in a different library than the
entity being configured. Strict conformance to the VHDL standard (LRM) requiresthat they
be in the same library. This argument must be used if optimization is disabled (-novopt).

® -skip abcep
(optional) Directs the compiler to skip all:
a— architectures
b — bodies
¢ — configurations
e — entities
p — packages
Any combination in any order can be used, but one choiceisrequired if you use this switch.
® -source

(optional) Displays the associated line of source code before each error message that is
generated during compilation. By default, only the error message is displayed.

® -suppress <msg_number>[,<msg_number>,...]

(optional) Prevents the specified message(s) from displaying. The <msg_number> isthe
number preceding the message you wish to suppress. Y ou cannot suppress Fatal or Internal

ModelSim Reference Manual, v10.1c 285

Commands

vcom

messages. Edit the suppress variable in the modelsim.ini file to set a permanent default.
Refer to “ Changing Message Severity Level” for more information.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

-time

(optional) Reports the "wall clock time" vcom takes to compile the design. Note that if
many processes are running on the same system, wall clock time may differ greatly from the
actual "cpu time" spent on vcom.

-version
(optional) Returns the version of the compiler as used by the licensing tools.
-vmake

(optional) Generates a complete record of all command line data and files accessed during
the compile of adesign. This datais then used by the vmake command to generate a
comprehensive makefile for recompiling the design library. By default, vcom stores
compile data needed for the -r efr esh switch and ignores compile data not needed for
-refresh. The -vmake switch forces inclusion of al file dependencies and command line
data accessed during a compile, whether they contribute data to the initial compile or not.
Executing this switch can increase compile time in addition to increasing the accuracy of the
compile. See the vmake command for more information.

-warning <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "warning." Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “ Changing
Message Severity Level” for more information.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

-work <library_name>

(optional) Maps alibrary to the logical library work. By default, the compiled design units
are added to the work library. The specified pathname overrides the pathname specified for
work in the project file.

<library_name>— A logica name or pathname of alibrary.
<filename>

(required) Specifies the name of afile containing the VHDL source to be compiled. One
filename is required; multiple filenames can be entered separated by spaces .Wildcards may
be used, for example, *.vhd.

If you don't specify afilename, and you are using the GUI, adialog box pops up allowing
you to select the options and enter afilename.

Examples

® Compilethe VHDL source code contained in the file example.vhd.

286

ModelSim Reference Manual, v10.1c

Commands
vcom

vcom example.vhd

Model Sim supports designs that use elements conforming to the 1987, 1993, and 2002
standards. Compile the design units separately using the appropriate switches.

vecom -87 o_unitsl.vhd o_units2.vhd
vecom -93 n_unit9l.vhd n_unit92.vhd

When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieeelibrary.

vcom -noaccel numeric_std example.vhd

Although it is not obvious, the = operator is overloaded in the std_logic_1164 package.
All enumeration datatypesin VHDL get an “implicit” definition for the = operator. So
while there isno explicit = operator, thereis an implicit one. Thisimplicit declaration
can be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in a different package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

vcom -explicit example.vhd

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

ARITHMETIC."=" (left, right)

The -work option specifies mylib as the library to regenerate. -r efr esh rebuilds the
library image without using source code, allowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of ModelSim (4.6 and
later only).

vcom -work mylib -refresh

ModelSim Reference Manual, v10.1c 287

Commands

vdel

vdel

This command deletes a design unit from a specified library.

This command provides additional information with the -help switch.

Syntax

vdel [-lib <library_path>] [-modelsimini <ini_filepath>] [-verbose]

{ -all | <primary> [<arch_name>]| -obj [object_info] | -dpiobj [object_info] }

Arguments

_ Caution

-all
(optional) Deletes an entire library.

Y ou cannot recover libraries cannot once deleted. Y ou are not prompted for confirmation.

-dpiobj [<object_info]
(optional) Delete auto-compiled DPI object files.

<object_info> — Specifies the type of object to remove, as reported by the output of the
vdir -obj command. Thiswill take the form of either:

<compiler> — a string identifying the compiler, such as gcc-3.3.1.
<platform> — a string identifying the platform, such as linux.

<platform-compiler> — a string identifying a compiler/platform pair, such as
linux_gce-3.2.3.

all — Specifiesthat all objects should be removed, as reported by the output of the
vdir -obj command.

-lib <library_path>

(optional) Specifies location of the library that holds the design unit to be deleted. By
default, the design unit is deleted from the work library.

<library_path>— A logical name or pathname of the library.
-modelsimini <ini_filepath>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overridesthe file path specified in the MODEL SIM environment variable.

<ini_filepath> — Specifies either an absolute or relative path to the initialization file.
On Windows systems the path separator should be aforward slash (/).

-obj { <object_info>}
(optional) removes directories containing DPI object files.

<object_info> — Specifiesthe type of directory to remove, as reported by the output of
the vdir -obj command. Thiswill take the form of either:

288

ModelSim Reference Manual, v10.1c

Commands
vdel

<compiler> — astring identifying the compiler, such as gcc-3.3.1.
<platform> — a string identifying the platform, such as linux.

<platform-compiler> — a string identifying a compiler/platform pair, such as
linux_gcc-3.2.3.

all — Specifiesthat all directories should be removed, as reported by the output of
the vdir -obj command.

® <primary> [<arch_name>]

(required unless -all is used) Specifies the entity, package, configuration, or module to be
deleted.

<arch_name> — Specifies the name of an architecture to be deleted. If omitted, all of
the architectures for the specified entity are deleted. Invalid for a configuration or a
package.

* -verbose
(optional) Displays progress messages.
Examples

* Deletethework library.
vdel -all

® Deletethe synopsyslibrary.
vdel -lib synopsys -all

® Delete the entity named xor and all its architectures from the work library.
vdel xor

® Delete the architecture named behavior of the entity xor from the work library.
vdel xor behavior

® Delete the package named base from the work library.

vdel base

ModelSim Reference Manual, v10.1c 289

Commands

vdir

vdir

This command lists the contents of adesign library and checks the compatibility of a vendor
library. If vdir cannot read a vendor-supplied library, the library may not be compatible with
ModelSim.

This command provides additional information with the -help switch.

Syntax

vdir [-I | [-prop <prop>]] [-r] [-all | [-lib <library_name>]] [<design_unit>]

[-modelsimini <ini_filepath>]

Arguments

-all

(optional) Lists the contents of all librarieslisted in the Library section of the active
modelsim.ini file. Refer to modelsim.ini Variables for more information.

<design_unit>

(optional) Indicates the design unit to search for within the specified library. If the design
unitisaVHDL entity, its architectures are listed. By default all entities, configurations,
modules, packages, and optimized design unitsin the specified library are listed.

(optional) Prints the version of vcom/vlog with which each design unit was compiled, plus
any compilation options used. Also prints the object-code version number that indicates
which versions of vcom/vlog and Model Sim are compatible.

-lib <library_name>

(optional) Specifiesthe logical name or the pathname of alibrary to be listed. By default,
the contents of the work library are listed.

<library_name>— A logica name or pathname of alibrary.
-modelsimini <ini_filepath>

(optional) Loads an dternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODEL SIM environment variable.

<ini_filepath> — Specifies either an absolute or relative path to the initialization file.
On Windows systems the path separator should be aforward slash (/).

-prop <prop>
(optional) Reports on a specified design unit property.

290

ModelSim Reference Manual, v10.1c

Commands
vdir

<prop>— SpecifiesaDesign Unit Property, aslisted in Table 2-6. If you do not specify
avalue for <prop>, an error message is displayed.

Table 2-6. Design Unit Properties
Value of <prop> | Description
archcfg configuration for arch
body needs a body
default default options
dir source directory
dpnd depends on
entcfg configuration for entity
fulloptions Full compile options
inline moduleinlined
lock lock/unlock status
[rm language standard
mtime source modified time
name short name
opcode opcode format
options compile options
pdu preoptimized design unit
root optimized Verilog design root
src sourcefile
top top level model
ver version string
viogv Verilog version

* r

(optional) Prints architecture information for each entity in the output.

Examples

® |ist the architectures associated with the module named and2 that reside in the default

library work.
vdir -l and2

Library vendor :

Model Technology

Maximum unnamed designs : 3

ModelSim Reference Manual, v10.1c

201

Commands
vdir

MODULE and2

Verilog version: <X0@d;_mSdz@12Fz9b]_Z3

Version string: 3EdggZ>V3z51fE;>K[51?2

Source directory: C:\examples\dataflow verilog
Source modified time: Tue Apr 28 22:48:56 2009
HDL source file: gates.v

Source file: gates.v

Start location: gates.v:18

Opcode format: 10.la; VLOG SE Object version 51
Optimized Verilog design root: 1

VHDL language standard: 1

Compile options: -L mtiAvm -L mtiOvm -L mtiUvm -L mtiUPF
Debug Symbol file exists

292 ModelSim Reference Manual, v10.1c

Commands
vencrypt

vencrypt

This command encrypts Verilog and SystemV erilog code contained within encryption
envelopes. The codeis not pre-processed before encryption, so macros and other “directives are
unchanged. This allows IP vendors to deliver encrypted IP with undefined macros and
“directives.

Upon execution of this command, the filename extension will be changed to .vp for Verilog
files (.v files) and .svp for SystemVerilog files (.sv files).

If the vencrypt utility processes the file (or files) and does not find any encryption directives it
reprocesses the file using the following default encryption:

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect key_keyowner = "MTI"

‘pragma protect key keyname = "MGC-DVT-MTI"

‘pragma protect key method = "rsa"

‘pragma protect key_ block encoding = (enctype = "base64")
‘pragma protect begin

The vencrypt command must be followed by a compile command — such as vliog — for the
design to be compiled.

This command provides additional information with the -help switch.

Syntax

vencrypt <filename> [-d <dirname>] [-e <extension>] [-f <filename>] [-h <filename>]
[-I <filename>] [-0 <filename>] [-p <prefix>] [-quiet]

* <filename>

(required) Specifies the name of the Verilog source code file to encrypt. One filenameis
required. Multiple filenames can be entered separated by spaces. Wildcards can be used.
Default encryption pragmas will be used, as described above, if no encryption directives are
found during processing.

®* _d<dirname>

(optional) Specifies where to save encrypted Verilog files. If no directory is specified,
current working directory will be used.

<dirname> — Specifiesthe directory to contain the encrypted Verilog or SystemVerilog
files. The original file extension (.v for Verilog and .sv for SystemVerilog) will be
preserved.

* -e<extension>
(optional) Specifies afilename extension.
<extension>— Any apha-numeric string.
* -f <filename>

(optional) Specifies afile with more command line arguments. Allows complex arguments
to be reused without retyping. Nesting of -f optionsis allowed.

ModelSim Reference Manual, v10.1c 293

Commands
vencrypt

Refer to the section "Argument Files" for more information.
<filename> — Specifies the name of afile containing command line arguments.
-h <filename>

(optional) Concatenates header information into all design files listed with <filename>.
Allows the user to pass alarge number of filesto the vencrypt utility that do not contain the
‘pragma protect or “protect information about how to encrypt the file. Saves the user from
editing hundreds of filesto add in the same "pragma protect to every file.

<filename> — Specifies an existing file.

- <filename>

(optional) Redirects log output to the file designated by <filename>.
<filename> — Specifies afile for saving output.

-0 <filename>

(optional) Combines all encrypted output into asinglefile.
<filename> — Specifies afile for saving output.

-p <prefix>

(optional) Prepends file names with a prefix.
<prefix>— Any apha-numeric string.

-quiet

(optional) Disables encryption messages.

Example

® |nsert header information into all design files listed.
vencrypt -h encrypt_head top.v cache.v gates.v memory.v

The encrypt_head file may look like the following:

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect author = "IP Provider"

‘pragma protect key keyowner = "MTI", key_method = "rsa"
‘pragma protect key_keyname = "MGC-DVT-MTI"

‘pragma protect begin

Thereisno "pragma protect end expression in the header file, just the header block that
starts the encryption. The "pragma protect end expression isimplied by the end of the
file. For more detailed examples, see "Protecting Y our Source Code" in the User’s
Manual.

Related Topics

* vhencrypt
® "Protecting Y our Source Code" in the User’s Manual

294

ModelSim Reference Manual, v10.1c

Commands
verror

vVerror

This command prints a detailed description about a message number. It may also point to
additional documentation related to the error.

Syntax

verror [-fmt | -tag | -fmt -tag | -full] <msgNum> ...

verror [-fmt | -tag | -fmt -tag | -full] [-tool <tool>] -all

verror [-tool <tool>] -ranges

verror [-kind <tool>] {-pedanticerrors -permissive}

Arguments

-fmt | -tag | -fmt -tag | -full

(optional) Specifies the type and amount of information to return.
-fmt — returns the format string used in the error message.
-tag — returns the tag associated with the error message.

-full — returns the format string, tag, and compl ete text associated with the error
message.
-tool <tool> -all

(required when not specifying <msgNum> or -ranges) Returns information about all
messages associated with a specified tool, where <tool> can be one of the following:

common vcom vcom-viog
viog vsim vsim-vish
wif vsim-sccom sccom
vsim-systemc ucdb vsim-viog
pseudo_synth

-kind <tool>
(optional) Specifies filtering for messages according to either or both of the following:

-pedanticerrors— display messages that are reported as errors due to adhering to amore
strict interpretation of the LRM.

-permissive — display messages reported as warnings that would be displayed as errors
if you use vsim -pedanticerrors.

where <tool> can be any of the values allowed for the -tool argument (above).
<msgNum>

(required when not specifying -all or -ranges) Specifies the message number(s) you would
like more information about. Y ou can find the message number in messages of the format:

ModelSim Reference Manual, v10.1c 295

Commands
verror

** < evel>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedM sg>

Y ou can specify <msgNum> any number of times for one verror command in a space-
separated list.

Optionally, you can specify the toolname prior to the message number, similar to how it
appearsin an error message. For example:

verror vsim-5003
® -ranges

(required when not specifying <msgNum> or -all) Prints the numeric ranges of error
message numbers, organized by tool.

Example
® If you receive the following message in the transcript:

** Error (vsim-3061) foo.v(22): Too many Verilog port connections.

and you would like more information about this message, you would type:
verror 3061
and receive the following output:

Message # 3061:

Too many Verilog ports were specified in a mixed VHDL/Verilog
instantiation. Verify that the correct VHDL/Verilog connection is
being made and that the number of ports matches.

[DOC: ModelSim User's Manual - Mixed VHDL and Verilog Designs
Chapter]

296 ModelSim Reference Manual, v10.1c

Commands
vgencomp

vgencomp

Once a Verilog module is compiled into alibrary, you can use this command to write its
equivalent VHDL component declaration to standard output.

Optional switches allow you to generate bit or vl_logic port types; std_logic port types are
generated by default.

This command provides additional information with the -help switch.

Syntax

vgencomp [-lib <library_name>] [-b] [-modelsimini <ini_filepath>] [-5] [-v] <module_name>

Arguments

-lib <library_name>

(optional) Specifies the working library where the default is to use the work library.
<library_name> — Specifies the path and name of the working library.

-b

(optional) Causes vgencomp to generate bit port types.

-modelsimini <ini_filepath>

(optional) Loads an dternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODEL SIM environment variable.

<ini_filepath> — Specifies either an absolute or relative path to the initialization file.
On Windows systems the path separator should be a forward slash (/).

-S

(optional) Used for the explicit declaration of default std _logic port types.
-V

(optional) Causes vgencomp to generate vl_logic port types.
<module_name>

(required) Specifiesthe name of the Verilog module to be accessed.

Examples

® Thisexample usesaVerilog module that is compiled into the work library. The module
begins as Verilog source code:

ModelSim Reference Manual, v10.1c 297

Commands
vgencomp

module top(il, ol, o2, iol);
parameter width = 8;
parameter delay = 4.5;
parameter filename = "file.in";

input 1i1;

output [7:0] ol;

output [4:7] 02;

inout [width-1:0] iol;
endmodule

After compiling, vgencomp isinvoked on the compiled module:
vgencomp top
and writes the following to stdout:

component top

generic (
width : integer := 8;
delay : real := 4.500000;
filename : string := "file.in"

) :

port (
il : in std_logic;
ol : out std_logic_vector (7 downto 0);
o2 : out std_logic_vector(4 to 7);
iol : lnout std_logic_vector

) :
end component;

298 ModelSim Reference Manual, v10.1c

Commands
vhencrypt

vhencrypt

This command encrypts VHDL code contained within encryption envelopes. The code is not
compiled before encryption, so dependent packages and design units do not have to exist before
encryption.

Upon execution of thiscommand, the .vhd filename extension is changed to .vhdp and the .vhdl
filename extension is changed to .vhdlp.

If the vhencrypt utility does not find any encryption directives, no output file is produced.

The vhencrypt command must be followed by a compile command — such as vcom — for the
design to be compiled.

This command provides additional information with the -help switch.

Syntax

vhencrypt <filename> [-d <dirname>] [-e <extension>] [-f <filename>] [-h <filename>]
[-] <filename>] [-0 <filename>] [-p <prefix>] [-quiet]

* <filename>

(required) Specifies the name of the VHDL source code file to encrypt. One filenameis
required. Multiple filenames can be entered separated by spaces. Wildcards can be used.

* _d<dirname>

(optional) Specifies where to save encrypted VHDL files. If no directory is specified, the
current working directory will be used.

<dirname> — Specifies the directory to contain the encrypted VHDL files. The original
file extension (.vhd or .vhdl) will be preserved.

® -e<extension>
(optional) Specifies a filename extension to be applied to the encrypted file.
<extension> — Any apha-numeric string.
* -f <filename>

(optional) Specifies afile with more command line arguments. Allows complex arguments
to be reused without retyping. Nesting of -f optionsis allowed.

Refer to the section "Argument Files' for more information.
<filename> — Specifies the name of afile containing command line arguments.
* -h<filename>

(optional) Concatenates header information into all design files listed with <filename>.
Allowsthe user to pass alarge number of filesto the vhencrypt utility that do not contain the
encryption information (between the "protect and “protect end directives) about how to
encrypt the file. Saves the user from editing hundreds of files to add the same encryption
information into every file.

<filename> — Specifies an existing file.

ModelSim Reference Manual, v10.1c 299

Commands
vhencrypt

* | <filename>
(optional) Redirects log output to the file designated by <filename>.
<filename> — Specifies afile for saving output.
® -o<filename>
(optional) Combines all encrypted output into asinglefile.
<filename> — Specifies afile for saving output.
® -p<prefix>
(optional) Prepends encrypted file names with a prefix.
<prefix> — Any apha-numeric string.
® -Quiet
(optional) Disables encryption messages.
Related Topics

® vencrypt
® "Protecting Y our Source Code" in the User’s Manual

300 ModelSim Reference Manual, v10.1c

Commands
view

view
This command opens the specified window. If you specify this command without arguments it
returnsalist of all open windows in the current layout.
To remove awindow, use the noview command.

The view command with one or more options and no window names specified applies the
options to the currently open windows. See examples for additional details.

Syntax
view <window_type>...[-aliases|[-names] [-title { New Window Title}]
[-undock {[-icon] [-height <n>] [-width <n>] [-x <n>] [-y <n>]} | -dock]
Arguments
® <window_type>...

(required) Specifies the window type to view. Y ou do not need to type the full type name
(see the examples below); implicit wildcards are accepted; multiple window types are
accepted. Available window types are:

assertions atv browser calltree
canalysis capacity classgraph classtree
covergroups dataflow details duranked
exclusions fcovers files fsmcoverage
fsmlist fsmview instance library

list locals memdata memory
msgviewer objects process profiledetails
project ranked runmgr schematic
source stackview structural structure
tracker transaction transcript watch

wave

Not all windows are available with al variants (ModelSim SE, Model Sim PE, Questa
SV/AFV, and so on)

* -dliases
(optional) Returns alist of <window_type> aliases.
® -height <n>
(optional) Specifiesthe window height in pixels. Can only be used with the -undock switch.

<n>— Any non-negative integer.

ModelSim Reference Manual, v10.1c 301

Commands

view

-icon

(optional) Toggles the view between window and icon. Can only be used with the -undock
switch.

-names

(optional) Returns alist of valid <window_type> arguments.
-title { New Window Title}

(optional) Specifiesthe window title of the designated window.

{New Window Title} — Any string. Curly braces are needed for a string containing
spaces. Double quotes (" ") can be used in place of braces, for example "New
Window Title."

-dock
(optional) Docks the specified standal one window into the Main window.
-undock

(optional) Opens the specified window as a standal one window, undocked from the Main
window.

-width <n>

(optional) Specifies the window width in pixels. Can only be used with the -undock switch.
<n>— Any non-negative integer.

-X <n>

(optional) Specifiesthe window upper-left-hand x-coordinate in pixels. Can only be used
with the -undock switch.

<n>— Any non-negative integer.
-y <n>

(optional) Specifiesthe window upper-left-hand y-coordinate in pixels. Can only be used
with the -undock switch.

<n>— Any non-negative integer.

Examples

® Undock the Wave window from the Main window and makes it a standal one window.

view -undock wave

® Display an undocked Processes window in the upper left-hand corner of the monitor
with awindow size of 300 pixels, square.

view process -undock -x 0 -y 0 -width 300 -height 300

® Display the Watch and Wave windows.

302

ModelSim Reference Manual, v10.1c

Commands
view

view w

* Display the Objects and Processes windows.

view ob pr

® Open anew Wave window with My Wave Window asitstitle.

view -title {My Wave Window} wave

Related Topics

®* noview

ModelSim Reference Manual, v10.1c 303

Commands
virtual count

virtual count

This command reports the number of currently defined virtuals that were not read in using a
macro file.

Syntax
virtual count [-kind {implicits | explicits}] [-unsaved]
Arguments
* -kind {implicits | explicits}
(optional) Reports only a subset of virtuals.

implicits — virtual signals created internally by the product.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
® -unsaved
(optional) Reports the count of only those virtuals that have not been saved to a macro file.

Related Topics

® virtua define
® virtual save

® virtual show

® Virtual Objects

304 ModelSim Reference Manual, v10.1c

Commands
virtual define

virtual define

This command prints to the transcript the definition of the virtual signals, functions, or regions
in the form of a command that can be used to re-create the object.

Syntax
virtual define [-kind {implicits | explicits>] <pathname>

Arguments
* -kind {implicits | explicits}
(optional) Transcripts only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.

® <pathname>

(required) Specifies the path to the virtual (s) for which you want definitions, where
wildcards are allowed.

Example
® Show the definitions of al the virtuals you have explicitly created.

virtual define -kind explicits *

Related Topics

® virtual describe
® virtua show
® Virtual Objects

ModelSim Reference Manual, v10.1c 305

Commands
virtual delete

virtual delete
This command removes the matching virtuals.

Syntax
virtual delete [-kind {implicits | explicits}] <pathname>
Arguments
® -kind {implicits | explicits}
(optional) Removes only a subset of virtuals.
implicits — virtual signals created internally by the product.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
® <pathname>

(required) Specifies the path to the virtual(s) you want to delete, where wildcards are
alowed.

Example
* Deleteall of the virtuals you have explicitly created.

virtual delete -kind explicits *

Related Topics

® virtual signal
® virtua function
® Virtua Objects

306 ModelSim Reference Manual, v10.1c

Commands
virtual describe

virtual describe

This command prints to the transcript a complete description of the data type of one or more
virtual signals.

Similar to the existing describe command.

Syntax
virtual describe [-kind {implicits | explicits}] <pathname>
Arguments
® -kind {implicits | explicits}
(optional) Transcripts only a subset of virtuals.
implicits — virtual signals created internally by the product.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.
® <pathname>

(required) Specifies the path to the virtual(s) for which you want descriptions, where
wildcards are allowed.

Example
® Describe the datatype of al virtuals you have explicitly created.

virtual describe -kind explicits *

Related Topics

® virtual define
® virtua show
® Virtual Objects

ModelSim Reference Manual, v10.1c 307

Commands
virtual expand

virtual expand

This command prints to the transcript alist of all the non-virtual objects contained in the
specified virtual signal(s).

Y ou can use thisto create alist of arguments for acommand that does not accept or understand
virtual signals.

Syntax

virtual expand [-base] <pathname> ...
Arguments

® -base

(optional) Outputs the root signal parent in place of a subelement. For example:

ved add [virtual expand -base myVirtualSignall

the resulting command after substitution would be:

ved add signala signalb signalc

® <pathname>

(required) Specifies the path to the signals and virtual signals to expand, where wildcards
are allowed and you can specify any number of paths.

Examples
® Add the elements of avirtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand ..."), then the result substituted into the surrounding
command.

ved add [virtual expand myVirtualSignal]

Therefore, if myVirtualSgnal is a concatenation of signala, signalb.recl and signalc(5
downto 3), the resulting command after substitution would be:

ved add signala signalb.recl {signalc (5 downto 3)}
The dlice of signalc is enclosed in curly braces, because it contains spaces.
Related Topics

® virtual signal
® Virtual Objects

308 ModelSim Reference Manual, v10.1c

Commands
virtual function

virtual function

This command creates a new signal, known only by the GUI (not the kernel), that consists of
logical operations on existing signals and simulation time, as described in <expressionString>.

It cannot handle bit selects and slices of Verilog registers. Please see Syntax and Conventions
for more details on syntax.

If the virtual function references more than asingle scalar signal, it will display asan
expandable object in the Wave and Objects windows. The children correspond to the inputs of
the virtual function. This allows the function to be "expanded” in the Wave window to see the
values of each of the input waveforms, which could be useful when using virtual functions to
compare two signal values.

Virtual functions can also be used to gate the List window display.

Note

O

The virtual function and virtual signal commands are interchangeable. The product will
keep track of whether you've created asignal or a function with the commands and
maintain them appropriately. We document both commands because the virtual save,
virtual describe, and virtual define commands will reference your virtual objects using
the correct command.

Syntax

virtual function [-env <path>] [-install <path>] [-delay <time>] { <expressionString>} <name>

Arguments

Argumentsfor virtual function are the same asthosefor virtual signal, except for the contents
of the expression string.

-env <path>

(optional) Specifies a hierarchical context for the signal namesin <expressionString> so
they don't all have to be full paths.

<path> — Specifies arelative path to the signal (s). On Windows systems the path
separator should be aforward slash (/).

-install <path>

(optional) Causes the newly-created signal to become a child of the specified region. If
-install is not specified, the newly-created signal becomes a child of the nearest common
ancestor of all objects appearing in <expressionString>. If the expression references more
than one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Functions.

<path> — Specifies arelative path to the signal (s). On Windows systems the path
separator should be aforward slash (/).

ModelSim Reference Manual, v10.1c 309

Commands
virtual function

-delay <time> <unit>

(optional) Specifies avalue by which the virtual function will be delayed. Y ou can use
negative values to look forward in time. Refer to the examples below for more details.

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. Y ou must enclose <time> and <unit> within curly braces

).
{ <expressionString>}

(required) A text string expression, enclosed in curly braces ({ }) using the
GUI_expression_format.

<name>
(required) The name you define for the virtual signal.
Caseisignored unlessinstalled in aVerilog region.

Use alpha, numeric, and underscore characters only, unless you are using VHDL extended
identifier notation.

If using VHDL extended identifier notation, <name> needs to be quoted with double quotes
(" ") or with curly braces ({ }).

Examples

® Createasignal /chip/sectionl/clk n that isthe inverse of /chip/sectionl/clk.

virtual function { not /chip/sectionl/clk } clk_n

® Createastd logic_vector equivalent of aVerilog register rega and installsit as
/chip/rega _slv.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega
} rega_slv

® Create aboolean signal /chip/addr_eq fab that istrue when /chip/addr[11:0] isequal to
hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { /chip/addr[11:0] == Oxfab } addr_eqg fab

®* Createasignal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff isinstalled
in region virtuals:/Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being
compared.

310

ModelSim Reference Manual, v10.1c

Commands
virtual function

virtual function { gate:/chip/siga XOR rtl:/chip/siga } siga diff

® Createavirtua signal consisting of thelogical "AND" function of /top/signal A with
/top/signal B, and delays it by 10 ns.

virtual function -delay {10 ns} {/top/signalA AND /top/signalB}
myDelayAandB

® Create aone-bit signal outbus diff which is non-zero during times when any bit of
/chip/outbus in the gate-level version doesn’t match the corresponding bit in the rtl
version.

