
Identify® Actel Edition
Tutorial
September 2010

http://solvnet.synopsys.com

LO

2 Identify Actel Edition Tutorial, September 2010

Disclaimer of Warranty
Synopsys, Inc. makes no representations or warranties, either expressed or
implied, by or with respect to anything in this manual, and shall not be liable
for any implied warranties of merchantability or fitness for a particular
purpose of for any indirect, special or consequential damages.

Copyright Notice
Copyright © 2010 Synopsys, Inc. All Rights Reserved.

Synopsys software products contain certain confidential information of
Synopsys, Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure. No part of this publication may be repro-
duced, transmitted, transcribed, stored in a retrieval system, or translated
into any language in any form by any means without the prior written
permission of Synopsys, Inc. While every precaution has been taken in the
preparation of this book, Synopsys, Inc. assumes no responsibility for errors
or omissions. This publication and the features described herein are subject
to change without notice.

Trademarks

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra,
CATS, Certify, CHIPit, CoMET, Design Compiler, DesignWare, Formality,
Galaxy Custom Designer, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE,
Identify, Leda, MAST, METeor, ModelTools, NanoSim, OpenVera, PathMill,
Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG,
SolvNet, Syndicated, Synplicity, the Synplicity logo, Synplify, Synplify Pro,
Synthesis Constraints Optimization Environment, TetraMAX, UMRBus, VCS,
Vera, and YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia,
Columbia-CE, Confirma, Cosmos, CosmosLE, CosmosScope, CRITIC, DC
Expert, DC Professional, DC Ultra, Design Analyzer, Design Vision, Design-
erHDL, DesignPower, Direct Silicon Access, Discovery, Eclypse, Encore,

Identify Actel Edition Tutorial, September 2010 3

EPIC, Galaxy, HANEX, HAPS, HapsTrak, HDL Compiler, Hercules, Hierar-
chical Optimization Technology, High-performance ASIC Prototyping System,
HSIM, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter,
Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library
Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Milkyway, ModelSource,
Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris,
Power Compiler, Raphael, Saturn, Scirocco, Scirocco-i, Star-RCXT,
Star-SimXT, System Compiler, System Designer, Taurus, TotalRecall,
TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are
trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license. ARM and AMBA are registered trademarks of ARM Limited. Saber is a
registered trademark of SabreMark Limited Partnership and is used under
license. All other product or company names may be trademarks of their
respective owners.

Restricted Rights Legend
Government Users: Use, reproduction, release, modification, or disclosure of
this commercial computer software, or of any related documentation of any
kind, is restricted in accordance with FAR 12.212 and DFARS 227.7202, and
further restricted by the Synopsys Software License and Maintenance
Agreement. Synopsys, Inc., Synplicity Business Group, 700 East Middlefield
Road, Mountain View, CA 94043, U. S. A.

Printed in the U.S.A
September 2010

LO

4 Identify Actel Edition Tutorial, September 2010

Identify Actel EditionTutorial, September 2010 5

Contents

Chapter 1: Getting Started
The Debugging System . 8

Identify Instrumentor . 9
Identify Debugger . 9

Design Flow . 10

Tutorial Requirements . 11
Hardware/Software Environments . 11

Chapter 2: The Tutorial Design
Design Schematic . 14

Verilog Tutorial Design . 15

VHDL Tutorial Design . 18

Chapter 3: Instrumenting Your Design
Launching the Identify Instrumentor . 22

Setting up the IICE . 26
Setting the Common IICE Parameters . 26
Setting the Individual IICE Parameters . 27

Selecting the Instrumentation . 30
VHDL Design Instrumentation . 30
Verilog Design Instrumentation . 33

Writing the Instrumented Design . 36

Chapter 4: Implementing the Design
Synthesis . 40

Place and Route . 41

Program the Device . 41

LO

6 Identify Actel EditionTutorial, September 2010

Chapter 5: Debugging Your Design
Starting the Identify Debugger . 43

Specifying the JTAG Cable . 45

Setting the JTAG Chain . 46

Setting Up Triggers and Capturing Data . 48
Triggering on a Breakpoint . 48
Deactivating a Breakpoint . 51
Triggering on a Watchpoint . 51
Using the Complex Counter . 54

Generating Waveforms . 55

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 7

C H A P T E R 1

Getting Started

The Identify® Actel Edition tool set is an innovative set of programmable
hardware tools that lets you debug your HDL design:

• In the target system,

• At the target speed,

• At the VHDL/Verilog RTL Source level.

The Identify Actel Edition tool set enables the debugging of FPGA designs,
FPGA-based prototypes, and system-on-a-chip designs. For the first time,
you can debug live hardware using intuitive, HDL-based debugging
techniques that provide visibility into the internal operation of your system.

The Identify Actel Edition tool set easily integrates into your existing design
flow so that minimal effort is required to begin the debugging of your HDL
designs. To better understand how the tool set works and how it works with
your HDL design flow, this guide provides comprehensive information about
navigating through the Identify tools and integrating with your other design
flow tools.

This remainder of this chapter describes:

• The Debugging System

• Design Flow

• Tutorial Requirements

LO

Getting Started The Debugging System

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
8 September 2010

The Debugging System
The Identify Actel Edition tool set is based on the principle of in-system
debugging. Using thes Identify tool set allows you to debug your device in the
target system, at target speed while still debugging at the HDL level.

