
RadHard/RadTolerant
Programming Guide

RadHard/RadTolerant Programming Guide

Table of Contents
Introduction . 5
System Requirements . 5
Document Organization . 6
Document Assumptions . 7
Document Conventions . 7
Related Manuals . 7
Online Documentation . 7
Online Help . 7

1 Programming RadHard/RadTolerant Devices . 9
Programming Flow . 9
Activator APSW Software Overview . 11
Silicon Sculptor Software Overview . 13
Preparation for Programming a Device . 18
Programming a Device with Activator . 19
Programming a Device with Silicon Sculptor . 21
Programming Security Fuses . 21

2 Post-Programming Recommendations . 25
Test . 25
Packaging, Sockets, Trim, and Form . 25

3 Device Programming Failures . 27
Programming Failure Guidelines . 27
Types of Programming Failures . 28
Error Messages . 28
Testing an Activator . 29
Testing Silicon Sculptor . 33
Returning Failed Devices . 34

4 Debugging a Device with an Activator . 35
Functional Debugging With an Activator . 35
Running Debugger From APSW . 35
Debugger Command-Line Commands . 36
Using Command Files to Debug a Device . 38

A Troubleshooting . 43
Activator . 43
Silicon Sculptor for DOS . 45
Silicon Sculptor for Windows . 50

B Testing and Programming Microsemi FPGAs . 59
Testability of Microsemi FPGAs . 59
RadHard and RadTolerant FPGA Products . 59
Architecture . 59
Revision 1 2

RadHard/RadTolerant Programming Guide
Programming . 61
Programming Algorithm . 63
Test Modes of Microsemi FPGAs . 65
Burn-In of Microsemi FPGAs . 66
Conclusion . 67

C Silicon Signature Decode . 69
Silicon Signature Components . 69
RH1020 and A1020B Silicon Signature Example . 70
RH1280 Silicon Signature Example . 71
A1280A Silicon Signature Example . 72
A1460A and A14100A Silicon Signature Example . 73

D AVI File Description . 75
Activator . 75
Silicon Sculptor . 76

E JobMaster (Silicon Sculptor only). 77
Installation . 77
Operation . 77

F Product Support . 81
Customer Service . 81
Customer Technical Support Center . 81
Technical Support . 81
Website . 81
Contacting the Customer Technical Support Center . 81
ITAR Technical Support . 82

Index . 83
Revision 1 3

Introduction

This manual contains information about programming Microsemi RadHard and RadTolerant devices
using Activator and Silicon Sculptor device programmers. The manual also contains programming failure
information and post-programming guidelines. The information is meant to ensure proper programming
and the highest possible programming yield of RadHard and RadTolerant devices.
Microsemi provides RadHard devices guaranteed to meet specific radiation characteristics. Through
2006, Microsemi offered the RH1020 and RH1280 devices. In addition, many of Microsemi’s commercial
and MIL-STD-883 devices have exhibited some capability of withstanding the effects of radiation
environments. These devices include the A1020B, A1280A, A1460A, and A14100A devices and are
referred to as RadTolerant devices in this guide.

System Requirements

Designer Software Version
Table 1-1 lists the required version of the Designer software to program RadHard and RadTolerant
devices. Earlier versions of the software than those listed do not support and will not program RadHard
devices.

PC/Workstation Requirements
Please refer to the latest version of the installation instructions at www.microsemi.com/soc for a complete
listing of the minimum system requirements.

Table 1-1 • Designer Version Required to Program RadHard and RadTolerant Devices

Microsemi SoC Products
Group Part Number DSCC Part Number

 Earliest Designer Software
Revision for a AFM File

RH1280-CQ172V
A1020B-CQ84B
A1280A-CQ172B
A1460A-CQ196B
A14100A-CQ256B

5962F9215603QYC
5962-9096503MTC
5962-9215601MYC
5962-9550801MYC
5962-9552101MYC

R2-1999 or later

RH1020-CQ84V 5962F9096505QTC R2-1999 or later

RT54SX16-CQ208B
RT54SX16-CQ256B
RT54SX32-CQ208B
RT54SX32-CQ256B

5962-9956901QYC
5962-9956901QXC
5962-9958603QYC
5962-9958603QXC

R1-2000 or later

RT54SX32S-CQ208B
RT54SX32S-CQ256B
RT54SX32S-CQ208E
RT54SX32S-CQ256E
RT54SX72S-CQ208B
RT54SX72S-CQ256B
RT54SX72S-CQ208E
RT54SX72S-CQ256E

5962-0150801QYC
5962-0150801QXC
5962-0150803QYC
5962-0150803QXC
5962-0151501QYC
5962-0150801QXC
5962-0151503QYC
5962-0150803QXC

R1-2001 or later
Revision 1 5

http:// www.microsemi.com/soc

Introduction
Additional Equipment
In addition to the minimum system requirements specified in the installation instructions, (available at
www.microsemi.com/soc/documents/install_ug.pdf), the following equipment is also required or
recommended:

Required
• ESD grounded wrist strap
• ESD workstation

Recommended
• Ionizer
• Oscilloscope

Document Organization
The RadHard/RadTolerant Programming Guide is divided into the following chapters:
Chapter 1 – "Programming RadHard/RadTolerant Devices" contains information and procedures to
program RadHard and RadTolerant devices using APS programming software.
Chapter 2 – "Post-Programming Recommendations" discusses recommendations for post-programming
burn-in and testing of RadHard and RadTolerant devices.
Chapter 3 – "Device Programming Failures" describes conditions that can cause a RadHard or
RadTolerant device to fail.
Chapter 4 – "Debugging a Device with an Activator" contains information and procedures to debug a
RadHard and RadTolerant devices using APS programming software and an Activator.
Appendix A – "Troubleshooting" describes some common hardware and software problems and
solutions to those problems.
Appendix B – "Testing and Programming Microsemi FPGAs" discusses testing and programming
methodologies for Microsemi FPGAs.
Appendix C – "Silicon Signature Decode" explains information that is contained in a Silicon Signature.
Appendix D – "AVI File Description" contains an example and description of an AVI log file.
Appendix E – "JobMaster (Silicon Sculptor only)" enables an Administrator to set up a job to precise
specifications, test the results, and then protect the routine so that it cannot be modified inadvertently.
Appendix F – "Product Support" provides information about contacting Microsemi SoC Products Group
for customer and technical support.
6 Revision 1

http://www.microsemi.com/soc/documents/install_ug.pdf

RadHard/RadTolerant Programming Guide
Document Assumptions
The information in this manual is based on the following assumptions:

1. You are familiar with PCs and Windows operating environments.
2. You are familiar with UNIX workstations and UNIX operating systems.
3. You are familiar with FPGA architecture and FPGA design software.

Document Conventions
The following conventions are used throughout this manual.
Information that is meant to be input by the user is formatted as follows:
keyboard input

Messages that are displayed on the screen appear as follows:

The contents of a file is formatted as follows:
file contents

Related Manuals
This guide refers to the following manual, which provides additional information about installing hardware
for use in designing and programming RadHard and RadTolerant devices:

Adaptec AVA-1505 AT-to-SCSI Host Adapter Installation Guide.
This guide contains installation information for the Adaptec AVA-1505 AT-to-SCSI Host Adapter included
with the Activator hardware.

Online Documentation
The Designer software comes with online documentation. This documentation is in PDF format on the
CD-ROM in the “\doc” directory. This documentation is also installed onto your system when you install
the Designer software.
To view the Designer online documentation, you must have Adobe® Acrobat Reader® software installed.
Microsemi provides Acrobat Reader on the CD-ROM.

Online Help
The Designer software comes with online help. To view all of the help systems in the Designer Series
software, double click the online help icon in the Designer Series program group. Online help specific to
each software tool is also available in Designer, ACTgen, and APS.

You have a fatal error.
Revision 1 7

1 – Programming RadHard/RadTolerant Devices

This chapter discusses the recommended programming flow, and describes the procedure for
programming a RadHard or RadTolerant device using an Activator connected to a PC or workstation and
either APSW or APS2 software. This chapter also describes the procedure for programming devices
using a Silicon Sculptor connected to a PC with the Silicon Sculptor Software installed.
RH/RT programming is supported on both the Silicon Sculptor and the Activator for all devices except the
SX-S. SX-S device programming is not supported in Activator. You must use Silicon Sculptor to program
SX-S devices. Also, for any SX-S failure report you don’t need to submit the AVI files. Instead, you must
submit the exact failure messages with the software and hardware revision number.

Programming Flow
The recommended programming flow for a RadHard or RadTolerant device has four main steps: test the
Activator/Silicon Sculptor, program a commercially equivalent part, program a RadHard or RadTolerant
device, and save the AVI files (where required). These steps are described in the following sections.

Test the Activator
Test your Activator before programming to ensure the Activator is working properly. Refer to the "Testing
an Activator" section on page 29 for detailed information about testing your Activator.

Test the Silicon Sculptor
Test your Silicon Sculptor before programming to ensure that it is working properly. For more information
on testing the Silicon Sculptor software, refer to the Microsemi SoC Products Group knowledge base at
www.microsemi.com/soc/kb/search.aspx and search for the keyword sculptor. Choose How to Run a Full
System Self-Test on the Silicon Sculptor (for DOS) or How to Run Self-Test for Silicon Sculptor with
SCULPTW (for Windows) as appropriate. For more information in this manual, refer to the "Testing
Silicon Sculptor" section on page 33.
Revision 1 9

http://www.microsemi.com/soc/kb/search.aspx
http://www.microsemi.com/soc/kb/search.aspx

Programming RadHard/RadTolerant Devices
Program a Commercially Equivalent Part
Before you program your device, Microsemi recommends that you program a commercially equivalent
device to ensure the proper setup of the hardware and software. Table 1-1 lists commercially equivalent
devices for the RadHard and RadTolerant devices. Once the you have successfully programmed a
commercial device, you can program your RadHard or RadTolerant device.
Note: Due to potential timing differences between RH/RT and commercial devices, timing verification of

the design for the RH/RT device may be required (even if timing verification has already been
performed for the commercial device).

Program a RadHard/RadTolerant Device
Use the Activator/Silicon Sculptor to program your device. Make sure you follow ESD device handling
procedures when removing a RadHard or RadTolerant device from its packaging and when placing it into
an Activator or programming with Silicon Sculptor. Refer to "Device Handling" and "Removing a Device
from the Carrying Case" on page 19 for information about handling and unpacking RadHard and
RadTolerant devices.

Table 1-1 • Commercially Equivalent Devices for the RadHard/RadTolerant Devices

 RadHard/RadTolerant Device DSCC Part Number Commercially Equivalent Part

RH1020-CQ84V 5962F9096505QTC A1020B-CQ84C

RH1280-CQ172V 5962F9215603QYC A1280XL-CQ172C

RT1280A-CA172B 5962F9215603QYC A1280A-CQ172C

A1020B-CQ84B 5962-9096503MTC A1020B-CQ84C

A1280A-CQ172B 5962-9215601MYC A1280A-CQ172C

A1460A-CQ196B 5962-9550801MYC A1460A-CQ196C

A14100A-CQ256B 5962-9552101MYC A14100A-CQ256C

RT54SX16-CQ208B 5962-9956901QYC A54SX32A-CQ208

RT54SX16-CQ256B 5962-9956901QXC A54SX32A-CQ256

RT54SX32-CQ208B 5962-9958603QYC A54SX32A-CQ208

RT54SX32-CQ256B 5962-9958603QXC A54SX32A-CQ256

RT54SX32S-CQ208B 5962-0150801QYC A54SX32A-CQ208

RT54SX32S-CQ256B 5962-0150801QXC A54SX32A-CQ256

RT54SX32S-CQ208E 5962-0150803QYC A54SX32A-CQ208

RT54SX32S-CQ256E 5962-0150803QXC A54SX72A-CQ256

RT54SX72S-CQ208B 5962-0151501QYC A54SX72A-CQ208

RT54SX72S-CQ256B 5962-0150801QXC A54SX72A-CQ256

RT54SX72S-CQ208E 5962-0151503QYC A54SX72A-CQ208

RT54SX72S-CQ256E 5962-0150803QXC A54SX72A-CQ256
10 Revision 1

RadHard/RadTolerant Programming Guide
Save the AVI File
When you program a chip, the programming history is saved in the design_name.avi file. The AVI file
contains programming data for each antifuse programmed, including the number of programming pulses
applied and fuse current readings. This file is overwritten each time you select the Activate (Activator) or
Program command (Silicon Sculptor). Once you have programmed your device, save your AVI file. Refer
to the "AVI File Description" section on page 75 for information about the AVI file.
Note: The AVI file is required to program RH devices only; it is not required for RT devices. Also, note that

Silicon Sculptor does not always generate an AVI file with RH devices.
If your device fails to program, refer to the "Device Programming Failures" section on page 27 for
detailed information about programming failures and maximum allowed programming failure guidelines.
Note: The *.avi file is required for failure analysis of all RadHard devices, and also the RadTolerant

RT1020 device. For more information, please refer to the "Returning Failed Devices" section on
page 34.

Activator APSW Software Overview
This section describes the APSW interface, including information about using the interface to program
RadHard and RadTolerant devices. Figure 1-1 shows the main window for APSW.

Activate
The Activate button or menu command is used to program a device. Refer to "Programming a Device
with Activator" on page 19 for detailed information about using the Activate command to program a
RadHard or RadTolerant device.

Figure 1-1 • ASPW Main Window
Revision 1 11

Programming RadHard/RadTolerant Devices
Blankcheck
The Blankcheck button or menu command executes a test to determine if a device has already been
programmed. Blankcheck displays a report for each Activator socket that has an adapter module
plugged into it (the Activator 2S only has one socket). Blankcheck is performed automatically before the
chip is programmed whenever you execute the Activate command.
The result of executing Blankcheck is either blank or not blank followed by the Silicon Signature,
Checksum, and Security Fuse status read from the device. Only blank devices of the correct type
(according to the design parameters) result in a blank status. A Security Fuse status of 0 indicates that
the security fuse has not been programmed; a 1 indicates that the security fuse has been programmed.

To run Blankcheck:
Click the Blankcheck button, or from the Tools menu choose the Blankcheck command.

Checksum
The Checksum button or menu command verifies that the current programming file is the same one that
was used to program the device. The Checksum command compares the checksum number, computed
from the programming file (*.afm or *.adb), to the checksum number programmed into the chip. If the two
numbers are identical, APSW displays PASSED. If the two numbers are not identical, the program
displays FAILED, with additional comments to briefly explain why it failed.
Note: If you have already programmed the Program fuse on an RH1020 or A1020B device, you cannot

read the Checksum from the device.

To run Checksum:
Click the Checksum button, or from the Tools menu, choose the Checksum command. The APSW
window displays the checksum number, along with a Passed or Failed message. If Checksum fails,
APSW displays a message that describes why.

Debugger
The Debugger button or menu command initializes the Debugger test environment. The Debugger
environment enables you to test a programmed device before you place it in your system circuit. With
Debugger, you can probe the chips internal nodes by applying stimulus through an Activator. Enter
Debugger commands through the Command box located at the top of the APS window. Refer to the
"Debugging a Device with an Activator" section on page 35 for information about using Debugger.
Note: The Debugger does not support SX, SX-A, eX, or ProASIC® devices.

To run Debugger:
Click the Debugger button, or from the Tools menu, choose the Debugger command.
Note: If you have already initiated Action Probe, Debugger is also initialized and available for use. When

you use Debugger with an Activator 2s, APSW recognizes the Adapter Module as port 4.
12 Revision 1

RadHard/RadTolerant Programming Guide
Silicon Sculptor Software Overview
This section describes both DOS and Windows versions of Silicon Sculptor software.

Silicon Sculptor for DOS
This section describes the Silicon Sculptor DOS Software interface including information about using the
interface to program RadHard and RadTolerant devices. Figure 1-2 shows the main window for Silicon
Sculptor DOS software.

AFS/Serialize – Serializes devices programmed. Use this command to select serialization pattern.
AFS/Upgrade – Enter an upgrade code if required. This command is required in order to utilize
additional options (such as JobMaster) and to fix various bugs.
Buffer/Load – Loads a data file from disk into the buffer. This command loads the buffer before
programming.
Buffer/Options – Sets the options that control the loading of the buffers. Selects generic buffer options
such as: (1) checksum method or (2) default value. Also, sets several options pertaining to the
Buffer/Load command, including: (1) changing the default directory; (2) changing the default filename; (3)
disabling the listing of files in a selector box; (4) disabling automatic file type identification; and (5)
enabling the loading of the filename when the software starts up.
Buffer/Save – Saves data buffer contents to disk. Use this command to save a file.
Buffer/Vectors – Not applicable for Microsemi users.
Configure – Selects the configuration options that control operation of the programmer, including: (1)
whether you have a color or monochrome display; (2) which parallel port you want the software to look at
first when it starts up; (3) when to save the configuration options that have been set under this Configure
command and under the Buffer/Options, Device/Options, and Device/Operations commands; (4)
experienced or novice mode of operation; and (5) whether the startup messages appear.
Device/Actel_ChkSum – Calculates, displays, and verifies the design checksum for single-site
operation. Use this command to verify the design checksum of the program file to the checksum value
programmed into the device; also displays the 16-bit checksum and the 20-bit user defined design ID.

Figure 1-2 • Silicon Sculptor for DOS Main Window
Revision 1 13

Programming RadHard/RadTolerant Devices
Device/Blank – Verifies that a device is blank (all fuses unprogrammed, or open). Prior to programming,
use this command to verify that a device has not been previously programmed (this operation is
executed automatically prior to programming any device).
Device/Operations – Defines the number of device operations performed. Prior to using the
programmer in a high-volume production setting, use this command to select how many devices you
wish to operate on (concurrent programming).
Device/Options – Enables you to specify different programming, reading, and testing options to reflect
your target system requirements (this should be done prior to performing a Device/Program command).
Figure 1-3 shows an example of the Device/Options command in use.

Device/Program – Programs a device from data in the buffer. Use this command to program your design
into the device. This command also verifies that the correct device type is inserted into the socket and
verifies the device is blank (unprogrammed) before you begin programming.
Device/Secure – Programs the security fuse(s). This command prevents probing of the device. You can
program Security fuses on an Microsemi device that has had its Array fuses previously programmed. The
ability to program Security fuses after programming Array fuses is designed to enable you to debug your
device design with the Silicon Explorer diagnostic tool.
Info/Chip – Displays some characteristic information on the currently selected chip. This is a useful way
to learn which package types are available for a chip and which programmers support a chip.
Info/Log – Sends information displayed in main window to a log file. You may wish to create a log of all
the activity during a particular programming session; you may view this log file at any time, printed, or
saved to another file name.
Info/Socket Module – Displays some characteristic information on the currently selected socket module.
This is a useful way to learn which socket module is required for a particular chip.
JobMaster – Please refer to the "JobMaster (Silicon Sculptor only)" section on page 77 for more
information.
Macro/Debug – Plays a sequence of commands stored in a macro file and pause after each line read
from the file. This command is intended for advanced users of macro commands; it is useful when you
have generated your macro files by some other means than the Macro/Record command. For example,
you used an editor or wrote your own program to generate the macro files, and now you are
encountering problems with the Macro/Play command.