This expression uses the "OR-reduction™ operator, which takes the logical OR of al the
bits of the vector argument.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) }
outbus_diff

Commands fully compatible with virtual functions

add log and log delete describe
examine find restart
searchlog show

Commands not compatible with virtual functions

drivers force noforce
ved add when

Related Topics

® virtua count ® virtual define ® virtual delete

® virtual describe ® virtual expand ® virtual hide

® virtual log ® virtua nohide ® virtual nolog

® virtual region ® virtual save ® virtual show

® virtual signal ® virtua type ® Virtual Objects

ModelSim Reference Manual, v10.1c 311

Commands
virtual hide

virtual hide

This command causes the specified real or virtual signalsto not be displayed in the Objects
window. Thisis used when you want to replace an expanded bus with a user-defined bus.

Y ou make the signals reappear using the virtual nohide command.

Syntax
virtual hide{ [-kind {implicits | explicits}] | [-region <path>]} <pattern>
Arguments
® -kind {implicits | explicits}
(optional) Hides only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.
® -region <path>
(optional) Specifiesaregion of design space in which to look for the signal names.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be aforward slash (/).

* <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signalsto hide, where wildcards are allowed and you can specify any number of names or
patterns.

Related Topics

® virtual nohide
® Virtual Objects

312 ModelSim Reference Manual, v10.1c

Commands
virtual log

virtual log

This command causes the simulation-mode dependent signals of the specified virtual signalsto
be logged by the kernel.

If wildcard patterns are used, it will also log any normal signalsfound, unlessthe -only optionis
used. You unlog the signals using the virtual nolog command.

Syntax

virtual log [-kind {implicits | explicits}] | [-region <path>] [-recursive] [-only] [-in] [-out]

[-inout] [-internal] [-ports] <pattern>

Arguments

-kind {implicits | explicits}
(optional) Logs only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
-region <path>
(optional) Specifies aregion of design space in which to look for signalsto log.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be aforward slash (/).

-recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

-only

(optional) Specify that only virtual signals (as opposed to al signals) found by a <pattern>
containing awildcard should be logged.

-in

(optional) Specifiesthat the kernel 1og datafor ports of mode IN whose names match the
specification.

-out

(optional) Specifiesthat the kernel log data for ports of mode OUT whose names match the
specification.

-inout

(optional) Specifiesthat the kernel log data for ports of mode INOUT whose names match
the specification.

ModelSim Reference Manual, v10.1c 313

Commands
virtual log

®* .internd

(optional) Specifiesthat the kernel log data for internal (non-port) objects whose names
match the specification.

® -ports
(optional) Specifiesthat the kernel log datafor all ports. Optional.
® <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to log, where you can specify any number of names or wildcard patterns.

Related Topics

® virtual nolog
® Virtual Objects

314 ModelSim Reference Manual, v10.1c

Commands
virtual nohide

virtual nohide

This command reverses the effect of avirtual hide command, causing the specified real or
virtual signals to reappear the Objects window.

Syntax
virtual nohide{ [-kind {implicits | explicits}] | [-region <path>] } <pattern>
Arguments
* -kind {implicits | explicits}
(optional) Unhides only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
® -region <path>
(optional) Specifies aregion of design space in which to look for the signal names.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be aforward slash (/).

* <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to hide, where wildcards are allowed and you can specify any number of names or
patterns.

Related Topics

® virtual hide
® Virtual Objects

ModelSim Reference Manual, v10.1c 315

Commands
virtual nolog

virtual nolog

Thiscommand reversesthe effect of avirtual log command. It causes the simulation-dependent
signals of the specified virtual signalsto be excluded ("unlogged") by the kernel.

If wildcard patterns are used, it will a'so unlog any normal signals found, unless the -only
option is used.

Syntax

virtual nolog { [-kind {implicits | explicits}] | [-region <path>]} [-recursive] [-only] [-in] [-out]

[-inout] [-internal] [-ports] <pattern>

Arguments

-kind {implicits | explicits}
(optional) Excludes only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
-region <path>
(optional) Specifies aregion of design space in which to look for signals to unlog.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be aforward slash (/).

-recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

-only

(optional) Specify that only virtual signals (as opposed to al signals) found by a <pattern>
containing awildcard should be unlogged.

-in

(optional) Specifiesthat the kernel exclude data for ports of mode IN whose names match
the specification.

-out

(optional) Specifiesthat the kernel exclude datafor ports of mode OUT whose names match
the specification.

-inout

(optional) Specifies that the kernel exclude data for ports of mode INOUT whose names
match the specification.

316

ModelSim Reference Manual, v10.1c

Commands
virtual nolog

®* .internd

(optional) Specifiesthat the kernel exclude datafor internal (non-port) objects whose names
match the specification.

® -ports
(optional) Specifiesthat the kernel exclude datafor al ports.
® <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to unlog, where wildcards are allowed and you can specify any number of names or
patterns.

Related Topics

® virtual log
® Virtual Objects

ModelSim Reference Manual, v10.1c 317

Commands
virtual region

virtual region
This command creates a new user-defined design hierarchy region.

Note
Virtual regions cannot be used in the when command.

Syntax
virtual region <parentPath> <regionName>

Arguments
* <parentPath>
(required) The full path to the region that will become the parent of the new region.
® <regionName>
(required) The name you want for the new region.
Related Topics

® virtual function
® virtual signd
® Virtua Objects

318 ModelSim Reference Manual, v10.1c

Commands
virtual save

virtual save
This command saves the definitions of virtuals to afile named virtual .do in the current
directory.
Syntax
virtual save [-kind {implicits | explicits}] [-append] [<filename>]
Arguments
* -kind {implicits | explicits}
(optional) Saves only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.

* -append

(optional) Specifiesto save only virtualsthat are not already saved or weren’t read in from a
macro file. These unsaved virtuals are then appended to the specified or default file.
Optional.

* <filename>

(optional) The name of the file containing the definitions. If you don’t specify <filename>,
the default virtual filename (virtuals.do) will be used. Y ou can specify a different default in
the pref.tcl file.

Related Topics

® virtua count
® Virtua Objects

ModelSim Reference Manual, v10.1c 319

Commands
virtual show

virtual show
This command lists the full path names of all explicitly defined virtuals.

Syntax
® virtual show [-kind {implicits | explicits}]
Arguments
® -kind {implicits | explicits}
(optional) Lists only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
Related Topics

® virtua define
® virtual describe
® Virtual Objects

320 ModelSim Reference Manual, v10.1c

Commands
virtual signal

virtual signal

This command creates a new signal, known only by the GUI (not the kernel), that consists of
concatenations of signals and subelements as specified in <expressionString>.

It cannot handle bit selects and slices of Verilog registers. Please see Concatenation of Signals
or Subelements for more details on syntax.

Note
D The virtual function and virtual signal commands are interchangeable. The product will

keep track of whether you've created asignal or a function with the commands and
maintain them appropriately. We document both commands because the virtual save,
virtual describe, and virtual define commands will reference your virtual objects using
the correct command.

Syntax

virtual signal [-env <path>] [-install <path>] [-delay <time>] { <expressionString>} <name>
Arguments

* -env <path>

(optional) Specifies a hierarchical context for the signal namesin <expressionString> so
they don't all have to be full paths.

<path> — Specifies arelative path to the signal (s). On Windows systems the path
separator should be aforward slash (/).

® -install <path>

(optional) Causes the newly-created signal to become a child of the specified region. If
-install is not specified, the newly-created signal becomes a child of the nearest common
ancestor of all objects appearing in <expressionString>. If the expression references more
than one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Signals.

<path> — Specifies arelative path to the signal(s). On Windows systems the path
separator should be aforward slash (/).

® -delay <time> <unit>
(optional) Specifies a value by which the virtual function will be delayed. Y ou can use
negative values to look forward in time. Refer to the examples below for more details.
<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. Y ou must enclose <time> and <unit> within curly braces

(.

ModelSim Reference Manual, v10.1c 321

Commands
virtual signal

* {<expressionString>}

(required) A text string expression, enclosed in curly braces ({ }) using the
GUI_expression_format.

® <name>
(required) The name you define for the virtual signal.
Caseisignored unlessinstalled in aVerilog region.

Use alpha, numeric, and underscore characters only, unless you are using VHDL extended
identifier notation.

If using VHDL extended identifier notation, <name> needs to be quoted with double quotes
(" ™) or with curly braces ({ }).

Examples

® Reconstruct a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a ii areal scalars of the sametype.

virtual signal -env sim:/chip/alu { (concat_range (4 downto 0)) (a_04
& a_03 & a_ 02 & a_01 & a_00) } a

® Reconstruct abus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -env sim:chip.alu
{ (concat_range [4:0])&{a_04, a_03, a_02, a_01, a_00} } a

® Createasignal sim:/testbench/stuff which is arecord type with three fields
corresponding to the three specified signals. The example assumes /chipa/mode is of
type integer, /chipa/alu/a is of type std_logic_vector, and /chipa/decode/inst is a user-
defined enumeration.

virtual signal -install sim:/testbench

{ /chipa/alu/a (19 downto 13) & /chipa/decode/inst & /chipa/mode }
stuff

® Createavirtua signal that isthe same as /top/signal A except it is delayed by 10 ps.
virtual signal -delay {10 ps} {/top/signalA} myDelayedSignala

® Create athree-hit signal, chip.address mode, as an alias to the specified bits.
virtual signal { chip.instruction[23:21] } address_mode

® Concatenate signals a, b, and c with the literal constant ‘000’.
virtual signal {a & b & ¢ & 3'b000} myextendedbus

® Add three missing bits to the bus num, creates avirtual signal fullbus, and then adds that
signal to the Wave window.

322 ModelSim Reference Manual, v10.1c

Commands
virtual signal

virtual signal {num & "000"} fullbus
add wave -unsigned fullbus

® Reconstruct a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (i.e. num28, num27, and so on)
represented by the ... in the syntax above.

virtual signal { num3l & num30 & num29 & ... & num4d & num3 & "000" }

fullbus
add wave -unsigned fullbus

® Create atwo-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit is true (1).
Alternatively, if bold does not equal bnew, the second bit is false (0). Each
subexpression is evaluated independently.

virtual signal {(aold == anew) & (bold == bnew)} myequalityvector

® Create signa newbus that is a concatenation of busl (bit-reversed) and bus2[7:4] (bit-
reversed). Assuming busl has indices running 7 downto O, the result will be
newbusg[11:0] with the upper 8 bits being bus1[0:7] and the lower 4 bits being bus2[4.7].
See Concatenation Directives for further details.

virtual signal {(concat_reverse) (busl & bus2[7:4])} newbus

Commands fully compatible with virtual signals

add list add log or log add wave
delete describe examine
find force and noforce restart
searchlog show

Commands compatible with virtual signals using [virtual expand <signal>]

drivers ved add

Commands not currently compatible with virtual signals

when

ModelSim Reference Manual, v10.1c 323

Commands
virtual signal

Related Topics

® virtual count ® virtual define ® virtual delete

® virtual describe ® virtua expand ® virtual hide

® virtual log ® virtual nohide ® virtual nolog

® virtual region ® virtua save ® virtua show

® virtual function ® virtua type ® Virtual Objects

324 ModelSim Reference Manual, v10.1c

Commands
virtual type

virtual type

This command creates a new enumerated type known only by the GUI, not the kernel. Virtual
types are used to convert signal valuesto character strings. The command works with signed
integer values up to 64 bits.

Virtual types cannot be used in the when command.

Note

O

If you are using SystemVerilog, you can aso convert signal valuesto character strings
using associative arrays in your code. See the SystemVerilog LRM for more information.

Syntax

virtual type -delete <name> | {<list_of strings>} <name>

Arguments

-delete <name>
(Required if not defining atype.) Deletes a previously defined virtual type.

<name> — The name you gave the virtual type when you originally defined it. .
{<list_of_strings>}

(Required if -deleteis not used.) A list of values and their associated character strings.
Values can be expressed in decimal or based notation and can include "don’t-cares’ (see
examples below). Three kinds of based notation are supported: Verilog, VHDL, and C-
language styles. The values are interpreted without regard to the size of the busto be
mapped. Bus widths up to 64 bits are supported.

If the string contains spaces the string must be enclosed in quotation marks (““) If they
contain specia characters square brackets, curly braces, backslashes...), they need to be
quoted within curly braces.

See the examples below for further syntax.
<name>

(Required if -deleteis not used.) The user-defined name of the virtual type. Caseis not
ignored. Use alpha, numeric, and underscore characters only, unless you are using VHDL
extended identifier notation. If using VHDL extended identifier notation, <name> needs to
be quoted with double quotes (" ") or with curly braces ({ }).

Examples

® Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSignal is
displayed in the Wave, List, or Objects window, the string "state0" will appear when
mysignal == 0, "statel" when mysignal == 1, "state2" when mysignal == 2, and so on.

ModelSim Reference Manual, v10.1c 325

Commands
virtual type

virtual type {statel statel state2 state3} mystateType
virtual function { (mystateType)mysignal} myConvertedSignal
add wave myConvertedSignal

® Use sparse mapping of bus values to alphanumeric strings for an 8-bit, one-hot
encoding. It showsthe variety of syntax that can be used for values. The value "default”
has special meaning and corresponds to any value not explicitly specified.
virtual type {{0 NULL_STATE} {1 stl} {2 st2} {0x04 st3} {16'h08 st4} \
{'h10 st5} {16#20 st6} {0b01000000 st7} {0x80 st8} \
{default BAD_STATE}} myMappedType

virtual function { (myMappedType)mybus} myConvertedBus
add wave myConvertedBus

® Deletethe virtual type "mystateType".
virtual type -delete mystateType
® Createavirtua type that includes "don’t-cares’ (the ‘-’ character).
virtual type {{0x01-- add}{0x02-- sub}{default bad}} mydecodetype

® Createavirtua type using amask for "don’'t-cares." The middle field is the mask, and
the mask should have bits set to 1 for the bits that are don't care.

virtual type {{0x0100 Oxff add}{0x0200 Oxff sub}{default bad}}
mydecodetype

Related Topics

® virtua function
® Virtual Objects

326 ModelSim Reference Manual, v10.1c

Commands
vlib

vlib

The command creates adesign library. Y ou must use vlib rather than operating system
commandsto create alibrary directory or index file.

If the specified library already exists as avalid ModelSim library, the vlib command will exit
with a warning message without touching the library.

This command provides additional information with the -help switch.

Syntax

vlib [-archive [-compact <percent>]] [-format { 1| 3}] [-dos | -short | -unix | -long]
[(-lock | -unlock) <design_unit>] [-locklib | -unlocklib] <name>

Arguments
® -archive[-compact <percent>]

(optional) Stores design units that are compiled into the created library in archives rather
than in subdirectories. Refer to “ Archives’ for more details.

Y ou may optionally specify adecimal number between 0 and 1 that denotes the allowed
percentage of wasted space before archives are compacted. By default archives are
compacted when 50% (.5) of their space is wasted. See an example below.

-compact — (optional) Specifies the percentage amount of wasted space before the
archives are compacted where the default is 50% (0.5).

<percent> — specified as a decima number betwen 0 and 1.
* -format{ 1|3}

(optional) Prepares alibrary for conversion to be compatible with a previous release, by
altering the _info file.

1 — alowsyou to convert alibrary to be compatible with the 6.2 series and earlier.
3 — alowsyou to convert alibrary to be compatible with the 6.3 series and newer.
The usage flow would be:

\\1) Using a current release of the simulator, run:
vlib -format 1 current_lib
vcom -refresh -work current_lib
\\ to prepare current_lib for conversion back to a 6.2 release
\
\\2) Using a 6.2 release of the simulator, run:
vcom -refresh -work current_lib
\\ to refresh current_lib for use with the previous release

® _dos

(optional) Specifiesthat subdirectoriesin alibrary have names that are compatible with
DOS. Not recommended if you use the vmake utility. .

ModelSim Reference Manual, v10.1c 327

Commands

vlib
® -short
(optional) Interchangeable with the -dos argument.
® -unix
(optional) Specifiesthat subdirectoriesin alibrary may have long file names that are NOT
compatible with DOS.
* -long
(optional) Interchangeable with the -unix argument.
® (-lock | -unlock) <design_unit>
(optional) Locks an existing design unit so it cannot be recompiled or refreshed. The
-unlock switch reverses this action. File permissions are not affected by these switches.
® -locklib | -unlocklib
(optional) Locks a complete library so that compilation cannot target the library and the
library cannot be refreshed. The -unlocklib switch reverses this action. File permissions are
not affected by these switches.
® <name>
(required) Specifies the pathname or archive name of the library to be created.
Examples

® Createthedesign library design. Y ou can define alogical name for the library using the
vmap command or by adding aline to the library section of the modelsim.ini filethat is
located in the same directory.

vlib design

® Createthedesign library uut and specifiesthat any design units compiled into thelibrary
are created as archives. Also specifies that each archive be compacted when 30% of its
space is wasted.

vlib -archive -compact .3 uut

328

ModelSim Reference Manual, v10.1c

Commands
viog

viog

The viog command compiles Verilog source code and SystemV erilog extensions into a
specified working library (or to the work library by default).

The vlog command may be invoked from within Model Sim or from the operating system
command prompt. It may also be invoked during simulation.

Compiled libraries are major-version dependent. When moving between major versions, you
have to refresh compiled libraries using the -r efr esh argument to vlog. Thisis not true for minor
versions (letter releases).

All arguments to the viog command are case sensitive: -WORK and -work are not equivalent.

The |IEEE P1800 Draft Standard for SystemV erilog requires that the default behavior of the
vlog command is to treat each Verilog design file listed on the command line as a separate
compilation unit. This behavior is achange in vlog from versions prior to 6.2, wherein all files
in asingle command line were concatenated into a single compilation unit. To treat multiple
files listed within a single command line as a single compilation unit, use either the viog -mfcu
argument or the MultiFileCompilationUnit modelsim.ini file variable.

This command provides additional information with the -help switch.

Syntax
vlog [optiong] <filename> [<filename> ...]
[options]:
[-93]

[-addpragmaprefix <prefix>]
[-compat] [-compile uselibg=<directory name>]]
[-convertallparams] [-cuname]
[+definet<macro_name>[=<macro_text>]] [-deglitchalways | -nodeglitchalways]

[+delay_mode distributed] [+delay_mode path] [+delay_mode_unit]
[+delay_mode_zero] [-dpiforceheader] [-dpiheader <filename>]

[-E <filename>] [-Edebug <filename>] [-enumfirstinit] [-Epretty <filename>]
[-error <msg_number>[,<msg_number>,...]]

[-f <filename>] [-force_refresh <design_unit>]
[-fsmimplicittrans | -nofsmimplicittrang]
[-fsmresettrans | -nofsmresettrans | [-fsmsingle | -nofsmsingl €]
[-fsmverbose[b | t | w]] [-fsmxassign | -nofsmxassign |

[-gen_xml <design_unit> <filename>]

[-hazards]

[-ignorepragmaprefix <prefix>] [+incdir+<directory>] [-incr | -noincr]
[-isymfile]

ModelSim Reference Manual, v10.1c 329

Commands

viog
[-I <filename>] [+libcell | +nolibcell]
[+libext+<suffix>] [-libmap <pathname>] [-libmap_verbose] [+librescan]
[-line <number>] [-lint] [-Irmclassinit]
[+maxdelays] [+mindelays] [-mixedansiports]
[-mixedsvvh [b | s| V]] [-mfcu | -sfcu] [-modelsimini <ini_filepath>]
[-nodbgsym]
[-noexcludeternary <design_unit>]
[-noForceUnsignedToV hdlInteger] [-nologo] [+nospecify]
[-note <msg_number>[,<msg_number>,...]] [+notimingchecks]
[-novtblfixup] [+nowarn<CODE>] [-nowarn <category number>|
[-oldsv] [-override_timescale <time_unit>/ <time_precision>] [-O0]
[-pedanticerrors] [-permissive] [-permit_defunct_sv] [-printinfilenames)
[-quiet]
[-R [<simargs>]] [-refresh]
[-source] [-9] [-sv]
[-svext[=[+|-]<extension>[,[+|-]<extension>]*]] [-svinputport=net | var | relaxed)]
[-skipprotected] [-skipprotectedmodul €]
[-suppress <msg_number>[,<msg_number>,...]]
[-svO5compat] [-svO9compat] [-sv12compat]
[-time] [-timescale <time_units>/<time_precision>]
[+typdelays]
[-ul
[-v <library_file>] [-version] [-vlogOlcompat] [-vliog95compat] [-vmake]
[-warning <msg_number>[,<msg_number>,...]] [-work <library _name>]
[-writetoplevels <fileName>]
[-y <library_directory>]
Arguments
e 03

Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993 extended
identifiersto preserve case in Verilog identifiers that contain uppercase letters. Optional .
® -addpragmaprefix <prefix>

(optional) Enables recognition of synthesis and coverage pragmas with a user specified
prefix. If thisargument is not specified, pragmas are treated as comments. All regular
synthesis and coverage pragmas are honored.

<prefix> — Specifies a user defined string where the default is no string, indicated by
quotation marks (“*).

330 ModelSim Reference Manual, v10.1c

Commands
viog

Y ou may also set this with the AddPragmaPrefix variable in the vliog section of the
modelsim.ini file.

® -compat
Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it isinefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. Refer to “Event Ordering in Verilog Designs’ for additional information.

® -compile_uselibg[=<directory_name>]

L ocates source files specified in a “uselib directive (Refer to “Verilog-XL uselib Compiler
Directive”), compiles those files into automatically created libraries, and updates the
modelsim.ini file with the logical mappings to the new libraries. Optional. If a
directory_nameis not specified, Model Sim uses the name specified in the
MTI_USELIB_DIR environment variable. If that variable is not set, Model Sim creates the
directory mti_uselibs in the current working directory.

® -convertalparams

Enables converting parameters not defined in ANSI style to VHDL generics of type
std _logic_vector, bit_vector, std logic, vl_logic, vl_logic_vector, and bit. Optional.

® -cuname

Used only in conjunction with -mfcu. Optional. The -cuname names the compilation unit
being created by vlog. The named compilation unit can then be specified on the vsim
command line, along with the <top> design unit. The purpose of doing so isto force
elaboration of specified compilation unit package, thereby forcing elaboration of a
necessary ‘bind’ statement within that compilation unit that would otherwise not be
elaborated. An example of the necessary commandsis:

vlog -cuname pkg name -mfcu filel.sv file2.sv
vsim top pkg_name

Y ou need to do this only in cases where you have a‘bind’ statement in a module that might
otherwise not be elaborated, because no module in the design depends on that compilation
unit. In other words, if amodule that depends on that compilation unit exists, you don’t need
to force the elaboration, for it occurs automatically. Also, if you are using qverilog to
compile and simulate the design, this binding issue is handled properly automatically.

® +definet<macro_name>[=<macro_text>]

Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

‘define <macro_name> <macro_text>

Optional. Y ou can specify more than one macro with asingle +define. For example:

ModelSim Reference Manual, v10.1c 331

Commands

viog

vlog +define+one=rl+two=r2+three=r3 test.v

A command line macro overrides a macro of the same name defined with the “define
compiler directive.
-deglitchalways | -nodeglitchalways

Reduces the incidents of zero delay oscillations among always comb and always @*
combinatorial logic blocks that produce glitches on the variables they write. Thisisthe
default behavior. Old behavior may be selected with the vliog -nodeglitchalways option. A
side effect of this behavior isthat time zero races involving the glitch-producing aways
blocks may resolve in adifferent order.

+delay_mode_distributed

Disables path delaysin favor of distributed delays. Optional. Refer to “Delay Modes” for
details.

+delay_mode _path

Sets distributed delaysto zero in favor of using path delays. Optional.
+delay_mode_unit

Sets path delays to zero and non-zero distributed delays to one time unit. Optional.
+delay_mode zero

Sets path delays and distributed delays to zero. Optional.

-dpiforceheader

(optional) Forces the generation of a DPI header file even if it will be empty of function
prototypes.

-dpiheader <filename>

(optional) Generates a header file that may then be included in C source code for DPI import
functions. Refer to “DPI Use Flow” for additional information.

-E <filename>

(optional) Captures text processed by the Verilog parser after preprocessing has occurred
and copies that text to an output file. Thisincludes text read from source files specified by
using the -v or -y argument.

<filename> — Specifies a name for the debugging output file. Wildcards are not
allowed.

Generally, preprocessing consists of the following compiler directives. “ifdef, "else, "elsif,
“endif, “ifndef, “define, “undef, “include.

The “line directive attempts to preserve line numbers, file names, and level in the output file
(per the 1800-2009 LRM). White space is usually preserved, but sometimesit may be
deleted or added to the output file.

332

ModelSim Reference Manual, v10.1c

Commands
viog

® -Edebug <filename>

(optional) Captures text processed by the Verilog parser after preprocessing has occurred
and copies that text to a debugging output file.

<filename> — Specifies a name for the debugging output file. Wildcards are not
allowed.

Generally, preprocessing consists of the following compiler directives. “ifdef, "else, "elsif,
“endif, “ifndef, "define, "undef, “include. The file is a concatenation of source files with
“include expanded. The file can be compiled and then used to find errorsin the origina
source files. The “line directive attempts to preserve line numbers and file namesin the
output file. White space is usually preserved, but sometimes it may be deleted or added to
the output file.

®* _enumfirstinit

(optional) Initializes enum variables in SystemVerilog using the leftmost value as the
default. Y ou must also use the argument with the vsim command in order to implement this
initialization behavior. Specify the EnumBaselnit variable as 0 in the modelsim.ini fileto set
this as a permanent default.

® -Epretty <filename>

Captures text processed by the Verilog parser after preprocessing has occurred, performs
some formatting for better readability, and copies that text to an output file, <filename>.
Optional.

® -error <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "error.” Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

* f<filename>

Specifies afile with more command line arguments. Optional. Allows complex arguments
to be reused without retyping. Allows gzipped input files. Nesting of -f options is allowed.

Refer to the section "Argument Files" for more information.
* -force refresh <design unit>

Forces the refresh of all specified design units. Optional. By default, the work library is
updated; use -work <library _name>, in conjunction with -for ce _refresh, to update a
different library (for example, vlog -work <your_lib_name> -force_refresh).

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

** Error: (vsim-13) Recompile /u/test/dware/dware_6le_beta.dwpackages
because /home/users/questasim/linux/../synopsys.attributes has changed.

ModelSim Reference Manual, v10.1c 333

Commands

viog

The -for ce_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -r efr esh argument.

A more conservative approach to working around -r efr esh dependency checksisto
recompile the source code, if it isavailable.

-fsmimplicittrans | -nofsmimplicittrans

(optional) Toggles recognition of implied same state transitions. This setting is off by
default.

-fsmresettrans | -nofsmresettrans

(optional) Toggles recognition of synchronouos or asynchronous reset transitions. This
includes/excludes reset transitions in coverage results. This setting is on by default.

-fsmsingle | -nofsmsingle

(optional) Toggles the recognition of VHDL FSMs where the current state variable of type
std_logic, bit, boolean, or single-bit std logic_vector/bit_vector and Verilog single-bit
FSMs. This setting is off by default.

-fsmverbose[b | t | w]

Provides information about FSMs detected, including state reachability analysis. Optional.
b — displays only basic information.
t — displays atransition table in addition to the basic information.
w — displays any warning messages in addition to the basic information.

When you do not specify an argument, this switch reports all information similar to:

** Note: (vlog-1947) FSM RECOGNITION INFO

Fsm detected in : ../fpu/rtl/vhdl/serial_mul.vhd
Current State Variable : s_state :
../fpu/rtl/vhdl/serial_mul.vhd(76)

Clock : clk_1i

Reset States are: { waiting , busy }

State Set is : { busy , waiting }

Transition table is
L

busy => waiting Line : (114 => 114)

busy => busy Line : (111 => 111)

waiting => waiting Line : (120 => 120) (114 => 114)
waiting => busy Line : (111 => 111)

When you do not specify this switch, you will receive a message similar to:

** Note: (vlog-143) Detected 'l' FSM/s in design unit
'serial mul.rtl'.

-fsmxassign | -nofsmxassign

(optional) Toggles recognition of finite state machines (FSMs) containing X assignment.
This option is used to detect FSMs if current state variable or next state variable has been
assigned "X" valuein a"case" statement. FSM's containing X-assign are otherwise not
detectable. This setting is on by default.