The Identify instrumentor captures your device’s internal states by inserting
probe hardware (called an IICE™ – Intelligent In-Circuit-Emulator) into your
design. The IICE captures internal design states based on user-specified
trigger conditions. Data captured at the target device is transferred back to
the host computer where it is transformed and displayed by the Identify
debugger.

The Identify tool set is a dual-component software system consisting of:

• The Identify instrumentor which inserts and configures the IICE

• The Identify debugger which controls the IICE and displays data from
the IICE.

The following sections briefly describe these two software components.

The Debugging System Getting Started

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 9

Identify Instrumentor
The Identify instrumentor reads and analyzes the HDL description of a design
and provides you with detailed information about the signals that can be
sampled and the locations in the source code where breakpoints can be set.
This information is collectively referred to as the instrumentation.

The Identify instrumentor uses the HDL design files and your selected instru-
mentation information to create a custom IICE block. The Identify instru-
mentor then connects one or more IICE blocks to the appropriate locations in
the design.

Finally, the Identify instrumentor re-writes your HDL design with the modifi-
cations necessary to implement and connect the IICE blocks. The modified
HDL design is written to a different location so that it does not overwrite your
original design.

Identify Debugger
The Identify debugger lets you interact with your real hardware at the HDL
level. In the Identify debugger, you set trigger conditions to determine when
to capture data, and then view the captured data as either annotated source
code or as waveforms.

LO

Getting Started Design Flow

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
10 September 2010

Design Flow
Design flows for HDL design and debugging vary according to the type of
hardware and device you use. Displayed below is the typical HDL design flow
without the Identify tool set on the left and a typical HDL design flow with the
Identify tool set on the right.

In the design flow without the Identify tool set, the first step is to create the
HDL source files for the design. Next, the design is synthesized to the target
device. Once synthesized, the design is placed and routed before it is finally
implemented in the target device.

Program

Write HDL

Synthesis

Place
and

Route

Device
Program

Write HDL

Synthesis

Place
and

Route

Device

Instrument

Debug

Design Flow with
Identify Tool Set

Design Flow without
Identify Tool Set

Tutorial Requirements Getting Started

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 11

The design flow with the Identify tool set adds two steps to the standard flow
– one step at the beginning and one step at the end. After the HDL source is
created, the Identify instrumentor is used to create a debuggable design. This
design is then run through the rest of the standard design flow. After the
instrumented design has been implemented, the Identify debugger is then
used to debug the design in the target system.

Tutorial Requirements
This tutorial guides you through the process of debugging a small HDL
design in a real hardware environment. The tutorial teaches you how to
generate an instrumented design for debugging and then how to debug that
instrumented design.

The tutorial explains how the Identify tools are used in concert with your
synthesis and place-and-route flow. However, the tutorial does not provide
details and procedures for synthesizing and using place-and-route tools with
your instrumented hardware design. For the purposes of this tutorial, it is
assumed that you have a working implementation flow. To find out more
about these processes, consult your synthesis and place-and-route tool
vendor documentation for more information.

Hardware/Software Environments
This tutorial is intended to be performed with Actel hardware. The tutorial
was developed using the following software:

• FPGA synthesis software: Synplify Pro E-2010.09A-1 or newer

• Actel Libero 9.0 or newer

• Identify software: Identify E-2010.09A or newer

LO

Getting Started Tutorial Requirements

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
12 September 2010

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 13

C H A P T E R 2

The Tutorial Design

The Identify Actel Edition tool set can debug a variety of HDL designs. To
better understand the debugging process, this guide provides a small HDL
design example. The example design is a simple 4-bit counter. It only requires
a clock and a reset signal connection to run in the hardware. Two versions of
the counter are provided: one in VHDL and one in Verilog.

• For the Verilog tutorial, see Verilog Tutorial Design

• For the VHDL tutorial, see VHDL Tutorial Design

LO

The Tutorial Design Design Schematic

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
14 September 2010

Design Schematic
The following figure is a schematic representation of the simple state machine
that is used for the tutorial design. The state machine is configured as a 4-bit
counter; the state machine representation is shown to the left of the
schematic.

Figure 2-1: Tutorial design schematic

Schematic

State Machine

Verilog Tutorial Design The Tutorial Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 15

Verilog Tutorial Design
The tutorial design is implemented in Verilog as a single module with two
always block statements. The first always block implements a state machine
that controls the state of the system; the second always block computes the
output values based on the current state. Parameter definitions make the
module easier to read.

The tutorial design has two external inputs and one external output. The
inputs are:

• CLK – the system clock for the design

• CLR – resets the state machine to a known state

The single output is val.

The board-mounted programmable device interconnects with the Identify
software through a communications cable. For this tutorial:

• physically connect the CLK input to a clock generator on your target
Actel FPGA system.

• connect the CLR input to a switch on your board that connects the signal
to a zero value when pressed.

Direct the Actel place-and-route tool to make these connections.

When CLR is zero, the state machine enters state s_RESET. When CLR is no
longer zero, the state machine transitions to state s_ONE, then s_TWO, and so
on, on each clock cycle.