Figure 1-3 • Device/Options Command in DOS
14 Revision 1

RadHard/RadTolerant Programming Guide
Macro/Play – Plays a sequence of commands stored in a macro file. This command saves time when
executing a series of operations for a specific chip. For convenience, you may record a macro file for
each chip you program on a regular basis.
Macro/Record – Stores a sequence of commands in a macro file. Use this command to store commonly
used command sequences in macro files to speed up operation and reduce operator errors. Macro files
can be played back from the Macro/Play command, from the DOS command line, from a batch file, from
a make file, or from another macro file.
For more information on the Macro command, please refer to the Silicon Sculptor's User's Guide.
Pause – Executes a DOS shell. This command executes DOS commands, then return to the
programmer in its present configuration.
Quit – Exits the program and return to DOS. You are returned immediately to DOS. Any buffer changes
will be lost; however, if you have Save Configuration: set to AUTOMATIC in the Configure command,
then all the options you have set during this session are saved and restored the next time you start the
software.
Select – Specifies the Microsemi FPGA part number to select the proper programming algorithm.
Selecting a device configures the programmer for the correct programming algorithm; the algorithm
includes voltage, timing, and pinout requirements. You must use this command before programming or
performing any other device operations.

Silicon Sculptor for Windows
This section describes the Silicon Sculptor Windows Software interface, including information about
using the interface to program RadHard and RadTolerant devices. Figure 1-4 shows the main window for
Silicon sculptor Windows software.

Figure 1-4 • Silicon Sculptor for Windows Main Window
Revision 1 15

Programming RadHard/RadTolerant Devices
File
Use the commands under the File menu to control the communication with the programmer, input special
code to enable advanced features, and monitor the number of copies you want to make. In addition, use
the commands under the file menu to reset the program settings to their defaults and modify certain
global options.

Configure
Configure re-establishes communication with the programmer. This enables you to change
programmers, if necessary. It also opens a dialog box that lists several options. This dialog box enables
you to switch the handler type from manual to auto-handler status and specify an experience level
(novice or experienced).

Upgrade
The Upgrade dialog box allows you to input a special code, which enables Advanced Features (AFS) in
the software.

Tools
Use the commands in the Tools menu to reset the configuration of Silicon Sculptor.

Programmer Diagnostic
Programmer Diagnostic runs the programmer diagnostic test. The Silicon Sculptor diagnostics ensure
that the power supplies function properly and test the integrity of all the pin drivers. For more information
please refer to page 68 of this manual.

Default Configure
Default Configure enables you to reset all the settings to the default configuration. When you select this
option, you are asked to confirm whether or not you want to reset to the default configuration. This option
is available to allow you to reset any given command back to its original settings.

Options
The Options dialog box enables you to set global options.

• Error Beep turns on or off the sounds used to indicate completion, errors, end of job, etc.
• Elapsed Time displays the duration of time of a specific operation, i.e. Read, Program, etc.

Device Marker
Not applicable for Microsemi devices.

JobMaster
For more information, please refer to "JobMaster (Silicon Sculptor only)" on page 77.

Copies
The Copies field enables you to enter the number of devices you want to program. The software
automatically tracks how many you have finished, how many failed, and how many remain to be
programmed. When Sculptor reaches the Copies number successfully, it displays a Job Summary report
for printing.

Help
Help/Tech Support lists the phone numbers and e-mail address for reaching Technical Support. Refer to
the "Product Support" section on page 81 for Technical Support contact information.
Help/About Silicon Sculptor displays the current Silicon Sculptor version number and specifics about the
software.
16 Revision 1

RadHard/RadTolerant Programming Guide
Device Button
The Device button enables you to access to the list of devices supported by the designated device
programmer via the Select Device dialog box.

• Select Device Dialog Box – The Select Device Dialog Box offers a list of devices supported on
the programmer model you selected in Configure. Select a device to configure the programmer
with the correct programming algorithm. The algorithm is specified by Microsemi and contains the
voltage, timing, and pin-out requirements.

Dev Info Button
The Dev Info button lists information for the highlighted device, including certain notes and relevant
precautions. The notes and precautions include algorithm settings, incorrect data pattern information,
erasing procedures, etc.

Data Pattern Button
Once you make a device selection, you must choose a data pattern. Click the Data Pattern button to
display the Data Pattern dialog box. Use this dialog box to load data into the buffer from a file or another
device. Browse to your file and load as necessary.

Open Button
The Open button brings up the Load File into Buffer window. Several options are available before loading
the file. Microsemi devices use the *.afm file.

Save Button
The Save button brings up the Save File from Buffer dialog box and saves the buffer contents to disk.
You may choose any local or network drive available when you save the file.

Main Screen File Tabs
Depending on the device you select, any of the following action/function file tabs may appear in your
viewing screen.

• Actel_ChkSum - Calculates, displays, and verifies the design checksum for single-site operation.
Verifies the design checksum of the program file to the checksum value programmed into the
device. Also displays the 16-bit checksum and the 20-bit user defined design ID.

• Blank - Verifies that a device is blank (all fuses unprogrammed, or open). Prior to programming,
verifies that a device has not been previously programmed. This operation is automatically
executed prior to programming any device.

• Program - Programs a device from data in the buffer. The program button programs your design
into the device. It also verifies that the correct device type is inserted into the socket and verifies
the device is blank (unprogrammed) before programming begins.

• Secure - Programs the security fuse(s) to prevent unwanted probing of the device. You can
program Security fuses on an Microsemi device that has had its Array fuses previously
programmed. The ability to program Security fuses after programming Array fuses is designed to
allow you to debug your device design with the Silicon Explorer diagnostic tool. After you debug
your design, you can program the security fuses to secure the device from further probing.

For more information on Software please refer to the Silicon Sculptor's User's Guide.
Revision 1 17

Programming RadHard/RadTolerant Devices
Preparation for Programming a Device
This section contains information about programming files and describes the procedure for programming
a RadHard or RadTolerant device with the Activator and Silicon Sculptor Software.

Supported Device Files
To program devices with APSW, you must have a programming file. APSW can read the following
programming file types:

• Database file (*.adb) for a design that has a completed layout
• Programming file (*.afm) exported from Designer using the Fuse command

Note: If Layout has been completed in Designer, you do not need to execute the Fuse command. APSW
automatically extracts programming information from the *.adb file.

To program devices with Silicon Sculptor, you must have a programming file (*.afm) exported from
Designer using the Fuse command.

User-Defined Silicon Signature
To specify a user-defined Silicon Signature to be programmed into a device, enter the signature from
within Designer using one of the following methods:

1. Create an *.afm file containing a Silicon Signature. Select the Fuse command, enter the Silicon
Signature, then export the *.afm file. Refer to the Designer Series documentation for information
about how to use the Fuse command to generate an *.afm file.

2. Set the SIG variable. Choose Set from the Options menu, and enter the desired value.
Note: The Silicon Signature must be a hexadecimal number, no more than 5 digits long.

Programming Checklist
Before executing any commands from APSW, sculpt.exe (DOS), or sculptw.exe (Windows), verify the
following:

1. The Activator/Sculptor hardware is powered on and the green LED is lit.
2. The appropriate Adapter Module(s) is plugged into the socket(s) on the Activator.
3. A device is inserted in the Adapter Module, with pin 1 oriented as indicated in the diagram printed

on the Adapter Module.
Note: Insert a device into the Adapter Module socket after the Module is plugged in and the Activator is

powered up.

Device Handling
RadHard and RadTolerant devices are CMOS devices and require proper grounding and ESD handling
procedures. Although all Microsemi parts have static discharge protection built in, you should always
follow ESD handling procedures when handling RadHard and RadTolerant devices. Handle devices by
the corners to avoid touching the leads.
Always keep the RadHard and RadTolerant devices in their insulative carrying cases until they are used,
and keep the surrounding environment clean and free of dust and debris. Periodically check the Adapter
Module sockets to verify that they are free of dirt or other debris that would prevent good electrical pin
connections between the device and socket.
When loading RadHard and RadTolerant devices in the Adapter Module socket, be sure to orient them
so that pin 1 is oriented according to the diagram on the Adapter Module. Damage can occur if the FPGA
is loaded incorrectly.
You should always wear grounded wrist straps at an ESD workstation when handling RadHard and
RadTolerant devices. A calibrated ionizer should be on and functioning properly at the workstation. An
ionizer air stream should be directed over the parts at all times.
18 Revision 1

RadHard/RadTolerant Programming Guide
Removing a Device from the Carrying Case
Use the following ESD procedure to remove a RadHard device from the insulative individual carrying
case before placing it in an Adapter Module. Although RadTolerant devices are not packaged in
individual carrying cases, you should follow ESD procedures when handling any Microsemi device.

IMPORTANT
You should always wear a grounded wrist strap at an ESD workstation when handling a RadHard or
RadTolerant device. A calibrated ionizer should be on and functioning properly at the workstation. An
ionizer air stream should be directed over the parts at all times.

1. Slowly remove the individual carrying case from the carrier box. The individual carrying case may
build a charge while being removed from the foam in the carrier box.

2. Ionize the individual carrying case. Hold the individual carrying case approximately three feet
from the ionizer. Expose each side of the case to the air stream for 30 to 60 seconds.

3. Remove the RadHard device from the individual carrying case. Open the case, remove the device
and place the device on top of ESD sensitive foam.

You can now place the device in the Adapter Module or repackage it in a static dissipative container.

Programming a Device with Activator
Programming typically requires from 5 to 15 minutes for commercial and RadTolerant devices and 30 to
60 minutes for RadHard devices, depending on design complexity, the Microsemi device you chose, and
your system environment. During programming, the Activator/Silicon Sculptor dynamically verifies that
each antifuse is programmed correctly. In addition, test vectors are applied to verify that only the selected
antifuses are programmed. Due to the unique, high-density architecture of Microsemi devices, you can
verify the programmed state of all antifuses only during programming, not after. The following procedure
describes how to program a device.

To program a device with APSW:
1. Invoke APSW.

UNIX Workstation
Type the following command at the prompt:
apsw

PC
Double-click the Windows Programming icon located in the Designer Series program group.
This displays the APSW window (see Figure 1-1 on page 11).

2. Open your design. Click the Open button or from the File menu, choose the Open command.
This displays the Open dialog box. Type in the design name or browse to the directory that
contains the design_name.adb (or *.afm) file and select it. Click OK.

3. Choose fuse programming options. Click the Activate button or from the Tools menu, choose the
Activate command. This displays the Activate Options dialog box.

4. Program your device. You can program Array fuses only, the Security fuse only, or both Array
fuses and the Security fuse. For RH1020 and A1020B devices, APSW displays the dialog box
shown in Figure 1-5 on page 20. For RH1280, A1280A, A1460A, and A14100A devices, APSW
displays the dialog box shown in Figure 1-6 on page 20. Choose the desired fuse programming
options and click OK. Refer to the "Programming Security Fuses" section on page 21 for a
detailed discussion about programming security fuses.
Revision 1 19

Programming RadHard/RadTolerant Devices
IMPORTANT
The Program or Security fuse must be the last fuse programmed.

APSW displays an Output Window on the screen and begins the programming sequence. The
status bar in the Output Window displays the percentage complete of the programming sequence.
When the device is 100% programmed, the finished programming status Passed or Failed is
displayed on the screen.

5. Save the AVI file. Exit APSW and move or rename the AVI file for the design. The AVI file is
written to the same directory as your programming file. Refer to the "AVI File Description" section
on page 75 for information about AVI files.

Figure 1-5 • Activate Options for RH1020 and A1020B Devices

Figure 1-6 • Activate Options for RH1280, A1280A, A1460A, and A14100A Devices
20 Revision 1

RadHard/RadTolerant Programming Guide
Programming a Device with Silicon Sculptor
Use the following procedures to program a device with Silicon Sculptor for DOS or Windows, as
appropriate.

To program a device with Silicon Sculptor for DOS:
1. Double-click sculpt.exe to invoke the software.
2. Open your design from the Buffer/Load menu. Select the file from the Directory menu and load

the file with the *.afm extension for a particular device.
3. Select the corresponding device from the Select menu.
4. Run the blank check for the inserted device. Use the Device/Blank command to run the blank

check.
5. Program the device. From the Device/Program menu, select the Program command to start

programming the device.
6. Verify the checksum. When programming is complete, select the Device/Actel_ChkSum

command to verify the checksum from the programmed device.
7. Program Array or Security fuses. You may choose to program Array fuses only, Security fuses

only, or both at the same time. After programming the Array fuse you can program the Security
fuse later by the Device/Secure menu.

To program a device with Silicon Sculptor for Windows:
1. To invoke the software, double-click sculptW.exe, or click the Start button, and from the

Programs menu, select BP Microsystems and SculptW.
2. From the SculptW interface, click the Device button.
3. Select your device. Scroll down if necessary.
4. From the SculptW interface, click the Data Pattern button.
5. Select the desired *.afm file from the directory.
6. Run the blank check. From the SculptW interface, select the Blank tab and Press the BLANK

button to run the blank test for the device.
7. Program the device. From the SculptW interface, select the Program tab. In the Program tab,

select Program in the first pull-down menu. Press the EXECUTE button to program the device.
8. Verify the checksum. When programming is complete, again select Actel_ChkSum in the first pull-

down menu. Press the EXECUTE button to verify the checksum from the programmed device.
9. Program Array or Security fuses. You may choose to program Array fuses only, Security fuses

only, or both at the same time. After programming the Array fuse you can program the Security
fuse later by the Device/Secure menu.

Programming Security Fuses
You can program Security fuses on a RadHard or RadTolerant device that has had its Array fuses
previously programmed. The ability to program Security fuses after programming Array fuses is designed
to allow you to debug your device design with the Debugger, ActionProbe, or Silicon Explorer diagnostic
tool. After you debug your design, you can program the security fuses to secure the device from further
probing.

RH1020, A1020B Security Fuse Configurations
The RH1020 and A1020B devices contain two security fuses: Probe and Program. Programming the
Probe fuse disables the Probe Circuitry, which disables the use of the Debugger, ActionProbe, and
Silicon Explorer diagnostic tools. Programming the Program fuse prevents further programming of the
device, including programming the Probe fuse.
Revision 1 21

Programming RadHard/RadTolerant Devices
Table 1-2 summarizes the effects of programming the Security fuses on the PRA, PRB, SDI, and DCLK
pins.

In the normal operating mode (MODE = 0), all undefined device pins in a design are automatically
configured as active Low outputs.
Two exceptions are the SDI and DCLK pins. If the Program fuse is not programmed and SDI and DCLK
are undefined, they are configured as inactive inputs. In this case, SDI and DCLK pins should be tied to

Table 1-2 • RH1020, A1020B Security Fuse Configurations
Mode1 Program Probe PRA, PRB SDI, DCLK
Low No No User-defined I/O User-defined input2

Low No Yes3 User-defined I/O User-defined input2

Low Yes4 No User-defined I/O User-defined I/O

Low Yes4 Yes3 User-defined I/O User-defined I/O

High No No Probe Circuit outputs5 Probe Circuit inputs6

High No Yes3 Probe Circuit disabled Probe Circuit disabled

High Yes4 No Probe Circuit outputs5 Probe Circuit inputs6

High Yes4 Yes3 Probe Circuit disabled Probe Circuit disabled

Notes:
1. The MODE pin switches the device between the normal operating mode (MODE = 0) and the Probe Circuit mode

(MODE = 1).
2. The Program fuse must be programmed if the SDI or DCLK pins are to be used as an output or a bidirectional pin.
3. If the Probe fuse is programmed, the Probe Circuit is permanently disabled, which disables the Debugger,

ActionProbe, and Silicon Explorer diagnostic tools.
4. If the Program fuse is programmed, all programming of the device is disabled, including programming the array

fuses and the Probe fuse.
5. The PRA output and a separate I/O buffer share the use of a single device pin. The PRA output and the output

function of the I/O buffer are multiplexed. The same is true for PRB. The Probe Mode that is loaded into the Mode
Register will determine which output buffer is active during probing. There are three possible Probe Modes: PRA
only, PRB only, and PRA and PRB.
When you select the PRA only mode, the PRA output becomes active and the output function of the I/O buffer
associated with the PRA pin is inhibited. However, the input buffer portion of the I/O buffer associated with the
PRA pin is still active. Any internal signal that appears on the PRA output is fed back through that input buffer to
the internal Logic Modules. This could interfere with the expected function of the design during probing. Microsemi
recommends that you use an input latch on PRA and PRB to prevent the feedback while probing. PRB will
function as a normal I/O in the PRA only mode.
The PRB only mode is functionally equivalent to the PRA only mode. PRA also functions as a normal user I/O in
the PRB only mode.
When you select the PRA and PRB mode, both the PRA and PRB outputs become active and the output function
of the I/O buffers associated with both pins are inhibited. However, the input buffer of the I/O buffers associated
with both pins are still active. Any internal signals that appear on the PRA and PRB outputs are fed back through
the input buffers to the internal Logic Modules. This could interfere with the expected function of the design while
probing. Microsemi recommends that you use an input latch on PRA and PRB to prevent the feedback during
probing.

6. The SDI input and a separate I/O buffer share the use of a single device pin. The SDI input and the input function
of the I/O buffer are connected in parallel. When the Mode pin is high, both inputs are active. The same is true for
DCLK. External Probe Circuit control signals sent to those pins are also sent to the internal Logic Modules. This
could interfere with the expected function of the design while probing. Microsemi recommends that you use an
input latch on SDI and DCLK to prevent the external Probe Circuit control signals from effecting the functionality of
your design during probing.
If either SDI or DCLK are configured so that the output function of the I/O buffer is active, the Program fuse must
be programmed. In this configuration, the signals from your design are fed back to the Shift Register and will
interfere with the function of the Probe Circuitry. In addition, the I/O drivers will conflict the external SDI and DCLK
drivers. Damage to both drivers could occur.
22 Revision 1

RadHard/RadTolerant Programming Guide
ground. If the Program fuse is programmed and SDI and DCLK are undefined, they will become active
LOW outputs.