334

ModelSim Reference Manual, v10.1c

Commands
viog

® -gen_xml <design_unit> <filename>

Produces an XML -tagged file containing the interface definition of the specified module.
Optional. This option requires a two-step process where you must 1) compile <filename>
into alibrary with vlog (without -gen_xml) then 2) execute vlog with the -gen_xml switch,
for example:

vlib work
vlog counter.v
vlog -gen_xml counter counter.xml

®* _-hazards

Detects event order hazards involving simultaneous reading and writing of the same register
in concurrently executing processes. Optional. Y ou must also specify this argument when
you simulate the design with vsim. Refer to “Hazard Detection” for more details.

Note
Enabling -hazardsimplicitly enables the -compat argument. As aresult, using this

argument may affect your ssmulation results.

® -ignorepragmaprefix <prefix>

(optional) Directs vlog to ignore synthesis and coverage pragmas with the specified
prefixname. All affected pragmas will be treated as regular comments. Edit the
IgnorePragmaPrefix modelsim.ini variable to set a permanent default.

<prefix> — Specifies auser defined string.
® +incdir+<directory>

Specifiesdirectoriesto search for filesincluded with “include compiler directives. Optional.
By default, the current directory is searched first and then the directories specified by the
+incdir options in the order they appear on the command line. Y ou may specify multiple
+incdir options as well as multiple directories separated by "+" in asingle +incdir option.

® .incr

Performs an incremental compilation. Optional. Compiles only code that has changed. For
example, if you change only one module in afile containing several modules, only the
changed module will be recompiled. Note however that if the compile options change, al
modul es are recompiled, regardless of whether you use vlog -incr or not.

* -isymfile

Generates a complete list of all imported tasks and functions (TFs). Used with DPI to
determine all imported TFs that are expected by Model Sim.

* | <filename>
(optional) Generates alog file of the compile.

ModelSim Reference Manual, v10.1c 335

Commands

viog

+libcell | +nolibcell

+libcell — Treats all modules found and compiled by source library search as though
they contained a ‘ celldefine compiler directive, thus marking them as cells (refer to
the -v and -y arguments of vlog, which enable source library search). Using the
+libcell argument matches historical behavior of Verilog-XL with respect to source
library search. Optional.

+nolibcell — (default) Disables treating all modules found and compiled by source
library search as though they contained a‘ celldefine compiler directive. That is, this
argument restores the default library search behavior if you have changed it using the
+libcell | +nolibcell argument. Optional.

Note

By default, wildcard logging and code coverage exclude cells. For more information,
refer to the -nocovercells and -covercells arguments of viog and to the description of
wildcard logging performed by the log command.

+libext+<suffix>

Worksin conjunction with the -y option. Specifiesfile extensions for the filesin a source
library directory. Optional. By default, the compiler searches for files without extensions. If
you specify the +libext argument, then the compiler will search for afile with the suffix
appended to an unresolved name. Y ou may specify only one +libext option, but it may
contain multiple suffixes separated by the plus character (+). The extensions aretried in the
order you specify them with the +libext argument.

-libmap <pathname>

SpecifiesaVerilog 2001 library map file. Optional. Y ou can omit this argument by placing
the library map file as the first option on the vlog invocation (e.g., viog top.map top.v
top_cfg.v).

-libmap_verbose

Displays library map pattern matching information during compilation. Optional. Use to
troubleshoot problems with matching filename patternsin alibrary file.

+librescan
Scans libraries in command-line order for all unresolved modules. Optional.
-line <number>

Starts the compiler on the specified line in the Verilog source file. Optional. By default, the
compiler starts at the beginning of thefile.

-lint
(optional) Issues warnings on the following lint-style static checks:
o when Module portsare NULL.

o when assigning to an input port.

336

ModelSim Reference Manual, v10.1c

Commands
viog

o when referencing undeclared variables/nets in an instantiation.

This switch generates additiona array bounds-checking code, which can slow down
simulation, to check for the following:

o index warnings for dynamic arrays
o when an index for aVerilog unpacked variable array reference is out of bounds.

The warnings are reported as WARNING]8]. Y ou can aso enable this option using the
Show_Lint variable in the modelsim.ini file.

®* _|rmclassinit

Changes initialization behavior to match the SystemV erilog specification (per IEEE Std
1800-2007) where all superclass properties will be initialized before any subclass
properties.

* +maxdelays

Selects maximum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

* +mindelays

Selects minimum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

® -mixedansiports
Permits partial port redeclarations.
® -mixedsvwwh[b|s]|V]

Facilitates using SystemV erilog packages at the SystemVerilog-VHDL boundary of a
mixed-language design. When you compile a SystemV erilog package with -mixedsvvh, the
package can be included in aVHDL design asif it were defined in VHDL itself. Optional.

b — treats all scalars/vectorsin the package as VHDL bit/bit_vector
s— treats all scalars/vectorsin the package as VHDL std_logic/std_logic_vector
v — treats all scalars/vectorsin the package as VHDL vl_logic/vl_logic_vector

* -mfcu

Instructs the compiler to treat al files within a compilation command line as asingle
compilation unit. Optional. The default behavior isto treat each file listed in acommand as
aseparate compilation unit, per the SystemV erilog standard. Prior versions concatenated the
contents of the multiple filesinto a single compilation unit by default. Y ou can also enable
this option using the MultiFileCompilationUnit variable in the modelsim.ini file.

ModelSim Reference Manual, v10.1c 337

Commands

viog

-modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overridesthe
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

-nodbgsym
Disables the generation of the symbols debugging database in the compiled library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at
the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

Y ou should only specify this switch if you know that anyone using the library will not
require thisinformation for design analysis purposes.

-noexcludeternary <design_unit>

(optional) Disables the automatic exclusion of UDB coverage data rows resulting from
ternary expressions for the specified design unit. Normal operation for code coverage isto
include rows corresponding to the case where two data inputs are the same, and the select
input isa“don’t care”. To disable this automatic exclusion for the entire design, use “vsim
-noexcludeternary” instead.

-noForceUnsignedToV hdlInteger

Prevents untyped Verilog parameters in mixed-language designs that are initialized with
unsigned values between 2* 31-1 and 2* 32 from being converted to aVHDL generic. By
default, untyped Verilog parameters that are initialized with unsigned values between 2* 31-
1 and 2* 32 are converted to VHDL INTEGER generics. Because VHDL INTEGER
parameters are signed numbers, the Verilog values 2* 31-1 to 2* 32 are converted to negative
VHDL valuesin the range from -2* 31 to -1 (the 2's complement value).

-noincr

Disables incremental compilation previously turned on with -incr argument. Optional.
Default.

-nologo

Disables the startup banner. Optional.

+nospecify

Disables specify path delays and timing checks. Optional.
-note <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

338

ModelSim Reference Manual, v10.1c

Commands
viog

® +notimingchecks
Removes all timing check entries from the design asiit is parsed. Optional.
® -novtblfixup

Causes virtual method callsin SystemV erilog class constructors to behave as they would in
normal class methods, which prevents the type of a this reference from changing during
construction.

This overrides default behavior, where the type of a this referenceistreated asif itisa
handle to the type of the active new () method while a constructor is executing (which
implies that virtual method calls resolve will not execute methods of an uninitialized class
type).

* +nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings that
can be disabled include the <CODE> name in square brackets in the warning message. For
example,

** Warning: test.v(15): [RDGN] - Redundant digits in numeric
literal.

This warning message can be disabled by specifying +nowarnRDGN.
® -nowarn <category number>

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. Multiple -nowarn switches are
allowed. Warnings may be disabled for all compiles viathe Main window Compile >
Compile Options menu command or the modelsim.ini file (refer to modelsim.ini
Variables).

The warning message categories are described in Table 2-7:

Table 2-7. Warning Message Categories for vlog -nowarn

Category | Description
number
12 non-LRM compliance in order to match Cadence behavior
13 constructs that code coverage can't handle
® -oldsv

(optional) Allows unpacked array concatenation on input ports to be treated as an
assignment pattern. Accepts constant expressions in variable loop list with the standard
foreach syntax —foreach (array([i, j, k]) —and alternate foreach syntax — foreach
(array[i][j1[K])-

® -override_timescale <time_unit>/ <time_precision>

Specifiesatimescale for al compiled design units. This timescale overrides all ‘timescale
directives and al declarations of timeunit and timeprecision. Optional.

ModelSim Reference Manual, v10.1c 339

Commands

viog

time_unit — unit of measurement for times and delays. This specification consists of
one of three integers (1, 10, or 100) representing order of magnitude and one of six
character strings representing units of measurement:

{1]10| 100} {s|ms|us|ns|ps|fs}

For example, 10 ns.

time_precision — unit of measurement for rounding delay values before being used in
simulation. Allowable values are the same as for time_unit.

-O0

L ower the optimization to aminimum with -OO0 (capital oh zero). Optional. Use thisto work
around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out.

-pedanticerrors
(optional) Enforces strict compliance of the IEEE Std 1800-2005 in the following cases:

® Covergroup bin size, value range, or transition specification must be constant.

® Using "new” for queuesis not legal. When strict compliance is not enforced, use of
"new" creates a queue of the specified size where all elements are initialized to the
default value of the queue element type.

® Using underscore character (_) in sized, based literalsis not legal. When you specify this
argument, an error will occur for literals such as 2'b_01.

® Omitting the grave accent mark (*) preceding the left brace ({) when writing structure
literasisnot legal. When you specify this argument, an error will occur for literals
written without that mark.

® |nserting the grave accent mark to precede quotation marks (") that enclose string
literalsis not legal—only string literals within quotation marks (') are allowed. When
you specify this argument, an error will occur for string literals using that mark.

® Using class extern method prototypes with lifetime (automatic/static) designations
produces a compliance error (instead of awarning).

® Using “cover bool@clk” asaPSL statement.

® Using realtime data types in SystemV erilog assertions.

® Using an unsized constant in a concatenation if it is the leftmost value in the list.
This argument also produces a report of mismatched ‘el se directives.

-permissive

Allows messagesin the LRM group of error messages to be downgraded to a warning.
Optional.

340

ModelSim Reference Manual, v10.1c

Commands
viog

® -permit_defunct_sv

Allows using a selected set of constructs no longer supported by the SystemVerilog
standard. Currently, the set supports only the use of the keyword “char.” This argument
allows use of the keyword “char” to be interpreted as the SystemVerilog “byte” type.
Optional.

® -printinfilenames

Prints the path names of all source files opened (including “include’ files) during the
compile. Specifies whether each fileisa Verilog or SystemVerilog file.

® -Quiet
Disables 'L oading' messages. Optional.
* -R[<simargs>]

Instructs the compiler to invoke vsim after compiling the design. The compiler
automatically determines which top-level modules are to be ssimulated. The command line
arguments following -R are passed to the ssmulator, not the compiler. Place the -R option at
the end of the command line or terminate the simulator command line arguments with a
single"-" character to differentiate them from compiler command line arguments.

The -R option isnot aVerilog-XL option, but it is used by Model Sim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. Itis
not recommended that you regularly use this option because you will incur the unnecessary
overhead of compiling your design for each simulation run. Mainly, it is provided to ease
the transition to Model Sim.

* _refresh

Regenerates alibrary image. Optional. By default, the work library is updated. To update a
different library, use -work <library_name> with -refresh (for example, vliog -work
<your_lib_name> -refresh). If a dependency checking error occurs which prevents the
refresh, use the vliog -for ce refresh argument. See vlog examples for more information.

Y ou may use a specific design name with -r efr esh to regenerate alibrary image for that
design, but you may not use afile name.

* _sfcu

Instructs the compiler to treat all files within a compilation command line as a separate
compilation units. Thisis the default behavior and is the inverse of the behavior of -mfcu.

This switch will override the MultiFileCompilationUnit variableif it isset to "1" in the
modelsim.ini file.

® -source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

ModelSim Reference Manual, v10.1c 341

Commands

viog
* s
Instructs the compiler not to load the standar d package. Optional. This argument should
only be used when you are compiling the sv_std package.
* -sv
Enables SystemVerilog features and keywords. Optional. By default Model Sim follows the
|EEE Std 1364-2001 and ignores SystemV erilog keywords. If asourcefilehasa".sv"
extension, Model Sim will automatically parse SystemV erilog keywords.
® -svext[=[+|-]<extension>[,[+]-]<extension>]*]
(optional) Enables SystemV erilog language extensions.
Where <extension> is one of the following:
feci — Treat constant expressionsin aforeach loop variable index as constant.
pae — Automatically export all symbolsimported and referenced in a package.
uslt — (default) Promote unused design units found in source library files specified
with the -y option to top-level design units.
sps — (default) Search for packagesin source libraries specified with -y and +libext.
Multiple extensions are specified as a comma separated list. For example:
vlog -svext=-feci,+uslt,spsl
® -svinputport=net | var | relaxed
Used in conjunction with -sv to determine the default data type assigned to an input port
declaration. Optional.
net — declares the port to be a net. This value enforces strict compliance to the Verilog
LRM (IEEE Std 1364-2005), where the port declaration defaults to wire.
var — declares the port to be avariable. This value enforces behavior from previous
releases, where the port declaration defaultsto variable.
relaxed — (default) declares the port to be anet only if the type is a 4-state scalar or
4-state single dimensional vector. Otherwise, the port is declared a variable.
® -svO5compat
Used in conjunction with the -sv switch to ensure compatibility with the reserved keyword
set of |EEE Std 1800-2005.
¢ -svO09compat
Used in conjunction with the -sv switch to ensure compatibility with the reserved keyword
set of |EEE Std 1800-2009.
® -svl2compat
Used in conjunction with the -sv switch to ensure compatibility with the reserved keyword
set of |IEEE Std 1800-2012.
342 ModelSim Reference Manual, v10.1c

Commands
viog

® -skipprotected
Ignores any * protected/* endprotected region contained in amodule. Optional.
® -skipprotectedmodule

Prevents adding any module containing a ‘ protected/ endprotected region to the library.
Optional.

® -suppress <msg_number>[,<msg_number>,...]

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. Y ou cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “ Changing message Severity Level” for more information.

®* -time

Reports the "wall clock time" vlog takes to compile the design. Optional. Note that if many
processes are running on the same system, wall clock time may differ greatly from the
actual "cpu time" spent on vlog.

® -timescale <time_units>/<time_precision>

Specifies the default timescale for modules not having an explicit timescale directive in
effect during compilation. Optional. The format of the -timescale argument is the same as
that of the "timescale directive. The format for <time_units> and <time_precision> is
<n><units>. The value of <n> must be 1, 10, or 100. The value of <units> must befs, ps,
ns, us, ms, or s. In addition, the <time_units> must be greater than or equal to the
<time_precision>.

* +typdelays

Selectstypical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

* -u

Convertsregular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Optional.

e _v<library file>

Specifies a source library file containing module and UDP definitions. Optional. Refer to
“Verilog-XL Compatible Compiler Arguments’ for more information.

After all explicit filenames on the viog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet defined.
Modules and UDPs within the file are compiled only if they match previously unresolved
references. Multiple -v options are allowed. See additional discussion in the examples.

® -version
Returns the version of the compiler as used by the licensing tools. Optional.

ModelSim Reference Manual, v10.1c 343

Commands

viog

-vlog0lcompat
Ensures compatibility with rules of IEEE Std 1364-2001. Default.
-vlog95compat

Disables Verilog 2001 keywords, which ensures that code that was valid according to the
1364-1995 spec can still be compiled. By default Model Sim follows the rules of |EEE Std
1364-2001. Some requirements in 1364-2001 conflict with requirements in 1364-1995.
Optional. Edit the vlog95compat variable in the modelsim.ini file to set a permanent default.

-vmake

Generates a complete record of all command line data and files accessed during the compile
of adesign. Thisdatais then used by the vmake command to generate a comprehensive
makefile for recompiling the design library. By default, vcom stores compile data needed
for the -refresh switch and ignores compile data not needed for -refresh. The -vmake switch
forcesinclusion of al file dependencies and command line data accessed during a compile,
whether they contribute data to the initial compile or not. Executing this switch can increase
compiletimein addition to increasing the accuracy of the compile. See the vmake command
for more information.

-warning <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “ Changing
Message Severity Level” for more information.

-work <library_name>

Specifies alogical name or pathname of alibrary that isto be mapped to the logical library
wor k. Optional; by default, the compiled design units are added to the work library. The
specified pathname overrides the pathname specified for work in the project file.

-writetoplevels <fileName>

(optional) Records the names of all top level module names in a specified file. Also records
any compilation unit name specified with -cuname. May only be specified when compiling
the top level modules.

<fileName> — Required. Specifies the name of the file where module names are to be
recorded.

-y <library_directory>

Specifiesasource library directory containing definitions for modules, packages, interfaces,
and user-defined primitives (UDPs). Usually, thisisadirectory of sourcefilesthat you want
to scan if the compiled versions do not already exist in alibrary. Optional. Refer to
“Verilog-XL Compatible Compiler Arguments’ for more information.

After all explicit filenames on the viog command line have been processed, the compiler

uses the -y option to find and compile any modules that were referenced but not yet defined.
Fileswithin this directory are compiled only if the file names match the names of previously
unresolved references. Multiple -y options are allowed. Y ou will need to specify afile suffix

344

ModelSim Reference Manual, v10.1c

Commands
viog

by using -y in conjunction with the +libext+<suffix> option. See additional discussion in
the examples.

Note
D Any -y arguments that follow a-r efr esh argument on a viog command line are ignored.

Any -y arguments that come before the -r efr esh argument on avlog command line are
processed.

* <filename>
Specifies the name of the Verilog source code file to compile. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.
Examples
® Compilethe Verilog source code contained in the file example.vig.

vlog example.vlg

® After compiling top.v, vlog will scan the file undl1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vlog top.v -v undl

® After compiling top.v, vlog will scantheviog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
impliesfilenameswith a.v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y vlog_lib

The -work option specifies mylib as the library to regenerate. -r efr esh rebuilds the
library image without using source code, alowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of Model Sim.

® If your library contains VHDL design units, be sure to regenerate the library with the
vcom command using the -r efr esh option as well. Refer to “Regenerating Y our Design
Libraries” for more information.

vliog -work mylib -refresh

® The-incr option determines whether or not the module source or compile options have
changed as modulel.v is parsed. If no change is found, the code generation phaseis
skipped. Differencesin compile options are determined by comparing the compiler
options stored in the _info file with the compiler options given. They must match
exactly.

vliog modulel.v -u -00 -incr

ModelSim Reference Manual, v10.1c 345

Commands
viog

® The-timescale option specifies the default timescale for modulel.v, which did not have
an explicit timescale directive in effect during compilation. Quotes (" ") are necessary
because the argument contains white spaces.

vlog modulel.v -timescale "1 ns / 1 ps"

346 ModelSim Reference Manual, v10.1c

Commands
vmake

vmake

The vmake utility allows you to use a UNIX or Windows MAKE program to maintain
individual libraries. Y ou run vmake on a compiled design library. This utility operates on
multiple source files per design unit; it supports Verilog include files as well as Verilog and
VHDL PSL vunit files.

Note
D If adesign is spread across multiple libraries, then each library must have its own

makefile and you must build each one separately.

By default, the output of vmake is sent to stdout—however, you can send the output to a
makefile by using the shell redirect operator (>) along with the name of the file. Y ou can then
run the makefile with a version of MAKE (not supplied with Model Sim) to reconstruct the
library. This command must be invoked from either the UNIX or the Windows/DOS prompt.

A MAKE program isincluded with Microsoft Visual C/C++, aswell as many other program
devel opment environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. Y ou run vmake only once; then you can simply run MAKE
to rebuild your design. If you add new design units or delete old ones, you should re-run vmake
to generate a new makefile.

The vmake utility ignores library objects compiled with -nodebug.
This command provides additional information with the -help switch.

Syntax
vmake [-cygdrive] [-du <design_unit_name> ...] [-f <filename>] [-fullsrcpath] [-ignore]
[<library_name>] [-modelsimini <ini_filepath>]
Arguments
® -cygdrive

Generates a makefile that uses a path specified with UNIX pathname conventions. Use this
argument if you are using cygwin v3.81 or later (which no longer supports Windows
conventions for drive and pathname). Optional.

® -du<design_unit_name>

Specifies that avmake file will be generated only for the specified design unit. Y ou can
specify this argument any number of times for a single vmake command. Optional.

* -f <filename>
Specifies afile to read command line arguments from. Optional .
Refer to the section "Argument Files' for more information

ModelSim Reference Manual, v10.1c 347

Commands
vmake

-fullsrcpath

Produces compl ete source file paths within generated makefiles. By default, source file
paths are relative to the directory in which compilations originally occurred. Use this
argument to copy and evaluate generated makefiles within directories that are different from
where compilations originally occurred. Optional.

-ignore

Omits amake rule for the named primary design unit and its secondary design units.
Optional.

<library_name>

Specifies the library name; if noneis specified, then work is assumed. Optional.

-modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overridesthe
file path specified by the MODEL SIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems, the path separator should be a
forward slash (/). Optional.

Examples

® To produce a makefile for the work library:
vmake >mylib.mak

®* Torunvmake on libraries other than work:
vmake mylib >mylib.mak

® Torebuild mylib, specify its makefile when you run MAKE:
make -f mylib.mak

® Tousevmakeand MAKE on your work library:
C:\MIXEDHDL> vmake >makefile

® Toedit an HDL source file within the work library:

C:\MIXEDHDL> make

Y our design gets recompiled for you. Y ou can change the design again and re-run
MAKE to recompile additional changes.

® Torunvmake on libraries other than work:

C:\MIXEDHDL> vmake mylib >mylib.mak

® Torebuild mylib, specify its makefile when you run MAKE:

C:\MIXEDHDL> make -f mylib.mak

348

ModelSim Reference Manual, v10.1c

Commands
vmap

vmap

The vmap command defines a mapping between alogical library name and a directory by
modifying the modelsim.ini file.

With no arguments, vmap reads the appropriate modelsim.ini file(s) and prints to the transcript
the current logical library to physical directory mappings.

This command provides additional information with the -help switch.

Syntax

vmap [-c | -del <logical_name> ... | <logical_name> [<path>]]

[-modelsimini <path/modelsim.ini>]

Arguments

-C

(optional) Copies the default modelsim.ini file from the Model Sim installation directory to
the current directory.

This argument is intended only for making a copy of the default modelsim.ini file to the
current directory. Do not use it while making your library mappings or the mappings may
end up in the incorrect copy of the modelsim.ini.

-del <logical_name> ...

(optional) Deletes the mapping specified by <logica _name> from the current project file.
Y ou can specify multiple logica name arguments to the -del switch to delete multiple
library mappings.

<logical_name> [<path>]

(optional) Maps alogical library name to the specified physical library.

If you do not specify <path> the command returns the current mapping for <logical_name>.
-modelsimini <path/modelsim.ini>

(optional) Loads an dternate initialization file that replaces the current initialization file.
Overridesthe file path specified in the MODEL SIM environment variable. Specifies either
an absolute or relative path to theinitialization file. On Windows systems the path separator
should be aforward dlash (/).

Examples

®* Maptwo logical librariesto the physical library “work”, then delete the two logical
libraries:
vlib work

vmap libraryl work
vmap library2 work

* Display information about the logical library “library1”:

ModelSim Reference Manual, v10.1c 349

Commands
vmap

vmap libraryl
® Deletethelogical library mappings:

vmap -del libraryl library?2

350 ModelSim Reference Manual, v10.1c

Commands
vsim

vsim

The vsim command invokes the VSIM simulator, which you can use to view the results of a
previous simulation run (when invoked with the -view switch), or to view coverage data stored
in the UCDB from a previous simulation run (when invoked with the -viewcov switch).

Y ou can simulate a VHDL configuration or an entity/architecture pair, aVerilog module or
configuration. If you specify a VHDL configuration, it isinvalid to specify an architecture.
During elaboration vsim determinesif the source has been modified since the last compile.

Y ou can use this command in batch mode from the Windows command prompt. Refer to “Batch
Mode” for more information on the VSIM batch mode.

To manually interrupt design loading, use the Break key or <Ctrl-C> from a shell.

Y ou can invoke vsim from a command prompt or in the Transcript window of the Main
window. Y ou can also invoke it from the GUI by selecting Simulate > Start Simulation.

All arguments to the vsim command are case sensitive; for example, -g and -G are not
equivalent.

Syntax

Note
This Syntax section presents all of the vsim switches in alphabetical order, while the
Arguments section groups the arguments into the following sections:

Arguments, all languages
Arguments, VHDL
Arguments, Verilog
Arguments, object

vsim [options]

[options]:
[-absentisempty] [+alt_path_delays] [-assertfile <filename>]
[+bitblast[=[iopath | tcheck]]]
[-c] [-capacity][-classdebug] [-colormap new]

[-debugdb=<db_pathname>] [-defaultstdlogicinittoz] [+delayed timing_checks]
[-display <display_spec>] [-displaymsgmode both | tran | wif]
[-do “<command_string>" | <macro_file_name>] [-donotcollapsepartiallydriven]
[-dpiforceheader]
[-dpiforceheader] [-dpiheader] [-dpilib <libname>] [-dpioutoftheblue 0| 1 | 2]
[+dumpports+collapse | +dumpports+nocollapse] [+dumpportst+direction]
[+dumpports+no_strength_range] [+dumpports+unique]

[-error <msg_number>[,<msg_number>,...]]
[-enumfirstinit]
[-errorfile <filename>]

ModelSim Reference Manual, v10.1c 351

Commands

vsim

[-f <filename>] [-fatal <msg_number>[,<msg_number>,...]]

[-g <Name>=<Vadue> ...] [-G<Name>=<Vaue> ...] [-gblso <filename>]
[-geometry <geometry spec>] [-gui]

[-hazards] [-help]

[-]
[+initregNBA] [-installcolormap]

[-keeploaded)] [-keeploadedrestart] [-keepstdout]

[-I <filename>] [-L <library_name> ...] [-lib <libname>]
[<library_name>.<design_unit>] [-Lf <library _name> ...]

[+maxdelays] [+mindelays]
[-modelsimini <ini_filepath>]
[-msglimit <msg_number>[,<msg_number>,...]] [-msgmode both | tran | wif]
[-multisource_delay min | max | latest] [+multisource int_delays]

[-name <name>] [+no_autodtc] [-noautoldlibpath] [-nodpiexports]
[+no_cancelled e msg] [+no_glitch_ msg] [+no_neg_tchk] [+no_notifier]
[+no_path _edge] [+no_pulse_msg] [-no_risefall _delaynets]
[+no_show_cancelled €] [+no_tchk _msg] [-nocollapse] [-nocapacity] [-nocompress]
[-noexcludehiz] [-noexcludeternary] [-nofileshare]

[-noimmedca) [-noglitch] [-noschematic]

[+nosdferror] [+nosdfwarn] [+nospecify] [-nostdout]

[-note <msg_number>[,<msg_number>,...]]

[+notimingchecks | +ntcnotchks] [-novhdlvariablelogging] [+nowarnBSOB]
[+nowarn<CODE | number>] [-nowiremodelforce] [+ntc_warn] [+ntcnotchks]

[-oldvhdlforgennames] [-onfinish ask | stop | exit | final]

[-pduignore]=<instpath>]] [-permissive] [-pli "<object list>"]
[-plicompatdefault [latest | 2005 | 2001]] [+<plusarg>] [-printsimstats]
[+pulse_el<percent>] [+pulse_e style ondetect] [+pulse e style onevent]
[+pulse_r/<percent>]

[-quiet]
[-runinit]

[+sdf_iopath_to prim_ok]
[+sdf_nocheck _celltype]
[-sdfmin | -sdftyp | -sdf max| @<delayScale>] [<instance>=]<sdf _filename>]
[-sdfminr | -sdftypr | -sdfmaxr[@<delayScale>] [<instance>=]<sdf filename>]
[-sdf maxerrors <n>] [-sdfnoerror] [-sdfnowarn] [+sdf _report_unannotated_insts)
[+sdf_verbose] [-std_input <filename>] [-std_output <filename>]
[+show_cancelled €]
[-strictvital] [-suppress <msg_number>[,<msg_number>,...]] [-sv_lib <shared_obj>]
[-sv_liblist <filename>] [-sv_root <dirname>]
[-sync]

[-t [<multiplier>]<time_unit>] [-tab <tabfile>] [-tag <string>] [-title <title>]
[-trace foreign <int>] [+transport_int_delays]
[+transport_path delays] [+typdelays]

352

ModelSim Reference Manual, v10.1c

Commands
vsim

[-usenonstdcoveragesavesysf]
[-uvmcontrol={ <args>}]

[-v2k_int_delays][-vcdstim [<instance>=]<filename>]
[-version] [-vhdlvariablelogging] [-view [<alias_name>=]<WLF_filename>]
[-viewcov [<dataset_name>=]<UCDB_filename>] [-visual <visual>] [-vital2.2b]

[-warning <msg_number>[,<msg_number>,...]] [-wIf <file_name>]
[-wlfcachesize <n>] [-wlfcollapsedelta] [-wlfcollapsetime] [-nowlfcollapse]
[-wIfcompress] [-nowlfcompress] [-wlfdel eteonquit] [-nowlfdel eteonquit]
[-wiflock] [-nowlflock] [-wlfopt] [-nowlfopt] [-wIfsimcachesize <n>] [-wiIfdlim
<size>]

[-wliftlim <duration>]

Arguments, all languages

-assertfile <filename>

(optional) Designates an alternative file for recording VHDL assertion messages. An
alternate file may also be specified by the AssertFile modelsim.ini variable. By defaullt,
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file. Refer to “ Creating a Transcript File” for more information.