Based on the current state value, the val output is set to the values listed in
the second always block. These output values represent a binary encoding of
the output state. However, this binary encoding is inverted so that it can be
used to drive active-low LED displays on your board (if they exist). For
example, if the state machine is in state s_ONE, the val output is set to 1110,
and when the state machine is state s_ELEVEN, the output val is set to 0100.

LO

The Tutorial Design Verilog Tutorial Design

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
16 September 2010

The Verilog source code file for the tutorial design is displayed below:

module counter_self(clr, val, clk);

output [3:0] val;
input clk;
input clr;

reg [3:0] val;
reg [3:0] current_state;

parameter [3:0]
s_RESET = 0,
s_ONE = 1,
s_TWO = 2,
s_THREE = 3,
s_FOUR = 4,
s_FIVE = 5,
s_SIX = 6,
s_SEVEN = 7,
s_EIGHT = 8,
s_NINE = 9,
s_TEN = 10,
s_ELEVEN = 11,
s_TWELVE = 12,
s_THIRTEEN = 13,
s_FOURTEEN = 14,
s_FIFTEEN = 15;

always @(posedge clk or negedge clr)
begin
if (clr == 1'b0)

current_state = s_RESET; /* 4'b0000 */
else begin

case (current_state)
s_RESET: current_state = s_ONE;
s_ONE: current_state = s_TWO;
s_TWO: current_state = s_THREE;
s_THREE: current_state = s_FOUR;
s_FOUR: current_state = s_FIVE;
s_FIVE: current_state = s_SIX;
s_SIX: current_state = s_SEVEN;
s_SEVEN: current_state = s_EIGHT;
s_EIGHT: current_state = s_NINE;
s_NINE: current_state = s_TEN;
s_TEN: current_state = s_ELEVEN;
s_ELEVEN: current_state = s_TWELVE;
s_TWELVE: current_state = s_THIRTEEN;

Verilog Tutorial Design The Tutorial Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 17

s_THIRTEEN: current_state = s_FOURTEEN;
s_FOURTEEN: current_state = s_FIFTEEN;
s_FIFTEEN: current_state = s_ONE;
default: current_state = s_RESET;

endcase /* case(current_state) */
end /* else: !if(clr == 1'b0) */

end /* always @ (posedge clk or negedge clr) */

always @(current_state)
begin

case (current_state)
s_RESET: val = 4'b1111;
s_ONE: val = 4'b1110;
s_TWO: val = 4'b1101;
s_THREE: val = 4'b1100;
s_FOUR: val = 4'b1011;
s_FIVE: val = 4'b1010;
s_SIX: val = 4'b1001;
s_SEVEN: val = 4'b1000;
s_EIGHT: val = 4'b0111;
s_NINE: val = 4'b0110;
s_TEN: val = 4'b0101;
s_ELEVEN: val = 4'b0100;
s_TWELVE: val = 4'b0011;
s_THIRTEEN: val = 4'b0010;
s_FOURTEEN: val = 4'b0001;
s_FIFTEEN: val = 4'b0000;
default: val = 4'b0000;

endcase /* case(current_state) */
end /* always @ (current_state) */

endmodule /* counter_self */
/* EOF */

LO

The Tutorial Design VHDL Tutorial Design

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
18 September 2010

VHDL Tutorial Design
The tutorial design is implemented in VHDL as a single entity with two
processes. The first process implements a state machine that controls the
state of the system, and the second process computes the output values
based on the state. This design has a user-defined type named state, which is
used to make the design more readable.

The design has two inputs and one output. The inputs are:

• CLK – the system clock for the design

• CLR – resets the state machine to a known state

The single output is val.

The board-mounted programmable device interconnects with the Identify
software through a communications cable. For this tutorial:

• physically connect the CLK input to a clock generator on your target
Actel FPGA system.

• connect the CLR input to a switch on your board that connects the signal
to a zero value when pressed.

Direct the Actel place-and-route tool to make these connections.

When CLR is zero, the state machine enters state s_RESET. When CLR is no
longer zero, the state machine transitions to state s_ONE, then s_TWO, and so
on, on each clock cycle.

Based on the current state value, the val output is set to the values listed in
the second process. These output values represent a binary encoding of the
output state. However, this binary encoding is inverted so that it can be used
to drive active-low LED displays on your board (if they exist). For example,
when the state machine is in state s_ONE, the val output is set to 1110, and
when the state machine is state s_ELEVEN, the output val is set to 0100.