RH1280, A1280A, A1460A, and A14100A Security Fuse
Configurations
The RH1280, A1280A, A1460A, and A14100A devices contain one Security fuse. Programming the
Security fuse disables the Probe Circuitry, which disables the use of the Debugger, ActionProbe, and
Silicon Explorer diagnostic tools. Table 1-3 summarizes the effect or programming the security fuse on
the PRA, PRB, SDI, and DCLK pins.

In the normal operating mode (MODE = 0), all undefined device pins in a design are automatically
configured as active LOW outputs. You do not need to program the Security fuse to enable SDI and
DCLK as active LOW outputs.

Table 1-3 • RH1280, A1280A, A1460A, and A14100A Security Fuse Configurations

Mode1 Security PRA, PRB SDI, DCLK

Low Don't care User-defined I/O User-defined I/O

High No Probe Circuit outputs3 Probe Circuit inputs4

High Yes2 Probe Circuit disabled Probe Circuit disabled

Notes:
1. The MODE pin switches the device between the normal operating mode (MODE=0) and the Probe Circuit mode

(MODE=1).
2. If the Security fuse is programmed, the Probe Circuit is permanently disabled which disables the Debugger and

the ActionProbe diagnostic tools.
3. The PRA output and a separate I/O buffer share the use of a single device pin. The PRA output and the output

function of the I/O buffer are multiplexed. The same is true for PRB. The Probe Mode that is loaded into the Mode
Register will determine which output buffer is active during probing. There are three possible Probe Modes: PRA
only, PRB only, and PRA and PRB.
When the PRA only mode is selected, the PRA output becomes active and the output function of the I/O buffer
associated with the PRA pin is inhibited. However, the input buffer portion of the I/O buffer associated with the
PRA pin is still active. Any internal signal that appears on the PRA output is fed back through that input buffer to
the internal Logic Modules. This could interfere with the expected function of the design during probing.
Microsemi recommends that you use an input latch on PRA and PRB to prevent the feedback while probing. PRB
will function as a normal I/O in the PRA only mode.
The PRB only mode is functionally equivalent to the PRA only mode. PRA also functions as a normal user I/O in
the PRB only mode.
When the PRA and PRB mode is selected, both the PRA and PRB outputs become active and the output function
of the I/O buffers associated with both pins are inhibited. However, the input buffer of the I/O buffers associated
with both pins are still active. Any internal signals that appear on the PRA and PRB outputs are fed back through
the input buffers to the internal Logic Modules. This could interfere with the expected function of the design while
probing. Microsemi recommends that you use an input latch on PRA and PRB to prevent the feedback during
probing. An input latch is an integral part of the I/O buffers in the RH1280 and A1280A devices.

4. The SDI input and a separate I/O buffer share the use of a single device pin. The SDI input and the input function
of the I/O buffer are connected in parallel. When the Mode pin is high, both inputs are active. The same is true for
DCLK. External Probe Circuit control signals sent to those pins are also sent to the internal Logic Modules. This
could interfere with the expected function of the design while probing. Microsemi recommends that you use an
input latch on SDI and DCLK to prevent the external Probe Circuit control signals from effecting the functionality
of your design during probing. An input latch is an integral part of the I/O buffers in the RH1280 and A1280A
devices.
The output function of the I/O buffers associated with SDI and DCLK do not interfere with the function of the
Probe Circuitry while in the Probe Mode. When the Mode pin is driven high, these outputs are inhibited. The I/O
drivers do not interfere with the external drivers. However, these outputs are not observable in the Probe Mode.
Revision 1 23

2 – Post-Programming Recommendations

This chapter discusses recommendations for post-programming verification and testing of RadHard and
RadTolerant devices. Refer to the "Testing and Programming Microsemi FPGAs" section on page 59 for
additional information about the testing, programming, and reliability of Microsemi devices.
Microsemi FPGAs undergo rigorous testing and quality checks to ensure that successfully programmed
devices do not require further testing. The test methodology employed for un-programmed devices
includes verification of functionality for all high and low voltage transistors, a transistor junction stress
test, a fuse stress test, and a functional test for all logic modules in the array. In addition, static and
dynamic burn-in tests are performed for all RadHard products to further ensure device reliability. During
programming, logic modules in the array are protected from high voltage signals through isolation
devices on each module input and output. The isolation devices are turned off during programming, thus
protecting the low voltage transistors in the module.
Static and dynamic burn-in are included in the manufacturing flow for all RadHard and RadTolerant
devices. The static burn-in is a biased burn-in for 144 hours at 125ºC. The dynamic burn-in is a 240-hour,
125ºC test. The dynamic burn-in stresses the device by shifting in test commands which toggle the
routing tracks and all input and output tracks. Refer to the "Burn-In of Microsemi FPGAs" section on
page 66 for a detailed description of both the static and dynamic burn-in procedures. RadHard device
burn-in and test is performed by Lockheed-Martin Federal Systems (LMFS) using procedures developed
by Microsemi SoC Products Group and implemented at the LMFS facility in Manassas, Virginia.
A quarterly reliability report, available upon request from your local sales representative, describes the
accelerated life test results for Microsemi devices. This data is for post-programmed devices and is
representative of results you would obtain, assuming you use programming and handling procedures
described in this guide.
Burn-in is performed on all production units, including a periodic life-test burn-in for on-going reliability as
required for QML certification.

Test
Microsemi programming algorithms are designed to verify the exact programming of the specific
antifuses included in the programming files. The CheckSum is programmed into the device and must
match the CheckSum in the programming file. This verifies that the device is programmed as designed.
In some cases, you may wish to verify certain timing or other test conditions on programmed devices.
Microsemi recommends that you perform a functional test on a programmed device before placing the
device in a system. However, Microsemi does not provide test services or programs to customers for
programmed devices. You must develop a test methodology or contract a third party test facility to test
programmed devices.

Packaging, Sockets, Trim, and Form
All RadHard and RadTolerant devices are burned-in, tested, packaged, and shipped in Non-Conductive
Tie Bar packages. Through-hole sockets are used to test and burn-in the RadHard and RadTolerant
devices. These sockets are also used on the programming Adapter Modules. After programming, the
user must trim and form the leads of the RadHard or RadTolerant device to correspond to the required
board layout.
The sockets are produced by Enplas Corporation, Wells Electronics Inc., and Yamaichi Electronics
U.S.A. Inc. They can be purchased by contacting the local Enplas, Wells, or Yamaichi sales
Revision 1 25

Post-Programming Recommendations
representative. Table 2-1 shows the part number for the RadHard and RadTolerant devices and the
corresponding socket part number.

Table 2-1 • Part and Socket Number for RadHard/RadTolerant Devices

Microsemi Part Number DSCC Part Number Manufacturer Part Number

RH1280-CQ172V 5962F9215603QYC Yamaichi
IC51-1964-1952

RH1020-CQ84V 5962F9096505QTC Wells
619-1000611-001

A1020B-CQ84B 5962-9096503MTC Wells
619-1000611-001

A1280A-CQ172B 5962-9215601MYC Yamaichi
IC51-1964-1952

A1460A-CQ196B 5962-9550801MYC Yamaichi
IC51-1964-1952

A14100A-CQ256B 5962-9552101MYC Enplas
FPQ-256-(352)-.5-01

RT54SX32-CQ208B 5962-9958603QYC Enplas
FPQ-256(352)-0.5-01

RT54SX32-CQ256B 5962-9958603QXC Enplas
FPQ-256(352)-0.5-01

RT54SX32S-CQ208B 5962-0150801QYC Enplas
FPQ-256(352)-0.5-01

RT54SX32S-CQ256B 5962-0150801QXC Enplas
FPQ-256(352)-0.5-01

RT54SX32S-CQ208E 5962-0150803QYC Enplas
FPQ-256(352)-0.5-01

RT54SX32S-CQ256E 5962-0150803QXC Enplas
FPQ-256(352)-0.5-01

RT54SX72S-CQ208B 5962-0151501QYC Enplas
FPQ-256(352)-0.5-01

RT54SX72S-CQ256B 5962-0150801QXC Enplas
FPQ-256(352)-0.5-01

RT54SX72S-CQ208E 5962-0151503QYC Enplas
FPQ-256(352)-0.5-01

RT54SX72S-CQ256E 5962-0150803QXC Enplas
FPQ-256(352)-0.5-01
26 Revision 1

3 – Device Programming Failures

This chapter contains guidelines and information about programming failures and describes
programming failures that may occur when programming a RadHard or RadTolerant device.

Programming Failure Guidelines
Programming failures are a normal and expected result of antifuse-based FPGA design. Microsemi
performs extensive testing to measure the characteristics of the antifuses, and programs a sample of
devices from every lot to ensure high programming results. However, Microsemi cannot guarantee that
all devices will program successfully, and you should expect some programming failures.
The guaranteed quality and reliability of the devices that program successfully are unrelated to the
programming yield. All devices that pass the programming function are fully guaranteed to meet all
electrical, timing, and radiation specifications.
Before programming a RadHard or RadTolerant device, Microsemi recommends that you program a
commercially equivalent device to ensure the proper setup of the hardware and software. After you have
successfully programmed a commercial device, you can program your RadHard or RadTolerant device.

RadHard Failure Rates
RadHard devices typically exhibit a 5% programming fallout. If a RadHard device fails to program, but
the commercially equivalent device passes, proceed with programming additional RadHard devices. If
programming failures exceed the guidelines listed in the following table, stop programming and contact
your local sales representative or Application Support at 1-800-262-1060, or email us at
soc_tech@microsemi.com.

RadTolerant Failure Rates
RadTolerant devices typically exhibit a 1-2% programming fallout. If a RadTolerant device fails to
program, but the commercially equivalent device has passed, proceed with programming additional
RadTolerant devices. If programming failures exceed the guidelines listed in the following table, contact
your local sales representative or Application Support at 1-800-262-1060, or email us at
soc_tech@microsemi.com.

Table 3-1 • RadHard Failure Rates
Sample Size Maximum Failures

5 2
10 3
20 4
50 6

100 10

Table 3-2 • RadTolerant Failure Rates
Sample Size Maximum Failures

13 3
31 5
63 8

100 10
Revision 1 27

mailto:soc_tech@microsemi.com
mailto:soc_tech@microsemi.com

Device Programming Failures
Types of Programming Failures
This section describes failure messages that may appear when a fuse fails to program in Activator or
Silicon Sculptor.

Fuse Failed to Program
When an antifuse is programmed, multiple voltage pulses are applied to the VPP pin. While the pulses
are applied, IPP current is checked. If the antifuse is open (unprogrammed), there will be no IPP current.
The Activator/Silicon Sculptor can tell if the antifuse has been programmed once it detects IPP current.
Pulses are applied until IPP current is detected, or the maximum number of pulses is exceeded. If the
antifuse does not program after the maximum number of pulses are applied, a FAILED Programming
Fuse message is displayed on the screen and the failed antifuse number is shown.

Bad Fuse
The BAD FUSE failures are often caused by a poor connection of the VPP pin to the socket pin. This is
especially true if the part fails programming on the first antifuse. Remove the part and check for bent
pins. If the pins are not bent and the other parts continue to fail with the FAILED Programming Fuse error,
then the VPP pin of the socket could be damaged. Contact Application Support at
www.microsemi.com/en/design-support/application-support.

Check 6 Failure
Once the antifuse has been programmed, the Activator/Silicon Sculptor addresses the same antifuse
again and checks for IPP current at a lower VPP voltage. This is to make sure that the antifuse was
correctly addressed the first time and that the IPP current did not come from another source. If no current
is detected with this new test, the chip fails programming and APSW/APS2 issues the Integrity test 6
failure for the antifuse. Once again, the antifuse number that failed is displayed.

Check 7 and 8 Failures
This test is only performed on the RH1020 and A1020A devices. After the Activator/Silicon Sculptor
completes the CHECK 6 test, it then does two additional tests to make sure that an additional antifuse
was not programmed mistakenly. The first test checks antifuses on the same column as the programmed
antifuse, and the second test checks the same row. The tests are done by addressing these other
antifuses, applying a voltage to VPP and making sure no IPP current is detected. If the tests fail (IPP
current is detected), a FUSE INTEGRITY FAILURE failure is displayed.

Error Messages
This section describes error messages Activator/Silicon Sculptor might display during programming, and
the reason the message is displayed.

Integrity Test
Incorrectly programmed fuses, like the Check 7 and 8 failures above, are reported in the following format:

This message indicates that the device is a programming reject. Microsemi will replace devices that fail
programming.

Integrity test <test type>. <test number>
28 Revision 1

http://www.microsemi.com/en/design-support/application-support

RadHard/RadTolerant Programming Guide
Fuse Current Sense Test
This test is only performed on the RH1280, A1280B, A1460A, A14100A devices. This test is done to
ensure that a logic module output is not inadvertently programmed to GND or VCC. The error message’s
format is:

Wrong Adapter Module
If the programming adapter does not correspond to the selected Microsemi device or package, the
following message is displayed:

Old Revision Adapter Module
If the Adapter Module does not support the selected device, even though the correct package is
selected, the following message is displayed:

Not Blank
If the device has been programmed and programming is attempted, the following message is displayed:

Testing an Activator
The following are test procedures for Activator 2/2S and programming adapters. There are no adjustable
parameters on the Activator. If any test fails, the Activator or the programming adapters should be
considered non-functional. Return to Microsemi for replacement or credit. See the "Returning Failed
Devices" section on page 34 for information on returning a part for replacement or credit.
Note: The Activator test procedure outlined below must be executed from the APSW programming

software, version R2-1999 or later.
Equipment required:

• Activator 2/2S
• Programming Adapter (Optional)
• PC with SCSI controller running Windows 95/98/NT4.0
• Digital Volt Meter (DVM)
• Oscilloscope

To set up the Activator for testing:
1. Set the vertical scale of the oscilloscope to 2V/Div; horizontal time base to 2 ms/Div.
2. Connect the positive scope probe to the Digital Volt Meter (DVM)+V and negative scope probe

(ground) to DVM ground, using BNC to Banana cables.
3. Set the DVM to DC volts on the 20-volt range.

Fuse <fuse number>, current sense test <test number>

Wrong adapter module

Old revision adapter module

Not blank
Revision 1 29

Device Programming Failures
4. Connect the ground wire to pin 14 or 16 of any Activator socket and to DVM ground and scope
ground (Figure 3-1).

5. To execute the test program, enter the following command from a DOS prompt:
apsw actst:1

6. Load an *.adb file to enable the test tabs. This displays the screen shown in Figure 3-2.

7. To select a test, click one of the buttons: Board Test, Current Test, or Adapter Test.

Figure 3-1 • Activator Testing Setup Diagram

Figure 3-2 • Loading an *.adb File
30 Revision 1

RadHard/RadTolerant Programming Guide
Board Test
The Board Test checks power supply voltage level and slew rate, as shown in Figure 3-3.

When the test is complete, click OK to stop.

Current Test
This tests the Activator’s ability to sense the current through a programmed antifuse. Activator displays
the Current Test Options dialog box (Figure 3-4) when you select the CURRENT SENSE button.

Check the box to test VPP or clear the box to test VCC. Click OK to continue.
VPP Testing
Insert a 637 ohm (680 ohm in parallel with a 10K ohm), 2% precision resistor between pin 14 (GND)
and 32 (VPP). The currents for each of the four slots are displayed every second. With the resistors
plugged in, the readings should be approximately 157. Repeat this for each of the four slots.

Figure 3-3 • Board Test Screen

Figure 3-4 • Current Test Options Dialog Box
Revision 1 31

Device Programming Failures
Figure 3-5 shows the testing result on slot 1.

Note: The reading on the sockets that have resistor(s) should be approximately 157 ± 10.

VCC Testing
Insert a 637 ohm (680 ohm in parallel with a 10K ohm), 2% Precision resistor between pin 14 (GND) and
26 (VCC). The currents for each of the four slots are displayed every second. With the resistors plugged
in, the readings should be approximately 076. Repeat this for each of the four slots. Figure 3-6 shows the
testing result on slot 1.

Note: The reading on the sockets that have resistor(s) should be approximately 076 ± 5.

Figure 3-5 • VPP Current Test for Slot 1 of Activator Device

Figure 3-6 • VCC Current Test for Slot 1 of Activator Device
32 Revision 1

RadHard/RadTolerant Programming Guide
Adapter Module Test
This test checks socket adapter modules. Select the Adapter Module button to execute the test. As the
test is executed, the screen displays the test results, as shown in Figure 3-3.

The Adapter Module will fail if a device is inserted in the socket on the Adapter module. Check that the
Adapter Module socket is empty before executing the Adapter Module Test.

Testing Silicon Sculptor
The DOS and Windows versions of Silicon Sculptor vary slightly. Please use the correct procedure to test
your Silicon Sculptor.

Testing Silicon Sculptor for DOS
The Silicon Sculptor programmer can test its own hardware quite extensively. You are strongly advised to
run a full system Self-Test on the programmer before performing any other operation. The self-test
routine can detect problems in the pin-drivers, power supply, microprocessor, data cable, printer port,
and several other circuits. The hardware test cannot detect problems resulting from a dirty socket. To
execute the test:

1. Remove any chips from the programmer sites. Any device left in a programmer site may be
damaged during testing.

2. Press Alt-D hot-key
3. Choose to test a single unit or all units
4. Watch the screen for any error messages

If you receive an error during the test, please contact Application Support at 1-800-262-1060, or email
soc_tech@microsemi.com. for assistance.

Testing Silicon Sculptor for Windows
To start a self-test on your Silicon Sculptor programmer:

1. Invoke the SCULPTW software.
2. Click the Device button and select Actel Diagnostics from the list of available devices (type

diagnostics). Once selected, the main window displays the Actel Diagnostics label in the Device
field and a Test file tab appears.

Table 3-3 • Adapter Module Test Screen
Revision 1 33

mailto:soc_tech@microsemi.com

Device Programming Failures
3. Click the Test button to begin testing the programmer. The Test dialog box verifies the number of
units you wish to test.

4. Click OK to begin the test. A window appears, warning you that there is no chip in the socket.
After this, the test begins and runs until it is done or until you click the Stop button.
To cancel the self-test, click on the Stop button at any time during the procedure. A window will
appear to acknowledge the operation was aborted. To re-execute the test, simply click the Test
button again.
Your programmer should pass the test. Verify by checking the green PASS LED on the chassis of
the programmer. If your programmer does not pass the test, the red FAIL LED activates and an
error message presented on-screen:
Error 47: Self-test failed. This unit may need service. Please call technical
support.

If this should happen, double-check the fidelity of the cable connections and try again. If you are
still having trouble, note the exact error message and contact Application Support at
1-800-262-1060, or email soc_tech@microsemi.com.