+bitblast[=[iopath | tcheck]]

(optional) Enables bit-blasting of specify block iopaths and timing checks (tchecks) with
wide atomic ports. Without the optional qualifiers, the switch operates on both specify paths
and tchecks. The qualifiers work as follows:

+bitblast=iopath — bit-blasts only specify paths with wide ports.
+bitblast=tcheck — bit-blasts only tchecks with wide ports.
This switch isintended for use with applications employing SDF annotation.
-C
(optional) Specifies that the simulator isto be run in command-line mode. Refer to “Modes
of Operation” for more information.
-capacity
(optional) Enables the fine-grain analysis display of memory capacity where the default is
coarse-grain analysis display.
-colormap new
(optional) Specifies that the window should have a new private colormap instead of using
the default colormap for the screen.
-debugdb=<db_pathname>

(optional) Instructs Model Sim to generate a database of connectivity information to be used
for post-sim debug in the Dataflow and Schematic windows. The database pathname should
have a.dbg extension. If adatabase pathname is not specified, Model Sim creates a database
file named vsim.dbg in the current directory.

ModelSim Reference Manual, v10.1c 353

Commands

vsim

An existing .dbg file will be reused and a note printed to the transcript when the -debugdb
switch is specified and your design has not changed since the database was created.

Refer to “ Post-Simulation Debug Flow Details’ for more information.
-defaultstdlogicinittoz

(optional) Setsthe default VHDL initialization of std_logicto "Z" (high impedance) for
ports of type OUT and INOUT. |IEEE Std 1076-1987 VHDL Language Reference Manual
(LRM) compliant behavior isfor std_logic to initialize to "U" (uninitialized) which is
incompatible with the behavior expected by synthesis and hardware.

-display <display_spec>

(optional) Specifies the name of the display to use. Does not apply to Windows platforms.
For example:

-display :0

-displaymsgmode both | tran | wif

(optional) Controls the transcription of $display system task messages to the transcript
and/or the Message Viewer. Refer to the section "Message Viewer Window" inthe User’s
Manual for more information and the displaymsgmode .ini file variable.

both — outputs messages to both the transcript and the WLF file.

tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer. Default behavior.

wlif — outputs messages only to the WLF file/Message Viewer, therefore they are not
available in the transcript.

The display system tasks displayed with this functionality include: $display, $strobe,
$monitor, $write as well as the analogous file 1/0 tasks that write to STDOUT, such as
$fwrite or $fdisplay.

-do “<command_string>" | <macro_file_name>

(optional) Instructs vsim to use the command(s) specified by <command_string> or the
macro file named by <macro_file_name> rather than the startup file specified in the .ini file,
if any. Multiple commands should be separated by semi-colons (;).

-donotcollapsepartiallydriven

(optional) Prevents the collapse of partially driven and undriven output ports during
optimization. Prevents incorrect values that can occur when collapsed.

+dumpports+collapse | +dumpports+nocol lapse

(optional) Determines whether vectors (VCD id entries) in dumpports output are collapsed
or not. The default behavior is collapsed, and can be changed by setting the
DumpportsCollapse variable in the modelsim.ini file.

+dumpports+direction
(optional) Modifies the format of extended VCD filesto contain direction information.

354

ModelSim Reference Manual, v10.1c

Commands
vsim

® +dumpports+no_strength_range

(optional) Ignores strength ranges when resolving driver values for an extended VCD file.
This argument is an extension to the |IEEE 1364 specification. Refer to “Resolving Values’
for additional information.

® +dumpportstunique

(optional) Generates unique VCD variable namesfor portsin aVCD file even if those ports
are connected to the same collapsed net.

®* _enumfirstinit

(optional) Initializes enum variables in SystemVerilog using the leftmost value as the
default. Y ou must also use the argument with the viog command in order to implement this
initialization behavior. Specify the EnumBaselnit variable as 0 in the modelsim.ini fileto set
this as a permanent defaullt.

® -error <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "error.” Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

* _grorfile <filename>

(optional) Designates an alternative file for recording error messages. An aternate file may
also be specified by the ErrorFile modelsim.ini variable. By default, error messages are
output to the file specified by the TranscriptFile variable in the modelsim.ini file (refer to
“Creating a Transcript File").

* f<filename>

(optional) Specifies afile with more vsim command arguments. Allows complex argument
strings to be reused without retyping.

Refer to the section "Argument Files" for more information.
e -fatal <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "fatal.” Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

* -g<Name>=<Vaue> ...

(optional) Assignsavalueto all specified VHDL generics and Verilog parameters that have
not received explicit values in generic maps, instantiations, or via defparams (such as top-
level generics/parameters and generics/parameters that would otherwise receive their
default values).

Note there is a space between -g and <Name>=<Value> however, no spaces are allowed in
the specification, unless enclosed in quotes when specifying a string value. Multiple -g
options are allowed, one for each generic/parameter, specified as a space separated list.

ModelSim Reference Manual, v10.1c 355

Commands

vsim

<Name> — Name of a generic/parameter, exactly asit appearsin the VHDL source
(caseisignored) or Verilog source. Name may be prefixed with arelative or absolute
hierarchical path to select generics in an instance-specific manner. For example,
specifying -g/top/ul/tpd=20ns on the command line would affect only the tpd generic
on the /top/ul instance, assigning it avalue of 20ns. Specifying -gul/tpd=20ns affects
the tpd generic on all instances named ul. Specifying-gtpd=20ns affects all generics
named tpd.

<Value> — Specifies an appropriate value for the declared data type of a VHDL
generic or any legal value for aVerilog parameter. Make sure the value you specify
for aVHDL genericisappropriate for VHDL declared datatypes. Integers are treated
as signed values. For example, -gp=-10 overwrites the parameter p with the signed
value of -10.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram/ul/tpd_hl=10ns -gtpd_hl=15ns top
This command setstpd_hl to 10ns for the /top/ranVul instance. However, all other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records) cannot
be set from the command line. However, you can set string arrays, std_logic vectors, and bit
vectors if they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks (" ") must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this command
from ashell, put single quotes (* *) around the string. For example:

-gstrgen="'"This is a string"'

If working within the Model Sim GUI, you would enter the command as follows:

{-gstrgen="This is a string"}

Y ou can also enclose the value escaped quotes (\"), for example:

-gstrgen=\"This is a string\"

-G<Name>=<Vdue> ...

(optional) Same as -g (see above) except that it will also override generics/parameters that
received explicit values in generic maps, instantiations, or from defparams.

Note there is a space between -G and <Name>=<Vaue> however, no spaces are allowed in
the specification, unless enclosed in quotes when specifying astring value. Thisargument is
the only way for you to alter the generic/parameter, such asits length, (other than its value)
after the design has been loaded.

<Name> — Name of a generic/parameter, exactly asit appearsin the VHDL source
(caseisignored) or Verilog source. Name may be prefixed with arelative or absolute

356

ModelSim Reference Manual, v10.1c

Commands
vsim

hierarchical path to select genericsin an instance-specific manner. For example,
specifying -G/top/ul/tpd=20ns on the command line would affect only the tpd
generic on the /top/ul instance, assigning it a value of 20ns. Specifying
-Gul/tpd=20ns affects the tpd generic on all instances named ul. Specifying
-Gtpd=20ns affects all generics named tpd.

<Value> — Specifies an appropriate value for the declared data type of a VHDL
generic or any legal value for aVerilog parameter. Make sure the value you specify
for aVHDL genericisappropriate for VHDL declared datatypes. Integers are treated
as signed values. For example, -Gp=-10 overwrites the parameter p with the signed
value of -10.

® -gblso <filename>

(optional) On UNIX platforms, loads PLI/FLI shared objects with globa symbol visibility.
Essentially all data and functions are exported from the specified shared object and are
available to be referenced and used by other shared objects. Y ou can aso specify this
argument with the Global SharedObjectsList variable in the modelsim.ini file.

® -geometry <geometry spec>

(optional) Specifiesthe size and location of the main window. Where <geometry spec> is
of the form:

WxH+X+Y

* -qui

(optional) Starts the Model Sim GUI without loading a design and redirects the standard
output (stdout) to the GUI Transcript window.

* -help
(optional) Sends the arguments and syntax for vsim to the transcript.
*
(optional) Specifies that the simulator be run in interactive mode.
® +initregNBA
(optional) Specifiesthat +initreg settings applied to registers of sequential UDPs should be
non-blocking. Thisis useful when continuous assignments overwrite register initialization.
* -installcolormap

(optional) For UNIX only. Causes vsim to use its own colormap so as not to hog all the
colorson the display. Thisis similar to the -install switch on Netscape.

* -keeploaded

(optional) Prevents the ssmulator from unloading/reloading any FLI/PLI/VPI shared
libraries when it restarts or loads a new design. The shared libraries will remain loaded at
their current positions. User application code in the shared libraries must reset its internal
state during arestart in order for thisto work effectively.

ModelSim Reference Manual, v10.1c 357

Commands

vsim

-keepl oadedrestart

(optional) Prevents the ssmulator from unloading/reloading any FLI/PLI/VPI shared
libraries during arestart. The shared libraries will remain loaded at their current positions.
User application code in the shared libraries must reset itsinternal state during arestart in
order for thisto work effectively.

We recommend using this option if you'’ [l be doing warm restores after arestart and the user
application code has set callbacksin the simulator. Otherwise, the callback function pointers
might not be valid if the shared library isloaded into a new position.

-keepstdout

(optional) For use with foreign programs. Instructs the ssmulator to not redirect the stdout
stream to the Main window.

-| <filename>

(optional) Saves the contents of the Transcript window to <filename>. Default is taken from
the TranscriptFile variable (initially set to transcript) in the modelsim.ini. Y ou can aso
specify “stdout” or “stderr” as <filename>.

-L <library_name> ...

(optional) Specifiesthe library to search for design units instantiated from Verilog and for
VHDL default component binding. Refer to “Library Usage” for more information. If
multiple libraries are specified, each must be preceded by the -L option. Libraries are
searched in the order in which they appear on the command line.

-Lf <library_name> ...

(optional) Same as-L but libraries are searched before ‘ uselib directives. Refer to “Library
Usage” for more information.

-lib <libname>

(optional) Specifies the default working library where vsim will look for the design unit(s).
Default is"work".

-msglimit <msg_number>[,<msg_number>,...]

(optional) Limits the number of iterations of the specified message(s) to five then
suppresses all new instances. Refer to “ Suppressing VSIM Warning Messages” for more
information.

<msg_number>[,<msg_number>,...] — Specifies the message number(s) to limit to
five iterations. Multiple messages are specified as a comma-separated list.

-msgmode both | tran | wif

(optional) Specifiesthe location(s) for the simulator to output elaboration and runtime
messages.
both — outputs messages to both the transcript and the WLF file.

tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer. Default behavior.

358

ModelSim Reference Manual, v10.1c

Commands
vsim

wIf — outputs messages only to the WLF file/Message Viewer , therefore they are not
available in the transcript.

Refer to the section "Message Viewer Window" in the User’s Manual for more information.
® -modelsimini <ini_filepath>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODEL SIM environment variable. Specifies either
an absolute or relative path to the initialization file. On Windows systems the path separator
should be aforward slash (/).

®* -multisource_delay min | max | latest

(optional) Controls the handling of multiple PORT or INTERCONNECT constructs that
terminate at the same port. By default, the Module Input Port Delay (MIPD) is set to the
max value encountered in the SDF file. Alternatively, you may choose the min or latest of
the values. If you have a Verilog design and want to model multiple interconnect paths
independently, use the +multisour ce_int_delays argument.

* +multisource int_delays

(optional) Enables multisource interconnect delay with pulse handling and transport delay
behavior. Works for both Verilog and VITAL cells.

Use this argument when you have interconnect datain your SDF file and you want the delay
on each interconnect path modeled independently. Pulse handling is configured using the
+pulse_int_eand +pulse_int_r switches (described below).

The +multisour ce_int_delays argument cannot be used if you compiled using the -novital
argument to vcom. The -novital argument instructs vcom to implement VITAL
functionality using VHDL code instead of accelerated code, and multisource interconnect
delays cannot be implemented purely within VHDL.

¢ -name <name>

(optional) Specifies the application name used by the interpreter for send commands. This
does not affect the title of the window.

® -noautoldlibpath

(optional) Disables the default internal setting of LD _LIBRARY _PATH, enabling you to
set it yourself. Use this argument to make surethat LD _LIBRARY_PATH isnot set
automatically while you are using the GUI,

® -nocapacity
(optional) Disables the display of both coarse-grain and fine-grain analysis of memory
capacity.

® -nocompress

(optional) Causes VSIM to create uncompressed checkpoint files. This option may also be
specified with the CheckpointCompressMode variable in the modelsim.ini file.

ModelSim Reference Manual, v10.1c 359

Commands

vsim

-noimmedca

(optional) Causes Verilog event ordering to occur without enforced prioritization—
continuous assignments and primitives are not run before other normal priority processes
scheduled in the same iteration. Use this argument to prevent the default event ordering
where continuous assignments and primitives are run with “immediate priority.” Y ou may
also set even ordering with the ImmediateContinuousAssign variable in the modelsim.ini
file.

+no_notifier

(optional) Disables the toggling of the notifier register argument of al timing check system
tasks. By default, the notifier is toggled when there is atiming check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
in both Verilog and VITAL for the entire design.

-noschematic

(optional) Used with vsim -debugdb to generate a debug database for the Dataflow window
only. Will not remove schematic information that has already been generated by with vopt
-debugdb.

+nospecify

(optional) Disables specify path delays and timing checks in Verilog.

-nostdout

(optional) Directs al output to the transcript only when in command line and batch mode.
Prevents duplication of 1/O between the shell and the transcript file. Has no affect on
interactive GUI mode.

+no_tchk_msg

(optional) Disables error messages generated when timing checks are violated. For Verilog,
it disables messages issued by timing check system tasks. For VITAL, it overrides the
MsgOn arguments and generics.

Notifier registers are still toggled and may result in the propagation of Xs for timing check
violations.

-note <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "note." Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

+notimingchecks | +ntcnotchks

(optional) Disables Verilog timing checks. (This option sets the generic TimingChecksOn to
FALSE for al VHDL Vital modelswith the Vital _levelO or Vital _levell attribute. Generics
with the name TimingChecksOn on non-VITAL models are unaffected.) By default, Verilog
timing check system tasks ($setup, $hold,...) in specify blocks are enabled. For VITAL, the
timing check default is controlled by the ASIC or FPGA vendor, but most default to
enabled.

360

ModelSim Reference Manual, v10.1c

Commands
vsim

Additionally, +ntcnotchks maintains the delay net delays necessitated by negative timing
check limits. For this reason when using +ntcnotchksit is necessary to SDF annotate all
timing check values.

®* _nowiremodelforce

(optional) Restores the force command to previous usage (prior to version 10.0b) where an
input port cannot be forced directly if it is mapped at a higher level in VHDL and mixed
models. Signals must be forced at the top of the hierarchy connected to the input port.

® -pduignore[=<instpath>]
Ignore Preoptimized Design Unit (black-box). If <instpath> is not specified all PDUs found
in compiled libraries will be ignored. Otherwise the PDU specified by <instpath> will be
ignored. This option may be specified multiple times with different <instpath>s. Equival et
to the deprecated “-ignore_bbox” option.

® -permissive
(optional) Allows messagesin the LRM group of error messages to be downgraded to a
warning.

® -plicompatdefault [latest | 2005 | 2001]

(optional) Specifiesthe VPI object model behavior within vsim. This switch applies
globally, not to individual libraries.

latest — Thisisequivalent to the "2009" argument. Thisisthe default behavior if you do
not specify this switch or if you specify the switch without an argument.

2009 — Instructs vsim to use the object models as defined in |EEE Std P1800-2009
(unapproved draft standard). You can also use "09" asan alias.

2005 — Instructs vsim to use the object models as defined in IEEE Std 1800-2005 and
|EEE Std 1364-2005. Y ou can also use "05" as an alias.

2001 — Instructs vsim to use the object models as defined in IEEE Std 1364-2001.
When you specify this argument, SystemV erilog objects will not be accessible. You
can also use "01" as an alias.

Y ou can aso control this behavior with the PliCompatDefault variable in the modelsim.ini
file, where the -plicompatdefault argument will override the PliCompatDefault variable.

Y ou should note that there are afew cases where the 2005 VPl object model isincompatible
with the 2001 model, which is inherent in the specifications.

Refer to the appendix "Verilog Interfacesto C" in the User’s Manual for more information.
® -printsmstats

(optional) Prints the output of the simstats command to the transcript at the end of
simulation before exiting. Edit the PrintSimStats variable in the modelsim.ini file to set the
simulation to print the simstats data by default.

ModelSim Reference Manual, v10.1c 361

Commands

vsim

+pulse_int_e/<percent>

(optional) Controls how pulses are propagated through interconnect delays, where
<percent> isanumber between 0 and 100 that specifiesthe error limit as a percentage of the
interconnect delay. Used in conjunction with +multisource_int_delays (see above). This
option works for both Verilog and VITAL cells, though the destination of the interconnect
must be a Verilog cell. The source may be VITAL or Verilog.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rgection limit (see +pulse_int_r/<percent>
below) propagates to the output as an X. If the rejection limit is not specified, then it
defaults to the error limit. For example, consider an interconnect delay of 10 along with a
+pulse_int_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to 80%
of 10. This resultsin the propagation of pulses greater than or equal to 8, while all other
pulses are filtered.

+pulse_int_r/<percent>

(optional) Controls how pulses are propagated through interconnect delays, where
<percent> isanumber between 0 and 100 that specifiesthe rejection limit as a percentage of
the interconnect delay. This option works for both Verilog and VITAL cells, though the
destination of the interconnect must be a Verilog cell. The source may be VITAL or
Verilog.

A pulse less than the rejection limit is filtered. If the error limit is not specified by
+pulse_int_ethen it defaults to the regjection limit.

-quiet
(optional) Disable 'Loading’ messages during batch-mode simulation.
-runinit

(optional) Initializes non-trivial static SystemVerilog variables, for example expressions
involving other variables and function calls, before displaying the simulation prompt.

+sdf _iopath to _prim_ok

(optional) Prevents vsim from issuing an error when it cannot locate specify path delaysto
annotate. If you specify this argument, IOPATH statements are annotated to the primitive
driving the destination port if a corresponding specify path is not found. Refer to “ SDF to
Verilog Construct Matching” for additional information.

-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=|<sdf_filename>

(optional) Annotates VITAL or Verilog cellsin the specified SDF file (a Standard Delay
Format file) with minimum, typical, or maximum timing.

@<delayScale> — scales all values by the specified value. For example, if you specify
-sdfmax@1.5, all maximum valuesin the SDF file are scaled to 150% of their
original value.

362

ModelSim Reference Manual, v10.1c

Commands
vsim

<instance>= — specifies a specific instance for the associated SDF file. Use thiswhen
not performing backannotation at the top level.

<godf filename> — specifies the file containing the SDF information.
® -sdfminr | -sdftypr | -sdfmaxr[@<delayScale>] [<instance>=]<sdf _filename>

(optional) Specifies when an instance of a Preoptimized Design Unit (vopt -pdu, formerly
-bbox) with an associated default SDF file is to be re-annotated with minimum, typical, or
maximum timing from the specified SDF file.

@<delayScale> — scales all values by the specified value. For example, if you specify
-sdfmax@1.5, all maximum valuesin the SDF file are scaled to 150% of their
original value.

<instance>= — specifies a specific instance for the associated SDF file. Use this when
not performing back-annotation at the top level.

<sdf_filename> — specifies the file containing the SDF information.

Note
D The simulator assumes that the instance/timing object hierarchy in the new SDF fileis
compatible with the SDF file specified together with vopt -pdu (black-boxing).

The following is a simple usage flow:

Assume module top contains three instances (ul, u2, and u3) of a Preoptimized Design
Unit named pduM od.

vlib work
vlog pduMod.v

Preoptimize pduM od and annotate with sdfl.

vopt -pdu pduMod -o pduMod_opt -sdfmin pduMod=sdfl
vlog top.v

Use the default SDF file sdf1 for the PDU instance of ul, but override the SDF for u2
and u3.

vsim top +sdf_verbose -sdftypr /top/u2=sdf2 -sdfmaxr /top/u3=sdf3
run -all

* _gdfmaxerrors <n>

(optional) Controls the number of Verilog SDF missing instance messages to be generated
before terminating vsim. <n> is the maximum number of missing instance error messagesto
be emitted. The default number is 5.

* _gdfnoerror

(optional) Errorsissued by the SDF annotator while loading the design prevent the
simulation from continuing, whereas warnings do not. Changes SDF errors to warnings so
that the simulation can continue.

ModelSim Reference Manual, v10.1c 363

Commands

vsim

-sdfnowarn

(optional) Disables warnings from the SDF reader. Refer to “VHDL Simulation” for an
additional discussion of SDF.

+sdf _report_unannotated_insts

(optional) Enables error messages for any un-annotated V erilog instances with specify
blocks or VHDL instances with VITAL timing generics that are under regions of SDF
annotation.

+sdf _verbose

(optional) Turns on the verbose mode during SDF annotation. The Transcript window
provides detailed warnings and summaries of the current annotation as well as information
including the module name, source file name and line number.

-suppress <msg_number>[,<msg_number>,...]

(optional) Prevents the specified message(s) from displaying. Y ou cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “ Changing Message Severity Level” for more information.

-sync
(optional) Executes all X server commands synchronously, so that errors are reported
immediately. Does not apply to Windows platforms.

-t [<multiplier>]<time_unit>

(optional) Specifies the simulator time resolution. <time_unit> must be one of the
following:

fs, ps, ns, us, ms, sec

The default is 1ps; the optional <multiplier> may be 1, 10 or 100. Note that thereis no space
between the multiplier and the unit (for example, 10fs, not 10 fs).

If you omit the -t argument, the default simulator time resolution depends on design type:

o InaVHDL design—the value specified for the Resolution variable in modelsim.ini
is used.

o InaVerilog design with ‘timescal e directives—the minimum specified time
precision of al directivesis used.

o InaVerilog design with no ‘timescal e directives—the value specified for the
Resolution variable in the modelsim.ini fileis used.

o Inamixed design with VHDL on top—the value specified for the Resolution
variable in the modelsim.ini fileis used.

o Inamixed design with Verilog on top—

® for Verilog modules not under a VHDL instance: the minimum val ue specified
for their ‘timescale directivesis used.

364

ModelSim Reference Manual, v10.1c

Commands
vsim

® for Verilog modules under aVHDL instance: al their ‘timescale directives are
ignored (the minimum value for ‘timescale directives in all modules not under a
VHDL instance is used).

If there are no ‘timescale directives in the design, the value specified for the
Resolution variable in modelsim.ini is used.

Tip: After you have started a simulation, you can view the current simulator resolution by
using the report command as follows:

report simulator state

* _tab <tabfile>

(optional) Specifies the location of a Synopsys VCS “tab” file (.tab), which the simulator
uses to automate the registration of PLI functionsin the design.

<tabfile> — The location of a.tab file contains information about PLI functions. The
tool expectsthe .tab file to be based on Synopsys VCS version 7.2 syntax. Because
the format for thisfile is non-standard, changes to the format are outside of the
control of Mentor Graphics.

® -tag <string>
(optional) Specifies astring tag to append to foreign trace filenames. Used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.
* title<title>

(optional) Specifiesthe title to appear for the ModelSim Main window. If omitted the
current Model Sim version is the window title. Useful when running multiple simultaneous
simulations. Text strings with spaces must be in quotes (e.g., "my title").

* -trace foreign <int>

(optional) Creates two kinds of foreign interface traces. alog of what functions were called,
with the value of the arguments, and the results returned; and a set of C-language filesto
replay what the foreign interface side did.

The purpose of the logfile isto aid the debugging of your PLI/VPI code. The primary
purpose of the replay facility isto send the replay fileto MTI support for debugging co-
simulation problems, or debugging problems for which it isimpractical to send the PLI/VPI
code.

® -usenonstdcoveragesavesysf

(optional) Replaces implementation of the built-in, IEEE 1800 compliant system function
with the non-standard variant, and thus affects all callsto $coverage save(). The action of
this switch is global.

ModelSim Reference Manual, v10.1c 365

Commands

vsim

-uvmcontrol={ <args>}

(optional) Controls UVM-Aware debug features. These features work with either a standard
Accelera-released open source toolkit or the pre-compiled UVM library package in
ModelSim.

{<args>}

Y ou must specify at least one argument. Y ou can enable or disable some arguments by
prefixing the argument with adash (-). Refer to the argument descriptions for more
information.

al — Enables al UVM-Aware functionality and debug options except disable and
verbose. Y ou must specify verbose separately.

certe— Enablestheintegration of the elaborated design in the Certetool. Disables Certe
features when specified as -certe.

disable — Prevents the UV M-Aware debug package from being loaded. Changes the
results of randomized valuesin the ssmulator.

msglog — Enables messages logged in UVM to beintegrated into the Message Viewer.
Y ou must aso enable wif message logging by specifying tran or wif with vaim -
msgmode. Disables message logging when specified as -msglog

none — Turns off all UVM-Aware debug features. Useful when multiple -uvmcontrol
options are specified in a separate script, makefile or alias and you want to be sure all
UVM debug features are turned off.

struct — (default) Enables UVM component instances to appear in the Structure
window. UV M instances appear under “uvm_root” in the Structure window. Disables
Structure window support when specified as -struct.

trlog — Enables or disables UVM transaction logging. Logs UVM transactions for
viewing in the Wave window. Disables transaction logging when specified as -trlog.

verbose — Sends UVM debug package information to the transcript. Does not affect
functionality. Must be specified separately.

Arguments may be specified as multiple instances of -uvmcontrol. Multiple arguments are
specified as a comma separated list without spaces. For example,

vsim -uvmcontrol=all,-trlog

enables all UVM features except UVM transaction logging. Where arguments are in
conflict, the last argument will override earlier arguments and awarning is issued.

Y ou can aso control UVM-Aware debugging with the UV M Control modelsim.ini variable.
-vcdstim [<instance>=]<filename>

(optional) Specifiesa VCD file from which to re-simulate the design. The VCD file must
have been created in a previous Model Sim simulation using the ved dumpports command.
Refer to “Using Extended VCD as Stimulus” for more information.

366

ModelSim Reference Manual, v10.1c

Commands
vsim

® -version
(optional) Returns the version of the simulator as used by the licensing tools.
* .view [<dlias hame>=]<WLF _filename>

(optional) Specifiesawave log format (WLF) filefor vsim to read. Allows you to use veim
to view the results from an open simulation (vsim.wif) or an earlier saved ssimulation. The
Structure, Objects, Wave, and List windows can be opened to look at the results stored in
the WLF file (other Model Sim windows will not show any information when you are
viewing a dataset).

<alias_name> — Specifiesan aliasfor <WLF_file_name> where the default isto use
the prefix of the WLF_filename. Wildcard characters are allowed.

<WLF_file_name>— Specifies the pathname of a saved WLF file.
See additional discussion in the Examples.
® -viewcov [<dataset_name>=]<UCDB_filename>

(required for coverage view mode) Invokes vsim in the coverage view mode to display
UCDB data.

® -visua <visua>
(optional) Specifiesthe visual to use for the window. Does not apply to Windows platforms.
Where <visual> may be:
<class> <depth> — One of the following:

{directcolor | grayscale | greyscale | pseudocolor | staticcolor | staticgray | staticgrey |
truecolor}

followed by:
<depth> — Specifies how many bits per pixel are needed for the visual.
default — Instructs the tool to use the default visual for the screen
<number> — Specifiesavisual X identifier.

best <depth> — Instructs the tool to choose the best possible visual for the specified
<depth>, where:

<depth> — Specifies how many bits per pixel are needed for the visual.
® -warning <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "warning." Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “ Changing
Message Severity Level” for more information.