VHDL Tutorial Design The Tutorial Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 19

The VHDL source code file for tutorial design is displayed below:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity counter_self is

port(
val : out unsigned (3 downto 0);
clr : in std_logic;
clk : in std_logic
);

end counter_self;
architecture rtl of counter_self is

type state is (
s_RESET,
s_ONE,
s_TWO,
s_THREE,
s_FOUR,
s_FIVE,
s_SIX,
s_SEVEN,
s_EIGHT,
s_NINE,
s_TEN,
s_ELEVEN,
s_TWELVE,
s_THIRTEEN,
s_FOURTEEN,
s_FIFTEEN);

signal current_state: state;

begin

process(clk, clr)
begin

if clr = '0' then
current_state <= s_RESET;

elsif clk'event and clk = '1' then
case current_state is

when s_RESET => current_state <= s_ONE;
when s_ONE => current_state <= s_TWO;
when s_TWO => current_state <= s_THREE;
when s_THREE => current_state <= s_FOUR;
when s_FOUR => current_state <= s_FIVE;
when s_FIVE => current_state <= s_SIX;
when s_SIX => current_state <= s_SEVEN;
when s_SEVEN => current_state <= s_EIGHT;

LO

The Tutorial Design VHDL Tutorial Design

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
20 September 2010

when s_EIGHT => current_state <= s_NINE;
when s_NINE => current_state <= s_TEN;
when s_TEN => current_state <= s_ELEVEN;
when s_ELEVEN => current_state <= s_TWELVE;
when s_TWELVE => current_state <= s_THIRTEEN;
when s_THIRTEEN => current_state <= s_FOURTEEN;
when s_FOURTEEN => current_state <= s_FIFTEEN;
when s_FIFTEEN => current_state <= s_ONE;

end case;
end if;

end process;

process(current_state)
begin

case current_state is
when s_RESET => val <= "1111";
when s_ONE => val <= "1110";
when s_TWO => val <= "1101";
when s_THREE => val <= "1100";
when s_FOUR => val <= "1011";
when s_FIVE => val <= "1010";
when s_SIX => val <= "1001";
when s_SEVEN => val <= "1000";
when s_EIGHT => val <= "0111";
when s_NINE => val <= "0110";
when s_TEN => val <= "0101";
when s_ELEVEN => val <= "0100";
when s_TWELVE => val <= "0011";
when s_THIRTEEN => val <= "0010";
when s_FOURTEEN => val <= "0001";
when s_FIFTEEN => val <= "0000";

end case;
end process;

end rtl;
-- EOF

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 21

C H A P T E R 3

Instrumenting Your Design

The Identify instrumentor selects the design visibility (breakpoints and
watchpoints) and special hardware configurations including complex event
counters, and sampling and triggering modes for your design. The goal of the
instrumentation process is to define an IICE and insert it into your HDL
design. The instrumentation flow is:

• Launching the Identify Instrumentor

• Setting up the IICE

• Selecting the Instrumentation

• Writing the Instrumented Design

The HDL design and project files are included in a “tutorial” subdirectory
under the Identify installation directory. This subdirectory includes the
following files:

• counter_self.v (Verilog design file)

• counter_verilog_actel.prj (Verilog project file)

• counter_self.vhd (VHDL design file)

• counter_vhdl_actel.prj (VHDL project file)

Before you begin the tutorial, copy the files to a local directory and make sure
that you have read and write permission for both the directory and files.

LO

Instrumenting Your Design Launching the Identify Instrumentor

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
22 September 2010

Note: While performing the tutorial, the active project (.prj) file will be
updated; copying the files to a local directory preserves the original
files installed in the tutorial directory.

Launching the Identify Instrumentor
The Identify instrumentor is launched from the Synopsys Synplify Pro
synthesis tool and is run prior to synthesis. Before starting the tutorial, copy
the files from the tutorial directory to a local directory.

To launch the Identify instrumentor:

1. Start the Synopsys Synplify Pro synthesis tool.

2. In the project view, click the Open Project button to display the Open
Project dialog box and click the Existing Project button.

3. Navigate to the tutorial directory where the Identify tool set is installed.
This directory includes the HDL design files and a set of Actel-specific
project files for both Verilog and VHDL implementations.

4. Select (open) the desired, Actel-specific project file.

Launching the Identify Instrumentor Instrumenting Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 23

5. Right click on the Identify implementation and select Launch Identify
Instrumentor from the popup menu.

6. If prompted, enter the location of the Identify installation in the Configure
Identify Launch dialog box, click the Locate Identify Installation radio button,
and click OK to launch the Identify instrumentor..

LO

Instrumenting Your Design Launching the Identify Instrumentor

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
24 September 2010

7. If prompted for a license, select a license from the list of available
licenses displayed and click Select.

Note: To avoid being prompted for a license each time you startup the Iden-
tify instrumentor, check the Save as default license type box before
selecting your license.

The figure on the following shows the initial Identify instrumentor window as
launched from the Synplify Pro tool on the Verilog version of the tutorial. The
window shows the design hierarchy on the left and the HDL file content with
all the potential instrumentation marked and available for selection on the
right.

Launching the Identify Instrumentor Instrumenting Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 25

LO

Instrumenting Your Design Setting up the IICE

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
26 September 2010

Setting up the IICE
After you have launched the Identify instrumentor for the tutorial project, you
need to configure your IICE. The IICE settings common to all IICE units for
an instrumentation are set in the project window, and the individual IICE
settings unique to each IICE in a multi-IICE configuration are set on the IICE
Configuration dialog box. Although the tutorial uses a single IICE, you must set
both the common IICE parameters in the project window and the individual
IICE parameters in the IICE Configuration dialog box.

Setting the Common IICE Parameters
The common IICE parameters are set in the project window. To redisplay the
project window, click the project window tab along the bottom of the instru-
mentation window.

