

SmartFusion™ MSS SPI Driver
User’s Guide

Version 2.1
.

SmartFusion™ MSS SPI Driver User's Guide Version 2.1

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 2

Table of Contents

Introduction .. 3
Features ... 3
Supported Hardware IP ... 3

Files Provided .. 5
Documentation ... 5
Driver Source Code.. 5
Example Code .. 5

Driver Deployment ... 7

Driver Configuration .. 9

Application Programming Interface ... 11
Theory of Operation ... 11
Types ... 14
Constant Values ... 16
Data structures ... 16
Global Variables ... 16
Functions .. 17

Product Support .. 41
Customer Service ... 41
Customer Technical Support Center .. 41

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 3

Introduction

The SmartFusion™ microcontroller subsystem (MSS) includes two serial peripheral interface SPI
peripherals for serial communication. This driver provides a set of functions for controlling the MSS SPIs as
part of a bare metal system where no operating system is available. These drivers can be adapted for use
as part of an operating system, but the implementation of the adaptation layer between this driver and the
operating system's driver model is outside the scope of this driver.

Features
The MSS SPI driver provides the following features:

• Support for configuring each MSS SPI peripheral
• SPI master operations
• SPI slave operations

The MSS SPI driver is provided as C source code.

Supported Hardware IP
The MSS SPI bare metal driver can be used with Actel’s MSS_SPI IP version 0.2 or higher included in the
SmartFusion MSS.
Note: The SPI slave block transfer mode of operation cannot be used on the A2F200 SmartFusion device

due to slave mode limitations in the SPI hardware block of this device.

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 5

Files Provided

The files provided as part of the MSS SPI driver fall into three main categories: documentation, driver source
code, and example projects. The driver is distributed via the Actel Firmware Catalog, which provides access
to the documentation for the driver, generates the driver’s source files into an application project, and
generates example projects that illustrate how to use the driver.

Documentation
The Actel Firmware Catalog provides access to these documents for the driver:

• User’s guide (this document)
• A copy of the license agreement for the driver source code
• Release notes

Driver Source Code
The Actel Firmware Catalog generates the driver’s source code into a drivers\mss_spi subdirectory of the
selected software project directory. The files making up the driver are detailed below.

mss_spi.h
This header file contains the public application programming interface (API) of the MSS SPI software driver.
This file must be included in any C source file that uses the MSS SPI software driver.

mss_spi.c
This C source file contains the implementation of the MSS SPI software driver.

Example Code
The Actel Firmware Catalog provides access to example projects illustrating the use of the driver. Each
example project is self contained and is targeted at a specific processor and software toolchain combination.
The example projects are targeted at the FPGA designs in the hardware development tutorials supplied with
Actel’s development boards. The tutorial designs can be found on the Actel Development Kit web page
(www.actel.com/products/hardware).

http://www.actel.com/products/hardware�
http://www.actel.com/products/hardware�

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 7

Driver Deployment

This driver is intended to be deployed from the Actel Firmware Catalog into a software project by generating
the driver’s source files into the project directory. The driver uses the SmartFusion Cortex Microcontroller
Software Interface Standard – Peripheral Access Layer (CMSIS-PAL) to access MSS hardware registers.
You must ensure that the SmartFusion CMSIS-PAL is either included in the software toolchain used to build
your project or is included in your project. The most up-to-date SmartFusion CMSIS-PAL files can be
obtained using the Actel Firmware Catalog.
The following example shows the intended directory structure for a SoftConsole ARM® Cortex™-M3 project
targeted at the SmartFusion MSS. This project uses the MSS SPI and MSS Watchdog drivers. Both of these
drivers rely on SmartFusion CMSIS-PAL for accessing the hardware. The contents of the drivers directory
result from generating the source files for each driver into the project. The contents of the CMSIS directory
result from generating the source files for the SmartFusion CMSIS-PAL into the project.

Figure 1 · SmartFusion MSS Project Example

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 9

Driver Configuration

The configuration of all features of the MSS SPIs is covered by this driver with the exception of the
SmartFusion IOMUX configuration. SmartFusion allows multiple non-concurrent uses of some external pins
through IOMUX configuration. This feature allows optimization of external pin usage by assigning external
pins for use by either the microcontroller subsystem or the FPGA fabric. The MSS SPIs serial signals are
routed through IOMUXes to the SmartFusion device external pins. These IOMUXes are automatically
configured correctly by the MSS configurator tool in the hardware flow when the MSS SPIs are enabled in
that tool. You must ensure that the MSS SPIs are enabled by the MSS configurator tool in the hardware
flow; otherwise the serial inputs and outputs will not be connected to the chip's external pins. For more
information on IOMUX, refer to the IOMUX section of the SmartFusion Datasheet.
The base address, register addresses and interrupt number assignment for the MSS SPI blocks are defined
as constants in the SmartFusion CMSIS-PAL. You must ensure that the SmartFusion CMSIS-PAL is either
included in the software tool chain used to build your project or is included in your project.