* -wlif <file_ name>

(optional) Specifies the name of the wave log format (WLF) file to create. The default file
name is vsim.wif. This option may also be specified with the WLFFilename variable in the
modelsim.ini file.

ModelSim Reference Manual, v10.1c 367

Commands

vsim

-wlfcachesize <n>

(optional) Specifies the size in megabytes of the WLF reader cache. By default the cache
sizeis set to zero. WLF reader caching caches blocks of the WLF file to reduce redundant
file 1/0. This should have significant benefit in slow network environments. This option
may also be specified with the WL FCacheSize variable in the modelsim.ini file.

-wlfcollapsedelta

(default) Instructs Model Sim to record values in the WLF file only at the end of each
simulator delta step. Any sub-deltavalues are ignored. May dramatically reduce WLF file
size. This option may also be specified with the WLFCollapseMode variable in the
modelsim.ini file.

-wlfcollapsetime

(optional) Instructs Model Sim to record values in the WLF file only at the end of each
simulator time step. Any delta or sub-delta values are ignored. May dramatically reduce
WLF file size. This option may also be specified with the WLFCollapseM ode variable in
the modelsim.ini file.

-nowlfcollapse

(optional) Instructs Model Sim to preserve all events for each logged signal and their event
order to the WLF file. May result in relatively larger WLF files. This option may also be
specified with the WLFCollapseM ode variable in the modelsim.ini file.

-wlfcompress

(default) Creates compressed WLF files. Use -wlfnocompressto turn off compression. This
option may also be specified with the WL FCompress variable in the modelsim.ini file.

-nowlfcompress

(optional) Causes vsim to create uncompressed WLF files. WLF files are compressed by
default in order to reduce file size. This may slow simulation speed by one to two percent.
Y ou may want to disable compression to speed up simulation or if you are experiencing
problems with faulty datain the resulting WLF file. This option may also be specified with
the WLFCompress variable in the modelsim.ini file.

-wlfdel eteonquit

(optional) Deletes the current simulation WLF file (vsim.wif) automatically when the
simulator exits. This option may also be specified with the WLFDeleteOnQuit variable in
the modelsim.ini file.

-nowlfdel eteonquit

(default) Preserves the current simulation WLF file (vsim.wlf) when the simulator exits.
This option may also be specified with the WLFDeleteOnQuit variable in the modelsim.ini
file.

-wliflock

(optional) Locks aWLF file. An invocation of Model Sim will not overwrite aWLF file that
is being written by a different invocation.

368

ModelSim Reference Manual, v10.1c

Commands
vsim

* _nowlflock

(optional) Disables WLF filelocking. Thiswill prevent vsim from checking whether aWLF
fileislocked prior to opening it as well as preventing vsim from attempting to lock aWLF
once it has been opened.

e -wifopt

(default, optional) Optimizes the WLF file. Enables faster display of waveformsin the
Wave window when the display is zoomed out to display alarger time range. This option
may also be specified with the WLFOptimize variable in the modelsim.ini file.

* -nowlfopt

(optional) Disables optimization of waveform display in the Wave window. This option
may also be specified with the WLFOptimize variable in the modelsim.ini file.

* _wlfsimcachesize <n>

(optional) Specifies the size in megabytes of the WLF reader cache for the current
simulation dataset only. By default the cache sizeis set to zero. This makes it easier to set
different sizes for the WLF reader cache used during simulation and those used during
postsimulation debug. WLF reader caching caches blocks of the WLF file to reduce
redundant file I/O. If neither the -wlfsimcachesize switch nor the WLFSImCacheSize
modelsim.ini variable are specified, the -wlfcachesize switch or the WLFCacheSize
modelsim.ini variable settings will be used.

* -wlfdim <size>
(optional) Specifies asize restriction for the event portion of the WLF file.
size— an integer, in megabytes, where the default is 0, which implies an unlimited size.

Note
D Note that a WLF file contains event, header, and symbol portions. The sizerestriction is

placed on the event portion only. Consequently, the resulting file will be larger than the
specified size.

If used in conjunction with -wliftlim, the more restrictive of the limits takes precedence.

This option may also be specified with the WLFSizeL imit variable in the modelsim.ini file.
(See Limiting the WLF File Size))

e _wiftlim <duration>

(optional) Specifiesthe duration of simulation time for WLF file recording. The default is
infinite time (0). The <duration> is an integer of simulation time at the current resolution;
you can optionally specify the resolution if you place curly braces around the specification.
For example,

{5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

ModelSim Reference Manual, v10.1c 369

Commands

vsim

The time range begins at the current simulation time and moves back in simulation time for
the specified duration. For example,

vsim -wlftlim 5000

writes at most the last 5000ns of the current simulation to the WLF file (the current
simulation resolution in this caseis ns).

If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.
This option may also be specified with the WLFTimeLimit variable in the modelsim.ini file.

The -wlifslim and -wlftlim switches were designed to help users limit WLF file sizes for
long or heavily logged simulations. When small values are used for these switches, the
values may be overridden by the internal granularity limits of the WLF file format. (See
Limiting the WLF File Size)

Arguments, VHDL

-absentisempty

(optional) Causes VHDL files opened for read that target non-existent filesto be treated as
empty, rather than Model Sim issuing fatal error messages.

-nocollapse
(optional) Disables the optimization of internal port map connections.
-nofileshare

(optional) Turns off file descriptor sharing. By default Model Sim shares afile descriptor for
all VHDL files opened for write or append that have identical names.

-noglitch

(optional) Disables VITAL glitch generation.

Refer to “VHDL Simulation” for additional discussion of VITAL.
+no_glitch_msg

(optional) Disable VITAL glitch error messages.
-novhdlvariablelogging

(optional) This switch turns off the ability to log recursively or add process variables to the
Wave or List windows. Refer to -vhdlvariable logging and VhdlV ariablel ogging
modelsim.ini variable for more information.

-std_input <filename>

(optional) Specifiesthefileto use for the VHDL TextlO STD_INPUT file.
-std_output <filename>

(optional) Specifiesthefileto use for the VHDL TextlO STD_OUTPUT file.

370

ModelSim Reference Manual, v10.1c

Commands
vsim

® _gtrictvital

(optional) Specifiesto exactly match the VITAL package ordering for messages and delta
cycles. Useful for eliminating delta cycle differences caused by optimizations not addressed
inthe VITAL LRM. Using this argument negatively impacts simulator performance.

® -togglemaxintvalues <int>

(optional) Specifies the maximum number of VHDL integer valuesto record for toggle
coverage. Thislimit variable may be changed on a per-signal basis. The default value of
<int>is 100 values.

® +transport_int_delays

(optional) Selects transport mode with pulse control for single-source nets (one interconnect
path). By default interconnect delays operate in inertial mode (pulses smaller than the delay
are filtered). In transport mode, narrow pulses are propagated through interconnect delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. Thisoption
works independently from +multisource_int_delays.

® +transport_path delays

(optional) Selects transport mode for path delays. By default, path delays operate in inertial
mode (pulses smaller than the delay are filtered). In transport mode, narrow pulses are
propagated through path delays. Note that this option affects path delays only, and not
primitives. Primitives always operate in inertial delay mode.

* +typdelays

(default) Selectsthetypical valuein min:typ:max expressions. Has no effect if you specified
the min:typ:max selection at compile time.

If you specify the +mindelays, +typdelays, or +maxdelays flag with vopt, and specify a
different flag with vsim, the simulation will be able to use the delay value based upon the
flag specified with vopt. Y ou must specify vsim -novopt to force the simulator to use the
delay flag specified with vaim.

® -vhdlvariablelogging

(optional) This switch makes it possible for process variables to be logged recursively or
added to the Wave and List windows (process variables can still be logged or added to the
Wave and List windows explicitly with or without this switch). For example with thisvsim
switch, log -r /* will log process variables as long as vopt is specified with +acc=v and the
variables are not filtered out by the WildcardFilter (viathe "Variable" entry). Y ou can
disable this argument with -novhdlvariablelogging. Refer to-vhdlvariable logging and
VhdlVariablel ogging modelsim.ini variable for more information.

ModelSim Reference Manual, v10.1c 371

Commands

vsim

Note

O

L ogging process variables isinherently expensive on simulation performance because of
their nature. It isrecommended that they not be logged, or added to the Wave and List
windows. However, if debugging requires them to be logged, then use of this switch will
lessen the performance hit in doing so.

-vital2.2b
(optional) Selects SDF mapping for VITAL 2.2b (default isVITAL 2000).

Arguments, Verilog

+alt_path_delays

(optional) Configures path delaysto operate in inertial mode by default. In inertial mode, a
pending output transition is cancelled when a new output transition is scheduled. The result
isthat an output may have no more than one pending transition at atime, and that pulses
narrower than the delay are filtered. The delay is selected based on the transition from the
cancelled pending value of the net to the new pending value. The +alt_path_delays option
modifies the inertial mode such that a delay is based on atransition from the current output
value rather than the cancelled pending value of the net. This option has no effect in
transport mode (see +pulse_e/<percent> and

+pulse_r/<percent>).

-classdebug

(optional) Enables visibility into class instances for class and UVM debugging. Y ou can
also enable visibility into classinstances by setting the ClassDebug modelsim.ini variable to
1. Refer to the classinfo command for more information.

+delayed _timing_checks

(optional) Causes timing checks to be performed on the delayed versions of input ports
(used when there are negative timing check limits). By default, Model Sim automatically
detects and applies +delayed timing_checksto cells with negative timing checks. To turn
off this feature, specify +no_autodtc with vsim.

-dpiforceheader

(optional) Forces the generation of a DPI header file even if it will be empty of function
prototypes.

-dpiheader

(optional) Generates a header file that may then be included in C source code for DPI import
functions. Simulation quits after header file is generated. Refer to “DPI Use Flow” for
additional information.

-dpilib <libname>

(optional) Specifiesthe design library name that contains DPI exports and automatically
compiled object files. If the -dpilib switch is not set, vsim loads export symbols from all

372

ModelSim Reference Manual, v10.1c

Commands
vsim

libraries accessible viavsim options-L , -Lf, and -lib. Multiple occurences of -dpilib are
supported.

® -dpioutoftheblue0|1]|2

(optiona) Instructs vsim to allow DPI out-of-the-blue calls from C functions. The C
functions must not be declared as import tasks or functions.

0 — Support for DPI out-of-the-blue calls is disabled.

1 — Support for DPI out-of-the-blue callsis enabled, but debugging support is not
available.

2 — Support for DPI out-of-the-blue calls is enabled with debugging support for a
SystemC thread.

Debugging support for DPI out-of-the-blue calls from a SystemC method requires two vsim
arguments entered together at the command line: -dpioutoftheblue 2 and -scdpidebug.
Refer to -scdpidebug for more information.

®* _hazards

(optional) Enables event order hazard checking in Verilog modules (Verilog only). You
must also specify this argument when you compile your design with viog. Refer to “Hazard
Detection” for more details.

Note
Using -hazards implicitly enables the -compat argument. As aresult, using this argument

may affect your simulation results.

®* +maxdelays

(optional) Selectsthe maximum valuein min:typ:max expressions. The default isthetypical
value. Has no effect if you specified the min:typ:max selection at compile time.

If you specify the +mindelays, +typdelays, or +maxdelays flag with vopt, and specify a
different flag with vsim, the simulation will be able to use the delay value based upon the
flag specified with vopt. Y ou must specify vsim -novopt to force the simulator to use the
delay flag specified with vaim.

* +mindelays

(optional) Selects the minimum value in min:typ:max expressions. The default isthe typical
value. Has no effect if you specified the min:typ:max selection at compile time.

If you specify the +mindelays, +typdelays, or +maxdelays flag with vopt, and specify a
different flag with vsim, the simulation will be able to use the delay value based upon the

flag specified with vopt. Y ou must specify vsim -novopt to force the simulator to use the
delay flag specified with vaim.

® +no_autodtc

(optional) Turns off auto-detection of optimized cells with negative timing checks and auto-
application of +delayed timing_checks to those cells.

ModelSim Reference Manual, v10.1c 373

Commands

vsim

+no_cancelled_e msg

(optional) Disables negative pulse warning messages. By default vsim issues awarning and
then filters negative pulses on specify path delays. Y ou can drive an X for a negative pulse
using +show_cancelled_e.

+no_neg_tchk

(optional) Disables negative timing check limits by setting them to zero. By default negative
timing check limits are enabled. Thisisjust the opposite of Verilog-XL, where negative
timing check limits are disabled by default, and they are enabled with the +neg_tchk option.

+no_notifier

(optional) Disables the toggling of the notifier register argument of all timing check system
tasks. By default, the notifier is toggled when there is atiming check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
on timing violations for the entire design.

+no_path_edge
(optional) Causes Model Sim to ignore the input edge specified in a path delay. The result of

thisargument isthat all edges on the input are considered when selecting the output delay.
Verilog-XL awaysignores the input edges on path delays.

+no_pulse_msg

(optional) Disables the warning message for specify path pulse errors. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rgjection limit
and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error results
in awarning message, and the pulse is propagated as an X. The +no_pulse_msg option
disables the warning message, but the X is still propagated.

-no_risefall_delaynets

(optional) Disables therise/fall delay net delay negative timing check algorithm. This
argument is provided to return Model Sim to its pre-6.0 behavior where violation regions
must overlap in order to find adelay net solution. In 6.0 versions and later, Model Sim uses
separate rise/fall delays, so violation regions need not overlap for adelay solution to be
found.

+no_show_cancelled e

(optional) Filters negative pulses on specify path delays so they don’t show on the output.
Default. Use +show_cancelled_eto drive a pulse error state.
+no_tchk_msg

(optional) Disables error messages issued by timing check system tasks when timing check
violations occur. Notifier registers are still toggled and may result in the propagation of Xs
for timing check violations.

374

ModelSim Reference Manual, v10.1c

Commands
vsim

® -nodpiexports

(optional) Instructs Model Sim to not generate C wrapper code for DPI export task and
function routines found at elaboration time. More specifically, the command does not
generate the exportwrapper.so shared object file.

For a description on when you should use this argument, refer to the section * Deprecated
Legacy DPI Flows” in the User’s Manual.

® _noexcludehiz

(optional) Instructs Model Sim to include truth table rows that contain Hi-Z statesin the
coverage count. Without this argument, these rows are automatically excluded.

® -noexcludeternary

(optional) Disables the automatic exclusion of UDB coverage data rows resulting from
ternary expressions for the entire design. Normal operation for code coverageisto include
rows corresponding to the case where two data inputs are the same, and the select input isa
“don’t care”. To disable this automatic exclusion for a specified design unit only, use “vlog
-noexcludeternary <design_unit>" instead.

®* +nosdferror

(optional) Errorsissued by the SDF annotator while loading the design prevent the
simulation from continuing, whereas warnings do not. Changes SDF errors to warnings so
that the simulation can continue.

* +nosdfwarn

(optional) Disables warnings from the SDF annotator.
® +nospecify

(optional) Disables specify path delays and timing checks.
* +nowarnBSOB

(optional) Disables run-time warning messages for bit-selectsininitial blocksthat are out of
bounds.

* +nowarn<CODE | number>

(optional) Disables warning messages in the category specified by a warning code or
number. Warnings that can be disabled include the code name in square bracketsin the
warning message. For example:

** Warning: (vsim-3017) test.v(2): [TFMPC] - Too few port
connections. Expected <m>, found <n>.

The warning code for this example is TFMPC, and the warning number is 3017. Therefore,
this warning message can be disabled with +nowarnTFM PC or +nowarn3017.

® +ntc_warn

(optional) Enables warning messages from the negative timing constraint algorithm. By
default, these warnings are disabled.

ModelSim Reference Manual, v10.1c 375

Commands

vsim

This algorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If thereis no solution for this set of limits, then the algorithm sets one of the
negative limitsto zero and recal culates the delays. This processisrepeated until asolutionis
found. A warning message isissued for each negative limit set to zero.

+ntcnotchks

(optional) Instructs vsim to not simulate timing checks but still consider negative timing
check limits for the calculation of delayed input delays.

-oldvhdlforgennames

(optional) Enablesthe use of a previous style of namingin VHDL for ... generate statement
iteration names in the design hierarchy. The previous style is controlled by the value of the
GenerateFormat value. The default behavior isto use the current style names, whichis
described in “Naming Behavior of VHDL For Generate Blocks’ This argument duplicates
the function of the OldV hdlForGenNames variable in modelsim.ini and will override the
setting of that variableif it specifies the current style.

-onfinish ask | stop | exit | final

(optional) Customizes the simulator shutdown behavior when it encounters $finish in the
design:

° ag(I
o Inbatch mode, the simulation exits.

o InGUI mode, adialog box pops up and asksfor user confirmation on whether to
quit the simulation.

® stop — stops simulation and leaves the simulation kernal running
® exit — exitsout of the simulation without a prompt
* final — executes al final blocks then exits the simulation

By default, the simulator exits in batch mode; prompts you in GUI mode. Edit the OnFinish
variable in the modelsim.ini file to set the default operation of $finish.
-pli "<object list>"

(optional) Loads a space-separated list of PLI shared objects. The list must be quoted if it
contains more than one object. Thisis an alternative to specifying PLI objectsin the
Veriuser entry in the modelsim.ini file, refer to modelsim.ini Variables. Y ou can use
environment variables as part of the path.

+<plusarg>

(optional) Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs().

376

ModelSim Reference Manual, v10.1c

Commands
vsim

®* +pulse e/<percent>

(optional) Controls how pulses are propagated through specify path delays, where
<percent> isanumber between 0 and 100 that specifiesthe error limit as a percentage of the
path delay.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error l[imit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
propagates to the output as an X. If the rgjection limit is not specified, then it defaults to the
error limit. For example, consider a path delay of 10 along with a+pulse_e/80 option. The
error limit is 80% of 10 and the rejection limit defaults to 80% of 10. Thisresultsin the
propagation of pulses greater than or equal to 8, while all other pulses are filtered. Note that
you can force specify path delays to operate in transport mode by using the +pulse_e/0
option.

* +pulse e style ondetect

(optional) Selects the "on detect” style of propagating pulse errors (see +pulse_€). A pulse
error propagates to the output as an X, and the "on detect" style isto schedule the X
immediately, as soon asit has been detected that a pulse error has occurred. "on event” style
is the default for propagating pulse errors (see +pulse_e style onevent).

®* +pulse e style onevent

(optional) Selectsthe "on event"” style of propagating pulse errors (see +pulse_e). Default. A
pulse error propagates to the output as an X, and the "on event” style isto schedule the X to
occur at the sametime and for the same duration that the pul se would have occurred if it had
propagated through normally.

®* +pulse r/<percent>

(optional) Controls how pulses are propagated through specify path delays, where
<percent>is anumber between 0 and 100 that specifiesthe rejection limit as a percentage of
the path delay.

A pulselessthan the rgjection limit is suppressed from propagating to the output. If the error
limit is not specified by +pulse_e then it defaults to the rejection limit.

® +sdf_nocheck _celltype

(optional) Disables the error check afor mismatch between the CELLTY PE namein the
SDF file and the module or primitive name for the CELL instance. It isan error if the names
do not match.

®* +show cancelled e

(optional) Drives a pulse error state (' X’) for the duration of a negative pulse on a specify
path delay. By default Model Sim filters negative pul ses.

* -sv lib<shared obj>

(required for use with DPI import libraries) Specifies the name of the DPI shared object
with no extension. Refer to “DPI Use Flow” for additional information.

ModelSim Reference Manual, v10.1c 377

Commands

vsim

-sv_liblist <filename>

(optional) Specifies the name of a bootstrap file containing names of DPI shared objects
(libraries) to be loaded. Refer to “DPI File Loading” for format information.

-sv_root <dirname>

(optional) Specifies the directory name to be used as the prefix for DPI shared object
lookups.

+transport_int_delays

(optional) Selects transport mode with pulse control for single-source nets (one interconnect
path). By default interconnect delays operate in inertial mode (pulses smaller than the delay
arefiltered). In transport mode, narrow pulses are propagated through interconnect delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. Thisoption
works independently from +multisource_int_delays.

+transport_path_delays

(optional) Selects transport mode for path delays. By default, path delays operate in inertial
mode (pulses smaller than the delay are filtered). In transport mode, narrow pulses are
propagated through path delays. Note that this option affects path delays only, and not
primitives. Primitives always operate in inertial delay mode.

+typdelays

(default) Selectsthetypical valuein min:typ:max expressions. Has no effect if you specified
the min:typ:max selection at compile time.

If you specify the +mindelays, +typdelays, or +maxdelays flag with vopt, and specify a
different flag with vsim, the ssmulation will be able to use the delay value based upon the
flag specified with vopt. Y ou must specify vsim -novopt to force the simulator to use the
delay flag specified with vaim.

-v2k_int_delays

(optional) Causes interconnect delays to be visible at the load module port per the IEEE
1364-2001 spec. By default Model Sim annotates INTERCONNECT delays in a manner
compatible with Verilog-XL. If you have $sdf_annotate() callsin your design that are not
getting executed, add the Verilog task $sdf done() after your last $sdf _annotate() to remove

any zero-delay MIPDs that may have been created. May be used in tandem with the
+multisource_int_delays argument (see above).

Arguments, object

The object arguments may be a[<library_name>].<design_unit>, an .mpf file, a.wif file, or
atext file. Multiple design units may be specified for Verilog modules and mixed
VHDL/Verilog configurations.

<library_name>.<design_unit>

(optional) Specifies alibrary and associated design unit; multiple library/design unit
specifications can be made. If no library is specified, the work library is used. Y ou cannot

378

ModelSim Reference Manual, v10.1c

Commands
vsim

use the wildcard * for this argument. Environment variables can be used. <design_unit>
may be one of the following:
<configuration> Specifies the VHDL configuration to simulate.

<module> ... (optional) Specifiesthe name of one or more top-level
Verilog modules to be simulated.

<entity> [(<architecture>)] (optional) Specifies the name of the top-level VHDL entity
to be ssimulated. The entity may have an architecture
optionally specified; if omitted the last architecture compiled
for the specified entity is simulated. An entity isnot valid if
aconfiguration is specified.

1. Most UNIX shells require arguments containing () to be single-quoted to prevent specia parsing by
the shell. See the examples below.

* <MPF_file_ nhame>
(optional) Opens the specified project.
* <WLF file name>

(optional) Opens the specified dataset. When you open a WLF file using the following
command:

vsim test.wlif

The default behavior isto not automatically load any signalsinto the Wave window. Y ou
can change this behavior, such that the Wave window contains all signalsin the design, by
setting the preference PrefWave(OpenL ogAutoAddWave) to 1 (true).

* <text file name>
(optional) Opens the specified text file in a Source window.

Examples
® Invokevsim on the entity cpu and assigns values to the generic parameters edge and
VCC.
vsim -gedge=’'"low high"’ -gVCC=4.75 cpu

If working within the Model Sim GUI, you would enter the command as follows:
vsim {-gedge="low high"} -gVCC=4.75 cpu

Instruct Model Sim to view the results of a previous simulation run stored in the WLF
filesm2.wif. The simulation is displayed as a dataset named test. Use the -wlf option to
specify the name of the WLF file to create if you plan to create many filesfor later
viewing.

vsim -view test=sim2.wlf

For example:

ModelSim Reference Manual, v10.1c 379

Commands
vsim

vsim -wlf my design.i0l my_asic structure
vsim -wlf my design.i02 my_asic structure

Annotate instance /top/ul using the minimum timing from the SDF file myasic.sdf.
vsim -sdfmin /top/ul=myasic.sdf

Use multiple switches to annotate multiple instances:
vsim -sdfmin /top/ul=sdfl -sdfmin /top/u2=sdf2 top

® Thisexample searchesthe libraries mylib for top(only) and gatelib for cache set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.

vsim ‘mylib.top(only)’ gatelib.cache_set

® Invokevsim ontest_counter and run the simulation until abreak event, then quit when it
encounters a $finish task.

vsim -do "set PrefMain(forceQuit) 1; run -all" work.test_counter

380 ModelSim Reference Manual, v10.1c

Commands
vsim<info>

vsim<info>
The vsim<info> commands return information about the current vsim executable.
® vsimAuth
Returns the authorization level (PE/SE, VHDL/Verilog/PLUYS).
* vsmDate
Returns the date the executable was built, such as"Apr 10 2000".
* vsimid
Returns the identifying string, such as"ModelSim 6.1".
®* vsimVersion
Returns the version as used by the licensing tools, such as "1999.04".
® vsmVersionString
Returns the full vsim version string.

This same information can be obtained using the -ver sion argument of the vsim command.

ModelSim Reference Manual, v10.1c 381

Commands
vsim_break

vsim_break

Stop (interrupt) the current simulation before it runs to completion. To stop asimulation and
then resume it, use this command in conjunction with run -continue.

Syntax
vsim_break
Arguments
None.
Example
® Interrupt asimulation, then restart it from the point of interruption.

vsim_break
run -continue

382 ModelSim Reference Manual, v10.1c

Commands
vsource

vsource
This command specifies an aternative file to use for the current sourcefile.

This command is used when the current source file has been moved. The alternative source
mapping exists for the current ssimulation only.

Syntax
vsource [<filename>]

Arguments
* <filename>

(optional) Specifiesarelative or full pathname. If filename is omitted, the sourcefile for the
current design context is displayed.

Examples

vsource design.vhd
vsource /old/design.vhd

ModelSim Reference Manual, v10.1c 383

Commands
wave

wave

A number of commands are available to manipulate and report on the Wave window.

The following tables summarize the available options for manipulating cursors, for zooming,
and for adjusting the wave display view in the Wave window:

Table 2-8.

Wave Window Commands for Cursor

Cursor Commands

Description

wave cursor active

Sets the active cursor to the specified cursor or, if no cursor is
specified, reports the active cursor

wave cursor add

Adds a new cursor at specified time and returns the number of
the newly added cursor

wave cursor configure

Sets or reports values for the specified cursor

wave cursor delete

Deletes the specified cursor or, if no cursor is specified, the
active cursor

wave Cursor see

Positions the wave display such that the specified or active
cursor appears at the specified percent from the |l eft edge of the
display — 0% is the left edge, 100% is the right edge.

wave cursor time

Moves or reports the time of the specified cursor or, if no
cursor is specified, the time of the active cursor

Table 2-9. Wave Window Commands for Expanded Time Display

Display view Commands

Description

wave expand mode

Selects the expanded time display mode: Delta Time, Event
Time, or off.

wave expand all

Expands simulation time into deltatime stepsif Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) over the full range of the simulation
from time O to the current time.

wave expand cursor

Expands simulation time into deltatime stepsif Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) at the simulation time of the active
cursor.

wave expand range

Expands simulation time into deltatime stepsif Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) over atime range specified by astart
time and an end time.

384

ModelSim Reference Manual, v10.1c

Commands
wave

Table 2-9. Wave Window Commands for Expanded Time Display (cont.)

Display view Commands

Description

wave collapse all

Collapses simulation time over the full range of the smulation
from time O to the current time.

wave collapse cursor

Collapses simulation time at the time of the active cursor.

wave collapse range

Collapses simulation time over a specific simulation time
range.

Table 2-10. Wave Window Commands for Controlling Display

Display view Commands

Description

wave interrupt

Immediately stops wave window drawing

wave refresh

Cleans wave display and redraws waves

wave CUrsor see

Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display — 0% isthe left edge, 100% is the right edge.

wave seetime

Positions the wave display such that the specified time appears
at the specified percent from the left edge of the display — 0%
isthe left edge, 100% is the right edge.

Table 2-11.

Wave Window Commands for Zooming

Zooming Commands

Description

wave zoom in

Zoom in the wave display by the specified factor. The default
factor is 2.0.

wave zoom out

Zoom out the wave display by the specified factor. The default
factor is 2.0.

wave zoom full

Zoom the wave display to show the full simulation time.

wave zoom last

Return to last zoom range.

wave Zzoom range

Sets left and right edge of wave display to the specified start
time and end time. If times are not specified, reports left and
right edge times.