After a project is loaded, the common IICE parameters appear in the Imple-
mentation Options block on the right side of the project window above the
compile options as shown in the following figure. These parameters:

• show the device family

• select the JTAG port for the communication between the hardware and
the Identify debugger

Project window tab Instrumentation window tab

Setting up the IICE Instrumenting Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 27

For the tutorial design:

• The device family (proASIC) is specified in the selected project file and
reported in the first field.

• Select which connection to use for the communication between the
Identify debugger and your hardware from the drop-down list in the
JTAG port field. For the tutorial, you can select either the builtin or soft
connection.

Setting the Individual IICE Parameters
The individual IICE parameters are set by tabs on the IICE Configuration
dialog box. Click on the Edit IICE settings icon in the toolbar or select
Actions->Configure IICE from the menu to bring up the IICE Sampler tab
shown in the following figure.

IICE Sampler Tab

The IICE Sampler tab defines the buffer type and sample depth of the data
sampling hardware, controls the two optional sampling modes, and defines
the sample clock and clock edge.

LO

Instrumenting Your Design Setting up the IICE

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
28 September 2010

For the tutorial design:

• Leave Buffer type set to behavioral (only supported type)

• Select 128 for the sample buffer depth.

• Leave the Allow qualified sampling check box unchecked

• Leave the Allow always-armed sampling check box unchecked

• Enter /clk for the sample clock and select the positive polarity for the
clock edge.

After you have set and/or verified the above IICE Sampler tab settings, click the
IICE Controller tab.

Setting up the IICE Instrumenting Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 29

IICE Controller Tab

The IICE Controller tab selects the type of triggering.

For the tutorial design:

• Make sure that the Complex counter triggering radio button is selected and
that the Width is set to 16.

• Leave the Import external trigger signals value at 0.

• Leave the Export IICE trigger signal check box unchecked.

• Leave the Allow cross-triggering in IICE check box unchecked.

When all of the IICE configuration settings have been made or verified, click
the OK button at the bottom of the dialog box.

LO

Instrumenting Your Design Selecting the Instrumentation

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
30 September 2010

Selecting the Instrumentation
The steps for instrumenting a design file differ slightly from VHDL to Verilog.

• For VHDL designs, see VHDL Design Instrumentation, below

• For Verilog designs, see Verilog Design Instrumentation

VHDL Design Instrumentation
When your VHDL design compiles successfully, the instrumentation window
displays the top-level entity VHDL code on the right and the hierarchy
browser on the left (if the instrumentation window is not displayed, click on
the “IICE” tab at the bottom of the project window). Use the hierarchy
browser to navigate through your design. Clicking on a hierarchical node
displays the corresponding VHDL source code in the source code display on
the right.

Selecting the Instrumentation Instrumenting Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 31

Selecting Watch Points

In the source code display, scroll down and select the signal
current_state on line 52 for instrumentation by clicking on the
watch-point (glasses) icon displayed next to its name. When you click
on the icon (or on the signal name), a popup menu is displayed to
allow you to select how the watch-point signal is to be instrumented.

When you select a watch-point instrumentation type from the popup menu,
the icon changes color according to the type selected as shown in the
following table.

For the tutorial design, select Sample and trigger. The icons preceding each
occurrence of the current_state signal in the VHDL code will be green.

Icon Color Watch-Point Selection

Green Sample and trigger

Blue Sample only

Pink Trigger only

Clear (unfilled) Not instrumented

LO

Instrumenting Your Design Selecting the Instrumentation

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
32 September 2010

The command that you would enter manually or in a shell script to define the
watch-point signal (signals add -sample -trigger -iice IICE /current_state) and an
estimate of the hardware overhead required to implement the selected instru-
mentation are displayed in the console window. The hardware estimate is
based on the selected IICE technology.

Selecting Breakpoints

The icons to the left of the line numbers beginning on line 61 select the corre-
sponding breakpoint for instrumentation. When selected, the color of the icon
changes to green. Click on the icons on lines 62, 68, and 69 to select their
corresponding breakpoints.

Similar to the watch-point selection, the Identify instrumentor displays the
commands that you would enter manually or in a shell script to define the
breakpoints and the hardware overhead required to implement the selected
instrumentations in the console window.

Selecting the Instrumentation Instrumenting Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 33

Verilog Design Instrumentation
The instrumentation window displays the Verilog source code for the top-level
module on the right and the design hierarchy in the hierarchy browser on the
left. Use the hierarchy browser to navigate through your design. Clicking on a
hierarchical node displays the corresponding Verilog source code in the
source code display on the right.

LO

Instrumenting Your Design Selecting the Instrumentation

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
34 September 2010

Selecting Watch Points

In the source code display, select the registered signal current_state
on line 32 for instrumentation by clicking on the watch-point (glasses)
icon displayed next to its name. When you click on the icon (or on the
signal name), a popup menu is displayed to allow you to select how
the watch-point signal is to be instrumented.

Once selected, the icon changes color according to the type of watch-point
instrumentation selected as shown in the following table.

For the tutorial, select Sample and trigger. The icons preceding each occurrence
of the current_state signal in the Verilog code will be green.

The command that you would enter manually or in a shell script to define the
watch-point signal (signals add -sample -trigger -iice IICE /current_state) and an
estimate of the hardware overhead required to implement the selected instru-
mentation are displayed in the console window. The hardware estimate is
based on the IICE technology settings.