Returning Failed Devices
Although Microsemi receives returns due to programming failures of less than 1% of parts shipped,
failure rates of up to 5% – 10% may occur. In order to return failed devices, you must meet the following
conditions:

1. Failure analysis (FA) is mandatory for all programming failures on RH/RT devices before
Microsemi issues any replacements. A maximum of three units is necessary to perform a failure
analysis. Also, request an RMA number through Microsemi's sales representatives, distributors,
or customer service.

2. RMAs are authorized only for current Microsemi devices. Devices that have been discontinued
will not be authorized for return.

3. All devices returned for FA and Returns should be in their original packaging. If parts are being
returned for FA then you must also send the Programming File(s) and *.AVI file(s). Any parts
returned to Microsemi for Failure Analysis without an RMA number and accompanying
Design/.avi files will be returned immediately to the customer at the customer's expense.

Note: The *.AVI file is not mandatory for any RT devices except the RT1020.
FAILURE ANALYSIS REQUEST forms (may be collected from Customer Service) should only be used
when you experience excessive programming loss has or where you have observed functional failures.
The time frame of failure analysis varies greatly (it depends on the failure mechanisms). The final failure
analysis report usually takes a month or longer to deliver. In addition, if during the FAILURE ANALYSIS
PROCESS Microsemi is able to successfully program the units, these units will be returned to the
customer against the replacement order and the units will be labeled that they are programmed.
34 Revision 1

mailto:soc_tech@microsemi.com

4 – Debugging a Device with an Activator

This chapter describes how to use the Debugger tool in APSW or APS2 and an Activator to functionally
debug your programmed RadHard or RadTolerant device. This includes descriptions of available
debugging commands and command file usage and examples.
Note: This is not a supported feature in Silicon Sculptor. Debugging is not supported for SX, SX-A, and

RTSX-S devices.

Functional Debugging With an Activator
Functional debugging of a RadHard or RadTolerant device with the Debugger tool in the APSW or APS2
software is done with a device placed in an Adapter Module and plugged into an Activator. Functional
debugging is used to test a programmed RadHard or RadTolerant device by applying a stimulus to the
input pins and observing the functional behavior at all internal nodes or nets and output pins.
Functional debugging is not the same as simulating. A programmed chip is required. The output results
are determined from the silicon device, not from a model stored in memory. Functional debugging can be
performed two ways. You can apply stimulus to the input pins by executing command-line commands or
by creating command files and reading the files into APSW or APS2.
If you execute command-line commands, each command is executed before the next command can be
entered. After each command is executed, output results are printed on the screen, or to a file if
specified. Refer to the "Debugger Command-Line Commands" section on page 36 for a description of
the command-line commands.
If you have a large number of commands to execute, you can create a command file. A command file
contains a set of commands that are executed on your RadHard or RadTolerant device. A command file
can also contain input test vectors. If you provide expected outputs with a test vector file, Debugger
compares the chip output results with the expected outputs automatically. The Debugger saves any
differences it finds for further analysis. Debugger then prints the output results on the screen, or to a file if
specified in the command file. Refer to the "Using Command Files to Debug a Device" section on
page 38 for information about using command files.

Running Debugger From APSW
The Debugger tool is run from within APSW. Use the following procedure to initialize Debugger and
debug your device.

1. Invoke APSW.

UNIX Workstation
Type the following command at the prompt:
apsw

PC
Double-click the Windows Programming icon in the Designer Series program group.
The APSW window is displayed (see Figure 1-1 on page 11).

2. Open the design to be debugged. Click the Open button or from the File menu, choose the Open
command. This displays the Open dialog box. Type in the design name or browse to the directory
that contains the <design_name>.adb (or *.afm) file and select it. Click OK.

3. Verify that you have a programmed RadHard or RadTolerant device placed in an Adapter Module
plugged into the Activator.

4. Debug your device. Click the Debugger button to initialize the tool. The message Debugger
initialization complete is displayed when the Debugger is finished loading. Execute single
command-line commands or load a command file using the loadfile command in the Command
Revision 1 35

Debugging a Device with an Activator
box. Refer to the "Debugger Command-Line Commands" section on page 36 for information
about command-line commands. Refer to the "Using Command Files to Debug a Device" section
on page 38 for information about creating command files.

Debugger Command-Line Commands
This section lists the Debugger command-line commands and syntax, command functions, and APS2
Debugger menu command equivalents.
Command-line commands can be executed in APSW by typing the command in the Command box at the
top of the APSW window and pressing Enter. Commands can be executed in APS2 Debugger by typing
the command directly in the APS2 Debugger window and pressing Enter or by selecting the menu
command equivalent. Table 4-1 lists the command-line syntax and function and the APS2 menu
command equivalent.

Table 4-1 • Command-Line Commands and Functions

Command-Line Command Syntax and Function
APS2 Menu Command

Equivalent

(assign <n> <vector_1> ... <vector_n>)
Assigns the value <n> to each electrical node, or vector of nodes, the next
time you execute the Step command. Each node must be a chip I/O or no
assignment occurs. The format of <n> is as follows: 0=decimal;
0b=binary; 0h=hexadecimal; 0o=octal; 01x2=string. You can also assign a
string-type constant to a vector. Valid characters are 1, 0, Z, z, X, and x.
The character must be enclosed in double quotation marks. For example:
assign “1Zx0” IN

Stimulus/Assign

(comp <n> <vector_1> ... <vector_n>)
Compares <n> to each node or vector, and prints a message for each
node in the list whose value is not equal to <n>.

Compare/Comp

(compfile <PATH\filename>)
Opens the specified file to be used with the Fcomp command.

File/CompFile

(define (<name>) (<command>) ... (<command>))
Defines a macro. When invoked, commands specified in the macro are
executed.

Macro

(emit “<example_text_string>”)
Prints its argument to the screen and log file. The argument must be
enclosed in double quotes.

No menu
command

(fassign <vector_1> ... <vector_n>)
Reads the value <n> from the input file defined by the Infile command.
Assigns the value <n> to each electrical vector the next time you use the
Step command. Each vector must be a chip I/O or no assignment occurs.

Stimulus/Fassign

(fcomp <vector_1> ... <vector_n>)
Compares <n> to each node or vector, and prints a message for each
node in the list whose value is not equal to <n>. The value checked is
read from the next line in the file opened with the Compfile command.

Compare/Fcomp

(fprint <vector_1> ... <vector_n>)
Prints the current values of all nodes in the Tablist to the file opened with
the Outfile command.

Fprint
36 Revision 1

RadHard/RadTolerant Programming Guide
(h <vector_1> ... <vector_n>)
Assigns the value logical 1 to each electrical node or vector of nodes the
next time you use the Step command. Each node must be a chip I/O or,
no assignment occurs.

Stimulus/High

(icp <internal_node_1> <internal_node_2>)
Used for In-Circuit-Probing with an ActionProbe. It brings
<internal_node_1> out to the probe A pin. The second argument is
optional. If given, <internal_node_2> is brought out to the probe B pin.

ICP/Probe A

(infile <PATH/infile_name>)
Opens an input file used with the Fassign command.

File/Infile

(l <vector_1> ... <vector_n>)
Assigns the value logical 0 to each electrical node or vector of nodes the
next time you use the Step command. Each node must be a chip I/O or no
assignment occurs.

Stimulus/Low

(loadfile <PATH/filename>)
Loads the specified command file and executes all the commands in the
file. The PATH consists of the full path for the command file. All
commands in the command file must be enclosed in parentheses.

File/LoadFile

(outfile <PATH/filename>)
Opens the specified file to be used with the Fprint command.

File/OutFile

(print <vector_1> ... <vector_n>)
Prints the values of the specified vector(s). If no vector is specified, the
current values of all nodes in the Tablist are printed.

Print

(step <n>)
Debugs for <n> cycles. If <n> is not specified, a default of one cycle is
used.

Step

(tabadd <vector_1> ... <vector_n>)
Adds the named nodes or vectors to the list of nodes printed with the Print
command. Names can be dropped by recreating the list using the Tablist
command.

Output/TabAdd

(tablist <vector_1> ... <vector_n>)
Initializes the Tablist to the specified nodes and vectors. If no arguments
are given, prints the current contents of the Tablist.

Output/TabList

(vector <name> <node list>)
Defines a vector <name> whose elements are the listed nodes.

Stimulus/Vector

(z <vector_1> ... <vector_n>)
Sets all listed nodes to Z (high impedance) the next time you use the Step
command. Each node must be a chip I/O or no assignment occurs.

Stimulus/High-Z

Table 4-1 • Command-Line Commands and Functions (continued)

Command-Line Command Syntax and Function
APS2 Menu Command

Equivalent
Revision 1 37

Debugging a Device with an Activator
Using Command Files to Debug a Device
This section provides example command files to illustrate the use of command files for debugging a
device.
A command file contains a series of Debugger command-line commands that when loaded into
Debugger are automatically executed. Use command files to run a large number of command-line
commands on your device during debug.
To create a command file use a text editor or a word processor and save the file as ASCII text. Each
command in the command file must be enclosed in parentheses. Use the loadfile command to load a
command file into Debugger.
Two examples are shown below to illustrate how to create and use command files to debug a device.
Refer to the "Debugger Command-Line Commands" section on page 36 for information about the
available command-line commands.

Command File Example 1
The following example shows a command file followed by an explanation of the file, an input file, an
output file, and a comparison file:

(vector P P0 P1 P2 P3 P4 P5 P6 P7)
(vector Q Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7)
(tabadd PE CEP CET UD P CLK Q TC)
(infile “/designs/example/example.pat”)
(outfile “/designs/example/example.out”)
(compfile “/designs/example/example.cmp”)
(define (clk10)(repeat 10(1 CLK)(step)(h CLK)(step)(fprint)
(fcomp Q))
(define (up) (1 CET CEP) (h PE UD)(step)(clk10))
(define (down) (h PE) (1 CEP CET UD)(step)(clk10))
(define (load) (1PE CLK) (fassign P)(step)(h CLK)(step))
(load)
(up)
(load)
(down)

The first vector command defines eight parallel load input bits as vector P. The second vector command
defines counter outputs as vector Q.
The tabadd command causes the signals PE, CEP, CET, UD, P, CLK, Q, and TC to be displayed or
printed when the print or fprint command is executed.
The infile command defines and opens a file containing input test vectors (see "Example Input File"). The
outfile command defines and opens a file for receiving Debugger output results (see "Example Output
File" section on page 40). The compfile command defines and opens a file containing the expected
output values to be compared to the actual output values (see "Example Comparison File").
The define commands create the following user macros:

(dbg-socket <n>)
Chooses the socket on the Activator 2 to use during debug. The value of
<n> can be 1, 2, 3, or 4. If only 1 Adapter Module is plugged in, you do not
need to use this command.

Socket/dbg – socket

(repeat <n> <function>)
Repeats a sequence for <n> cycles. The <function> can be a debugger
command or a user-defined macro.

Repeat

Table 4-1 • Command-Line Commands and Functions (continued)

Command-Line Command Syntax and Function
APS2 Menu Command

Equivalent
38 Revision 1

RadHard/RadTolerant Programming Guide
clk10. The clk10 macro provides 10 clock pulses to the CLK input, prints all of the nodes specified in
the tabadd command to the outfile, and compares the status of the vector Q to the expected results.
up. The up macro specifies the counter to count up for 10 cycles.
down. The down macro specifies the counter to count down for 10 cycles.
load. The load macro reads a load vector P from the infile and loads the counter.

The load, up, load, and down commands execute the macros, as follows: load loads [00000000] into
the counter, up cycles the counter up 10, load, loads [11111111] into the counter, and down cycles the
counter down 10.

Example Input File
The following input file (infile) was used in this example.

0b00000000
0b10000000
0b01000000
0b11000000

Example Comparison File
The following comparison file (compfile) was used in this example.

00010001
10010001
01010001
01111111
10111111
00111111
11011111
01011111
10011111
00011111
11101111
01101111
10101111
Revision 1 39

Debugging a Device with an Activator
Example Output File
The following output file (outfile) was created as a result of the command file used in this example.

Table 4-2 • Output File Example

Step PE CEP CET UD P CLK Q TC

000005: 1 0 0 1 00000000 1 10000001 0

000007: 1 0 0 1 00000000 1 01000001 0

000009: 1 0 0 1 00000000 1 11000001 0

000011: 1 0 0 1 00000000 1 00100001 0

000013: 1 0 0 1 00000000 1 10100001 0

000015: 1 0 0 1 00000000 1 01100001 0

000017: 1 0 0 1 00000000 1 11100001 0

000019: 1 0 0 1 00000000 1 00010001 0

000021: 1 0 0 1 00000000 1 10010001 0

000023: 1 0 0 1 00000000 1 01010001 0

000028: 1 0 0 0 11111111 1 01111111 0

000030: 1 0 0 0 11111111 1 10111111 0

000032: 1 0 0 0 11111111 1 00111111 0

000034: 1 0 0 0 11111111 1 11011111 0

000036: 1 0 0 0 11111111 1 01011111 0

000038: 1 0 0 0 11111111 1 10011111 0

000040: 1 0 0 0 11111111 1 00011111 0

000042: 1 0 0 0 11111111 1 11101111 0

000044: 1 0 0 0 11111111 1 01101111 1

000046: 1 0 0 0 11111111 1 10101111 1
40 Revision 1

RadHard/RadTolerant Programming Guide
Command File Example 2
The following example is a command file for an 8-bit counter circuit:

(define (clock) (emit “Clocking\n”) (h clock) (step) (l clock) (step))
(define (clear) (l clr) (step) (h clr) (step)
(emit "The Counter is Cleared\n"))
(vector outputs out7 out6 out5 out4 out3 out2 out1 out0)
(vector inputs in7 in6 in5 in4 in3 in2 in1 in0)
(emit "Enabling Counter B\n")
(h cen1)
(step)
(clear)
; Set input signalsRevision 1
(h in1 in3 in5 in7)
(l in0 in2 in4 in6)
(step)
(print inputs outputs)
(repeat 5 (clock) (print outputs))

The define commands create the clock and clear macros.
The vector command is used to define the inputs and outputs vectors.
The emit command writes text out to the screen.
The h and l commands are used to set particular signals to logic 1 (h) or logic 0 (l).
The print command prints the current state of inputs and outputs vectors.
The repeat command prints the output vector to the screen after every clock cycle.

Example Output File
The following output file (outfile) was created as a result of the command file used in this example.

Enabling Counter
The Counter is Cleared
inputs = 10101010
outputs = 00000000
Clocking
outputs = 00000001
Clocking
outputs = 00000010
Clocking
outputs = 00000011
Clocking
outputs = 00000010
Clocking
outputs = 00000011
Revision 1 41

A – Troubleshooting

This appendix describes common problems you may encounter when programming with Activator or
Silicon Sculptor.

Activator
This section describes some common problems you may encounter with the Activator, Adaptec 1505
SCSI card, or APSW or APS2 software and their solutions. If you are still unable to resolve your
problems after reading this Appendix contact Application Support.

Driver Does Not Load under Windows
If the software driver does not load during boot-up, check for the following:

• The 1505 card is installed properly.
• The IRQ and I/O address settings match between the 1505 card and the software driver.
• The software driver is the correct one.
• There are no hardware conflicts.

Activator Hardware
This section describes problems you may encounter with an Activator and their solutions.

Green Power Light is Blinking
Problem: The green power light is blinking after the power is turned on.
Solution: A self test has failed. Contact Microsemi for a replacement Activator.

Activator Communication
Link Down
Problem: The following error message appears:

Solution: There is a problem with the connection between the Activator and the PC, or the Activator has
lost power. Check the connections (the Activator power light should be illuminated), and try re-invoking
APS.

Firmware Load Failed
Problem: The following error message appears:

Solution: No contact with the programmer is found. Check that you have turned on the Activator, that the
SCSI cable is correctly installed, and the SCSI cable connection to the workstation is secure. The locking
arms on the SCSI board can be misaligned easily.
Also, verify that the device driver(s) are installed correctly. Refer to the Hardware Installation chapter
specific to your computer for information about configuring drivers.

ERROR: Activator communication link down. Exiting...

Firmware load failed. WARNING: Could not connect with Activator.
Revision 1 43

Troubleshooting
Adapter Module
Problem: The following error message appears:

Solution: The incorrect Adapter Module is inserted in the Activator. Remove the Adapter Module and
replace it with the correct one. The design may have also been configured with a different package or
device type.

AFM File
AFM File Generation
Problem: Generating the *.afm file is taking a long time.
Solution: Depending on device type, device utilization, and machine speed, this process could take a few
minutes. If 15 minutes have passed without completion, the hard disk may be out of memory. Exit APS
and check available disk space. If there is less than 1 megabyte, free up some disk space and try
generating the *.afm file again.

AFM Generation Failure
Problem: *.afm file generation failed
Solution: The software could not find a valid *.fus file. The file may not be present or it may have been
created with a release prior to ALS 1.22. You must regenerate the *.fus file using Designer.

Programming
Integrity Failure
Problem: The following error message appears:

Solution: This message often indicates that the device is bad. If you observe a programming failure rate
in excess of 5%, contact Application Support at 1-800-262-1060, or email soc_tech@microsemi.com.

Programming Failure
Problem: The following error message appears:

Solution: This message often indicates that the device is bad. If you observe a programming failure rate
in excess of 5%, contact Application Support at 1-800-262-1060, or email soc_tech@microsemi.com.

Security Fuse Programmed
Problem: You want to verify if the Security Fuse has been programmed.
Solution: Execute the BlankCheck command.

SCSI Controller
Problem: SCSI Controller not found.
Solution: The SCSI controller board has not been installed in the PC, or there is an I/O address conflict.
Also, verify that the device driver(s) are installed correctly. Refer to the Hardware Installation chapter
specific to your computer for information about configuring drivers.
If you are working on a workstation, verify that no other APSW or APS2 processes are running. Only one
APSW or APS2 process may run at a time.

FAILED—Wrong adapter module

FAILED—fuse XXX integrity test 6, 7, or 8

FAILED—programming fuse XXXX
44 Revision 1

mailto:soc_tech@microsemi.com
mailto:soc_tech@microsemi.com

RadHard/RadTolerant Programming Guide
Device Programmed
Problem: You want to determine if a part was programmed.
Solution: Execute the CheckSum or BlankCheck command.

Silicon Sculptor for DOS
The information in this chapter may help you solve or identify a problem with your programmer. If you
have a problem that you cannot solve, please call us. We are dedicated to making Silicon Sculptor
programmers as trouble-free as possible.

Testing the Hardware
The programmer can test its own hardware quite extensively. The self-test routine can detect problems in
the pin-drivers, power supply, microprocessor, data cable, printer port, and several other circuits. The
hardware test cannot detect problems resulting from a dirty socket (see below).