Syntax

wave cursor active [-window <win>] [<cursor-num>]

wave cursor add [-window <win>] [-time <time>] [-name <name>] [-lock <0 |1>]

wave cursor configure [<cursor-num>] [-window <win>] [<option> [<value>]]

ModelSim Reference Manual, v10.1c

385

Commands
wave

wave cursor delete [-window <win>] [<cursor-num>]

wave cursor see [-window <win>] [-at <percent>] [<cursor-num>]
wave cursor time [-window <win>] [-time <time>] [<cursor-num>]
wave collapse al [-window <win>]

wave collapse cursor [-window <win>] [<cursor-num>]

wave collapse range [-window <win>] <start-time> <end-time>
wave expand all [-window <win>]

wave expand cursor [-window <win>] [<cursor-num>]

wave expand mode [-window <win>] [off | deltas | events]

wave expand range [-window <win>] <start-time> <end-time>
wave interrupt [-window <win>]

wave refresh [-window <win>]

wave seetime [-window <win>] [-at <percent>] -time <time>
wave zoom in [-window <win>] [<factor>]

wave zoom out [-window <win>] [<factor>]

wave zoom full [-window <win>]

wave zoom last [-window <win>]

wave zoom range [-window <win>] [<start-time> <end-time>]

Arguments
* -at <percent>

(optional) Positions the display such that the time or cursor is the specified <percent> from
the left edge of the wave display.

<percent>— Any non-negative number where the default is 50. 0 is the left edge of the
Wave window and 100 is the right edge.

® <cursor-num>
(optional) Specifies a cursor number. If not specified, the active cursor is used.
* <factor>

(optional) A number that specifies how much you want to zoom into or out of the wave
display. Default valueis 2.0.

®* -lock<0|1>
(optional) Specify the lock state of the cursor.
0 — (default) Unlocked
1— Locked

386 ModelSim Reference Manual, v10.1c

Commands
wave

® -name<name>
(optional) Specify the name of the cursor.

<name> — Any string where the default is " Cursor <n>" where <n> is the cursor
number.

® off | deltas| events
(optional) Specifies the expanded time display mode for the Wave window. Default is off.
® <option> [<value>]

(optional) Specify avalue for the designated option. Currently supported options are -name,
-time, and -lock. If no option is specified, current value of al options are reported.

* <dart-time> <end-time>

(optional) start-time and end-time are times that specify an expand, collapse, or zoom range.
If neither number is specified, the command returns the current range.

® -time<time>
(optional) Specifies a cursor time.
<time>— Any positive integer.
® -window <win>

(optional) All commands default to the active Wave window unless this argument is used to
specify adifferent Wave window.

<win> — Specifies the name of a Wave window other than the current active window.
Examples

® Either of these commands creates a zoom range with a start time of 20 nsand an end
time of 100 ns.

wave zoom range 20ns 100ns
wave zoom range 20 100

® Return the name of cursor 2:
wave cursor configure 2 -name
® Name cursor 2, "reference cursor” and return that name with:
wave cursor configure 2 -name {reference cursor}
® Return the values of all wave cursor configure options for cursor 2:

wave cursor configure 2

ModelSim Reference Manual, v10.1c 387

Commands
wave create

wave create

This command generates a waveform known only to the GUI. Y ou can then modify the
waveform interactively or with the wave edit command and use the results to drive simulation.

Refer to “ Generating Stimulus with Waveform Editor” for more information.

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information. d

The following table summarizes the available waveform pattern options:

Command Description

wave create -pattern clock Generates a clock waveform. Recommended that you
specify aninitial value, duty cycle, and clock period for
the waveform.

wave create -pattern constant Generates a waveform with a constant value. Itis
suggested that you specify avalue.

wave create -pattern random Generates a random waveform based upon a seed value.
Specify the type (normal or uniform), aninitial value, and
aseed value. If you don't specify a seed value, Questa
uses adefault value of 5.

wave create -pattern repester Generates a waveform that repeats. Specify aninitial
value and pattern that repeats. Y ou can also specify how
many times the pattern repeats.

wave create -pattern counter Generates a waveform from a counting pattern. Specify
start and end values, repeat, step count, time period, and
type (Binary, Gray, Johnson, OneHot, Range, and
ZeroHot).

wave create -pattern none Creates a placeholder for awaveform. Specify an object
name.
Syntax

All waveforms
wave create [-driver {freeze| deposit | driver | expectedoutput}] [-initialvalue <value>]
[-language { vhdl | verilog}] [-portmode {in | out | inout | internal}] [-range <msb |sb>]
[-starttime { <time><unit>}] [-endtime { <time><unit>}] <object_name>
Clock patterns
wave create -pattern clock [-dutycycle <value>] [-period {<time><unit>}] <object _name>
Constant patterns
wave create -pattern constant [-initialvalue <value>] [-value <value>] <object_name>

388 ModelSim Reference Manual, v10.1c

Commands
wave create

Random patterns

wave create -pattern random [-initialvalue <value>] [-period {<time><unit>}]
[-random_type{normal | uniform | poisson | exponential}] [-seed <value>]
<object_name>

Repeater patterns

wave create -pattern repeater [-initialvalue <value>] [-period {<time><unit>}]
[-repeat {forever | never | <n>}] [-sequence {<val1>} <val2> ...]

Counter patterns

wave create -pattern counter [-direction {up | down | upthendown | downthenup}]
[-initialvalue <value>] [-period {<time><unit>}] [-repeat {forever | never | <n>}]
[-startvalue <value>] [-endvalue <value>] [-step <value>]
[-type{binary | gray | johnson | onehot | range | zer ohot}] <object_name>

No pattern

wave create -pattern none <object_name>

Arguments
® -pattern clock | constant | random | repeater | counter | none

(required) Specifies the waveform pattern. Refer to “ Creating Waveforms from Patterns’
for adescription of the pattern types.

clock — Specifies a clock pattern.
constant — Specifies a constant pattern.
random — Specifies arandom pattern.
repeater — Specifies a repeating pattern.
counter — Specifies a counting pattern.
none — Specifies ablank pattern.

® direction {up | down | upthendown | downthenup}

(optional, recommended when specifying -pattern counter) The direction in which the
counter will increment or decrement.

up — (default) Increment only.
down — Decrement only.
upthendown — Increment then decrement.
downthenup — Decrement then increment.
® -driver {freeze | deposit | driver | expectedoutput}

(optional) Specifiesthat the signal isadriver of the specified type. Applies to waveforms
created with -portmode inout or -portmode internal.

ModelSim Reference Manual, v10.1c 389

Commands
wave create

-dutycycle <value>

(optional, recommended for -pattern clock) Specifies the duty cycle of the clock.
Expressed as a percentage of the period that the clock is high.

<value> — Any integer from O to 100 where the default is 50.
-endtime { <time><unit>}

(optional) The simulation time where the waveform will stop. If omitted, the waveform
stops at 1000 simulation time units.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

-endvalue <value>

(optional, recommended when specifying -pattern counter) The end value for the counter.
This option applies to patterns specifying -type Range only. All other counter patterns start
from 0 and go to the maximum value for that particular signal (for example, for a 3-bit
signal, the start value will be 000 and the end value will be 111).

<value> — Vaue must be appropriate for the type of waveform you are creating.
-initialvalue <value>
(optional) Theinitial value for the waveform. Not applicable to counter patterns.

<value> — Vaue must be appropriate for the type of waveform you are creating.
-language { vhdl | verilog}
(optional) Controls which language is used for the created wave.

vhdl — (default) Specifies the VHDL language.

verilog — Specifies the Verilog language.
-period { <time><unit>}
(optional, recommended for all patterns except -constant) Specifiesthe period of the signal.

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).
-portmode {in | out | inout | internal}
(optional) The port type for the waveform. Useful for creating signals prior to loading a
design.

in — Ports of type IN. You can also specify “input” as an aliasfor in.

390

ModelSim Reference Manual, v10.1c

Commands
wave create

out — Ports of type OUT. Y ou can also specify “output” as an aias for out.
inout — Ports of type INOUT.
internal — (default) Ports of type INTERNAL.

-random_type { normal | uniform | poisson | exponential}

(optional, recommended when specifying -patter n random) Specifiesthe type of agorithm
used to generate a random waveform pattern.

norma — Normal or Gaussian distribution of waveform events.

uniform — (default) Uniform distribution of waveform events.

poisson — Poisson distribution of waveform events.

exponential — Exponential distribution of waveform events.
-range <msb |sb>
(optional) Identifies bit significance in a counter pattern.

msb Isb — Most significant bit and least significant bit. Both must be specified.
-repeat {forever | never | <n>}

(optional, recommended when specifying -pattern repeater or -pattern counter) Controls
duration of pattern repetition.

forever — Repeat the pattern for aslong as the ssmulation runs.

never — Never repeat the pattern during simulation.

<n> — Repeat the pattern <n> number of times where <n> is any positive integer.
-seed <value>

(optional, recommended when specifying -pattern random) Specifies a seed value for a
randomly generated waveform.

<value> — Any non-negative integer where the default is 5.
-sequence {<val1>} <val2> ...

(optional, recommended when specifying pattern -repeater) The set of values that you
want repeated.

<vall> — Value must be appropriate for the type of waveform you are creating.
Multiple values are entered as a space separated list and enclosed in curly braces ({}).
-starttime { <time><unit>}
(optional) The simulation time at which the waveform should start. If omitted, the
waveform starts at 0O simulation time units.
<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

ModelSim Reference Manual, v10.1c 391

Commands
wave create

* _gtartvalue <value>

(required when specifying -pattern counter) Theinitial value of the counter. This option
applies to patterns specifying -type Range only. All other counter patterns start from 0 and
go to the maximum value for that particular signal (e.g., for a 3-bit signal, the start value
will be 000 and the end value will be 111).

<value> — Vaue must be appropriate for the type of waveform you are creating.
* -step <vaue>

(optional, recommended when specifying -pattern counter) The step by which the counter
is incremented/decremented.

<value> — Vaue must be appropriate for the type of waveform you are creating.
* -type{binary | gray | johnson | onehot | range | zerohot}
(optional) Specifies a counter format.
binary — Specifies abinary counter.

gray — Specifies abinary counter where two successive values differ in only one bit.
Also known as areflected binary counter.

johnson — Specifies atwisted ring or Johnson counter.
onehot — Specifies a shift counter where only one bit at atimeis set to “on” (1).

range — (default) Specifies abinary counter where the values range between
-startvalue and -endvalue

zerohot — Specifies a shift counter where only one bit at atimeis set to “off” (0).
* -vaue<vaue>

(optional, recommended when specifying -patter n constant) Specifies avalue for the
constant pattern.

<value> — Vaue must be appropriate for the type of waveform you are creating.
® <object_name>
(required) User specified name for the waveform. Must be the final argument.
Examples
® Create aclock signal with the following default values:

wave create -pattern clock -period 100 -dutycycle 50 -starttime 0 -endtime 1000
-initialvalue 0 /counter/clk

® Create a constant 8-bit signal vector from 0 to 1000 nswith avalue of 1111 and adrive
type of freeze.

wave create -driver freeze -pattern constant -value 1111 -range 7 O -starttime Ons
-endtime 1000ns sim:/andm/v_cont2

392 ModelSim Reference Manual, v10.1c

Commands
wave create

Related Topics

wave edit

wave modify

“Generating Stimulus with Waveform Editor”
“Creating Waveforms from Patterns”

ModelSim Reference Manual, v10.1c 393

Commands
wave edit

wave edit

This command modifies waveforms created with the wave cr eate command.

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information. d

The following table summarizes the avail able editing options:

Command

wave edit cut

wave edit copy

wave edit paste

wave edit invert

wave edit mirror
wave edit insert_pulse
wave edit delete
wave edit stretch
wave edit move

wave edit change value
wave edit extend
wave edit driveType
wave edit undo

wave edit redo

Syntax

Description

Cut part of awaveform to the clipboard

Copy part of awaveform to the clipboard

Paste the waveform from the clipboard

Verticaly flip part of awaveform

Mirror part of awaveform

Insert a new edge on awaveform; doesn’t affect waveform duration
Delete an edge from awaveform; doesn’t affect waveform duration
Move an edge by stretching the waveform

Move an edge without moving other edges

Change the value of part of awaveform

Extend all waves

Change the driver type

Undo an edit

Redo a previously undone edit

wave edit {cut | copy | paste | invert | mirror} -end {<time><unit>} -start {<time><unit>}

<object_name>

wave edit insert_pulse [-duration { <time><unit>}] -start {<time><unit>} <object_name>

wave edit delete -time {<time><unit>} <object_name>

wave edit stretch | move {-backward {<time><unit>} | -forward {<time><unit>}}
-time {<time><unit>} <object_name>

wave edit change value -end {<time><unit>} -start {<time><unit>} <value>

<object_name>

wave edit extend -extend to | by -time {<time><unit>}

wave edit driveType -driver freeze | deposit | driver | expectedoutput -end {<time><unit>}
-start {<time><unit>}

wave edit undo <number>

394 ModelSim Reference Manual, v10.1c

Commands
wave edit

wave edit redo <number >

Arguments

-backward { <time><unit>}

(required if -forward <time> isn’t specified) The amount to stretch or move the edge
backwards in simulation time.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

cut | copy | paste | invert | mirror
(required) Specifiesthe type of edit to perform.
cut — Deletes the specified portion of the waveform.
copy — Saves a copy of the specified portion of the waveform.
paste — Inserts the contents of the clipboard into the specified portion of the waveform.
invert — Flips the specified portion of the waveform vertically.
mirror — Flips the specified portion of the waveform horizontally.
-driver freeze | deposit | driver | expectedoutput

(required) Specifiesthe type of driver to which you want the specified section of the
waveform changed. Appliesto signals of type inout or internal.

-duration { <time><unit>}
(optional) The length of the pulse.
<time> — Specified as an integer or decimal number where the default is 10 time units.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

-end { <time><unit>}

(required unless specifying paste) The end of the section of waveform to perform the editing
operation upon, denoted by a simulation time.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

-extend to | by
(required) Specifiesthe format for extending waves.

ModelSim Reference Manual, v10.1c 395

Commands
wave edit

to — Extends the wave to the time specified by -time <time>.
by — Extends the wave by the amount of time specified by -time <time>.
e -forward { <time><unit>}

(required if -backward <time> is not specified) The amount to stretch or move the edge
forwards in simulation time.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

®* <number>

(optional) The number of editing operations to undo or redo. If omitted, only one editing
operation is undone or redone.

® <object_name>

(required) The pathname of the waveform to edit. Must be specified as the last argument to
wave edit.

® -gtart {<time><unit>}

(required) The beginning of the section of waveform to perform the editing operation upon,
denoted by a simulation time.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

® -time{<time><unit>}
(required) The amount of time to extend or stretch waves.
<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

* <vaue>
(required) The new value. Must match the type of the <object_name>.

Related Topics

® wave create
® “Generating Stimulus with Waveform Editor”

396 ModelSim Reference Manual, v10.1c

Commands
wave export

wave export

This command creates a stimulus file from waveforms created with the wave create command.

Syntax
wave export -designunit <name> -endtime {<time><unit>} -<time> -file <name>
{-format force| vcd | vhdl | verilog} -starttime <time>
Arguments
® -designunit <name>

(required) Specifies adesign unit for which you want to export created waves. If omitted,
the command exports waves from the active design unit.

<name> — Specifies adesign unit in the simulation.
® -endtime { <time><unit>
(required) The simulation time at which you want to stop exporting.
<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

e -file<filename>
(required) The filename for the saved export file.
<name> — Any user specified string.
e -format force|ved | vhdl | verilog
(required) The format of the saved stimulusfile. The format options include:

force— A Tcl script that recreates the waveforms. The file should be sourced when
reloading the simulation.

vcd — An extended VCD file. Load using the -vcdstim argument to vsim.
vhdl — A VHDL test bench. Compile and load the file as your top-level design unit.
verilog — A Verilog test bench. Compile and load the file as your top-level design unit.
® -starttime { <time><unit>}
(required) The ssimulation time at which you want to start exporting.
<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

ModelSim Reference Manual, v10.1c 397

Commands
wave export

Related Topics

® wave create
® wave import
® “Generating Stimulus with Waveform Editor”

398 ModelSim Reference Manual, v10.1c

Commands
wave import

wave import

This command imports an extended V CD file that was created with the wave export command.
It cannot read extended V CD file created by software other than Model Sim. Use this command
to apply a VCD file as stimulus to the current ssmulation.

Syntax
wave import <VCD_file>
Arguments
* <VCD_file>
(required) The name of the extended VCD file to import.
Related Topics

® wave create
® wave export
® “Generating Stimulus with Waveform Editor”

ModelSim Reference Manual, v10.1c 399

Commands
wave modify

wave modify
This command modifies waveform parameters set by a previous wave create command.

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

The following table summarizes the available wave modification options:

Command Description

wave modify -pattern clock Generates a clock waveform. Specify an initial value,
duty cycle, and clock period for the waveform.

wave modify -pattern constant Generates a waveform with a constant value. Specify a
value.

wave modify -pattern counter Generates a waveform from a counting pattern. Specify
start and end values, repeat, step count, time period, and
type (Binary, Gray, Johnson, OneHot, Range, and
ZeroHot).

wave modify -pattern random Generates a random waveform based upon a seed value.
Specify the type (normal or uniform), aninitial value, and
aseed value. If you don't specify a seed value, Questa
uses adefault value of 5.

wave modify -pattern repeater Generates a waveform that repeats. Specify aninitial
value and pattern that repeats. Y ou can also specify how
many times the pattern repeats.

wave modify -pattern none Creates a placeholder for a waveform. Specify an object
name.

Syntax

All waveforms

wave modify [-driver freeze | deposit | driver | expectedoutput] [-endtime { <time><unit>}]
[-initialvalue <value>] [-portmode {in | out | inout | internal}] [-range <msb Isb>]
[-starttime { <time><unit>}] <wave_name>
Clock patterns only

wave modify -pattern clock -period <value> -dutycycle <value> <wave name>

Constant patterns only
wave modify -pattern constant [-driver freeze | deposit | driver | expectedoutput]
[-language { vhdl | verilog}] [-value <value>] <wave name>
Counter patterns only

wave modify -pattern counter -period <value> -repeat forever | <n> | never -startvalue
<value> -step <value> [-direction { up | down | upthendown | downthenup} |

400 ModelSim Reference Manual, v10.1c

Commands
wave modify

[-endvalue <value>] [-type { binary | gray | johnson | onehot | range | zerohot} |
<wave_name>

Random patterns only

wave modify -pattern random -period <value>
-random_type exponential | normal | poisson | uniform [-seed <value>] <wave_name>

Repeater patterns only

wave modify -pattern repeater -period <value> -repeat forever | <n> | never
-sequence{vallval2val3 ...} <wave name>

No pattern

wave create -pattern none <wave_name>

Arguments

¢ -direction {up | down | upthendown | downthenup}

(optional, recommended when specifying -pattern counter) The direction in which the
counter will increment or decrement.

up — (default) Increment only.

down — Decrement only.

upthendown — Increment then decrement.

downthenup — Decrement then increment.
® -driver freeze | deposit | driver | expectedoutput

(optional) Specifiesthat the signal isadriver of the specified type. Appliesto signals of type
inout or internal.

® -dutycycle <value>
(required) The duty cycle of the clock, expressed as a percentage of the period that the clock
ishigh.
<value> — Any integer from 0 to 100 where the default is 50.
® -endtime {<time><unit>}

(optional) The ssimulation time that the waveform should stop. If omitted, the waveform
stops at 1000 simulation time units.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

ModelSim Reference Manual, v10.1c 401

Commands
wave modify

* _endvalue <vaue>

(optional) The ending value of the counter. This option applies to Range counter patterns
only. All other counter patterns start from 0 and go to the max value for that particular signal
(for example, for a 3-bit signal, the start value will be 000 and end value will be 111).

<value> — Any positive integer.
® -initiavalue <value>

(optional) Theinitial value for the waveform. Value must be appropriate for the type of
waveform you are creating. Not applicable to counter patterns.

<value> — Any positive integer.
® -language {vhdl | verilog}
(optional) Controls which language is used for modifying the wave.
vhdl — (default) Specifies the VHDL language.
verilog — Specifies the Verilog language.
® -period <value>
(required) The period of the signal.
¢ -portmode{in | out | inout | internal}
(optional) The port type for the waveform.
in — Ports of type IN. You can also specify “input” as an aliasfor in.
out — Ports of type OUT. Y ou can also specify “output” as an aias for out.
inout — Ports of type INOUT.
internal — (default) Ports of type INTERNAL.
® -random_type exponentia | normal | poisson | uniform
(required) Specifies arandom pattern to generate.
exponential — Exponential distribution of waveform events.
normal — Normal or Gaussian distribution of waveform events.
poisson — Poisson distribution of waveform events.
uniform — (default) Uniform distribution of waveform events.
® -range <msb |sb>
(optional) Identifies bit significance in a counter pattern.
msb Isb — Most significant bit and least significant bit. Both must be specified.
® -repeat forever | <n> | never
(required) Controls duration of pattern repetition.
forever — Repeat the pattern for as long as the simulation runs.
<n> — Repeat the pattern <n> number of times where <n> is any positive integer.

402 ModelSim Reference Manual, v10.1c

Commands
wave modify

never — Never repeat the pattern during simulation.
® -seed <vaue>
(optional) Specifies a seed value for arandomly generated waveform.
<value> — Any non-negative integer where the default is 5.
® -sequence{vallval2va3...}
(required) The set of values that you want repeated.

<vall> — Value must be appropriate for the type of waveform you are creating.
Multiple values are entered as a space separated list and enclosed in curly braces ({}).

® -starttime { <time><unit>}

(optional) The simulation time that the waveform should start. If omitted, the waveform
starts at 0 simulation time units.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

* _startvalue <value>

(required when specifying -pattern counter) Theinitial value of the counter. This option
appliesto patterns specifying -type Range only. All other counter patterns start from 0 and
go to the maximum value for that particular signal (e.g., for a 3-bit signal, the start value
will be 000 and the end value will be 111).

<value> — Vaue must be appropriate for the type of waveform you are creating.
® -step <value>
(required) The step by which the counter is incremented/decremented.
<value> — Vaue must be appropriate for the type of waveform you are creating.
* -type{binary | gray | johnson | onehot | range | zerohot}
(optional) Specifies a counter format.
binary — Specifies abinary counter.

gray — Specifies abinary counter where two successive values differ in only one bit.
Also known as areflected binary counter.

johnson — Specifies atwisted ring or Johnson counter.
onehot — Specifies a shift counter where only one bit at atimeis set to “on” (1).

range — (default) Specifies abinary counter where the values range between
-startvalue and -endvalue

zerohot — Specifies a shift counter where only one bit at atimeis set to “off” (0).

ModelSim Reference Manual, v10.1c 403

Commands
wave modify

* _vaue<vaue>

(optional, recommended when specifying -patter n constant) Specifies avalue for the
constant pattern.

<value> — Vaue must be appropriate for the type of waveform you are creating.
* <wave name>
(required) The name of an existing waveform created with the wave create command.

Related Topics

® wave create
® “Generating Stimulus with Waveform Editor”
® “Creating Waveforms from Patterns”.

404 ModelSim Reference Manual, v10.1c

Commands
wave sort

wave sort
This command sorts signals in the Wave window by name or full path name.

Syntax

wave sort {ascending | descending | fa | fd}

Arguments
® ascending | descending | fa | fd
(required) Sort signalsin one of the following orders.
ascending — Sort in ascending order by signal name.
descending — Sort in descending order by signal name.
fa— Sort in ascending order by the full path name.
fd — Sort in descending order by full path name.

Examples

wave sort ascending

ModelSim Reference Manual, v10.1c 405

Commands
when

when
This command instructs Model Sim to perform actions when the specified conditions are met.

For example, you can use the command to break on asignal value or at a specific simulator
time. Use the nowhen command to deactivate when commands.

Syntax
when [[-fast] [-id <id#>] [-label <label>] {<when_condition_expression>} {<command>}]

Description

The when command uses awhen_condition_expression to determine whether or not to
perform the action. Conditions can include VHDL signals and Verilog nets and registers. The
when_condition_expression uses asimple restricted language (that is not related to Tcl),
which permits only four operators and operands that may be either HDL object names,
signame'event, or constants. Model Sim eval uates the condition every time any object in the
condition changes, hence the restrictions.

Here are some additional points to keep in mind about the when command:

®* Thewhen command creates the equivalent of aVHDL process or aVerilog always
block. It does not work like alooping construct you might find in other languages such
asC.

* Virtua signals, functions, regions, types, and so forth, cannot be used in the when
command. Neither can simulator state variables other than $now.

* With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

Syntax
when [[-fast] [-id <id#>] [-label <label>] {<when_condition_expression>} { <command>}]

Embedded Commands Allowed with the -fast Argument

Y ou can use any Tcl command as a <command>, along with any of the following vaim
commands:

* bp, bd

® change

* disablebp, enablebp
* echo

® examine

* force, noforce

® |og, nolog

* stop

406 ModelSim Reference Manual, v10.1c

Commands
when

* when, nowhen

Embedded Commands Not Allowed with the -fast Argument

®* Any do commands

® Any Tk commands or widgets

* Referencesto U/l state variables or tcl variables
* Virtua signals, functions, or types

Using Global Tcl Variables with the -fast Argument

Embedded commands that use global Tcl variables for passing a state between the when
command and the user interface need to declare the state using the Tcl uivar command. For
example, the variable i below isvisible in the GUI. From the command prompt, you can
display it (by entering echo $i) or modify it (for example, by entering set i 25).

set i 10

when -fast {clk == '0'} {
uivar i
set 1 [expr {$i - 1}]
if {$1 <= 0} {

force reset 1 0, 0 250

}

}

when -fast {reset == '0'} {
uivar i
set 1 10

Additional Restrictions on the -fast Argument

Accessing channels (such asfiles, pipes, sockets) that were opened outside of the embedded
command will not work. For example:

set fp [open mylog.txt w]
when -fast {bus} {
puts S$fp "bus change: [examine bus]"

}
The channel that $fp refersto is not available in the ssimulator, only in the user interface.
Even using the uivar command does not work here because the value of $fp has no meaning
in the context of the -fast argument.

The following method of rewriting this example opens the channel, writes to it, then closes
it within the when command:

when -fast {bus} {
set fp [open mylog.txt a]
puts S$fp "bus change: [examine bus]"
close sfp

}

The following example is alittle more sophisticated method of doing the same thing:

ModelSim Reference Manual, v10.1c 407

Commands
when

when -fast {$now == Ons} {
set fp [open mylog.txt w]

}
when -fast {bus} {
puts $fp "bus change: [examine bus]"
}
when -fast {$Snow == 1000ns} {
close sfp
}

The general principle isthat any embedded command done using the -fast argument is
global to al other commands used with the -fast argument. Here, { $now == Ons} isaway to
define Tcl processes that the -fast commands can use. These processes have the same
restrictions that when bodies have, but the advantage is again speed as a proc will tend to
execute faster than code in the when body itself.

It is recommended not to use virtual signals and expressions.

Arguments

-fast

(optional) Causes the embedded <command> to execute within the simulation kernel, which
provides faster execution and reduces impact on simulation runtime performance.
Limitations on using the -fast argument are described above (in * Embedded Commands Not
Allowed with the -fast Argument”). Disallowed commands still work, but they slow down
the ssimulation.

-label <label>
(optional) Used to identify individual when commands.

<label> — Associates a name or label with the specified when command. Adds alevel
of identification to the when command. The label may contain specia characters.
Quotation marks (" ") or braces ({ }) arerequired only if <label> contains spaces or
specia characters.

-id <id#>
(optional) Attempts to assign thisid number to the when command.

<id#>— Any positive integer that is not already assigned. If the id number you specify
is aready used, Model Sim will return an error.

Note

O

|d numbers for when commands are assigned from the same pool as those used for the bp
command. So even if you have not specified agiven id number for awhen command, that
number may still be used for a breakpoint.

{<when_condition_expression>}

(required if acommand is specified) Specifies the conditions to be met for the specified
<command> to be executed. The condition is evaluated in the simulator kernel and can be
an object name, in which case the curly braces can be omitted. The command will be

408

ModelSim Reference Manual, v10.1c

Commands
when

executed when the object changes value. The condition can be an expression with these

operators:
Name Operator
equals ==, =
not equal I=, /=
greater than >
less than <

greater than or equal >=

less than or equal <=
AND &&, AND
OR I, OR

The operands may be object names, signame'event, or constants. Subexpressionsin
parentheses are permitted. The command will be executed when the expression is evaluated
asTRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation
| relation

relation ::= Name = Literal

Name /= Literal

Name ' EVENT

(expression)

Literal ::= '<char>' | "<bitstring>" | <bitstring>

The"=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals, i.e., Name = Name is not possible.