Icon Color Watch-Point Selection

Green Sample and trigger

Blue Sample only

Pink Trigger only

Clear (unfilled) Not instrumented

Selecting the Instrumentation Instrumenting Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 35

Selecting Breakpoints

Scroll down in the source code display until the body of the always block on
line 55 is at the top of the instrumentation window. The icons to the left of the
line numbers beginning on line 61 select the corresponding breakpoint for
instrumentation. When selected, the color of the icon changes to green. Click
on the icons on lines 62, 68, and 69 to select their corresponding break-
points.

Similar to the watch-point selection, the Identify instrumentor displays the
commands that you would enter manually or in a shell script to define the
breakpoints and the hardware overhead required to implement the selected
instrumentations in the console window.

LO

Instrumenting Your Design Writing the Instrumented Design

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
36 September 2010

Writing the Instrumented Design
To write the instrumented design, select File->Save project from the
menu or click on the Save and Instrument current project icon on the
toolbar. Saving the project automatically creates a subdirectory
named rev_1_identify_1 which contains the instrumented HDL code

for the tutorial design and also creates the Identify project file tutorial.bsp
which is read by the Identify debugger. The new subdirectory and the project
file are written to the tutorial directory.

Writing the Instrumented Design Instrumenting Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 37

As shown in the following figure, the console window displays feedback as to
which type of IICE was created.

Please note that depending on your JTAG port selection in the project
window, you may see a notice that external ports have been added to the
instrumented version of your design. This type of information varies with
your device family, JTAG port settings, and IICE options. For example, if you
select JTAG port soft, four extra ports (three input and one output) are added
to your design. In this case, you must have access to these ports on your
board in order to connect the JTAG communication cable to these ports.
Refer to the User Guide for more information.

LO

Instrumenting Your Design Writing the Instrumented Design

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
38 September 2010

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 39

C H A P T E R 4

Implementing the Design

At this time, you should have successfully completed the instrumentation of
the tutorial design and saved the instrumentation project.

Implementing the design involves the following steps:

• Synthesizing the VHDL or Verilog

• Placing and routing to produce a bit file

• Programming the device with the bit file

Synthesis translates the instrumented VHDL or Verilog code to a mapped
netlist. Place-and-route tools further process this EDIF netlist to create the
implementation of the instrumented design.

LO

Implementing the Design Synthesis

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
40 September 2010

Synthesis
The Identify Actel Edition tool set is expressly designed to work with the
Synplify Pro synthesis tool. In the tutorial directory where you saved the
project at the end of instrumentation phase, you will have two new entries:

• counter_verilog_actel.bsp or counter_vhdl_actel.bsp – the project file
that contains all of your project settings. This file is read when you
synthesize your instrumented project in the synthesis tool. This file also
can be used to reread your project into the Identify instrumentor or to
read your instrumented project into the Identify debugger in standalone
mode.

• rev_1_identify_1/instr_sources – a subdirectory containing the
instrumented HDL source code for the tutorial design (counter_self.v
or counter_self.vhd) plus an additional HDL file named syn_dics.v
(Verilog source) or syn_dics.vhd (VHDL source). The additional
syn_discs file contains the logic that implements the IICE.

To synthesize your project in Synplify Pro, highlight the Identify implementa-
tion and click the Run button. Following synthesis, you can view the
additional IICE sampling logic in the RTL view (shown below in red) or
Technology view.

Place and Route Implementing the Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 41

Place and Route
After synthesis, run the file generated by the Synplify Pro synthesis tool
through your Actel place and route tool. Running the file of the instrumented
design through place and route is identical to running place and route on the
original design. Refer to your place and route tool documentation for further
information.

If you have selected the soft JTAG port setting, four external ports have been
added to the tutorial design. These ports are:

• identify_jtag_tdi (input serial data IN signal.)

• identify_jtag_tck (input asynchronous clock signal)

• identify_jtag_tms (input control signal)

• identify_jtag_tdo (output serial data OUT signal.)

You must provide proper pin locations for these ports to your place and route
tools. These pins must be connected to your JTAG cable to enable communi-
cation with the Identify debugger. Please refer to the user guide for more
information about this process.

Program the Device
Programming the target device with the bit file of the instrumented design is
identical to programming the target device with the original design’s bit file.
Please refer to your programming tool documentation for further information.

LO

Implementing the Design Program the Device

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
42 September 2010

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 43

C H A P T E R 5

Debugging Your Design

This chapter shows you how to debug the tutorial design you instrumented
earlier. To proceed with debugging, your design must be synthesized, run
through place and route, and programmed into the Actel FPGA device. Also,
the device must be connected to the host machine using the proper cable and
pin connections. The debugging process consists of setting up the debugging
environment, enabling triggers in the IICE, and examining the data
downloaded from your hardware. The debug flow is:

• Starting the Identify Debugger

• Specifying the JTAG Cable

• Setting the JTAG Chain

• Setting Up Triggers and Capturing Data

• Generating Waveforms

Starting the Identify Debugger
To launch the Identify debugger from the Synplify Pro synthesis tool:

1. Highlight the Identify implementation.

2. With the right mouse button, select Launch Identify Debugger from the
popup menu or click the Launch Identify Debugger icon in the top menu
bar.