To execute the test:
1. Remove any chips from the programmer sites.
2. Press Alt-D hot-key
3. Choose to test a single unit or all units
4. Watch the screen for any error messages

If you receive an error during the test, please call Technical Support for assistance.

Power-on Self-Test (POST)
When power is applied to the programmer, it performs a power-on self-test (POST). This test checks
RAM, ROM, CPU, analog circuits, and basic system integrity.
Note: Do not attempt any programming operations until the POST is complete.
If the POST fails, the red ERROR LED will be on. Failure codes are:

• 3 short flashes Cannot Self-Calibrate
• 2 short flashes ROM checksum error
• 1 short, 1 long flash RAM error

Error Messages
The following is a list of some of the most common error messages you may encounter when you work
with Silicon Sculptor for DOS.

Error 3: Cannot reset hardware
The software cannot establish communications with the programmer. Here are some suggestions:

• Be sure the programmer has proper power and that the power LED is on.
• Make sure the cable from the programmer to the computer is properly connected to a parallel

printer port. If you are using a ribbon cable, this is probably the problem (ribbon cable connectors
are designed for use inside a chassis where the cable is not flexed). You should use a shielded 25
conductor cable (not an RS-232 cable).

• Your LPT port could be the culprit. If you have multiple parallel ports, you may have the ports
configured incorrectly; that is, two at the same address. Some laptops have the ability to disable
the port. If you have one, make sure the LPT port is enabled.

• Another program may be interfering with the port such as a print cache. When running under
Windows, you increase the potential of another program trying to access the same parallel port
and changing the expected status at the port.

• If you have a hardware lock key between the programmer and the port, then try removing it.
Revision 1 45

Troubleshooting
• Last but not least, the programmer may be damaged. Try another computer and/or parallel port
and see if it works there. See the "Product Support" section on page 81.

Error 4: Excessive current detected. The protection circuit has shut off
the power
The command was aborted to protect the programmer and hopefully not damage the chip. The device
was taking too much current from the programmer. Possible causes include:

• The device may be inserted backwards and the continuity test has been turned off or did not
successfully detect the device.

• The wrong algorithm could be selected and improper voltages were applied to the chip in the
programmer site.

• If using a programming adapter, there could be a short.
• You may want to remove the chip and run the hardware test (Alt-D) to make sure all the pin

drivers are functioning correctly. If the hardware passes the test, be sure you have the correct
algorithm (device entry) selected for your device. If the error still occurs and you are sure the
device is inserted correctly, then you should suspect a faulty device.

Error 5: Hardware time-out
This error message is generated when the software was waiting on a response from the programmer
while executing a command and the programmer did not respond within the expected amount of time.
This error may result from several causes. You may be experiencing communication errors (see Error 3:
Cannot reset hardware above). There may be a bug in the software for this particular algorithm (see
Error 10: Error in programming algorithm below. See also Power-on Self Test above.

Error 6: Wrong model number
See Error 3: Cannot reset hardware above for possible causes.

Error 8: LPTx: is not a functioning port
The parallel port LPTx (where x=1, 2, or 3) that is selected with the Configure command does not exist in
your computer, is not functional, or has a bad cable connected to it.

Error 9: Programmer execution error
The programmer failed an internal consistency check. See Error 3: Cannot reset hardware and Error 5:
Hardware time-out above for possible causes.

Error 10: Error in programming algorithm. Please call technical support
The software has detected an internal error. You should contact Microsemi to report the error. You may
need to obtain a software update.

Error 11: There is no data in the buffer. You must load a file
A command tried to read data from the buffer to program or verify a chip, but nothing has been loaded
into the buffer yet or the buffer was recently cleared.

Error 14: There is no chip in the programmer site
Be certain that your chip is inserted correctly. If the chip was inserted correctly, remove it and run the
hardware self-test to be sure your programmer is functioning correctly (Alt-D). A defective chip may
cause this error.

Error 15: The chip is not inserted in the programmer site correctly.
The continuity test determined that the chip in the programmer site does not have continuity on all the
proper pins. You should examine these pins carefully. Possible causes are:

• A bent pin.
• The chip is not in the proper position in the programmer site.
• The chip has a different number of pins than the chip selected.
• The algorithm selected has a ‘*’, indicating it requires an adapter, but you did not use the adapter,

or vice-versa.
• The socket is dirty and not making a connection.
46 Revision 1

RadHard/RadTolerant Programming Guide
• The wrong socket module or adapter is being used for this device.

Error 16: The chip is inserted backwards
The chip has passed the continuity tests, but appears to have the GND and VCC pins improperly placed
in the socket. If the PLCC, or QFP is not accidentally rotated, then the device is probably defective. Try a
known good device.

Error 17: Out of base memory. You should have at least 200k free.
Your computer’s configuration does not have enough RAM available to run the software. You should
have 640K RAM installed with at least 200K available for program execution. Memory resident programs,
such as network drivers, may reduce the RAM available to the programmer, so you may need to remove
these programs from your CONFIG.SYS and AUTOEXEC.BAT files. If you are using DOS 5.00, you can
specify that DOS be loaded into high memory, saving base memory for Silicon Sculptor software. See
your DOS manual for details. The mem or chkdsk command will show you how much conventional
memory is available.

Error 18: Temporary file error.
Our software’s virtual memory manager is trying to store data that is currently not needed in RAM to the
disk. The program was unable to create a temporary file or the disk is full. You should make sure you
have plenty of disk space (the larger the data files, the larger the requirement for temporary disk space)
and set the DOS environment variable TMP to point to the directory you wish to use for swap space. The
program does take advantage of EMS memory if you have an expanded memory manager installed. This
is much faster than using the disk for temporary swap space. If you want to specify that your hard disk
(C:) can be used for temporary file storage, then execute the following command in your
AUTOEXEC.BAT file:
SET TMP=C:\

Error 21: Cannot program
Not able to program the device in the programmer site. See Errors While Programming in this chapter.

Error 23: Invalid electronic signature in chip (device ID).
The chip may be damaged.

Error 24: Invalid electronic signature in chip (algorithm ID).
The chip may be damaged.

Error 25: Invalid electronic signature in chip (manufacturer ID).
Microsemi FPGAs have electronic identifiers that specify the manufacturer, the device code, and the
proper programming parameters. The most common cause of this error is selecting one type of device in
the Selection menu and inserting a different device in the socket.

Error 26: Device is not blank.
The Device/Blank command was executed or the Blank check before programming: option was enabled
in the Device/Options dialog box and the device in the programmer site is determined to have
programmed data. Possible causes are:

• The device was previously programmed and cannot be erased.
• The wrong algorithm was used.

Error 27: Device is not secured.
An attempt to secure a device was made, but it failed. See Errors While Programming in this chapter.

Error 31: Database file is invalid. The *.EXE file is corrupted.
The *.EXE file you are executing has been corrupted. You should get a new copy from Microsemi. See
the "Product Support" section on page 81.

Error 32: Sorry, algorithm not found. Please call technical support.
The *.EXE file you are executing has been corrupted. You should get a new copy from Microsemi. See
the "Product Support" section on page 81.
Revision 1 47

Troubleshooting
Error 33: You must reselect the chip you want to program.
The device was selected before establishing communications with the programmers, perhaps prior to
turning on the programmer or before switching to a different programmer. Simply reselect the chip and
you will be in business again.

Error 36: You must properly install the correct socket module.
On the Silicon Sculptor, the software interrogates the socket module before each operation to determine
the correct mapping for the algorithm selected. You will get this error if:

• There is no socket module installed.
• The socket module installed does not support the device you have selected (e.g., you have

selected a 100 pin device and you have a 208 pin PQFP socket module attached).
• The socket module installed is not supported by the version of the software you are using. Use

the latest version.
• The pinout has not yet been defined for this package type. It may be an oversight on our part. If

so, please call technical support and inform us of this problem.

Error 39: Device already secured.
The device cannot be legitimately programmed because it has been secured.

Error 41: Error reading file.
The Buffer/Load command was executed inside a macro file and the buffer could not be loaded. This
error message is not displayed on the screen, but is returned to DOS when the software is being run via
a batch file.

Error 43: Error in macro file.
A macro file was being played back and an error was detected in the syntax of the file. Possible causes
are:

• The macro file is corrupted.
• The macro file was recorded with an earlier version (<V2.00) of the software.
• The macro file was generated by a user’s application or text editor and does not conform to the

proper macro file format.

Error 44: Internal error. Please call technical support.
The software detected an internal inconsistency. This may be caused by the computer not performing
correctly.

Error 45: Hardware requires calibration. Please call technical support.
The self-test (Alt-D) has detected that the hardware is improperly calibrated. The unit must be returned
for repair. See the "Product Support" section on page 81.

Error 46: AFS software required to execute this function.
This is a function that is available to users that have purchased the Advanced Feature Software only. In
order to use the chosen function you must buy the AFS upgrade. See the "Product Support" section on
page 81.

Error 47: Self test failed. This unit may need service. Please call technical
support.
The self-test (Alt-D) has detected a hardware problem. The unit may need to be returned for repair. Note
the exact error message and see the "Product Support" section on page 81.

Error 50: Device sum does not match sum specified in AFS/Options.
The sum calculated on the device does not match the sum entered in the AFS/Options Checksum Verify
command. Check this option to see if a mistake was made when entering the sum value. Also check the
buffer checksum to see if it matches the value entered for Checksum Verify or if any data in the buffer
has changed.
48 Revision 1

RadHard/RadTolerant Programming Guide
Error 52: DynCall Stack Underflow.
The internal dynamic linker underflowed its reference table. If this error reoccurs, then call the Technical
Support Line.

Error 53: DynCall Stack Overflow.
The internal dynamic linker overflowed its reference table. If this error reoccurs, then call the Technical
Support Line.

Error 60: The demo period for this programmer has expired.
This programmer is a demo from Microsemi and the demo period has expired. Call the Microsemi SoC
Products Group Sales Department for an upgrade code to extend the Demo period.

Error 61: Concurrent programmer did not initialize properly.
The Silicon Sculptor Concurrent programmer did not initialize correctly. Cycle the power on the
programmer and try your operation again. If you continue to get this error message, send the
programmer in for repairs.

Error 65: Concurrent Unit has the wrong socket module.
The specified programming site does not have the same socket module as the master site. The site must
contain the same socket module as the master programmer in order to program devices on that site. The
site has been temporarily disabled. Starting a new device operation with the correct socket module on
the site will re-enable the site.

Error 66: Concurrent unit has the wrong technology adapter.
The specified programming site has the wrong technology adapter (TA). Cycle the power on the
programmer. If the error persists, call Technical Support.

Error 67: Concurrent unit has the wrong BIOS.
The specified programming site has the wrong BIOS. Cycle the power on the programmer. If the error
persists, call Technical Support.

Error 68: Concurrent unit has the wrong number of pin drivers.
The specified programming site has the wrong number of pin drivers. Cycle the power on the
programmer. If the error persists, call Technical Support.

Error 69: Concurrent unit is not available.
The specified programming site is not responding to commands. Verify that the programmer number is
correct. Cycle the power on the programmer and try again. If the error persists, call Technical Support.

Error 70: The buffer data cannot be used to program this device.
You loaded a file type that is not a valid option for the currently selected device. Re-select the device and
load the buffer again. If the error persists, call Technical Support.

Warning Messages
Warning: Device is not blank
You will get this warning when using the Device/Program command with the Blank check before
programming operation enabled in the Device/Options dialog box. You are given the option to Abort,
Retry, or Ignore.

Warning: Device has been secured
You will get this message only on devices that have the ability to read the security bit prior to performing
any other operation. You are given the option to Abort, Retry, or Ignore.

Self-diagnostics Test
Remove any chips from the programmer sites before running the diagnostics test. Select Actel
Diagnostics from the Select menu and press <enter> on Device/Test, or use the hot-key combination
Revision 1 49

Troubleshooting
ALT-D, to invoke the self-diagnostics test. If you already know which site is failing you can run the
diagnostics on just that site. If the entire system is not working, select All Sites. The software will indicate
which site is bad.

Silicon Sculptor for Windows
You can get technical support from Microsemi SoC Products Group any time that you experience a
problem that you cannot solve. We kindly request that you have the following information ready when you
contact us:

• The model number of the programmer (title bar of secondary screen).
• Your software version number (from the top of the main screen).
• The exact error message and error number you received.
• The exact algorithm that was selected.
• The exact part number on the chip you were trying to program.
• The command you executed.
• The results of running the self-test command on your programmer (BP Microsystems

Diagnostics).
It is also useful to have a print-screen of the error. You may be asked to upload your file and/or send in
your devices so we can analyze the error at the factory.
If you need to return your programmer to Microsemi for any reason, you must call and get a Return
Material Authorization (RMA) number before shipping; mark the RMA number clearly on the shipping
container. Be sure to include a description of the problem experienced, a return address, contact person
and a phone number.

Testing the Hardware
The programmer can test its hardware quite extensively. The self-test routine can detect problems in the
pin-drivers, power supply, microprocessor, data cable, printer port, and several other circuits.
The hardware test cannot detect problems resulting from a dirty socket.
Remove any chips from the programmer site(s) before you proceed.
50 Revision 1

RadHard/RadTolerant Programming Guide
The ActelWin software enables you to test all applicable parts within the device programmer for
accuracy. This test helps to ensure that the programmer is running at performance standards.

To begin running the self-test on your device programmer, click the Device button, and select Actel
Diagnostics from the list of available devices (type diagnostics). Once selected, the main window
displays the Actel Diagnostics label in the Device field and a Test file tab appears (Figure A-1). To begin
testing the programmer, click the Test button. The Text dialog box opens, as shown in Figure A-2.

Figure A-1 • SculptW Dialog Box with Test Information

Figure A-2 • Test Dialog Box
Revision 1 51

Troubleshooting
The Test dialog box verifies how many units you wish to test. After you click OK to begin the test, a
window appears to prompt you that there is no chip in the socket (Figure A-3).

The test begins and runs until it is done or until you click on the Stop button. If you decide to cancel the
self-test, click on the Stop button at any time during the procedure. A window appears to acknowledge
the operation was aborted (Figure A-4). To re-execute the test, simply click the Test button again.

Your programmer should pass the test. Verify by checking the green PASS LED on the chassis of the
programmer. If your programmer does not pass the test, the red FAIL LED activates and an error
message presented on-screen:

Error 47: Self-test failed. This unit may need service. Please call
technical support.
If this should happen, double-check the fidelity of the cable connections and try again. Note the exact
error message and call us for technical assistance if you are still having trouble (refer to the "Product
Support" section on page 81).

Software Updates
The control software for your programmer is updated on a frequent basis (typically every two months) to
add features and provide you with support for new chips. Software updates can be obtained from
Microsemi SoC Products Group.
Software upgrades may be obtained through our Internet address (www.microsemi.com/soc), but
depending on the type of programmer you have (engineer, production or automated), upgrades and
renewals may need to be made by contacting our sales department.
If you decline the software/hardware upgrade and your software support runs out, you will receive the
following message when you select a part:
Error Code 57: Device Not Enabled

Your programmer is designed to be highly flexible and programmable, allowing it to program a wide
variety of chips. Consequently, when a problem does arise, it can usually be fixed with a software update.
We recommend that you obtain the latest software revision before calling our support line with a software
problem. The solution for many of our technical support calls is the latest version of the software.

Figure A-3 • Diagnostics Info for Self Test Window

Figure A-4 • Self-test Abort Window
52 Revision 1

http://www.microsemi.com/soc

RadHard/RadTolerant Programming Guide
FAQs
The questions below represent a list of the most commonly asked questions from callers. It does not
represent a complete list. Please visit the Microsemi SoC Products Group website for more information.

Why does the ActelWin NT 4.0 software keep failing?
The device drivers are not installed or are not being recognized by the software. The software that runs
on an NT environment is attempting to establish communication with the device programmer through the
drivers. When the drivers are not found, it fails the software. To remedy this, you need to install, or re-
install, the device drivers for the software. Please refer to the steps listed below the following question to
obtain the device drivers and verify that the software is recognizing them.

Why isn't ActelWin running in the NT environment?
The Windows NT 4.0 system requires the installation of a systems device driver. The first step to take is
to find out whether a device driver is installed or not.

1. Open the control panel. Select Control Panel from the Settings menu, under the Start menu.
2. Open Devices. Double-click the Devices icon.
3. Select the device BPNTDriver. Verify that the device driver status is set to started and startup is

set to automatic. If these selections are not designated for the device driver, click to select the
driver. To set the status to start, click the Start button. NT attempts to start the device driver when
you click the Start button. To set the driver startup to automatic, click the startup button and select
automatic.

If for some reason the device driver does not install or you need to uninstall the driver, go to the
command prompt. Go to the NTDrvr sub directory of the default installation directory. For example, the
default installation directory for Silicon Sculptor is C:\siliconwin.

• To uninstall from this directory type: drvinstl -u
• To install from this directory type: drvinstl -i

There are registry settings for the device driver and as soon as there is a full definition they will be added
here.

In the DOS version, the configuration settings were saved to a file. Where
did they go?
With the introduction of the Actel software, the configuration settings are no longer saved to a file. These
settings are now being saved in the Windows 95/98/NT 4.0 Registry and are not deleted when they are
uninstalled. This allows you to continue to use previous settings when upgrading to a new version of the
software. There may be cases however, when you are required to delete these settings. To do so,
execute the following steps:

1. Run regedit. Select Run from the Start menu in the Windows taskbar.
2. Select ActelWin. Select ActelWin from the VB and VBA Program Settings file list.
3. Delete the ActelWin registry settings. The ActelWin registry settings have now been deleted. The

new registry settings appear in this directory upon re-installation or upgrade of the software.

Errors While Programming
If you experience problems while trying to program a chip, try to narrow down the problem. If you receive
a Cannot program or Cannot erase error messages while programming:

• Make sure you have selected the proper programming algorithm.
• The device may have been previously secured; use Blank Check to verify whether or not the

device is blank.
• The device may have a newer die than the one supported by the programming algorithm
Revision 1 53

Troubleshooting
Cleaning a Dirty DIP Socket
If the DIP socket becomes dirty, it sometimes fails to make contact with all the chip pins. The simple fix is
to place your chip in the socket, push the lever down, and slide the chip left and right a few times.
Microsemi also recommends cleaning sockets with a blast of high-pressure air on a regular basis.
If this does not resolve the problem, run the hardware self-test described above. If your hardware passes
the self-test, there may be an error in the programming algorithm you are using or Microsemi may have
updated the programming algorithm for your device. In either event, your can probably correct your
problem with a software update.