Tcl variables can be used in the condition expression but you must replace the curly braces
({}) with double quotes (""). Thisworks like a macro substitution where the Tcl variables
are evaluated once and the result is then evaluated as the when condition. Condition
expressions are evaluated in the vsim kernel, which knows nothing about Tcl variables.
That's why the condition expression must be evaluated in the GUI before it is sent to the
vsim kernel. See below for an example of using a Tcl variable.

The">","<", ">=" and "<=" operators are the standard ones for vector types, not the
overloaded operatorsin the std_logic_1164 package. This may cause unexpected results
when comparing objects that contain values other than 1 and 0. Model Sim does a lexical
comparison (position number) for values other than 1 and 0. For example:

ModelSim Reference Manual, v10.1c 409

Commands

when

0000 < 1111 ## This evaluates to true
HOO0O < 1111 ## This evaluates to false
001X >= 0010 ## This also evaluates to false

¢ {<command>}

(required if awhen expression is specified) The command(s) for this argument are eval uated
by the Tcl interpreter within the ModelSim GUI. Any ModelSim or Tcl command or series
of commands are valid with one exception—the run command cannot be used with the
when command. The command sequence usually contains a stop command that sets aflag
to break the simulation run after the command sequence is completed. Multiple-line
commands can be used.

Note

O

If you want to stop the simulation using awhen command, you must use astop command
within your when statement. DO NOT use an exit command or a quit command. The
stop command acts like a breakpoint at the time it is evaluated.

Examples

The when command below instructs the simulator to display the value of object cin
binary format when there isaclock event, the clock is 1, and the value of bis01100111.
Finally, the command tells Model Sim to stop.

when -label whenl {clk'event and clk=’'1’ and b = "01100111"} {
echo "Signal c¢ is [exa -bin c]"
stop

3

The when command below echoes the simulator time when dlice [3:1] of wire [15:0]
count matches the hexadecimal value 7, and simulation time is between 70 and 111
nanoseconds.

when {$now > 70ns and count(3:1) == 3'h7 && $now < 1llns} {
echo "count(3:1) matched 3'h7 at time " S$Snow

}

The commands below show an example of using a Tcl variable within awhen
command. Note that the curly braces ({}) have been replaced with double quotes ("").

set clkb_path /tb/ps/dprb_0/udprb/ucar_reg/uint_ram/clkb;

when -label whenl "Sclkb_path'event and Sclkb_path ='1'" {
echo "Detected Clk edge at path Sclkb_path"

}

The when command below is labeled a and will cause Model Sim to echo the message
“b changed” whenever the value of the object b changes.

when -label a b {echo "b changed"}

The multi-line when command below does not use alabel and has two conditions. When
the conditions are met, Model Sim runs an echo command and a stop command.

410

ModelSim Reference Manual, v10.1c

Commands
when

when {b =1
and ¢ /= 0 } {
echo "b is 1 and ¢ is not 0"
stop

}

® Inthe example below, for the declaration "wire [15:0] &", the when command will
activate when the selected bits match a 7:

when {a(3:1) = 3'h7} {echo "matched at time " Snow}

® Inthe example below, we want to sample the values of the address and data bus on the
first falling edge of clk after sstrb has gone high.

::strobe is our state variable
set ::strobe Zero
This signal breakpoint only fires when sstrb changes to a '1l'
when -label checkStrobe {/top/sstrb == '1'} {
Our state Zero condition has been met, move to state One
set ::strobe One

}
This signal breakpoint fires each time clk goes to '0’
when {/top/clk == '0'} {
if {$::strobe eqg "One"} {
Our state One condition has been met
Sample the busses

echo Sample paddr=[examine -hex /top/paddr] :: sdata=[examine
-hex

/top/sdatal

reset our state variable until next rising edge of sstrb
(back to

state Zero)

set ::strobe Zero

Ending the simulation with the stop command

Batch mode simulations are often structured as "run until condition X istrue,” rather than "run
for X time" simulations. The multi-line when command (shown below) sets a done condition,
and Model Sim runs an echo command and a stop command when the condition is reached.

The simulation will not stop (even if aquit -f command is used) unless you enter a stop
command. To exit the ssimulation and quit Model Sim, use an approach like the following:

ModelSim Reference Manual, v10.1c 411

Commands
when

onbreak {resume}
when {/done_condition == "1’} {
echo "End condition reached"
if [batch_mode] {
set DoneConditionReached 1
stop
}
}
run 1000 us
if {$DoneConditionReached == 1} {
quit -f
}

This example stops 100ns after asignal transition:

when {a = 1} {
If the 100ns delay is already set then let it go.
if {[when -label a_100] == ""} {
when -label a_100 { $now = 100 } {
delete this breakpoint then stop
nowhen a_100
stop
}
}
}

Time-based breakpoints
Y ou can build time-based breakpoints into awhen statement with the following syntax.
For absolute time (indicated by @) use:

when {$now = @1750 ns} {stop}

Y ou can also use:
when {errorFlag = 'l' OR $now = 2 ms} {stop}
This example adds 2 ms to the simulation time at which the when statement is first evaluated,

then stops. The white space between the value and time unit is required for the time unit to be
understood by the simulator.

Y ou can also use variables, as shown in the following example:

set time 1000
when "\S$now = S$Stime" {stop}

The quotes instruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop

Notethat "$now" hasthe'$’ escaped. This prevents Tcl from expanding the variable, because if
it did, you would get:

when "0 = 1000" stop

412 ModelSim Reference Manual, v10.1c

Commands
when

Related Topics

bp
disablebp
enablebp
nowhen

ModelSim Reference Manual, v10.1c 413

Commands
where

where

This command displays information about the system environment. It is useful for debugging
problems where Model Sim cannot find the required libraries or support files.

The command displays two results on consecutive lines:
® current directory

Thisisthe current directory that Model Sim was invoked from, or that was specified on
the Model Sim command line.

® current project file

Thisisthe .mpf file ModelSim isusing. All library mappings are taken from here when a
project is open. If the design is not loaded through a project, this line displays the
modelsim.ini file in the current directory.

Syntax
where
Arguments
* None.
Examples
® Designisloaded through a project:
VSIM> where

Returns:

Current directory is: D:\Client
Project is: D:/Client/monproj.mpf

® Designisloaded with no project (indicates the modelsim.ini fileis under the mydesign
directory):

VSIM> where

Returns:

Current directory is: C:\Client\testcase\mydesign
Project is: modelsim.ini

414 ModelSim Reference Manual, v10.1c

Commands
wif2log

wlf2log

This command translates a Model Sim WLF file (vaim.wif) to a QuickSim Il logfile. It reads the
vsimwif WLF file generated by the add list, add wave, or log commands in the simulator and
convertsit to the QuickSim Il logfile format.

Note

This command should be invoked only after you have stopped the simulation using
quit -sim or dataset close sim.

Syntax

wlif2log <wlffile> [-bits] [-fullname] [-help] [-inout] [-input] [-internal] [-] <instance_path>]

[-lower] [-0 <outfile>] [-output] [-quiet]

Arguments

<wlffile>

(required) Specifiesthe ModelSim WLF file that you are converting.

-bits

(optional) Forces vector netsto be split into 1-bit wide netsin the log file.
-fullname

(optional) Shows the full hierarchical pathname when displaying signal names.
-help

(optional) Displays alist of command options with a brief description for each.
-inout

(optional) Lists only the inout ports. This may be combined with the -input, -output, or
-internal switches.

-input

(optional) Lists only the input ports. This may be combined with the -output, -inout, or
-internal switches.

-interna

(optional) Lists only the internal signals. This may be combined with the -input, -output, or
-inout switches.

-| <instance_path>

(optional) Liststhe signals at or below an HDL instance path within the design hierarchy.
<instance_path> — Specifies an HDL instance path.

-lower

(optional) Shows all logged signals in the hierarchy. When invoked without the -lower
switch, only the top-level signals are displayed.

ModelSim Reference Manual, v10.1c 415

Commands
wlf2log

* _o<outfile>

(optional) Directs the output to be written to a file where the default destination for the
logfile is standard out.

<outfile> — A user specified filename.
* _output

(optional) Lists only the output ports. This may be combined with the -input, -inout, or
-internal switches.

® -quiet
(optional) Disables error message reporting.

416 ModelSim Reference Manual, v10.1c

Commands
wlf2ved

wlf2vcd

This command translates a ModelSim WLF file to a standard VCD file. Complex data types
that are unsupported in the VCD standard (records, memories, etc.) are not converted.

Note
This command should be invoked only after you have stopped the simulation using
quit -sim or dataset close sim.

Syntax
wlif2ved <wlffile> [-help] [-0 <outfile>] [-quiet]

Arguments
* <wiffile>
(required) Specifiesthe ModelSim WLF file that you are converting.
* -help
(optional) Displays alist of command options with a brief description for each.
® -o<outfile>

(optional) Specifies afilename for the output where the default destination for the VCD
output is stdout.

<outfile> — A user specified filename.
® -Quiet

(optional) Disables warning messages that are produced when an unsupported type (for
example, records) is encountered in the WLF file.

ModelSim Reference Manual, v10.1c 417

Commands

wlfman

wlfman

This command allows you to get information about and manipul ate saved WLF files.

The command performs four functions depending on which mode you use:

wlfman info returnsfile information, resolution, versions, and so forth about the source
WLFfile.

wlfman items generates alist of HDL objects (i.e., signals) from the source WLF file
and outputsit to stdout. When redirected to afile, the output is called an object_list_file,
and it can be read in by wifman filter. The object _list fileisalist of objects, one per
line. Comments start with a'# and continue to the end of the line. Wildcards arelegal in
the leaf portion of the name. Here is an example:

/top/foo # signal foo

/top/ul/* # all signals under ul

/top/ul # same as line above

-r /top/u2 # recursively, all signals under u2

Note that you can produce these files from scratch but be careful with syntax. wifman
items always creates alegal object_list_file.

wlfman filter readsin aWLF file and, optionally, an object_list_file, and writes a new
WLF file containing filtered information from those sources. Y ou determine the filtered
information with the arguments you specify.

wlfman monitor returns the current state of a WLF file to the transcript. Each time the
state is monitored, aline of information is output. The state of the WLF file can be
monitored at regular intervals, indicating the changes over time. Here is an example:

wlfman monitor visim.wlf
File Sim

State Time

closed 14000

wlfman profile generates areport of the estimated percentage of file space that each
signal istaking in the specified WLF file. This command can identify signals that
account for alarge percentage of the WLF file size (such as alogged memory that usesa
zero-delay integer loop to initialize the memory). Y ou may be able to drastically reduce
WLF file size by not logging those signals.

wlfman mer ge combines two WLF files with different signals into one WLF file. It
does not combine wif files containing the same signals at different runtime ranges (i.e.,
mixedhdl_Ons_100ns.wlif & mixedhdl _100ns_200ns.wiIf).

wlfman optimize copies the data from the WLF file to the output WLF file, adding or
replacing the indexing and optimization information.

The different modes are intended to be used together. For example, you might run wifman
profile and identify asignal that accounts for 50% of the WLF file size. If you don’t actually
need that signal, you can then run wifman filter to remove it from the WLF file.

418

ModelSim Reference Manual, v10.1c

Commands
wlfman

Syntax

wlfman info <source wilffile> [-V]

wlfman items <sour ce_wilffile> [-n] [-V]

wlifman filter -o <out_wlffile> <source wliffile> [-begin <time>] [-end <time>]

[-compress | -nocompress] [-f <object_list_file>] [-index | -noindex] [-r <object>]
[-opt | -noopt] [-s <symbol>] [-t <resolution>]

wlfman profile <source_wlffile> [-rank] [-top <number>]

wlfman merge -o <out_wlffile> [<wliffilel> <wlffile2> ...] [-compress | -nocompress]

[-index | -noindex] [-opt | -noopt]

wlfman monitor [-f | -i <interval Time> | -p <endTime>] [-q | -v] <source_wlffile>

wlfman optimize -o <out_wilffile> <source wilffile> [-opt | -noopt]

Arguments

-0 <out_wlffile>

(required) Specifies the name of the output WLF file. The output WLF file will contain al
objects specified by the preceding arguments. Output WLF files are aways written in the
latest WLF version regardless of the source WLF file version.

<source_wlffile>
(required) Specifiesthe WLF file from which you want information.
<wlffilel> <wilffile2> ...

(required) Specifiesthe WLF files whose objects you want to copy into one WLF file.
Specified as a space separated list.

-begin <time>

(optional) Specifies the simulation time at which to start reading information from the
source WLF file where the default is to include the entire length of time recorded in
<source_wlffile>.

-COmMpress | -nocompress

(optional) Controls compression of the output WLF file.
-compress — Enables compression. (default)
-nocompress — Disables compression.

-end <time>

(optional) Specifiesthe simulation time at which you want to end reading information from
<source wilffile>.

-f

(optional) Repeat status update every 10 seconds of real time unless an alternate time
interval is specified with -i <intervaTime>.

ModelSim Reference Manual, v10.1c 419

Commands
wlfman

-f <object_list_file>

(optional) Specifies an object_list_file created by wifman itemsto includein
<out_wlffile>.

-i <interva Time>

(optional) Specifiesthe time delay before the next status update where the default is 10
seconds of real timeif not specified.

<interval Time> — Any positive integer.
-index | -noindex

(optional) Controls indexing when writing the output WLF file. Indexing makes viewing
wave data faster, however performance during optimization will be slower because indexing
and optimization require significant memory and CPU resources. Disabling indexing makes
viewing wave data slower unless the display is near the start of the WLF file. Disabling
indexing also disables optimization of the WLF file but may provide a significant
performance boost when archiving WLF files. Indexing and optimization information can
be added back to the file using the wifman optimize command.

-index — Enables indexing. (default)
-noindex — Disables indexing and optimization.
-n
(optional) Lists regions only (no signals).
-opt | -noopt
(optional) Controls optimization of the output WLF file.
-opt — Enables WLF file optimization. (default)
-noopt — Disables WLF file optimization.
-p <endTime>
(optional) Specifiesthe simulation time at which wifman will stop monitoring the WLF file.
<endTime> — Any positive integer.
-q
(optional) Suppress normal status messages while monitoring.
-r <object>

(optional) Specifies an object (region) to recursively include in the output. If <object>isa
signal, the output would be the same as using -s.

-rank

(optional) Sortsthe wifman profile report by percentage of the total file space used by each
signal.

-S <symbol >
(optional) Specifies an object to include in the output. By default all objects are included.

420

ModelSim Reference Manual, v10.1c

Commands
wlfman

® _f<resolution>

(optional) Specifiesthe time resolution of the new WLF file. By default the resolution isthe

same as the source WLF file.

® -top <number>

(optional) Filters the wifman profile report so that only the top <number> signalsin terms

of file space percentage are displayed.

* v

(optional) Produces verbose output that lists the object type next to each object.

Examples

® The output from this command would ook something like this:

wlfman profile -rank top_vh.wlf

Returns:

#Repeated ID #'s mean those
#space in the wlf file.

#
ID Transitions File
B . .
1 2192 33
1
1
1
1
1
1
2 1224 18
3 1216 18
3
3
4 675 10
5 423 6
6 135 3

o wifman profile -top 3 top_vh.wif

signals share the same

% /top_vh/pdata
/top_vh/processor/data
/top_vh/cache/pdata
/top_vh/cache/gen__0/s/data
/top_vh/cache/gen__1/s/data
/top_vh/cache/gen_ 2/s/data
/top_vh/cache/gen__ 3/s/data
/top_vh/ptrans
/top_vh/sdata
/top_vh/cache/sdata
/top_vh/memory/data
/top_vh/strans
/top_vh/cache/gen__ 3/s/data_out
/top_vh/paddr.

o

o

o o°

o°

The output from this command would look something like this:

ModelSim Reference Manual, v10.1c

421

Commands
wlfman

WWWNRRRERRE R

Transitions File % Name

2192 33 % /top_vh/pdata
/top_vh/processor/data
/top_vh/cache/pdata
/top_vh/cache/gen__0/s/data
/top_vh/cache/gen__1/s/data
/top_vh/cache/gen__ 2/s/data
/top_vh/cache/gen__3/s/data
/top_vh/ptrans
/top_vh/sdata
/top_vh/cache/sdata
/top_vh/memory/data

1224 18
1216 18

oe

oe

® wlfman monitor -f -p 100000000 vsim.wlf

Returns:

Setting end time to 100000000, measuring progress %

File
State
open
open
open
open

Related Topics

File
Time
7239185
7691785
8144385
8596625

Q

Percent
Complete
7.2%
7.7%

8.1
8.6

o

o

® Recording Simulation Results With

Datasets

®* \WLF File Parameter Overview

422

ModelSim Reference Manual, v10.1c

Commands
wlfrecover

wlfrecover

This command attemptsto "repair* WLF files that are incomplete due to a crash or if thefile
was copied prior to completion of the ssmulation. Use this command if you receive a* bad
magic number” error message when opening a WLF file. Y ou can run the command from the
VSIM> or Model Sim> prompt or from a shell.

Syntax

wlfrecover <filename> [-force] [-q]

Arguments
e <filename>
(required) Specifies the WLF fileto repair.

e -force
(optional) Disregards file locking and attempts to repair the file.
* q

(optional) Hides all messages unless there is an error while repairing the file.
Related Topics
® Saving a Simulationto aWLF File

ModelSim Reference Manual, v10.1c 423

Commands
write format

write format

This command records the names and display options of the HDL objects currently being
displayed in the Analysis, List, Memory, Message Viewer, Test Browser, and Wave windows.

Thewrite format restart command creates a single .do file that will recreate all debug
windows, all file/line breakpoints, and all signal breakpoints created using the when command.
If the ShutdownFile modelsim.ini variable is set to this.do filename, it will call the write format
restart command upon exit.

Thefile created is primarily alist of add list or add wave commands, though a few other
commands are included (see "Output" below). Thisfile may be invoked with the do command
to recreate the window format on a subsequent simulation run.

When you load aformat file, Model Sim verifies the existence of the datasets required by that
file. Model Sim displays an error message if the requisite datasets do not al exist. To force the
execution of the format file even if al datasets are not present, use the -for ce switch with your
do command. For example:

VSIM> do format.do -force

Note
D Note that using the -force switch when datasets are not present will result in error

messages for signals referencing the nonexistent datasets. Also, -force is recognized by
the format file not the do command.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

write format {assertions | breakpoints | coverdirective | export_hier_config | list | memory
| msgviewer | testbrowser | watch | wave | restart}
<filename>
Arguments

® assertions | breakpoints | coverdirective | export_hier_config | list | memory | msgviewer
| testbrowser | watch | wave | restart

(required) Specifiesthat the contents of the designated window are recorded in thefile
specified by <filename>.

assertions — Records objects of the Assertions window.
breakpoints — Records file line and signal breakpoints.
coverdirective — Records objects of the Coverdirectives window.

export_hier_config — Records hierarchical sort order for objectsin the Verification
Results Analysis window.

list — Records objects of the List window.

424 ModelSim Reference Manual, v10.1c

Commands
write format

memory — Records objects of the Memory window.
msgviewer — Records objects of the Message Viewer window.
testbrowser — Records objects of the Verification Management Browser window.
watch — Records objects of the Watch window.
wave — Records objects of the Wave window.
restart — Records objects of all windows and breakpointsin the .dofile.
e <filename>

(required) Specifies the name of the output file where the datais to be written. Y ou must
specify the .do extension.

Examples
® Savethe current datain the List window in afile named alu_list.do.

write format list alu_list.do

® Savethe current datain the Wave window in afile named alu_wave.do.

write format wave alu_wave.do

Output
® Below isan example of a saved Wave window format file.

onerror {resume}

quietly WaveActivateNextPane {} 0

add wave -noupdate -format Logic /cntr_struct/1d

add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/g
TreeUpdate [SetDefaultTree]

quietly WaveActivateNextPane

add wave -noupdate -format Logic /cntr_struct/pl

add wave -noupdate -format Logic /cntr_struct/p2

add wave -noupdate -format Logic /cntr_struct/p3

TreeUpdate [SetDefaultTree]

WaveRestoreCursors {0 ns}

WaveRestorezoom {0 ns} {1 us}

configure wave -namecolwidth 150

configure wave -valuecolwidth 100

configure wave -signalnamewidth 0

configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window. The TreeUpdate command then refreshes al five waveforms. The second
WaveA ctivateNextPane command creates a second pane which contains three
signals.The WaveRestor eCur sor s command restores any cursors you set during the
original simulation, and the WaveRestor eZoom command restores the Zoom range you

ModelSim Reference Manual, v10.1c 425

Commands
write format

set. These four commands are used only in saved Wave format files; therefore, they are
not documented elsewhere.

Related Topics
® add list

* add wave
[

426 ModelSim Reference Manual, v10.1c

Commands
write list

write list
This command records the contents of the List window in alist output file.

Thisfile contains simulation datafor all HDL objects displayed in the List window: VHDL
signals and variables and Verilog nets and registers.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
write list [-events] <filename>
Arguments
* -events
(optional) Specifies to write print-on-change format where the default is tabular format.
¢ <filename>
(required) Specifies the name of the output file where the datais to be written.
Examples
® Savethe current datain the List window in afile named alu.lst.

write list alu.lst

Related Topics

® writetss

ModelSim Reference Manual, v10.1c 427

Commands
write preferences

write preferences

This command saves the current GUI preference settingsto a Tcl preference file. Settings saved
include Wave, Objects, and L ocals window column widths; Wave, Objects, and L ocals window
value justification; and Wave window signal name width.

Syntax
write preferences <pr eference file name>

Arguments
* <preference file name>

(required) Specifiesthe name for the preferencefile. If the file is named modelsim.tcl,
ModelSim will read the file each time vaim isinvoked. To use a preference file other than
modelsim.tcl you must specify the aternative file name with the MODELSIM_TCL
environment variable.

Y ou can modify variables by editing the preference file with the Model Sim notepad:

notepad <preference file name>

428 ModelSim Reference Manual, v10.1c

Commands
write report

write report

This command prints a summary of the design being simulated including alist of all design
units (VHDL configurations, entities, and packages, and Verilog modules) with the names of
their source files. The summary includes alist of all source files used to compile the given

design.

The Simulation Report contains the following information:

Design Simulated — directory path of the design’s top-level module
Number of signalg/netsin the design
Number of processesin the design
Simulator Parameters, including:

o Current directory

o Project file directory

o Simulation time resolution

List of design units used, including:
o Module name

o Architecture, if applicable

o Library directory

o Sourcefile

o Timescale

o Occurrences

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

write report [-capacity [-] | -s] [-qdas]] | [-] | -9] |
[-tcl] | [<filename>]

Arguments

-capacity
(optional) Reports data on memory usage of various types of SystemVerilog constructsin

the design. Model Sim collects memory usage data for dynamic objects. Must be specified
first when specifying -qdas. To display memory datafor all object types, specify -capacity -
l.

ModelSim Reference Manual, v10.1c 429

Commands
write report

<filename>

(optional) Specifiesthe name of the output file where the dataisto be written. If <filename>
isomitted, the report is written to the Transcript window.

(optional) Generates more detailed information about the design, including alist of sparse
memories or the memory capacity for all object types. Y ou must precede this argument with
-capacity when specifying a capacity report.

-qdas

(optional) Reports memory usage data for queues, dynamic arrays, and associative arrays.
Y ou must precede this argument with -capacity when specifying a capacity report.

-S

(optional) Generates ashort list of design information. Y ou must precede this argument with
-capacity when specifying a capacity report.

-tcl

(optional) Generatesa Tcl list of design unit information. This argument cannot be used
with afilename.

Examples

® Saveinformation about the current design in afile named alu_rpt.txt.

write report alu_rpt.txt

Create a Simulation Report for the current ssimulation
write report -l
returns:

##

SIMULATION REPORT Generated on Mon Aug 10 12:56:15 2009
##

##

Design simulated: <directory>\work.top (fast)

Number of signals/nets in design: 89

Number of processes in design: 74

##

Simulator Parameters:

##

Current directory: <directory>\
Project file: <directory>\win32/../modelsim.ini
Simulation time resolution: 1lns
##

List of Design units used:

##

Module: top

#4# Architecture: fast

Library: <directory>\work

430

ModelSim Reference Manual, v10.1c

Commands
write report

Source File:
Timescale:

Occurrences:
##

Module:

#4# Architecture:
Library:

Source File:
Timescale:

Occurrences:

lns / 1ns

<directory>\work

Ins / 1ns

ModelSim Reference Manual, v10.1c

431

Commands
write timing

write timing

Thiscommand displays path delays and timing check limits, unadjusted for delay net delays, for
the specified instance.

When the write timing command reports interconnect delays on aVerilog module instance you
will see either MIPDs (Module Input Port Delays) or MITDs (Module Transport Port Delays)
reported. If you specify either the +multisource int_delays or the +transport_int_delays
switch with the vaim command, INTERCONNECT delays will be reported as MITDs.
Otherwise they will be reported as MIPDs. An MIPD report may look like the following:

/top/ul: [mymod:src/5/test.v(18)]

MIPD(s) :
Port clk_in: (6, 6, 6)

An MITD report may look like the following:

/top/ul: [mymod:src/5/test.v(18)]
MITDs to port clk_in:

From port /top/p/y = (6)
Syntax
write timing [-recursive] [-file <filename>] [<instance_namel>...<instance_nameN>]
[-simvalues]
Arguments

¢ -file<filename>

(optional) Specifies the name of the output file where the datais to be written. If the -file
argument is omitted, timing information is written to the Transcript window.

<filename> — Any valid filename. May include special characters and numbers.
® <instance_namel>...<instance_nameN>

(required) The name(s) of the instance(s) for which timing information will be written. If
<instance_name> is omitted, the command returns nothing.

® _recursive

(optional) Generates timing information for the specified instance and all instances
underneath it in the design hierarchy.

® -simvalues
(optional) Displays optimization-adjusted values for delay net delays.
Examples

® Write timing about /top/ul and al instances underneath it in the hierarchy to thefile
timing.txt.

write timing -r -f timing.txt /top/ul

432 ModelSim Reference Manual, v10.1c

Commands
write timing

® Write timing information about the designated instances to the Transcript window.

write timing /top/ul /top/u2 /top/u3 /top/u8

ModelSim Reference Manual, v10.1c 433

Commands
write transcript

write transcript

This command writes the contents of the Transcript window to the specified file. The resulting
file can then be modified to replay the transcribed commands as a DO file (macro).

The command cannot be used in batch mode. In batch mode use the standard Transcript file or
redirect stdout.

Syntax

write transcript [<filename>]

Arguments
¢ <filename>
(optional) Specifiesthe name of the output file where the data is to be written. If the
<filename> is omitted, the transcript is written to afile named transcript.
Related Topics

® do
® Saving a Transcript FileasaMacro (DO
file)

434 ModelSim Reference Manual, v10.1c

Commands
write tssi

write tssi
This command records the contents of the List window in a"TSSI format" file.

The file contains simulation data for all HDL objects displayed in the List window that can be
converted to TSSI format (VHDL signals and Verilog nets). A signal definition fileis aso
generated.

The List window needs to be using symbolic radix in order for writetssi to produce useful
output.

Syntax

writetss <filename>

Arguments
e <filename>
(required) Specifies the name of the output file where the datais to be written.

Description

If the <filename> has afile extension (e.g., listfile.Ist), then the definition file is given the same
file name with the extension .def (e.g., listfile.def). The valuesin the listfile are produced in the
same order that they appear in the List window. The directionality is determined from the port
typeif the object isa port, otherwise it is assumed to be bidirectional (mode INOUT).

Objects that can be converted to SEF are VHDL enumerations with 255 or fewer elements and
Verilog nets. The enumeration values U, X, 0, 1, Z, W, L, H and - (the enumeration values
defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF values
according to the table below. Other values are converted to a question mark (?) and cause an
error message. Though the write tss command was developed for use with std_ulogic, any
signal which uses only the values defined for std_ulogic (including the VHDL standard type
bit) will be converted.

std_ulogic State SEF State Characters

Characters I nput Output Bidirectional
U N X ?

X N X ?

0 D L 0

1 U H 1

z z T F

W N X ?

L D L 0

H U H 1

ModelSim Reference Manual, v10.1c 435

Commands
write tssi

std_ulogic State SEF State Characters
Characters I nput Output Bidirectional
- N X ?