LO

Debugging Your Design Starting the Identify Debugger

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
44 September 2010

3. If you are prompted for a license, select a license from the list of
available licenses and click Select.

Note: To avoid being prompted for a license each time you startup the
Identify debugger, check the Save as default license type box before
clicking Select.

The Identify debugger automatically loads the project file for the tutorial
design and opens the instrumentation window with the hierarchy browser
displayed on the left and the HDL source code for the design displayed on the
right. Note that the only instrumentations that are visible in the source code
display are the breakpoints and watchpoints that you selected during the
instrumentation phase.

Specifying the JTAG Cable Debugging Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 45

Specifying the JTAG Cable
The type of cable used to communicate with the FPGA must be specified so
that the correct protocol is used to communicate with the physical device.
The JTAG cable and cable port are set in the Communication settings section of
the project window after the project is read in. To restore this window, click
its tab at the bottom of the window.

Note: The instrumentation settings that you specified during the instru-
mentation phase are also displayed in the project window. You
cannot edit these settings – they are for information purposes only.

The hardware used to develop this tutorial used an Actel flashPro cable –
your cable type may differ. Set the cable type and also set the Port Settings
value (lpt1, lpt2, lpt3, or lpt4) to match the host-machine port connected to your
JTAG cable. The default setting is lpt1.

LO

Debugging Your Design Setting the JTAG Chain

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
46 September 2010

Setting the JTAG Chain
JTAG connections on an FPGA board usually chain devices together to form a
serial chain of devices. This chain includes PROMs and other FPGA devices
present on the board.

The Identify debugger automatically detects the JTAG chain at the beginning
of the debug session. You can review the JTAG chain settings by clicking the
Show JTAG chain button in the Communications settings section of the project
window.

To enable the Identify debugger to properly communicate with the target
device, the device chain must be configured correctly. If, for some reason, the
JTAG chain cannot be successfully configured, you must manually specify
the chain through a series of chain instructions entered in the console
window.

Configuring a device chain is very similar to the steps required to program the
device with a JTAG programmer.

For the Identify debugger, the devices in the chain must be known and speci-
fied. The following information is required to configure the device chain:

• the number of devices in the JTAG chain

• the length of the JTAG instruction register for each device

Instruction register length information is usually available in the.bsd file for
the particular device. Specifically, it is the Instruction_length attribute listed in
the.bsd file.

Setting the JTAG Chain Debugging Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 47

For the Actel board used in developing this tutorial, the following sequence of
commands was used to specify a chain consisting of a PROM followed by the
FPGA. The instruction length of the PROM is 8 while the instruction length of
the FPGA is 5. Note that the chain select command identifies the instrumented
device to the system. Identifying the instrumented device is essential when a
board includes multiple FPGAs.

Note: The names PROM and FPGA have no meaning to the Identify
debugger – they simply are used for convenience. The two devices
could be named device1 and device2, and the debugger would func-
tion exactly the same.

Again, the sequence of chain commands is specific to the JTAG chain on your
board, so while these are the chain commands for the board used to develop
this tutorial, your board will most likely be different.

Type the following sequence in the console window of the Identify debugger:

chain clear
chain add prom 8
chain add fpga 5
chain select fpga
chain info

The following figure shows the results of the above command sequence.

LO

Debugging Your Design Setting Up Triggers and Capturing Data

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
48 September 2010

Setting Up Triggers and Capturing Data
Trigger operations include:

• Triggering on a Breakpoint

• Deactivating a Breakpoint

• Triggering on a Watchpoint

• Using the Complex Counter

Triggering on a Breakpoint
In the source code display, use the scroll bar to scroll down until the first
breakpoint on line 62 is visible on the left of the source code and then click on
the breakpoint to activate it.

Notice that the breakpoint icon changes from green to red indicating that the
breakpoint is active. This breakpoint triggers when the current_state signal
has the value s_ONE on the positive edge of the sample clock.

Setting Up Triggers and Capturing Data Debugging Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 49

Now that you have an active trigger condition, you can arm the IICE
trigger circuits on the FPGA device. To arm the IICE trigger circuits,
click the Run icon in the menu bar or redisplay the project window by
clicking its tab at the bottom of the instrumentation window and then

clicking the large Run button. Using the Run button in the project window
allows you to individually select one or more IICE units in a multi-IICE
configuration (the Run icon in the menu bar only arms the active IICE).

Data display controller

LO

Debugging Your Design Setting Up Triggers and Capturing Data

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
50 September 2010

Clicking on the Run icon (or the Run button) downloads the trigger
information to the IICE. The IICE now waits for the trigger to occur.
When the trigger occurs, the sampled data is transferred back to the
debugger where it is displayed in the source code display next to the

sampled signals. Notice that the values in yellow adjacent to the sampled
signals are the data sampled from the FPGA. Also, the small arrow to the left
of the breakpoint icon indicates which breakpoint triggered (identifying which
breakpoint triggered is important when multiple breakpoints are active).

The Cycle display in the middle of the menu bar shows the value zero. This is
the point in the sample data buffer where the trigger occurred. By clicking on
the up-down arrows on the right, you can increase or decrease the cycle
count to show values before or after the trigger point.