Error Messages and Suggested Actions
Error messages are usually generated by the device programmer. When you receive an error message,
refer to the appropriate device programmer manual's Troubleshooting section. The following is a list of
error messages that could originate from the software.

Version Mismatch – BPEng.dll and BPAlg.db versions mismatched.
The engine and Algorithm database versions do not match. Accepting this error message prompts an
exit from the software. Please contact technical support for further assistance. Refer to Appendix A for
Technical Support contact information.

BPPgmr.ocx – BPPgmr.ocx internal error
ActWin generates this error when the unique coding sequence attached to both the BPPgmr.ocx and the
BPEng.dll do not match. Accepting this error message prompts an exit from the software. Please contact
technical support for further assistance.

Algo Database Error – Error loading BPAlg.db
This is a catch all error code. ActWin generates this error if anything not listed above causes an error
while loading the Algorithm Database. Accepting this error message prompts an exit from the software.
Please contact technical support for further assistance. Refer to Appendix A for Technical Support
contact information.

BPNtloDll – No parallel port is available.
ActelWin NT 4.0 generates an error if the device drivers are not installed. The software attempts to
establish communication with the programmer through the driver. When the driver is not found, it fails the
software. In order to remedy this, you must install the device drivers for the software. Please refer to the
"FAQs" section on page 53 for procedures.

Error 3: Cannot reset hardware.
The software cannot establish communication with the programmer. Here are some suggested actions:

• Be sure the programmer has proper power and that the green PASS LED is on. Since the
programmer performs an automatic Power On Self Test (POST) upon startup, it could be that the
programmer failed the test and has signaled the software into the default DEMO mode. If this
should happen contact Technical Support.

• Make sure the cable from the programmer to the computer is properly connected to a parallel
printer port. If you are using a ribbon cable, this is probably the problem (ribbon cable connectors
are designed for use inside a chassis where the cable is not flexed). You should use a shielded
25-conductor cable (not an RS-232 cable).

• Check your LPT port. If you have multiple parallel ports, you may have the ports configured
incorrectly; that is, two at the same address. Some laptops have the ability to disable the port. If
you have one, make sure the LPT port is enabled.

• Another program (such as a print cache) may be interfering with the port. When running under
Windows, you increase the likelihood of another program trying to access the same parallel port
and changing the expected status at the port.

• If you have a hardware lock key between the programmer and the port, try removing it.
• Last but not least, the programmer may be damaged. Try another computer and/or parallel port

and see if it works there.
54 Revision 1

RadHard/RadTolerant Programming Guide
Error 5: Hardware time-out.
The software issues this error message when it is waiting on a response from the programmer while
executing a command and the programmer does not respond within the expected amount of time. This
error may result from several causes. You may be experiencing communication errors (see Error 3:
Cannot reset hardware above). There may be a bug in the software for this particular algorithm (see
Error 10: Error in programming algorithm below). Refer to the "Testing the Hardware" section on page 50
for more information.

Error 6: Wrong model number.
See Error 3: Cannot reset hardware above for possible causes.

Error 8: LPTx: is not a functioning port.
The parallel port LPTx (where x=1, 2, or 3) that is selected with the Configure command does not exist in
your computer, is not functional, or has a bad cable connected to it.

Error 9: Programmer execution error.
The programmer failed an internal consistency check. See Error 3: Cannot reset hardware, and Error 5:
Hardware time-out, for possible causes.

Error 10: Error in programming algorithm. Please call technical support.
The software has detected an internal error. You should contact Microsemi to report the error. You may
need to upgrade your system with the most recent release of the software. Refer to Appendix A for
Technical Support contact information.

Error 11: There is no data in the buffer. You must load a file or read a
chip.
A command tried to read data from the buffer to program or verify a chip, but nothing has been loaded
into the buffer yet or the buffer was recently cleared.

Error 14: There is no chip in the programmer site.
Be certain that you inserted your chip correctly. If the chip was inserted correctly, remove it and run the
hardware self-test to be sure your programmer is functioning correctly (Actel Diagnostics). A defective
chip may cause this error. When using an autohandler, the contactor may not have closed or the
connection between the programmer and the contactor may be disconnected.

Error 15: The chip is not inserted in the programmer site correctly.
The continuity test determined that the chip in the programmer site does not have continuity on all the
proper pins. You should examine these pins carefully. Possible causes are:

• A bent pin.
• The chip is not in the proper position in the programmer site.
• The chip has a different number of pins than the chip selected.
• The algorithm selected has a “*”, indicating it requires an adapter, but you did not use the adapter,

or vice-versa.
• The socket is dirty and not making a connection. Refer to the "Cleaning a Dirty DIP Socket"

section on page 54 for more information.
• The wrong socket module or adapter is being used for this part.
• The device may be a very low power device that is not properly detected by our continuity

methodology. If so, please let us know.
Note: It's not easy to get continuity on an LCC device in a PLCC socket. If you are trying to do that, then

you may need to add a spacer between the chip and the lid in order to apply the proper force to the
device pins. The best solution is to purchase an LCC socket module that does not require any such
modification. Also, LCC devices do not work at all in the autoeject sockets designed strictly for
PLCC devices.
Revision 1 55

Troubleshooting
Error 16: The chip is inserted backwards.
The chip has passed the continuity tests, but appears to have the GND and VCC pins improperly placed
in the socket. If LCC, PLCC, or QFP is not accidentally rotated, then the device is probably defective. Try
a known good device.

Error 17: Out of base memory. You should have at least 200K free.
Your computer's configuration does not have enough RAM available to run the software. You should
have 640K RAM installed with at least 200K available for program execution. Memory resident programs,
such as network drivers, may reduce the RAM available to the programmer, so you may need to remove
these programs from your CONFIG.SYS and AUTOEXEC.BAT files. If you are using DOS 5.00, you can
specify that DOS be loaded into high memory, saving base memory for Silicon Sculptor software. See
your Microsoft Windows manual for details.

Error 18: Temporary file error.
Our software's virtual memory manager is trying to store data that is currently not needed in RAM to the
disk. The program was unable to create a temporary file or the disk is full. You should make sure you
have plenty of disk space (the larger the data files, the larger the requirement for temporary disk space).
The program does take advantage of EMS memory if you have an expanded memory manager installed.
This is much faster than using the disk for temporary swap space.

Error 21: Cannot program.
Not able to program the device in the programmer site. Refer to the "Errors While Programming" section
on page 53 for more information.

Error 23: Invalid electronic signature in chip (device ID).
The chip may be damaged or the programming algorithm may have changed.

Error 24: Invalid electronic signature in chip (algorithm ID).
The chip may be damaged or the programming algorithm may have changed.

Error 26: Device is not blank.
The Device/Blank command was executed or the Blank check before programming option was enabled
in the Device/Options dialog box and the device in the programmer site is determined to have
programmed data. You may have used the wrong algorithm or the device has been programmed
previously.

Error 27: Device is not secured.
An attempt to secure a device was made, but it failed. Refer to the "Errors While Programming" section
on page 53 for more information.

Error 31: Database file is invalid. The *.EXE file is corrupted.
The *.EXE file you are executing has been corrupted. You should uninstall and then reinstall the software
to fix the executable. Refer to the "Product Support" section on page 81.

Error 32: Sorry, algorithm not found. Please call technical support.
The *.EXE file you are executing has been corrupted. You should get a new copy from Microsemi SoC
Products Group. Refer to the "Product Support" section on page 81.

Error 33: You must reselect the chip you want to program.
The device was selected before establishing communications with the programmers, perhaps prior to
turning on the programmer or before switching to a different programmer. Reselect the chip and the error
should not re-occur.

Error 36: You must properly install the correct socket module.
You get this error message if:

• There is no socket module installed.
• The socket module installed does not support the device you have selected.
56 Revision 1

RadHard/RadTolerant Programming Guide
• The socket module installed is not supported by the version of the software you are using. Use
the latest version.

• The pinout has not yet been defined for this package type. It may be an oversight on our part. If
so, check the different potential situation and in case of persistent error, please call technical
support and inform us of this problem.

Error 39: Device already secured.
The device cannot be legitimately programmed, read, etc., because it is secured. If it is a PLD it may still
be functionally tested with the Test command under the Test file tab.

Error 44: Internal error. Please call technical support.
The software detected an internal inconsistency. This may be caused by the computer not performing
correctly. Refer to the "Product Support" section on page 81.

Error 46: AFS software required to execute this function.
This is a function that is available to users that have purchased the Advanced Feature Software only. In
order to use the chosen function you must buy the AFS upgrade.

Error 47: Self-test failed. This unit may need service. Please call
technical support.
The self-test (Actel Diagnostics) has detected a hardware problem. The unit may need to be returned for
repair. Note the exact error message and contact Technical Support. Refer to the "Product Support"
section on page 81.

Error 57: You must purchase support for this device to use it.
The device that you selected is not supported in the default device set for this programmer. Call the
Microsemi Soc Products Group Sales line to purchase an upgrade code for your programmer (refer to
the "Product Support" section on page 81 for contact information).

Error 70: The buffer data cannot be used to program this device.
You loaded a file type that is not a valid option for the currently selected device. Re-select the device and
load the buffer again. If the error persists, call Microsemi SoC Products Group Technical Support. Refer
to the "Product Support" section on page 81 Technical Support contact information.
Revision 1 57

B – Testing and Programming Microsemi FPGAs

This appendix explains the testing and burn-in that Microsemi devices undergo before shipment to
customers, as well as a study of the programming process. This systematic and thorough testing, burn-
in, and control of the programming process ensures that customers no not need to perform additional
testing or burn-in of Microsemi devices.
Testing has long been a struggle for users of masked gate arrays. To avoid board-level, system-level, or
even possible field failures, the system designer must expend great effort in developing test vectors for
gate array designs. Even after the vectors are developed, fault coverage for typical designs may be only
about 70 percent, with about 95 percent coverage being the best possible. With a 70 percent fault
coverage, typical masked gate array designs are likely to have 2 to 5 percent defective devices.1

In general, field programmable logic devices have allowed users to avoid the need to develop test
vectors. These devices allow tests to be performed by the semiconductor vendor prior to programming.
However, most one-time programmable logic devices have not yet achieved the functional quality levels
of other semiconductor devices, because they don’t allow the chip manufacturer to access and test all
internal gates. Early one-time programmable devices had poor test coverage, and users were often
disappointed to see functional failure rates of more than 10 percent on parts that had passed
programming. Over time, on-chip test circuits and testing techniques have greatly improved, and now
one-time programmable devices have functional defect rates in the range of 0.1 to 1 percent2. Although
this failure rate is low for individual chips, putting 10 such chips on a single board can still mean a board
failure rate of 5 to 10 percent.

Testability of Microsemi FPGAs
Although Microsemi’s FPGA families use a one-time programmable technology, the device’s unique
architecture permits a degree of testability comparable to reprogrammable devices. Special test modes
allow functional testing of unprogrammed devices at essentially 100 percent fault coverage. This
testability is independent of the large number of equivalent gates. To show how this is accomplished, we
will first review the architecture of the Microsemi FPGAs and describe how they are programmed.

RadHard and RadTolerant FPGA Products
RadHard products include the RH1020 and RH1280. RadTolerant products include the A1020B,
A1280A, A1460A, and A14100A devices. The RH1020 an A1020B are 2,000 gate devices based on the
ACT 1 architecture. the RH1280 and A1280A are 8,000 gate devices based on the 1200XL architecture.
The A1460A, and A14100A are 6,000 and 10,000 gate devices based on the ACT 3 architecture.

Architecture
The basic building block of all Microsemi FPGAs is the logic module. Each logic module is programmable
and capable of implementing all two-input logic functions, most three-input functions, and many other
functions up to eight inputs. With an architecture similar to a channeled gate array, logic modules are
organized in rows and columns across the chip (Figure B-1 on page 60). Adjacent to each row of logic
modules are routing channels. Horizontal routing channels are shown in the figure, but vertical channels
also run through the logic modules. These are used to configure a logic module and connect inputs and
outputs of logic modules to implement a design. Surrounding the array of logic modules and routing
channels are I/O buffers and test circuits.
Within the routing channels are programmable antifuse (PLICE) elements. The antifuse is normally open
and is programmed to form an electrical connection between routing elements. An antifuse that connects

1. Henshaw, “User Requirements for Fault Coverage.” Wescom Proceedings, 1990, p. 179.
2. AMD PAL Device Data Book, 1988, pps. 3-106.
Revision 1 59

Testing and Programming Microsemi FPGAs
a horizontal routing track to a vertical track is called a cross-antifuse. An example of a logic module
interconnection (or a net) is shown in Figure B-2. Here the output from Module 3 is connected to a
horizontal routing track by programming a cross-antifuse. Another cross-antifuse is programmed to
connect an input to Module 4. In a similar manner, the output of Module 3 is connected to the input of
Module 2. Notice that not all horizontal tracks are continuous across the chip. Often, tracks are broken
into a series of smaller tracks called segments. Segments are useful because it is often desirable to
connect logic modules that are close to each other, and a full horizontal track would waste routing
resources and slow down circuit performance. Sometimes, however, it is necessary to connect two
segments to form a longer segment.

This can be done by programming a special type of antifuse referred to as a horizontal antifuse. As an
example, the output of Module 3 is also connected to the input of Module 1 by programming two cross-
antifuses and one horizontal antifuse. Vertical antifuses are used to connect two vertical segments (not
shown).
A more detailed example of the Microsemi FPGA architecture is shown in Figure B-3 on page 61. Six
logic modules (two rows, three columns) are shown. Between the two rows are six horizontal tracks.
Down each column are five vertical tracks. Note that the products actually have 25 to 36 (or more)
horizontal and 13 to 15 (or more) vertical tracks. The circles at the intersections of vertical and horizontal
tracks represent cross-antifuses. There are also circles at certain points on the horizontal tracks; these

Figure B-1 • Logic Module Architecture

Figure B-2 • Logic Module Interconnect

Row of
Logic Modules

Routing
Channel

x x x x

xx

1

2 3

4
Program
Cross
AntifuseRows of

Logic
Modules

Input
Segment

Logic Module
Input

g
Horizontal Antifuse Segment

g
Output
60 Revision 1

RadHard/RadTolerant Programming Guide
are horizontal antifuses. No vertical antifuses are shown. Notice the transistors that connect both
horizontal and vertical tracks. By turning on selected transistors, various horizontal or vertical tracks can
be connected even though an antifuse has not been programmed. This ability to connect tracks in
unprogrammed devices is used extensively during antifuse programming and is one of the key elements
responsible for the excellent testability of the Microsemi FPGAs.
Logic configuration of modules is interesting because there are no dedicated antifuses in the module to
accomplish this. Instead, the inputs (and outputs) of logic modules extend into the cross-antifuse array.
Each logic module has eight to ten inputs and one output. By programming appropriate antifuses, an
input can be connected to a dedicated horizontal ground line, a VCC line, or a horizontal routing track.
The logic module implements a particular logic function by tying appropriate unused inputs to ground or
VCC.

Programming
The following discussions about programming and testing modes are specific to the RH1020. However,
basic concepts also apply to other RadHard and RadTolerant devices.
An antifuse is programmed by applying a sufficiently high voltage across it. This voltage is referred to as
VPP. To access an antifuse deep inside the chip, it is necessary to create electrical paths from VPP and
ground to the antifuse. This is done by turning on the appropriate horizontal and vertical pass transistors.
(In normal chip operation, these transistors are always off.) The transistors are turned on by applying
VPP to their gates. In Figure B-4 on page 62, we see an example of programming a typical cross-
antifuse. VPP is applied to a vertical track at the top of the chip, and ground is applied to a horizontal
track on the right side. The design of the RH1020 actually allows VPP or ground to be applied from the
top, bottom, left, or right, as is most appropriate to access a particular antifuse. Notice that VPP is also
applied to the gates of the horizontal and vertical pass transistors on the tracks accessing the cross-
antifuse. The circled cross-antifuse now has VPP applied to it on one side and ground on the other. This
voltage breaks down the antifuse’s dielectric and creates an electrical connection between the horizontal
and vertical routing tracks.
There is one other important consideration when programming an antifuse. Notice that the cross-
antifuses in the same vertical track as the antifuse to be programmed also have VPP applied to them on
one side. This is true until the track is broken by a vertical pass transistor, below it, that is turned off.

Figure B-3 • Programmable Interconnect

Vertical
Control

Vertical
Track

Segment

Cross
Antifuse

Vertical
Pass

Translator

Logic
Module

Horizontal
Track

Segment

Antifuse to
be programmed
Revision 1 61

Testing and Programming Microsemi FPGAs
However, the potential on the other side of the antifuses is not being driven. Should this potential be at
ground, the other cross-antifuses on the vertical segment could be accidentally programmed.

The same logic applies to other antifuses on the same horizontal track. Here, one side of the antifuse is
being driven to ground, and if the other side were at VPP, extra antifuses could be programmed. This

Figure B-4 • Programmable Interconnect

Vertical
Control

Vertical
Track

Segment

Cross
Antifuse

Vertical
Pass

Translator

Logic
Module

Horizontal
Track

Segment

Antifuse to
be programmed

GND

GND

GND

Vpp Vpp Vpp

Vpp

Horizontal
Control

Horizontal
Pass Translator

Horizontal
Antifuse
62 Revision 1

RadHard/RadTolerant Programming Guide
problem is solved by first applying what is referred to as a precharge cycle. During the precharge cycle,
all horizontal and vertical tracks are charged to VPP/2.

As a result, there is no voltage across the antifuses. The appropriate vertical track is then driven to VPP,
and a horizontal track to ground (Figure B-5). At this point, other antifuses on the vertical track have a
potential of VPP/2 across them (VPP on one side and VPP/2 on the other). This VPP/2 voltage is not
sufficient to program the antifuses. Other antifuses on the same horizontal track also have VPP/2 across
them (VPP/2 on one side and ground on the other). Most other antifuses in the chip still have VPP/2 on
both sides and will not be programmed.

Programming Algorithm
In concept, Microsemi FPGAs are programmed in a manner very similar to many other programmable
logic devices, and similar to memories such as EPROMs. The programming algorithm consists of the
following steps:

1. An addressing sequence to select the antifuse to be programmed
2. A programming sequence whereby VPP is applied in pulses until the antifuse is programmed
3. A soak or “overprogram” step to ensure uniform, low antifuse resistance
4. A verify step to make sure the antifuse was properly programmed

Unlike a memory in which an antifuse is addressed by applying a parallel address, the FPGAs are
addressed in a serial manner by using the special DCLK (Data Clock) and SDI (Serial Data In) pins.
There is a large shift register that travels around the periphery of the chip. Bits in this shift register can be
used to drive tracks to ground, VCC, VPP, or float. It is also possible to sense the level on the track (high
or low) and to load this information into the shift register. By shifting in the correct address, any antifuse
can be selected for programming. The shift register also plays a key role in testing the chip. This will be
discussed later.