Bidirectional logic values are not converted because only the resolved value is available. The
TSSI TDS ASCII In Converter and ASCII Out Converter can be used to resolve the
directionality of the signal and to determine the proper forcing or expected value on the port.
Lowercase values x, z, w, |, and h are converted to the same values as the corresponding
capitalized values. Any other values will cause an error message to be generated the first time
an invalid value is detected on asignal, and the value will be converted to a question mark (?).

Note
D The TDS ASCII In Converter and ASCII Out Converter are part of the TDS software.

Model Sim outputs a vector file, and TSSI tools determine whether the bidirectional
signals are driving or not.

Related Topics

® {ssi2mti

436 ModelSim Reference Manual, v10.1c

Commands
write wave

write wave
This command records the contents of the Wave window in PostScript format.
The output file can then be printed on a PostScript printer.

Syntax

write wave <filename> [-end <time>] [-landscape] [-height <real _num>]
[-margin <real_num>] [-perpage <time>] [-portrait][-start <time>] [-width <real_num>]

Arguments
¢ <filename>
(required) Specifies the name of the PostScript (.ps) output file.
® -end<time>
(optional) The simulation time at which the record will end.

<time> — Specified as a positive integer or decimal number where the units are the
current simulation time resolution.

® -height <rea_num>
(optional) Specifies the paper height in inches.

<real_num> — Specified as a positive integer or decimal number where the default is
11.0.

® -landscape

(optional) Use landscape (horizontal) orientation. (default)
®* -margin <real_num>

(optional) Specifiesthe margin in inches.

<real_num> — Specified as a positive integer or decimal number where the default is
0.5.

® -perpage <time>
(optional) Specifies the time width per page of outpui.

<time> — Specified as a positive integer or decimal number where the units are the
current simulation time resolution.

® -portrait

(optional) Use portrait (vertical) orientation where the default islandscape (horizontal).
* -start <time>

(optional) Specifies the start time to be written.

<time> — Specified as a positive integer or decimal number where the units are the
current simulation time resolution.

ModelSim Reference Manual, v10.1c 437

Commands
write wave

® -width <real_num>
(optional) Specifies the paper width in inches.

<real_num> — Specified as a positive integer or decimal number where the default is
8.5.

Examples

® Savethe current datain the Wave window in afile named alu.ps.

write wave alu.ps

Write two separate pages to top.ps. The first page contains data from 600ns to 700ns,
and the second page contains data from 701ns to 800ns.

write wave -start 600ns -end 800ns -perpage 100ns top.ps

To make the job of creating a PostScript waveform output file easier, use the File >
Print Postscript menu selection in the Wave window.

438 ModelSim Reference Manual, v10.1c

ABCDEFGHI

JKLMNOPQRSTUVWXYZ

Index

— Symbols —

"hasX, hasX, 30

+typdelays, 343

$finish behavior, customizing, 376

— Numerics —
2001, keywords, disabling, 344

— A —
abort command, 48
absolute time, using @, 22
add dataflow command, 49
add list command, 51
add log command, 156
add memory, 55
add memory command, 55
add message command, 57
add watch command, 59
add wave command, 60
add _cmdhelp command, 67
AddPragmaPrefix .ini file variable, 330
addTime command, 241
alias command, 69
analog
signal formatting, 61
annotating interconnect delays,
v2k_int_delays, 378
archives, library, 327
argument, 337
arrays
indexes, 13
gdlices, 13
arrays, VHDL, searching for, 26
assertions
testing for with onbreak command, 187
attributes, of signals, using in expressions, 30

— B —
batch_mode command, 72
batch-mode simulations

halting, 411
bd (breakpoint delete) command, 73
binary radix, mapping to std logic values, 37
bookmark add wave command, 75
bookmark delete wave command, 77
bookmark goto wave command, 78
bookmark list wave command, 79
bp (breakpoint) command, 80
break

on signal value, 406
breakpoints

conditional, 406

continuing simulation after, 217

deleting, 73

listing, 80

setting, 80

signal breakpoints (when statements), 406

time-based

in when statements, 412

busses

user-defined, 64

—C—
call command, 86
case choice, must be locally static, 282
case sensitivity

VHDL vs. Verilog, 17
cd (change directory) command, 88
change command, 89
-check_synthesis argument, 277
class objects, viewing, 91
classinfo command, 91
Color

radix, 204

example, 205

combining signals, busses, 64
commands

abort, 48

add dataflow, 49

add list, 51

ModelSim Reference Manual, v10.1c

439

ABCDEFGH

JKLMNOPQRSTUVWXY Z

add memory, 55

add message, 57

add watch, 59

add wave, 60

dlias, 69

batch_mode, 72

bd (breakpoint delete), 73
bookmark add wave, 75
bookmark delete wave, 77
bookmark goto wave, 78
bookmark list wave, 79
bp (breakpoint), 80

call, 86

cd (change directory), 88
change, 89

classinfo, 91

configure, 95

dataset alias, 101

dataset clear, 102
dataset close, 103
dataset config, 104, 106
dataset info, 107

dataset list, 108

dataset open, 109
dataset rename, 110, 112
dataset restart, 111
dataset snapshot, 113
delete, 116

describe, 117

disablebp, 118

do, 119

drivers, 121

dumplog64, 123

echo, 124

edit, 125

enablebp, 126
environment, 128
examine, 130

exit, 135

find, 136

force, 145

layout, 154

log, 156

Ishift, 159

Isublist, 160

mem compare, 161
mem display, 162
mem list, 165
mem load, 166
mem save, 170
mem search, 173
messages clearfilter, 176, 177
messages write, 178
noforce, 180
nolog, 181
notation conventions, 11
notepad, 183
noview, 184
nowhen, 185
onbreak, 186
onElabError, 188
onerror, 189
pause, 192
printenv, 193, 194
process report, 195
pwd, 199

quietly, 200

quit, 201

radix, 202

radix define, 204
radix list, 208
radix name, 209
readers, 211
report, 212

restart, 214
resume, 216

run, 217

runStatus, 220
searchlog, 222

see, 225

setenv, 226

shift, 227

show, 228
simstats, 229

stack down, 231
stack frame, 232
stack level, 233
stack tb, 234

stack up, 235
status, 236

440

ModelSim Reference Manual, v10.1c

ABCDEFGH

JKLMNOPQRSTUVWXY Z

stop, 238

suppress, 239

tb (traceback), 240
Time, 241

transcript, 244
transcript file, 245
transcript path, 247
transcript sizelimit, 248
TreeUpdate, 425
tssi2mti, 249
unsetenv, 252
variables referenced in, 22
vcd add, 253

vcd checkpoint, 255
ved comment, 256
vcd dumpports, 257
ved dumpportsall, 260
ved dumpportsflush, 261
vcd dumpportslimit, 262
ved dumpportsoff, 263
vcd dumpportson, 264
vcd file, 265

vcd files, 267

vcd flush, 269

vcd limit, 270

vcd off, 271

ved on, 272

vcom, 275

vdel, 288

vdir, 290

vencrypt, 293

verror, 295

vgencomp, 297
vhencrypt, 299

view, 301

virtual count, 304
virtual define, 305
virtual delete, 306
virtual describe, 307
virtual expand, 308
virtual function, 309
virtual hide, 312
virtual log, 313

virtual nohide, 315
virtual nolog, 316

virtual region, 318
virtual save, 319
virtual show, 320
virtual signal, 321
vlib, 327

vlog, 329

vmake, 347

vmap, 349

vsim, 351

vsimDate, 381
vsimid, 381
vsimVersion, 381
vsource, 383

wave, 384

wave create, 388
wave edit, 394

wave export, 397
wave import, 399
wave modify, 400
wave sort, 405

WaveA ctivateNextPane, 425
WaveRestoreCursors, 425
WaveRestoreZoom, 425
when, 406

where, 414

wlif2log, 415

wif2vced, 417

wlfman, 418
wlfrecover, 423

write format, 424
write list, 427

write preferences, 428
write report, 429
write timing, 432
write transcript, 434
write tssi, 435

write wave, 437

range checking in VHDL, 285
Verilog, 329
VHDL, 275

at a specified line number, 280

comment charactersin VSIM commands, 11
compatibility, of vendor libraries, 290
compiling

selected design units (-just eapbc), 280

ModelSim Reference Manual, v10.1c

441

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

standard package (-s), 285, 342
VHDL-2008
REAL_VECTOR, 279
compressing files
VCD files, 257, 267
concatenation
directives, 35
of signals, 35
conditional breakpoints, 406
configurations, simulating, 351
configure command, 95
constants
in case statements, 282
values of, displaying, 117, 130
conversion
radix, 202

—D—
dataset alias command, 101
dataset clear command, 102
dataset close command, 103
dataset config command, 104, 106
dataset info command, 107
dataset list command, 108
dataset open command, 109
dataset rename command, 110, 112
dataset restart command, 111
dataset snapshot command, 113
datasets
environment command, specifying with,
128
declarations, hiding implicit with explicit, 287
+definet+, 331
delay
interconnect, 359
+delay_mode_distributed, 332
+delay_mode_path, 332
+delay_mode_unit, 332
+delay_mode_zero, 332
"delayed, 30
delete command, 116
deltas
collapsing in WLF files, 368
dependencies, checking, 290
dependency errors, 278, 333
describe command, 117

design loading, interrupting, 351
design units

report of units simulated, 429

Verilog

adding to alibrary, 329

directories

mapping libraries, 349
disablebp command, 118
dividers

adding from command line, 61
divTime ccommand, 241
do command, 119
DO files (macros), 119
-dpiheader, vlog, 332, 372
drivers command, 121
dump files, viewing in the simulator, 273
dumplog64 command, 123

— E—
echo command, 124
edit command, 125
enablebp command, 126
entities, specifying for smulation, 379
environment command, 128
environment variables
reading into Verilog code, 331
specifying UNIX editor, 125
state of, 194
using in pathnames, 17
environment, displaying or changing
pathname, 128
eqTime command, 241
errors
getting details about messages, 295
onerror command, 189
SDF, disabling, 363
event order
changing in Verilog, 331
examine command, 130
exit command, 135
exiting the ssimulator, customizing behavior,
376
extended identifier, 29
extended identifiers, 17

442

ModelSim Reference Manual, v10.1c

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

— F—
-f, 333
file compression

VCD files, 257, 267
find command, 136
find connections command, 141
force

remove wire model, 361
force command, 145
format file

List window, 424

Wave window, 424
formatTime command, 242

— G —
generics

assigning or overriding valueswith -g and -

G, 355
examining generic values, 130
limitation on assigning composite types,
356
glitches
disabling generation
from command line, 370
global visibility
PLI/FLI shared objects, 357
gotolingk MGCGOTOVAR_user
DPI File Loading, 378
gteTime command, 241
gtTime command, 241
GUI_expression_format, 27
syntax, 27

— H—
"hasX, 30
hazards

-hazards argument to vlog, 335

-hazards argument to vsim, 373
history

of commands

shortcuts for reuse, 24

— | —

implicit operator, hiding with vcom -explicit,
287

+incdir+, 335

interconnect delays, 359

annotating per Verilog 2001, 378
internal signals, adding to a VCD file, 253
interrupting design loading, 351
intToTime command, 241

— K —
keywords
disabling 2001 keywords, 344
enabling SystemV erilog keywords, 342

— L —
layout command, 154
LD_LIBRARY_PATH, disabling default
internal setting of, 359
+libcell, 336
libraries
archives, 327
dependencies, checking, 290
design libraries, creating, 327
listing contents, 290
refreshing library images, 285, 341
vendor supplied, compatibility of, 290
Verilog, 358
lint-style checks, 336
List window
adding itemsto, 51
loading designs, interrupting, 351
log command, 156
log file
log command, 156
nolog command, 181
QuickSim Il format, 415
redirecting with -1, 358
virtual log command, 313
virtual nolog command, 316
Ishift command, 159
Isublist command, 160
[teTime command, 241
[tTime command, 241

— M —

macros (DO files)
breakpoints, executing at, 81
executing, 119
forcing signals, nets, or registers, 145

ModelSim Reference Manual, v10.1c

443

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

parameters
passing, 119

relative directories, 119

shifting parameter values, 227
+maxdelays, 337
mc_scan_plusargs, PLI routine, 376
mem compare command, 161
mem display command, 162
mem list command, 165
mem load command, 166
mem save command, 170
mem search command, 173
memory window

add memory command, 55

adding itemsto, 55
memory, comparing contents, 161
memory, displaying contents, 162
memory, listing, 165
memory, loading contents, 166
memory, saving contents, 170
memory, searching for patterns, 173
Message Viewer window

messages write command, 178
messages

echoing, 124

getting more information, 295

loading, disabling with -quiet, 341

loading, disbling with -quiet, 285
messages clearfilter command, 176, 177
messages write command, 178
-mfcu, 337
+mindelays, 337
mul Time command, 241
multi-source interconnect delays, 359

— N—
name case sensitivity, VHDL vs. Verilog, 17
negative pulses

driving an error state, 377
negTime command, 241
nets

drivers of, displaying, 121

readers of, displaying, 211

stimulus, 145

values of

examining, 130

-no_risefall_delaynets, 374
noforce command, 180
+nolibcell, 336

nolog command, 181
notepad command, 183
noview command, 184
+nowarn<CODE>, 339
nowhen command, 185

— 00—
object_list_file, WLF files, 418
onbreak command, 186
onElabError command, 188
onerror command, 189
optimizations
disabling for Verilog designs, 340
optimizing wif files, 418
order of events
changing in Verilog, 331

—P—
parameters
using with macros, 119
pathnames
in VSIM commands, 12
spacesin, 12
pause command, 192
PLI
loading shared objects with global symbol
visibility, 357
pragmas
synthesis pragmas, 276, 330
preference variables
WildcardFilter, 18
Preoptimized Design Unit
and SDF file, 363
printenv command, 193, 194
process report command, 195
projects
override mapping for work directory with
vcom, 286
override mapping for work directory with
viog, 344
propagation, preventing X propagation, 360
pulse error state, 377
pwd command, 199

444

ModelSim Reference Manual, v10.1c

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

—Q—

QuickSim I logfile format, 415
quietly command, 200

quit command, 201

— R —
Radix
color, 204
example, 205
user defined, 204
radix
display valuesin debug windows, 202
of signals being examined, 53, 63, 132
radix command, 202
Radix define command, 204
setting radix color, 204, 205
radix list command, 208
radix name command, 209
range checking
disabling, 283
enabling, 285
readers command, 211
Rea ToTime command, 242
record field selection, syntax, 13
refresh, dependency check errors, 278, 333
refreshing library images, 285, 341
report command, 212
reporting
processes in the Process Window, 195
variable settings, 22
resolution
specifying with -t argument, 364
restart command, 214
resume command, 216
run command, 217
runStatus command, 220

—S—
scaleTime command, 242
scope resolution operator, 14
scope, setting region environment, 128
SDF
annotation verbose mode, 364
controlling missing instance messages, 363
errors on loading, disabling, 363
warning messages, disabling, 364

search libraries, 358
searching
binary signal valuesin the GUI, 37
List window
signal values, transitions, and hames,
27
VHDL arrays, 26
searchlog command, 222
see command, 225
setenv command, 226
shared objects
loading with global symbol visibility, 357
shift command, 227
shortcuts
command history, 24
command line caveat, 24
show command, 228
signas
aternative names in the Wave window (-
label), 62
attributes of, using in expressions, 30
breakpoints, 406
combining into a user-defined bus, 64
drivers of, displaying, 121
environment of, displaying, 128
force time, specifying, 148
log file, creating, 156
pathnamesin VSIM commands, 12
radix
specifying for examine, 53, 63, 132
readers of, displaying, 211
stimulus, 145
values of
examining, 130
simstats command, 229
simulating
delays, specifying time unitsfor, 22
design unit, specifying, 351
saving simulations, 156, 367
stopping simulation in batch mode, 411
simulations
saving results, 112, 113
Simulator commands, 48
simulator resolution
vsim -t argument, 364

ModelSim Reference Manual, v10.1c

445

ABCDEFGHI JKLMNOPQRSTUVWXY Z

simulator version, 367, 381
simultaneous eventsin Verilog
changing order, 331
spaces in pathnames, 12
Sparse memories
listing with write report, 430
specify path delays, 377
stack down command, 231
stack frame command, 232
stack level command, 233
stack tb command, 234
stack up command, 235
startup
aternate to startup.do (vsim -do), 354
status command, 236
Std logic
mapping to binary radix, 37
stop command, 238
subTime command, 241
suppress command, 239
synthesis
pragmas, 276, 330
rule compliance checking, 277
SystemVerilog
enabling with -sv argument, 342
multiple files in a compilation unit, 337
scope resolution, 14
SystemVerilog classes
call command, 86

— T —
tb command, 240
Tdl
history shortcuts, 24
variable
in when commands, 409
TFMPC
disabling warning, 375
time
absolute, using @, 22
simulation time units, 22
time collapsing, 368
Time commands, 241
time resolution
Setting
with vsim command, 364

time, time units, simulation time, 22
timescale directive warning

disabling, 375
timing

disabling checks, 339

disabling checks for entire design, 360
title, Main window, changing, 365
transcript

redirecting with -1, 358
transcript command, 244
transcript file command, 245
transcript path command, 247
transcript sizelimit command, 248
TreeUpdate command, 425
TSCALE, disabling warning, 375
TSSI, 435
tssizmti command, 249

—U—
-u, 343

undeclared nets, reporting an error, 336
unsetenv command, 252

user-defined bus, 64

User-defined radix, 204

—V —
-v, 343
v2k_int_delays, 378
validTime command, 242
values
describe HDL items, 117
examine HDL item values, 130
variable settings report, 22
variables
describing, 117
referencing in commands, 22
value of
changing from command line, 89
examining, 130
ved add command, 253
vcd checkpoint command, 255
vced comment command, 256
ved dumpports command, 257
vcd dumpportsall command, 260
vcd dumpportsflush command, 261
ved dumpportslimit command, 262

446

ModelSim Reference Manual, v10.1c

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

vcd dumpportsoff command, 263

ved dumpportson command, 264

vcd file command, 265

VCD files
adding itemsto thefile, 253
capturing port driver data, 257
converting to WLF files, 273
creating, 253
dumping variable values, 255
flushing the buffer contents, 269
generating from WLF files, 417
inserting comments, 256
internal signals, adding, 253
specifying maximum file size, 270
specifying name of, 267
specifying the file name, 265
state mapping, 265, 267
turn off VCD dumping, 271
turn on VCD dumping, 272
viewing files from another tool, 273

vcd files command, 267

vcd flush command, 269

vcd limit command, 270

ved off command, 271

vcd on command, 272

ved2wlf command, 273

vcom command, 275

vcom Examples, 286

vdel command, 288

vdir command, 290

vector elements, initializing, 89

vencrypt command, 293

vendor libraries, compatibility of, 290

Verilog
$finish behavior, customizing, 376
capturing port driver datawith -dumpports,

265

Verilog 2001
disabling support, 344

verror command, 295

version
obtaining with vsim command, 367
obtaining with vsim<info> commands, 381

vgencomp command, 297

VHDL

arrays
searching for, 26
compile
1076-1987, 276
1076-1993, 276
1076-2002, 276
1076-2008, 276
field naming syntax, 13
VHDL-1987, enabling support for, 276
VHDL-1993, enabling support for, 276
VHDL-2002, enabling support for, 276
VHDL-2008
package STANDARD
REAL_VECTOR, 279
VHDL-2008, enabling support for, 276
vhencrypt command, 299
view command, 301
viewing
waveforms, 367
virtual count commands, 304
virtual define command, 305
virtual delete command, 306
virtual describe command, 307
virtual expand commands, 308
virtual function command, 309
virtual hide command, 312
virtual log command, 313
virtual nohide command, 315
virtual nolog command, 316
virtual region command, 318
virtual save command, 319
virtual show command, 320
virtual signal command, 321
vlib command, 327
vliog
multiple file compilation, 337
vlog command, 329
vmake command, 347
vmap command, 349
vsim
disabling internal setting of
LD LIBRARY_PATH, 359
vsim build date and version, 381
vsim command, 351
vsim Examples, 379

ModelSim Reference Manual, v10.1c

447

ABCDEFGHI JKLMNOPQRSTUVWXY Z

— W —

WARNING]8], -lint argument to vlog, 337

warnings
SDF, disabling, 364

suppressing VCOM warning messages,

284, 339

suppressing VLOG warning messages, 339
suppressing VSIM warning messages, 375

watch window
add watch command, 59
adding itemsto, 59
watching signal values, 59
wave commands, 384
wave create command, 388
wave cursor commands, 384
wave edit command, 394
wave export command, 397
wave import command, 399
wave log format (WLF) file, 367
of binary signal values, 156
wave modify command, 400
wave sort command, 405
Wave window
adding itemsto, 60
WaveA ctivateNextPane command, 425
waveform editor
creating waves, 388
editing commands, 394
importing ved stimulus file, 399
modifying existing waves, 400
saving waves, 397
waveform logfile
log command, 156
waveforms
optimizing viewing of, 369
saving and viewing, 156
WaveRestoreCursors command, 425
WaveRestoreZoom command, 425
when command, 406
when statement
time-based breakpoints, 412
where command, 414
wildcard characters
for pattern matching in simulator
commands, 17

WildcardFilter Preference Variable, 18
windows
List window
output file, 427
saving the format of, 424
opening
from command line, 301
Wave window
path elements, changing, 98
WLFfiles
collapsing deltas, 368
collapsing time steps, 368
converting to VCD, 417
creating from VCD, 273
indexing, 418
limiting size, 369
log command, 156
merging, 418
optimizing, 418
optimizing waveform viewing, 369
repairing, 423
saving, 112, 113
specifying name, 367
wlfman command, 418
wlf2log command, 415
wlif2ved command, 417
wlfman command, 418
wlifrecover command, 423
write format command, 424
write list command, 427
write preferences command, 428
write report command, 429
write timing command, 432
write transcript command, 434
write tss command, 435
write wave command, 437

X —

X propagation
disabling for entire design, 360

448

ModelSim Reference Manual, v10.1c

ABCDEFGHI JKLMNOPQRSTUVWXY Z

wave window
returning current range, 385

ModelSim Reference Manual, v10.1c 449

ABCDEFGHI JKLMNOPQRSTUVWXY Z

450 ModelSim Reference Manual, v10.1c

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE
AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES CUSTOMER’S
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN
THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS
SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (“Agreement”)

Thisisalegal agreement concerning the use of Softwar e (as defined in Section 2) and har dwar e (collectively “ Products’)
between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that issued the
corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor
Graphics’). Except for license agreementsrelated to the subject matter of this license agreement which are physically
signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the applicable quotation
contain the parties entire understanding relating to the subject matter and supersede all prior or contemporaneous
agreements. If Customer does not agree to these terms and conditions, promptly return or, in the case of Software
received electronically, certify destruction of Software and all accompanying items within five days after receipt of
Softwar e and receive a full refund of any license fee paid.

ORDERS, FEESAND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of
this Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unlesstimely provided with avalid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of defauilt.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphicsretains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for usein filing or perfecting such security interest. Mentor Graphics' delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“ Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics' standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
arestricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of
receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product

http://www.mentor.com/eula

improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics' sole discretion) will be the
exclusive property of Mentor Graphics.

ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

BETA CODE.

4.1. Portionsor al of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics' explicit authorization. Upon Mentor Graphics' authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for alimited period of time specified by Mentor Graphics. This grant and Customer’ s use of the Beta Code
shall not be construed as marketing or offering to sell alicense to the Beta Code, which Mentor Graphics may choose not to
release commercialy in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer |ocation(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of
this Agreement.

RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of al copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, datafiles, rule files and
script files generated by or for the Software (collectively “Files’), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF") which are Mentor Graphics' proprietary
syntaxes for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may
share Files with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Filesis
protected by written agreement at least as well as Customer protects other information of a similar nature or importance,
but in any case with at |east reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics
products. Under no circumstances shall Customer use Software or Files or allow their use for the purpose of developing,
enhancing or marketing any product that isin any way competitive with Software, or disclose to any third party the results
of, or information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“ Attempted Transfer”), without Mentor Graphics' prior written
consent and payment of Mentor Graphics' then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics' prior written consent shall be amaterial breach of this Agreement and may, at Mentor Graphics
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms
of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

10.

11.

12.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics' then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in useislicensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics' outside attorneys or as may be required by a court of competent jurisdiction.

LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphicsin writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS ENTIRE LIABILITY AND CUSTOMER'S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “ASIS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITSLICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IFMENTOR GRAPHICSOR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS OR ITSLICENSORS' LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THISSECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS"). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITSLICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

INFRINGEMENT.

12.1. Mentor Graphicswill defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics' obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance
to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

http://supportnet.mentor.com/about/legal/

13.

14.

15.

16.

17.

18.

12.2. If aclaimismade under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable alowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (€) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics' licensors who do not provide such indemnification to Mentor Graphics' customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonabl e attorney fees and other costs related to the action.

12.4. THIS SECTION 12 1S SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER'S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or entersinto an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expresdly set forthin this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Softwarein any form.

EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’ s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXIm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics'
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-complianceisrevealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer islocated in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusivejurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputesin Asiaarising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International
Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not

19.

20.

restrict Mentor Graphics' right to bring an action against Customer in the jurisdiction where Customer’s place of businessis
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

MISCELLANEOUS. This Agreement containsthe parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under athird party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Syntax and Conventions
	Documentation Conventions
	File and Directory Pathnames
	Design Object Names
	Object Name Syntax
	Tcl Syntax and Specification of Array Bits and Slices
	Further Details

	SystemVerilog Scope Resolution Operator
	Specifying Names
	Environment Variables and Pathnames
	Name Case Sensitivity
	Extended Identifiers

	Wildcard Characters
	Using the WildcardFilter Preference Variable

	Simulator Variables
	Simulation Time Units
	Argument Files
	Command Shortcuts
	Command History Shortcuts
	Numbering Conventions
	VHDL Numbering Conventions
	VHDL Style 1
	VHDL Style 2
	Searching for VHDL Arrays in the Wave and List Windows

	Verilog Numbering Conventions

	GUI_expression_format
	Expression Typing
	Scalar Types
	Array Types

	Expression Syntax
	Tcl Macros
	Constants
	Array Constants, Expressed in Any of the Following Formats
	Variables
	Array variables
	Signal attributes
	Operators
	Casting
	Examples of Expression Syntax

	Signal and Subelement Naming Conventions
	Grouping and Precedence
	Concatenation of Signals or Subelements
	Concatenation Syntax for VHDL
	Concatenation Syntax for Verilog
	Concatenation Directives
	Examples of Concatenation

	Record Field Members
	Searching for Binary Signal Values in the GUI

	Chapter 2 Commands
	abort
	add dataflow
	add list
	add memory
	add message
	add watch
	add wave
	add_cmdhelp
	alias
	archive load
	archive write
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	call
	cd
	change
	classinfo
	configure
	dataset alias
	dataset clear
	dataset close
	dataset config
	dataset current
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset restart
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	do
	drivers
	dumplog64
	echo
	edit
	enablebp
	encoding
	environment
	examine
	exit
	find
	find connections
	find infiles
	find insource
	force
	formatTime
	help
	history
	layout
	log
	lshift
	lsublist
	mem compare
	mem display
	mem list
	mem load
	mem save
	mem search
	messages clearfilter
	messages setfilter
	messages write
	modelsim
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	onfinish
	pause
	precision
	printenv
	process report
	project
	pwd
	quietly
	quit
	radix
	radix define
	radix delete
	radix list
	radix names
	radix signal
	readers
	report
	restart
	resume
	run
	runStatus
	searchlog
	see
	setenv
	shift
	show
	simstats
	stack down
	stack frame
	stack level
	stack tb
	stack up
	status
	step
	stop
	suppress
	tb
	Time
	transcript
	transcript file
	transcript path
	transcript sizelimit
	tssi2mti
	ui_VVMode
	unsetenv
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vdel
	vdir
	vencrypt
	verror
	vgencomp
	vhencrypt
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsim_break
	vsource
	wave
	wave create
	wave edit
	wave export
	wave import
	wave modify
	wave sort
	when
	where
	wlf2log
	wlf2vcd
	wlfman
	wlfrecover
	write format
	write list
	write preferences
	write report
	write timing
	write transcript
	write tssi
	write wave

	Index
	End-User License Agreement