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 11

 Application Programming Interface

This section describes the driver’s API. The functions and related data structures described in this section
are used by the application programmer to control the MSS SPI peripheral from the user’s application.

Theory of Operation
The MSS SPI driver functions are grouped into the following categories:

• Initialization
• Configuration for either master or slave operations
• SPI master frame transfer control
• SPI master block transfer control
• SPI slave frame transfer control
• SPI slave block transfer control
• DMA block transfer

Frame transfers allow the MSS SPI to write or read up to 32 bits of data in a SPI transaction. For example, a
frame transfer of 12 bits might be used to read the result of an ADC conversion from a SPI analog to digital
converter.
Block transfers allow the MSS SPI to write or read a number of bytes in a SPI transaction. Block transfer
transactions allow data transfers in multiples of 8 bits (8, 16, 24, 32, 40…). Block transfers are typically used
with byte oriented devices like SPI FLASH devices.

Initialization
The MSS SPI driver is initialized through a call to the MSS_SPI_init() function. The MSS_SPI_init() function
takes only one parameter, a pointer to one of two global data structures used by the driver to store state
information for each MSS SPI. A pointer to these data structures is also used as first parameter to any of the
driver functions to identify which MSS SPI will be used by the called function. The names of these two data
structures are g_mss_spi0 and g_mss_spi1. Therefore any call to an MSS SPI driver function should be of
the form MSS_SPI_function_name(&g_mss_spi0, ...) or MSS_SPI_function_name(&g_mss_spi1, ...).
The MSS_SPI_init() function resets the specified MSS SPI hardware block and clears any pending interrupts
from that MSS SPI in the Cortex-M3 NVIC.
The MSS_SPI_init() function must be called before any other MSS SPI driver functions can be called.

Configuration
A MSS SPI block can operate either as a master or slave SPI device. There are two distinct functions for
configuring a MSS SPI block for master or slave operations.

Master configuration
The MSS_SPI_configure_master_mode() function configures the specified MSS SPI block for operations as
a SPI master. It must be called once for each remote SPI slave device the MSS SPI block will communicate
with. It is used to provide the following information about each SPI slave’s communication characteristics:

• The SPI protocol mode
• The SPI clock speed
• The frame bit length

This information is held by the driver and will be used to alter the configuration of the MSS SPI block each
time a slave is selected through a call to MSS_SPI_set_slave_select(). The SPI protocol mode defines the
initial state of the clock signal at the start of a transaction and which clock edge will be used to sample the

Application Programming Interface

12 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

data signal (Motorola SPI modes), or it defines whether the SPI block will operate in Texas Instruments (TI)
synchronous serial mode or in National Semiconductor (NSC) MICROWIRE mode.

Slave configuration
The MSS_SPI_configure_slave_mode() function configures the specified MSS SPI block for operations as a
SPI slave. It configures the following SPI communication characteristics:

• The SPI protocol mode
• The SPI clock speed
• The frame bit length

The SPI protocol mode defines the initial state of the clock signal at the start of a transaction and which
clock edge will be used to sample the data signal (Motorola SPI modes), or it defines if the SPI block will
operate in TI synchronous serial mode
Note: The MSS SPI cannot be configured to operate as a NSC MICROWIRE protocol mode slave.

SPI master frame transfer control
The following functions are used as part of SPI master frame transfers:

• MSS_SPI_set_slave_select()
• MSS_SPI_transfer_frame()
• MSS_SPI_clear_slave_select()

The master must first select the target slave through a call to MSS_SPI_set_slave_select(). This causes the
relevant slave select line to become asserted while data is clocked out onto the SPI data line.
A call is then made to function MSS_SPI_transfer_frame() specifying and the value of the data frame to be
sent.
The function MSS_SPI_clear_slave_select() can be used after the transfer is complete to prevent this slave
select line from being asserted during subsequent SPI transactions. A call to this function is only required if
the master is communicating with multiple slave devices.