Figure B-5 • Programmable Interconnect

Vertical
Control

Vertical
Track

Segment

Cross
Antifuse
Vertical
Pass

Translator

Logic
Module

Horizontal
Track

Segment

Antifuse to
be programmed

GND

GND

GND

Vpp Vpp Vpp

Vpp

Horizontal
Control

Horizontal
Pass Translator

Horizontal
Antifuse

Vpp/2

Vpp/2

Vpp/2

Vpp/2
Vpp/2

Vpp/2

Vpp/2

Vpp/2

Vpp/2
Revision 1 63

Testing and Programming Microsemi FPGAs
The programming sequence starts with the precharge pulse whereby VPP/2 is applied to the VPP pin.
This is followed by a programming pulse that applies VPP to the pin. Following the program pulse, the
voltage on the VPP pin is returned to a nominal value (about 6 V).
Refer to Table B-1 for a typical VPP waveform. The precharge/program pulse sequence is repeated until
either the selected antifuse programs or a maximum number of pulses is exceeded (in which case the
antifuse is considered unprogrammable and the device is rejected).

Confirmation that an antifuse has been programmed is determined by monitoring the current on the VPP
pin. This current is very low (typically < 10 µa) until an antifuse is programmed. Once an antifuse is
programmed, an electrical connection is made between VPP and ground, in which case currents in the
range of 3 to 15 mA may be observed on VPP. Once this current is observed, the antifuse is considered
programmed and enters the soak or “overprogram” cycle. Here, extra pulses are applied to the antifuse
to achieve minimum antifuse resistance. Figure B-6 shows the VPP waveform for ACT 1 devices.

Table B-1 • VPP Waveform

RH1020 Programming Algorithm Current Parameters

V Program = 21 V

V Precharge = 12.35 V

V Verify = 6.0 V

t Program = 150–300 µs

t Precharge = 25 µs

I Threshold = –2.5 mA
(to detect programmed antifuse)

I Max = 15 mA (clamp current)

Soak = 30–800 pulses

Maxpulses = 60,000

Figure B-6 • VPP Waveform

6 V

12.35 V

21 V

25 s 150-300 s
64 Revision 1

RadHard/RadTolerant Programming Guide
Test Modes of Microsemi FPGAs
The unique architecture of Microsemi FPGAs allows outstanding testability of unprogrammed devices at
the factory. Details of the various test modes are as follows:

• The shift register circling the periphery of the chip can be both downloaded and uploaded. This
allows the use of various test patterns to ensure that the shift register is fully functional.

• All vertical and horizontal tracks can be tested for continuity and shorts. There are several ways to
implement these tests. One way of doing continuity testing is to precharge the array, turn on all
vertical or horizontal pass transistors on a track, drive the track low from one side of the chip, and
read a low on the other side. Shorts can be detected by driving every other track low after
precharge and reading back on the other side. Note that these tests also confirm that the vertical
and horizontal pass transistors will turn on.

• It is important for programming to make sure that all tracks can hold the precharge level. By
charging a track, floating it, and waiting a predetermined amount of time, the track can be read
back and confirmed to be still high.

• Leakage of vertical and horizontal pass transistors can be tested by driving one side of a track to
a voltage via the VPP pin and grounding the other side. All pass transistors except the one being
tested are turned on. If excess current is detected on the VPP pin, the pass transistor is
considered defective.

• There are one or two dedicated clock buffers that travel across all horizontal channels. These
buffers can be tested by driving with the clock pin and reading for the proper levels at the sides of
the array.

• There are two special pins referred to as Probe A and Probe B (ActionProbes). By entering a test
mode, the shift register can be made to address the internal output of any logic module. This
output is then directed to one of two dedicated vertical tracks, which in turn can be observed
externally on the Probe A or Probe B pin. This ability to observe internal signals (even on
unprogrammed parts) allows Microsemi to perform a large number of functional tests. The first
such test is the input buffer test. Input buffers on all I/O pins can be tested for functionality by
driving at the input pad and reading the internal I/O output node through the probe pins.

• Test modes exist to drive all output buffers low, high, or tristate. This allows testing of VOL, VOH,
IOL, IOH, and leakage on all I/Os.

• One of the key tests is the ability to test functionally all internal logic modules. By turning on
various vertical pass transistors and driving from the top or bottom of the chip, any of the eight to
ten module inputs can be forced to a high or low. The output of the module can then be read
through the ActionProbe pins. The logic module test allows 100 percent fault coverage of each
module. In addition, the architecture allows modules to be tested in parallel for reduced test time.

• Microsemi FPGAs have one or two dedicated columns on the chip that are transparent to the user
and used by the factory for speed selection. These columns are referred to as the Binning Circuit.
Modules in the columns are connected to each other by programming antifuses. The speed of the
completed test circuit can then be tested. The Binning Circuit allows the separation of units into
different speed categories. It also allows the speed distribution within each category to be
minimized.

• There are several tests to confirm that the programming circuitry is working. The first such test is
a basic junction stress/leakage test. The program mode is enabled and VPP voltage plus a guard
band is applied to the VPP pin. All vertical and horizontal tracks are driven to VPP; thus, no
voltage is applied across the antifuses. The IPP current is then measured. If it exceeds its normal
value, the device is rejected.

• There is a test to ensure that all antifuses are not programmed. This is referred to as the antifuse
shorts test (or blank test). The array is precharged, and then the vertical tracks are driven to
ground. The horizontal tracks are then read to confirm that they are still high. (A programmed or
leaky antifuse would drive a horizontal track low.) The test is repeated by driving horizontal tracks
low and reading vertical tracks.

• The functionality of the programming circuitry can be verified by programming various extra
antifuses, on the chip, that are transparent to the user. Some of these antifuses were already
described earlier when the Binning Circuit was discussed. Microsemi FPGAs also have a Silicon
Revision 1 65

Testing and Programming Microsemi FPGAs
Signature. In the RH1020, the Silicon Signature consists of four words of data. The first word is
hardwired (no antifuses) and contains a manufacturer ID number as well as a device ID number.
These numbers can be read by a programmer, and the proper programming algorithm can be
automatically selected. The other words contain antifuses and are programmable. Microsemi is
currently using bits in these words to store information such as the chip’s run number and wafer
number. Thus, each Microsemi FPGA has traceability down to the wafer level. By programming
this information, the functionality of the programming circuitry is also tested. Microsemi software
also allows the user to program a design ID and check sum into the Silicon Signature. By later
reading this back, the user can verify that the chip is correctly programmed to a given design.

• The most important antifuse test is the stress test. When this test is enabled, a voltage applied to
the VPP pin can be applied across all antifuses on the chip. (The other side is grounded.) The
voltage applied is the precharge voltage plus a significant guard band. After the voltage is applied,
the antifuse shorts test is again used to make sure no antifuses have been programmed. The
antifuse stress test is effective at catching antifuse defects. Because the reliability of the antifuse
is much more voltage dependent than it is temperature dependent, this test is also an effective
antifuse infant mortality screen. Microsemi provides device reliability information in the Reliability
Report available on the Microsemi SoC Products Group website at www.microsemi.com/soc or by
contacting your local sales representative.

Burn-In of Microsemi FPGAs
As mentioned earlier, Microsemi has found that antifuse infant mortality failures can be effectively
screened out during electrical testing, and it is thus unnecessary to do any kind of burn-in for standard
commercial production units to screen out antifuse infant mortality failures. However, burn-in is still an
effective screen for standard CMOS infant mortality failure mechanisms, and it is required for all military
883 products. MIL-883 Method 1005 allows several types of burn-in screens. These can be divided into
two categories: steady state (static) and dynamic. Static burn-in applies DC voltage levels to the pins of
the device under test. The device may or may not be powered up. Dynamic burn-in applies AC signals to
device inputs with the unit powered up. These signals are selected so that the device receives internal
and external stresses similar to those it may see in a typical application.
Static burn-in is by far the simplest to implement. By choosing appropriate biasing conditions and load
resistors, it is possible to design a single burn-in circuit that can be used for both unprogrammed and
programmed devices. It would not matter what pattern is programmed into the device. Static burn-in can
be an effective screen for some types of failure modes, particularly those that may happen at device
inputs or outputs (such as screening for mobile ionic contamination). It is not, however, very effective at
stressing internal device circuits. Many internal nodes may be biased at ground without receiving any
voltage or current stress. Signal lines will not toggle, and it may not be possible to screen failure modes
such as metal electromigration.
A properly designed dynamic burn-in can effectively stress inputs, outputs, and internal circuits.
However, dynamic burn-in of ASIC products can be very expensive because customer-specific burn-in
circuits and burn-in boards must be designed and built to properly stress each design implemented in the
ASIC. This results in large NRE costs and long lead times to design and build these boards. From the
standpoint of burn-in, a programmed FPGA is essentially the same as a mask-programmed ASIC, and it
would require similar custom burn-in circuits to do a dynamic burn-in. However, Microsemi has been able
to use the testability features of its FPGA products to allow effective dynamic burn-in of unprogrammed
devices. This dynamic burn-in allows users to stress circuits in a way that static burn-in would be unable
to duplicate.
During burn-in of unprogrammed units, test commands are serially shifted into each device by using the
SDI pin and clocked by using the DCLK pin. There are three test modes shifted into each device. The
first test stresses each cross-antifuse with a voltage of VPP – 2 V. (VPP is normally set at 7.5–11 V so
that each antifuse gets 5.5–9 V across it.) This voltage is applied to all vertical tracks while the horizontal
tracks are grounded. Once enabled, the stress mode is held for 10 ms.
The second test mode is identical to the first except that the horizontal tracks are driven to VPP – 2 V
while the vertical tracks are grounded. Note that both of these modes are similar to the antifuse stress
test described earlier (although the stress voltage is lower during burn-in). Not only do these tests stress
the antifuses, but they also toggle all routing tracks in the chip to VPP – 2 V and ground. All input and
output tracks to the logic modules are also toggled.
66 Revision 1

http://www.microsemi.com/soc
http://www.microsemi.com/soc/documents/ORT_Report.pdf
http://www.microsemi.com/soc/documents/ORT_Report.pdf

RadHard/RadTolerant Programming Guide
The third test drives several I/O pins on the chip to a low state. Prior to this, they are at high impedance
state and held at VCC through pull-up resistors. This test confirms that the burn-in is being properly
implemented by looking at these I/O pins to see if they display the proper waveform. It also passes
current through each I/O as it toggles low.
Although the chip is unprogrammed, these tests allow users to apply stresses to the inputs, outputs, and
internal nodes that are similar to what a programmed device may see in normal operation. Once burn-in
is completed, post-burn-in testing, as specified by MIL-883, is performed (including PDA) to ensure that
fully compliant devices are shipped to the customers.

Conclusion
The description of the Microsemi FPGA architecture and the numerous test modes attest to the
outstanding testability of these devices. All internal logic gates can be tested without programming
antifuses other than the few for the Binning Circuit and Silicon Signature. Because Microsemi FPGAs are
one-time programmable, the only item that is not fully tested at the factory is the programmability of all
the individual antifuses. However, this is done on the programmer while the units are being programmed.
Being able to test all internal gates allows Microsemi to achieve functional yields superior to other one-
time programmable devices and equivalent to reprogrammable parts.
Revision 1 67

C – Silicon Signature Decode

This appendix contains information about reading and decoding information that is contained in the
Silicon Signature of a device. This feature is available only in Activator. Silicon Sculptor does not support
decoding of silicon signatures.

Silicon Signature Components
Information contained in the Silicon Signature enables Microsemi to provide traceability to wafer lot
number in the event a Failure Analysis is required. The following information is contained in the Silicon
Signature:

• Wafer lot code
• Wafer number
• Fab
• Programming voltage
• Checksum
• Silicon Signature (customer defined)
• P-fuse status
• S-fuse status
• Microsemi Device Designation

Part of the Silicon Signature is “hard-coded” into the device, meaning that the bit values are masked
during wafer fab processing. Some bits are programmed into the Silicon Signature on the Activator or
Sculptor during normal device programming (for example, checksum and customer’s Silicon Signature,
P-fuse status, S-fuse status).
The Silicon Signature can be read by typing the command “act-read-ss” from within the APS software
(either APS2 or APSW). When you execute act-read-ss, the Silicon Signature is read from the device
(through the activator) and printed on the screen. The complete Silicon Signature consists of 4 to 6
(depending on the device) “words” that are printed on the screen in hexadecimal. The following sections
describe how to decode the important pieces of the Silicon Signature for RH1020, A1020B, RH1280
A1280A, A1460A, and A14100A devices.
Revision 1 69

Silicon Signature Decode
RH1020 and A1020B Silicon Signature Example
The following example shows a sample Silicon Signature for an RH1020 or A1202B device. The Silicon
Signature consists of 4 words, referred to as Word 0, 1, 2, and 3. When you execute the act-read-ss
command the words are printed to the screen in order (0-3) from left to right, with spaces in between
each word. Figure C-1 shows the bit order and information contained in each word of the Silicon
Signature.

Silicon Signature Decode
The following describes the information in each word above.
Word 0: Bits 0-7 contain characters to signify the device is a Microsemi design. Bits 8-15 contain hard-
coded Microsemi bits, designating die type and die revision.
Word 1: Bits 0-19 contain the customer defined Silicon Signature. Bits 20-22 contain the fab number.
Word 2: Bits 0-15 contain the checksum.
Word 3: Bit 0-12 contain the wafer lot number. Bits 13-18 contain the wafer number. Bit 23 contains the
Probe fuse status (S). Bit 24 contains the Program fuse status (P).

Figure C-1 • RH020 and A1020B SIlicon Signature

28 18 17 16 15 14 13 12 11 10 123456789 027 26 1925 23 2124 22 20
Word 0

Word 2

Word 1

Word 3 Wafer # Wafer Lot #

Checksum

Die Type, Revision

Fab # Customer Defined Silicon Signature

 Device Designation

P S
70 Revision 1

RadHard/RadTolerant Programming Guide
RH1280 Silicon Signature Example
The following example shows a sample Silicon Signature for an RH1280 device. The Silicon Signature
consists of 5 words, referred to as Word 0, 1, 2, 3, and 4. When you execute the act-read-ss command
the words are printed to the screen in order (0-4) from left to right, with spaces in between each word.
Figure C-2 shows the bit order and information contained in the Silicon Signature.

Silicon Signature Decode
The following describes the information in each word above.
Word 0: Contains hard-coded Microsemi bits, designating die type and die revision.
Word 1: Contains characters to signify the device is an Microsemi design.
Word 2: Bits 1-20 contain customer defined Silicon Signature. Bits 21-23 contain programming voltage
(esbin). Bits 24-26 contain the VSV voltage.
Word 3: Bit 0 contains the Program fuse status (P). Bits 1-16 contain the checksum bits.
Word 4: Bit 0 contains the Security fuse status (S). Bits 1-15 contain the wafer lot number. Bits 16-20
contain the wafer number. Bits 21-23 contain the fab number.

Figure C-2 • RH1280 Silicon Signature

28 18 17 16 15 14 13 12 11 10 123456789 027 26 1925 23 2124 22 20
Word 0

Word 2

Word 1

Word 3 Checksum

Die Type, Revision

Fab #

Customer Defined Silicon Signature

Device Designation

P

SWord 4 Wafer # Wafer Lot #

Vsv esbin
Revision 1 71

Silicon Signature Decode
A1280A Silicon Signature Example
The following example shows a sample Silicon Signature for an A1280A device. The Silicon Signature
consists of 4 words, referred to as Word 1, 2, 3, and 4. When you execute the act-read-ss command the
words are printed to the screen in order (1-4) from left to right, with spaces in between each word.
Figure C-3 shows the bit order and information contained in the Silicon Signature.

Silicon Signature Decode
The following describes the information in each word above.
Word 1: Contains hard-coded Microsemi bits, designating die type and die revision.
Word 2: Bits 1-20 contain customer defined Silicon Signature.
Word 3: Bit 0 contains the Program fuse status (P). Bits 1-16 contain the checksum bits.
Word 4: Bit 0 contains the Security fuse status (S). Bits 1-14 contain the wafer lot number. Bits 15-20
contain the wafer number. Bits 21-24 contain the fab number. Bits 25-27 contain programming voltage
(esbin).

Figure C-3 • A1280A Silicon Signature

28 18 17 16 15 14 13 12 11 10 123456789 027 26 1925 23 2124 22 20

Word 2

Word 1

Word 3 Checksum

Fab #

Customer Defined Silicon Signature

Device Designation

P

SWord 4 Wafer # Wafer Lot #esbin
72 Revision 1

RadHard/RadTolerant Programming Guide
A1460A and A14100A Silicon Signature Example
The following example shows a sample Silicon Signature for an A1460A or A14100A device. The Silicon
Signature consists of 6 words, referred to as Word 0, 1, 2, 3, 4, and 5. When you execute the act-read-ss
command the words are printed to the screen in order (0-5) from left to right, with spaces in between
each word. Figure C-4 shows the bit order and information contained in the Silicon Signature.

Silicon Signature Decode
The following describes the information in each word above.
Word 0: Bit 0 contains the Program fuse status (P). Bits 5-16 contains characters to signify the device is
an Microsemi design.
Word 1: Bit 0 contains the Security fuse status (S). Bits 1-20 contain customer defined Silicon Signature.
Word 2: Bits 1-16 contain the checksum bits.
Word 3: Contains hard-coded Microsemi bits, designating die type and die revision.
Word 4: Bits 1-17 contain the wafer lot number. Bits 18-20 contain the fab number.
Word 5: Bits 1-6 contain the wafer number. Bits 7-12 contain programming voltage (esbin).