You can change where the trigger point is in the buffer by selecting one of the
Early, Middle, or Late icons and again clicking the Run icon or button. The
trigger location changes the next time the IICE triggers.

Early Middle Late

Setting Up Triggers and Capturing Data Debugging Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 51

Deactivating a Breakpoint
The current breakpoint needs to be deactivated so that you can activate a
single watchpoint in the next step. The breakpoint on line 62 must be deacti-
vated because the trigger condition is cumulative; that is, all activated break-
points and/or watchpoints always combine to create a complex trigger condi-
tion. Complex triggers are a powerful feature of the Identify debugger.
However, in this particular case, only simple behavior is shown. To deactivate
the current breakpoint on line 62, click on the button for the breakpoint once
again so that the button changes from red back to green.

Triggering on a Watchpoint
The other method of specifying a trigger is the watchpoint. A watchpoint
trigger can be specified on any sampled signal. The Watchpoint Setup dialog box
contains a full HDL parser so that any legal VHDL or Verilog expression that
evaluates to a constant can be used. When the signal with the watchpoint
trigger changes to the value of the watch expression, the Identify debugger
triggers.

To set a simple watchpoint:

1. Click on current_state signal

2. Select Set trigger expressions from the popup menu

3. In the First value field, enter s_THREE (VHDL) or 4'b0011 (Verilog)

LO

Debugging Your Design Setting Up Triggers and Capturing Data

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
52 September 2010

4. Click OK

This operation creates a watchpoint trigger on the current_state signal that
triggers when current_state is s_THREE (VHDL) or 4'b0011 (Verilog). The
setting of the watchpoint trigger is signified by the icons next to the
current_state signal changing from green to red.

Setting Up Triggers and Capturing Data Debugging Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 53

Click the Run icon or button to download the watchpoint trigger information
to the IICE. When signal current_state reaches the value s_THREE (VHDL) or
4'b0011 (Verilog), the IICE triggers and sends the captured data buffer to the
debugger. Using the data display controller, you can now browse back and
forth through the debugger data buffer to view the design activity.

Data display controller

LO

Debugging Your Design Setting Up Triggers and Capturing Data

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
54 September 2010

Using the Complex Counter
The tutorial design is instrumented using a 16-bit complex counter. Up to
this point, the design has been debugged without using the counter. The
counter is made to have no effect by setting the complex counter mode to
events (the default) and setting the counter value to 1.

For this portion of the tutorial, the complex counter is set to the cycles mode.
This mode waits for a breakpoint and/or watchpoint trigger event and then
counts N cycles before triggering the sample buffer. Here, N is the counter
value.

To display the operation of the cycle counter:

1. Change the watchpoint of signal current_state to s_ONE (VHDL) or
4'b0001 (Verilog).

2. Set the counter mode to cycles and the counter value to 4.

3. Click the Run icon or button and wait for the data to download.

The value at time zero should be s_FIVE (VHDL) or 4'b0101 (Verilog) as shown
in the figure.

Complex counter settings

Generating Waveforms Debugging Your Design

Identify Actel Edition Tutorial Copyright © 2010 Synopsys, Inc.
September 2010 55

Generating Waveforms
The data captured from the design can be displayed as waveform data by
using the waveform display capabilities of the GTKWave freeware waveform
viewer. Viewer setup is controlled by the Waveform Viewer Preferences dialog
box. Selecting Options->Waveform preference from the menu bar brings up the
dialog box shown below.

The GTKWave viewer is selected by default. The Display Period sets the period for
the waveform display and is independent of the design speed.

After running the Identify debugger, the waveform viewer is displayed by
selecting Window->Waveform from the menu or by clicking the Open
Waveform Display icon in the menu bar.

LO

Debugging Your Design Generating Waveforms

Copyright © 2010 Synopsys, Inc. Identify Actel Edition Tutorial
56 September 2010

All sampled signals in the design are included in the waveform display. Two
additional signals are automatically added to the top of the display. The first
signal, identify_cycle, reflects the trigger location in the sample buffer. The
second signal, identify_sampleclock, is a reference that shows every clock edge.
The following figure shows a typical waveform view with the identify_cycle and
identify_sampleclock highlighted.

	Identify Actel Edition Tutorial
	Getting Started
	The Debugging System
	Identify Instrumentor
	Identify Debugger

	Design Flow
	Tutorial Requirements
	Hardware/Software Environments

	The Tutorial Design
	Design Schematic
	Verilog Tutorial Design
	VHDL Tutorial Design

	Instrumenting Your Design
	Launching the Identify Instrumentor
	Setting up the IICE
	Setting the Common IICE Parameters
	Setting the Individual IICE Parameters

	Selecting the Instrumentation
	VHDL Design Instrumentation
	Verilog Design Instrumentation

	Writing the Instrumented Design

	Implementing the Design
	Synthesis
	Place and Route
	Program the Device

	Debugging Your Design
	Starting the Identify Debugger
	Specifying the JTAG Cable
	Setting the JTAG Chain
	Setting Up Triggers and Capturing Data
	Triggering on a Breakpoint
	Deactivating a Breakpoint
	Triggering on a Watchpoint
	Using the Complex Counter

	Generating Waveforms