SPI master block transfer control
The following functions are used as part of SPI master block transfers:

• MSS_SPI_set_slave_select()
• MSS_SPI_clear_slave_select()
• MSS_SPI_transfer_block()

The master must first select the target slave through a call to MSS_SPI_set_slave_select(). This causes the
relevant slave select line to become asserted while data is clocked out onto the SPI data line.
A call is then made to function MSS_SPI_transfer_block(). The parameters of this function specify:

• the number of bytes to be transmitted
• a pointer to the buffer containing the data to be transmitted
• the number of bytes to be received
• a pointer to the buffer where received data will be stored

The number of bytes to be transmitted can be set to zero to indicate that the transfer is purely a block read
transfer. The number of bytes to be received can be set to zero to specify that the transfer is purely a block
write transfer.
The function MSS_SPI_clear_slave_select() can be used after the transfer is complete to prevent this slave
select line from being asserted during subsequent SPI transactions. A call to this function is only required if
the master is communicating with multiple slave devices.
Note: When performing block transfers using the A2F500 and A2F060 SmartFusion devices, the MSS SPI

asserts the target slave device’s chip select throughout the transfer in Motorola SPI modes 1 and 3
(i.e. protocol mode configuration is MSS_SPI_MODE1 or MSS_SPI_MODE3), whereas the slave
select is de-asserted between each byte transfer in Motorola SPI modes 0 and 2 (i.e. protocol mode
configuration is MSS_SPI_MODE0 or MSS_SPI_MODE2). A GPIO may be used to control the target

Theory of Operation

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 13

slave device’s chip select in Motorola SPI modes 0 and 2 if de-assertion of the slave select between
each byte transfer is not desired.

Note: When performing block transfers using the A2F200 SmartFusion device, it is recommended that you
use a GPIO to control the target slave device’s chip select input. This ensures reliable operations by
preventing the chip select signal from becoming de-asserted, before the transfer completes, as a
result of the SPI transmit FIFO becoming empty. This issue may occur where a high priority interrupt
is serviced in some other part of the system while the SPI transfer is taking place. This potential
problem only exists for block transfers on the A2F200 SmartFusion device.

SPI slave frame transfer control
The following functions are used as part of SPI slave frame transfers:

• MSS_SPI_set_slave_tx_frame()
• MSS_SPI_set_frame_rx_handler()

The MSS_SPI_set_slave_tx_frame() function specifies the frame data that will be returned to the SPI
master. The frame data specified through this function is the value that will be read over the SPI bus by the
remote SPI master when it initiates a transaction. A call to MSS_SPI_set_slave_tx_frame() is only required if
the MSS SPI slave is the target of SPI read transactions, i.e. if data is meant to be read from the
SmartFusion device over SPI.
The MSS_SPI_set_frame_rx_handler() function specifies the receive handler function that is called when a
frame of data has been received by the MSS SPI when it is configured as a slave. The receive handler
function specified through this call will process the frame data written, over the SPI bus, to the MSS SPI
slave by the remote SPI master. The receive handler function must be implemented as part of the
application. It is only required if the MSS SPI slave is the target of SPI frame write transactions.

SPI slave block transfer control
The following function is used as part of SPI slave block transfers:

• MSS_SPI_set_slave_block_buffers()
• MSS_SPI_set_cmd_handler()
• MSS_SPI_set_cmd_response()

The MSS_SPI_set_slave_block_buffers() function is used to configure a MSS SPI slave for block transfer
operations. It specifies:

• The buffer containing the data that will be returned to the remote SPI master
• The buffer where data received from the remote SPI master will be stored
• The handler function that will be called after the receive buffer is filled

The MSS_SPI_set_cmd_handler() function specifies a command handler function that will be called by the
driver once a specific number of bytes has been received after the SPI chip select signal becoming active.
The number of bytes making up the command part of the transaction is specified as part of the parameters
to function MSS_SPI_set_cmd_handler(). The command handler function is implemented as part of the
application making use of the SPI driver and would typically call the MSS_SPI_set_cmd_response()
function.
The MSS_SPI_set_cmd_response() function specifies the data that will be returned to the master. Typically
the MSS_SPI_set_slave_block_buffers() will have been called as part of the system initialization to specify
the data sent to the master while the command bytes are being received. The transmit buffer specified
though the call to MSS_SPI_set_slave_block_buffers() would also typically include one or more bytes
allowing for the turnaround time required for the command handler function to execute and call
MSS_SPI_set_cmd_response().
Note: The slave block transfer mode of operation cannot be used on the A2F200 SmartFusion device due

to slave mode limitations in the SPI hardware block of this device.