Figure C-4 • A1460A Silicon Signature

28 18 17 16 15 14 13 12 11 10 123456789 027 26 1925 23 2124 22 20
Word 0

Word 2

Word 1

Word 3

Checksum

Die Type, Revision

Fab #

Customer Defined Silicon Signature

Device Designation P

S

Word 4

Word 5 Wafer #

Wafer Lot #

esbin
Revision 1 73

D – AVI File Description

Activator
The AVI file is a log file generated while an Microsemi FPGA is programmed. The file contains
information about the number of VPP pulses applied to each fuse to program the fuse and the
programming current sensed through each fuse. If a programming failure occurs, the AVI file contains
information about the programming failure mode.
A new AVI file is generated each time you begin a new programming sequence. If you want to save an
AVI file, you must re-name it before restarting the programming sequence. The following excerpt shows
an example AVI file:

; FILEID AVI \example.avi
; PROGRAM Activator (tm) 2 Programming System 3.1.1
; VAR DDFDIE c:\ACTEL/data/a1200/1280/G1280.ddf
; VAR DDFPACKAGE c:\ACTEL/data/a1200/1280/qfp172.ddf
; VAR FUS \designs\mod25\mod25.fus
; VAR AFM \designs\mod25\mod25.afm: Compressed
; VAR SIG
; ACT-FUSE: Fuse 1
; SILICON-SIGN 4: 5F80000 FFE 600000 FD335C
; ICC-STANDBY:22---
; IPP-STANDBY:0
; ESBIN: 3
; START-TIME Mon Mar 18 17:59:12 1996
;4321
1:14611------
2:1467------
3:14610------
4:1468------
5:1468------
6:1469------
7:14611------
8:1467------
9:1464------
10:1468------
11:14610------
12:14620------
13:14610------
14:1465------
15:14615------
16:14618------
17:1469------
18:14611------

The first thirteen lines of the file shown above contain header information. This information is obtained
from both the programming file (*.afm or *.fus) and the unit being programmed. Each line of the AVI file
header is preceded by a semi-colon. The header contains the following information:

• The complete Silicon Signature (read from the device) prior to programming. Refer to the "Silicon
Signature Decode" section on page 69 for additional information about the Silicon Signature.

• The ICC standby value of the device before it is programmed. In the example, the ICC standby of
22 corresponds to a standby of 2.2 mA.

• The device esbin number, which corresponds to the VPP used during programming.
The remainder of the AVI file contains information about the programming sequence. As each fuse is
programmed, a new line is added to the AVI file. The first column of numbers in the AVI file is the fuse
Revision 1 75

AVI File Description
number. A typical RH1280 design requires approximately 15700 fuses to be programmed. The AVI file
would contain over 15700 lines, including header information.
There are 8 additional columns in the AVI file. The 8 columns are listed in groups of 2, with each group
corresponding to a socket on the Activator 2 (sockets are numbered 1-4). If the Activator 2s is used, the
single socket is always recognized as socket 4.
The first column in a group of 2 contains the final programming current sensed by the Activator through
each fuse as it is programmed. The programming current is listed in milliamps, and no decimal point
appears in the number. For example, a programming current listed as 146 corresponds to current of
14.6 mA. It is not unusual for different fuse types to have different programming currents.
The second column in a group of 2 contains the number of VPP pulses that were required to program a
specific fuse. The maximum number of programming pulses reported in the AVI file is 64464 pulses.
There is an inherent variation in the number of pulses required to program a fuse depending on the fuse
type. A wide distribution of VPP pulse counts can be expected.
After the array fuse programming information, test results from the end of programming tests executed by
the Activator are stored. If any of these tests fail, the failing test is indicated in the AVI file.

Silicon Sculptor
An AVI file is generated automatically for RH/RT part while programming a RH/RT part in Silicon
Sculptor. This file format is almost same as the *.avi file generated while programming a part in Activator.
But the file extension for Silicon Sculptor is *.txt instead of *.avi. Here is a portion of an *.avi file from the
Silicon Sculptor 3.56 while programming a RT part:

FILEID alpha11.txt
 PROGAMMER Silicon_Sculptor
 SOFTWARE VERSION V3.56
 DEVICE RT1020-CQ84
 SILICON SIGN: 022DFB 060000 700000 01222F
 ESBIN 0
 AFM-CHECKSUM 9E63
 START-TIME 08/08/01 16:57:00

 Fuse No Pulses Current (mA)
 00001 236 14.9
 00002 473 8.8
 00003 332 10.7
 00004 211 7.0
76 Revision 1

E – JobMaster (Silicon Sculptor only)

JobMaster enables an Administrator to set up a job to precise specifications, test the results, and then
protect the routine so that it cannot be modified inadvertently. Once a master device is programmed and
approved, JobMaster is ready to begin full-scale programming immediately, without further set up.
JobMaster has two modes for the production facility:

• Administrator(s) - designated to set up jobs within the software, as well as regulate changes
made to any existing jobs.

• Operator(s) - runs the jobs to program devices.

Installation
JobMaster is supplied with the BP Software; however, you must have an access code to enable it. To
receive an access code, you must purchase the JobMaster software from the BP Microsystems sales
department (http://www.bpmicrosystems.com). Once you have purchased the software, an access code
is generated and either e-mailed or faxed to you. After you obtain access to the software, you must:

1. Configure JobMaster. Select JobMaster/Configure.
2. Set the LIBPATH environment variable to include the directory where sculpt.exe and bpjob.dll

reside.
3. Set the sculpt.exe environment variable to your local hard drives. Do not share the sculpt.cfg

files among multiple PCs.
4. Reboot your PC and run sculpt.exe.
5. Select the Upgrade option from the AFS menu and enter the upgrade code that was shipped with

your diskettes or provided by the BP Microsystems Sales Department.
6. Specify your JobMaster Database directory. Go to the JobMaster/Configure menu to specify your

JobMaster Database Directory. This will be the directory where all of your users can access the
database. Choose whether or not you want to enable categories and tab to Accept.

7. Press Enter to set your options.

Operation
The sections below describes how to make full and best use of the JobMaster software.

Creating a New Job
This section assumes you understand the basics of programming a device using the BP software. Please
refer to the BP software user guides for more information on programming with BP software. Before
creating a new job within JobMaster, make sure you have completed the following steps:

1. Select the device that you want to program.
2. Load the buffer with the information to be programmed into the device.
3. Set any special configuration options. Once you have chosen at least one device and have

loaded contents and set any special configuration, you are ready to create a new job.
4. Select JobMaster/New.

You can define the Category and Item/Part Number fields in any way you choose.
We suggest the following options in these fields:

• Reference a manufacturer in the Category field, if you intend to create a specific manufacturer
database. For example, use Category: Microsemi to create a Microsemi database.
Revision 1 77

http://www.bpmicrosystems.com

JobMaster (Silicon Sculptor only)
• Reference a customer in the Category field and the job number or location on the circuit board in
the Item Number field.

The device you have programmed is automatically entered into the first Device line. You can add up to
five additional devices, provided they have identical programming requirements. See "Adding a Device to
an Existing Job" on page 78 for more information.
The Note option is another user-definable field that is displayed whenever an Operator chooses the job.
If the Verify Checksum of Data option is enabled, the system stops and prevents the job from running if
data has changed since the job was created.
Note: We strongly recommend that the Verify Checksum of Data option be set to Enabled, unless you

have a data file that is going change frequently.
Once you have set the options, select Accept and press Enter. A screen prompts you to verify that you
want to add the new job to the database. If the information is correct, press Enter again to save it in the
database. If you need to make changes, select Cancel to return to the New Job screen.

Copying an Existing Job
To copy the Category, Item Number or Device from a currently existing job press Enter when the cursor
is on an empty field. This brings up a selection box that you can use to select currently existing entries.
Highlighting a selection and pressing Enter inputs the information into the new job.

Adding a Device to an Existing Job
JobMaster permits the programmer to list as many as six devices under a single job description.
Note: It is essential that all the devices listed for a single job be absolutely compatible. They must accept

exactly the same configuration and programming algorithms.
To add a device, select JobMaster/Load. Then select JobMaster/Updates and bring up the change
screen and add the device to the next available device line by tabbing to an empty device line and
pressing Enter. This brings up the device selector dialog screen. Once all of your changes are complete,
select Accept and press Enter. The update job is saved over the existing job in the database.

Updating a Job
To update a job, select JobMaster/Load to load a job. Use the BP software to change the
Device/Configuration, Buffer/Options, or other parameters, then select JobMaster/Update to accept the
changes as part of the current job.
Note: JobMaster keeps track of the date, time and author of each job's creation, and of every subsequent

revision. This information is displayed whenever you select the JobMaster/Load option.

Locking The Programmer In Operator Mode
To lock the programmer in Operator Mode, select JobMaster/Options and set the default mode to
Operator Mode. Tab to Accept and press Enter.
When you select the Operator Mode default, you are prompted to enter a password. If you enter a
password, you must use it to get out of Operator Mode. If this protection is not desired, do not enter a
password, tab to Accept and press Enter.

Password Protection
The Operator Mode selection is stored both in the programmer itself and in the BP software. In either
case (for PC or Software), the password is required to unlock that programmer and exit the Operator
Mode.
78 Revision 1

RadHard/RadTolerant Programming Guide
Running A Job (Program Mode)
Assuming the Operator Mode default has been selected, the programmer will “make up” in Operator
Mode. Operator Mode offers only four options: Program, Verify, Stop and Quit. To begin programming,
tab to the Program option and press Enter.

1. Enter the Category, Item Number, and Device. JobMaster asks for a Category, Item Number and
Device to program. Enter these at the prompts. You can always press Enter on an empty field to
see a list of available options from the database. If more then one device has been specified for
the job, you will be prompted with a list from which to choose. Simply tab to the appropriate
selection and press Enter.

Once you have selected the device, JobMaster displays any Notes that were added when the job was
created.

1. Enter the number of devices. Type this number and press Enter. This refers to the number of
devices that should be successfully programmed, not the number of attempts, to allow for any
rejects that may normally occur.

2. Evaluate summary screen, and continue. A summary screen appears, listing Category, Item
Number, File, Checksum, Operation, and the Note. If everything is correct, select Accept and
press Enter. This system begins programming devices.

Deleting A Job
To delete a job from the JobMaster database, you must have access to the Administrator password.

1. Go to JobMaster/Delete
2. Select the Category and Item Number of the job you wish to delete. A screen appears asking

you to verify the delete option.
3. Press Accept to continue with the delete process, choose Cancel to cancel the delete process.

Returning To The Normal Mode
To return to the BP Software to normal mode upon startup, simply enter the Administrator password, and
then go to JobMaster Configure. Tab down to the Default Mode field and select Normal. When the BP
Software is started up again, it will be in normal access mode.
Revision 1 79

F – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 650.318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the website.

Website
You can browse a variety of technical and non-technical information on the SoC home page, at
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.
The technical support email address is soc_tech@microsemi.com.
Revision [X] 81

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

Product Support
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms
Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select
Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR
web page.
82 Revision [X]

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/

Index

A
Activate Command 11
Activator

Adapter Module Test 33
Board Test 31
Current Test 31
Debugging 35–41
Testing 29
Troubleshooting 43

Adapter Module
Troubleshooting 44

ADB File 18
Additional Equipment 6
AFM File 18

Troubleshooting 44
Algorithms 63
APSW

Activate Command 11
Blankcheck Command 12
Checksum Command 12
Debugger 35
Debugger Command 12
Invoking From a PC 19
Invoking From a Workstation 19
Opening a Design 19
Programming a Device 18
Programming Files 18
Software Overview 11

Architecture 59
Assign Command 36
Assumptions 7
AVI File 20, 75

Description 75–76

B
Blankcheck Command 12
Burn-In 25, 66

C
Checksum Command 12
Command File 38

Comparison File 39
Entering Commands 38
Input File 39
Loading 38
Output File 40, 41

Command-Line Commands 36
Comp Command 36
CompFile Command 36
contacting Microsemi SoC Products Group

customer service 81

email 81
web-based technical support 81

Conventions 7
customer service 81

D
Debugger Command 12

Assign 36
Comp 36
CompFile 36
Define 36
Emit 36
Fassign 36
Fcomp 36
Fprint 36
High 37
High-Z 37
ICP 37
InFile 37
LoadFile 37
Low 37
OutFile 37
Repeat 38
Socket 38
Step 37
TabAdd 37
TabList 37
Vector 37

Debugging 35–41
DEF File 18
Define Command 36
Device

Architecture 59
Handling Procedure 19
Programming 18, 61
Test Modes 65
Testing 25, 59

Device Packaging 25
Document Assumptions 7
Document Conventions 7
Document Organization 6

E
Emit Command 36
Entering Commands in a Command File 38
Equipment

Additional 6
ESD 6

Error Messages 28
ESD

Equipment 6
Revision 1 83

Index
Handling Guidelines 18

F
Failed Device 27
Fassign Command 36
Fcomp Command 36
Forming Leads of a Device 25
Fprint Command 36
FUS File 18
Fuse Failures 28

Troubleshooting 44

H
Hardware

Requirements 5
High Command 37
High-Z Command 37

I
ICP Command 37
InFile Command 37

J
JobMaster

Adding a Device to an Existing Job 78
Copying an Existing Job 78
Deleting a Job 79
New Job 77
Running a Job 79
Updating a Job 78

Jobmaster
Installation 77
Operation 77

L
LoadFile Command 37
Loading a Command File 38
Low Command 37

M
Microsemi SoC Products Group

email 81
web-based technical support 81
website 81

O
On-Line Documentation 7
On-Line Help 7
OutFile Command 37

P
product support

customer service 81
email 81
My Cases 82

outside the U.S. 82
technical support 81
website 81

Program Fuse 20
Configurations 21

Programming 44, 61
Algorithms 63
APSW 18
Checklist 18
Error Messages 28
Failure Guidelines 27
Failure Rates, RadHard 27
Failure Rates, RadTolerant 27
File Types, APSW 18
Fuse Failures 28
Program Fuse 20
Program Fuse Configurations 21
Security Fuse 20
Security Fuse Configurations 21

R
RadHard Devices 59
RadTolerant Devices 59
Related Manuals 7
Repeat Command 38
Requirements

Hardware 5
Software 5

S
SCSI

Troubleshooting 44
Security Fuse 20

A1020B 21
A1280A 23
A14100A 23
A1460A 23
Configurations 21
eX 23
PROBE 21
PROGRAM 21
RH1020 21
RH1280 23
RTSX 23
RTSX-S 23

Silicon Sculptor
Configure 16
Default Configure 16
File 16
Overview 13–17
Programmer Diagnostic 16
Programming Files 18
Testing 33
Tools 16
Upgrade 16

Silicon Sculptor for DOS
Commands 13–15
84 Revision 1

RadHard/RadTolerant Programming Guide
Programming a Device 21
Silicon Sculptor for Windows 15

Copies Command 16
Data Pattern Button 17
Dev Info Button 17
Device Button 17
File Tabs 17
Open Button 17
Programming a Device 21
Save Button 17
Testing 33

Silicon Signature 18, 69
Decoding 70, 71, 72, 73

Socket Command 38
Sockets 25
Software Requirements 5
Step Command 37
System Requirements 5

T
TabAdd Command 37
TabList Command 37
tech support

ITAR 82
My Cases 82
outside the U.S. 82

technical support 81
Test Modes 65
Testing

Activator 29
Silicon Sculptor 33
Silicon Sculptor for DOS 33
Silicon Sculptor for Windows 33

Testing Microsemi Devices 25
Trimming a Device 25
Troubleshooting 43–45

Activator 43
Adapter Module 44
AFM File 44
Device Programming 45
Fuse Failures 28, 44
Programming Error Messages 28
SCSI Controller 44
Software Driver 43
Testing Activator 29

V
Vector Command 37

W
web-based technical support 81
Revision 1 85

5029106-1/8.01

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog
and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com

	Introduction
	System Requirements
	Designer Software Version
	PC/Workstation Requirements
	Additional Equipment

	Document Organization
	Document Assumptions
	Document Conventions
	Related Manuals
	Online Documentation
	Online Help

	1 – Programming RadHard/RadTolerant Devices
	Programming Flow
	Test the Activator
	Test the Silicon Sculptor
	Program a Commercially Equivalent Part
	Program a RadHard/RadTolerant Device
	Save the AVI File

	Activator APSW Software Overview
	Activate
	Blankcheck
	Checksum
	Debugger

	Silicon Sculptor Software Overview
	Silicon Sculptor for DOS
	Silicon Sculptor for Windows

	Preparation for Programming a Device
	Supported Device Files
	User-Defined Silicon Signature
	Programming Checklist
	Device Handling
	Removing a Device from the Carrying Case
	IMPORTANT

	Programming a Device with Activator
	IMPORTANT

	Programming a Device with Silicon Sculptor
	Programming Security Fuses
	RH1020, A1020B Security Fuse Configurations
	RH1280, A1280A, A1460A, and A14100A Security Fuse Configurations

	2 – Post-Programming Recommendations
	Test
	Packaging, Sockets, Trim, and Form

	3 – Device Programming Failures
	Programming Failure Guidelines
	RadHard Failure Rates
	RadTolerant Failure Rates

	Types of Programming Failures
	Fuse Failed to Program
	Bad Fuse
	Check 6 Failure
	Check 7 and 8 Failures

	Error Messages
	Integrity Test
	Fuse Current Sense Test
	Wrong Adapter Module
	Old Revision Adapter Module
	Not Blank

	Testing an Activator
	Board Test
	Current Test
	Adapter Module Test

	Testing Silicon Sculptor
	Testing Silicon Sculptor for DOS
	Testing Silicon Sculptor for Windows

	Returning Failed Devices

	4 – Debugging a Device with an Activator
	Functional Debugging With an Activator
	Running Debugger From APSW
	Debugger Command-Line Commands
	Using Command Files to Debug a Device
	Command File Example 1
	Command File Example 2

	A – Troubleshooting
	Activator
	Driver Does Not Load under Windows
	Activator Hardware
	Adapter Module
	AFM File
	Programming
	SCSI Controller
	Device Programmed

	Silicon Sculptor for DOS
	Testing the Hardware
	Power-on Self-Test (POST)
	Error Messages
	Warning Messages
	Self-diagnostics Test

	Silicon Sculptor for Windows
	Testing the Hardware
	Software Updates
	FAQs
	Errors While Programming
	Cleaning a Dirty DIP Socket
	Error Messages and Suggested Actions

	B – Testing and Programming Microsemi FPGAs
	Testability of Microsemi FPGAs
	RadHard and RadTolerant FPGA Products
	Architecture
	Programming
	Programming Algorithm
	Test Modes of Microsemi FPGAs
	Burn-In of Microsemi FPGAs
	Conclusion

	C – Silicon Signature Decode
	Silicon Signature Components
	RH1020 and A1020B Silicon Signature Example
	Silicon Signature Decode

	RH1280 Silicon Signature Example
	Silicon Signature Decode

	A1280A Silicon Signature Example
	Silicon Signature Decode

	A1460A and A14100A Silicon Signature Example
	Silicon Signature Decode

	D – AVI File Description
	Activator
	Silicon Sculptor

	E – JobMaster (Silicon Sculptor only)
	Installation
	Operation
	Creating a New Job
	Copying an Existing Job
	Adding a Device to an Existing Job
	Updating a Job
	Locking The Programmer In Operator Mode
	Running A Job (Program Mode)
	Deleting A Job
	Returning To The Normal Mode

	F – Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

	Index