DMA block transfer control
The following functions are used as part of MSS SPI DMA transfers:

• MSS_SPI_disable()

Application Programming Interface

14 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

• MSS_SPI_set_transfer_byte_count()
• MSS_SPI_enable()
• MSS_SPI_tx_done()

The MSS SPI must first be disabled through a call to function MSS_SPI_disable(). The number of bytes to
be transferred is then set through a call to function MSS_SPI_set_transfer_byte_count(). The DMA transfer
is then initiated by a call to the MSS_PDMA_start() function provided by the MSS PDMA driver. The actual
DMA transfer will only start once the MSS SPI block has been re-enabled through a call to
MSS_SPI_enable(). The completion of the DMA driven SPI transfer can be detected through a call to
MSS_SPI_tx_done(). The direction of the SPI transfer, write or read, depends on the DMA channel
configuration. A SPI write transfer occurs when the DMA channel is configured to write data to the MSS SPI
block. A SPI read transfer occurs when the DMA channel is configured to read data from the MSS SPI block.

Types

mss_spi_protocol_mode_t

Prototype
typedef enum __mss_spi_protocol_mode_t {

MSS_SPI_MODE0 = 0x00000000,

MSS_SPI_TI_MODE = 0x01000004,

MSS_SPI_NSC_MODE = 0x00000008,

MSS_SPI_MODE2 = 0x01000000,

MSS_SPI_MODE1 = 0x02000000,

MSS_SPI_MODE3 = 0x03000000

} mss_spi_protocol_mode_t;

Description
This enumeration is used to define the settings for the SPI protocol mode bits, CPHA and CPOL. It is used
as a parameter to the MSS_SPI_configure_master_mode() and MSS_SPI_configure_slave_mode()
functions.

mss_spi_pclk_div_t

Prototype
typedef enum __mss_spi_pclk_div_t {

MSS_SPI_PCLK_DIV_2 = 0,

MSS_SPI_PCLK_DIV_4 = 1,

MSS_SPI_PCLK_DIV_8 = 2,

MSS_SPI_PCLK_DIV_16 = 3,

MSS_SPI_PCLK_DIV_32 = 4,

MSS_SPI_PCLK_DIV_64 = 5,

MSS_SPI_PCLK_DIV_128 = 6,

MSS_SPI_PCLK_DIV_256 = 7

} mss_spi_pclk_div_t;

Description
This enumeration specifies the divider to be applied to the APB bus clock in order to generate the SPI clock.
It is used as parameter to the MSS_SPI_configure_master_mode() and MSS_SPI_configure_slave_mode()
functions.

Types

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 15

mss_spi_slave_t

Prototype
typedef enum __mss_spi_slave_t {

MSS_SPI_SLAVE_0 = 0,

MSS_SPI_SLAVE_1 = 1,

MSS_SPI_SLAVE_2 = 2,

MSS_SPI_SLAVE_3 = 3,

MSS_SPI_SLAVE_4 = 4,

MSS_SPI_SLAVE_5 = 5,

MSS_SPI_SLAVE_6 = 6,

MSS_SPI_SLAVE_7 = 7,

MSS_SPI_MAX_NB_OF_SLAVES = 8

} mss_spi_slave_t;

Description
This enumeration is used to select a specific SPI slave device (0 to 7). It is used as a parameter to the
MSS_SPI_configure_master_mode(), MSS_SPI_set_slave_select(), and MSS_SPI_clear_slave_select()
functions.

mss_spi_frame_rx_handler_t

Prototype
void (*mss_spi_frame_rx_handler_t)(uint32_t rx_frame);

Description
This defines the function prototype that must be followed by MSS SPI slave frame receive handler functions.
These functions are registered with the MSS SPI driver through the MSS_SPI_set_frame_rx_handler()
function.

Declaring and Implementing Slave Frame Receive Handler Functions
Slave frame receive handler functions should follow the following prototype:
void slave_frame_receive_handler(uint32_t rx_frame);

The actual name of the receive handler is unimportant. You can use any name of your choice for the receive
frame handler. The rx_frame parameter will contain the value of the received frame.

mss_spi_block_rx_handler_t

Prototype
void (*mss_spi_block_rx_handler_t)(uint8_t * rx_buff , uint32_t rx_size);

Description
This defines the function prototype that must be followed by MSS SPI slave block receive handler functions.
These functions are registered with the MSS SPI driver through the MSS_SPI_set_slave_block_buffers()
function.

Declaring and Implementing Slave Block Receive Handler Functions
Slave block receive handler functions should follow the following prototype:
void mss_spi_block_rx_handler (uint8_t * rx_buff, uint32_t rx_size);

The actual name of the receive handler is unimportant. You can use any name of your choice for the receive
frame handler. The rx_buff parameter will contain a pointer to the start of the received block. The rx_size
parameter will contain the number of bytes of the received block.

Application Programming Interface

16 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

Constant Values

MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE
This constant defines a frame size of 8 bits when configuring an MSS SPI to perform block transfer data
transactions.
It must be used as the value for the frame_bit_length parameter of function
MSS_SPI_configure_master_mode() when performing block transfers between the MSS SPI master and the
target SPI slave.
This constant must also be used as the value for the frame_bit_length parameter of function
MSS_SPI_configure_slave_mode() when performing block transfers between the MSS SPI slave and the
remote SPI master.

Data structures

mss_spi_instance_t
There is one instance of this structure for each of the microcontroller subsystem's SPIs. Instances of this
structure are used to identify a specific SPI. A pointer to an instance of the mss_spi_instance_t structure is
passed as the first parameter to MSS SPI driver functions to identify which SPI should perform the
requested operation.

Global Variables

g_mss_spi0

Prototype
mss_spi_instance_t g_mss_spi0;

Description
This instance of mss_spi_instance_t holds all data related to the operations performed by MSS SPI 0. A
pointer to g_mss_spi0 is passed as the first parameter to MSS SPI driver functions to indicate that MSS SPI
0 should perform the requested operation.

g_mss_spi1

Prototype
mss_spi_instance_t g_mss_spi1;

Description
This instance of mss_spi_instance_t holds all data related to the operations performed by MSS SPI 1. A
pointer to g_mss_spi1 is passed as the first parameter to MSS SPI driver functions to indicate that MSS SPI
1 should perform the requested operation.

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 17

Functions

MSS_SPI_init

Prototype
void MSS_SPI_init

(

mss_spi_instance_t * this_spi

);

Description
The MSS_SPI_init() function initializes and hardware and data structures of one of the SmartFusion MSS
SPIs. The MSS_SPI_init() function must be called before any other MSS SPI driver functions can be called.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

Return Value
This function does not return a value.

Example
MSS_SPI_init(&g_mss_spi0);

Application Programming Interface

18 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

MSS_SPI_configure_master_mode

Prototype
void MSS_SPI_configure_master_mode

(

mss_spi_instance_t * this_spi,

mss_spi_slave_t slave,

mss_spi_protocol_mode_t protocol_mode,

mss_spi_pclk_div_t clk_rate,

uint8_t frame_bit_length

);

Description
The MSS_SPI_configure_master_mode() function configures the protocol mode, serial clock speed and
frame size for a specific target SPI slave device. It is used when the MSS SPI hardware block is used as a
SPI master. This function must be called once for each target SPI slave the SPI master is going to
communicate with. The SPI master hardware will be configured with the configuration specified by this
function during calls to MSS_SPI_set_slave_select().

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

slave
The slave parameter is used to identify a target SPI slave. The driver will hold the MSS SPI master
configuration required to communicate with this slave, as specified by the other function parameters.
Allowed values are:

• MSS_SPI_SLAVE_0
• MSS_SPI_SLAVE_1
• MSS_SPI_SLAVE_2
• MSS_SPI_SLAVE_3
• MSS_SPI_SLAVE_4
• MSS_SPI_SLAVE_5
• MSS_SPI_SLAVE_6
• MSS_SPI_SLAVE_7

protocol_mode
Serial peripheral interface operating mode. Allowed values are:

• MSS_SPI_MODE0
• MSS_SPI_MODE1
• MSS_SPI_MODE2
• MSS_SPI_MODE3
• MSS_SPI_TI_MODE
• MSS_SPI_NSC_MODE

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 19

clk_rate
Divider value used to generate serial interface clock signal from PCLK. Allowed values are:

• MSS_SPI_PCLK_DIV_2
• MSS_SPI_PCLK_DIV_4
• MSS_SPI_PCLK_DIV_8
• MSS_SPI_PCLK_DIV_16
• MSS_SPI_PCLK_DIV_32
• MSS_SPI_PCLK_DIV_64
• MSS_SPI_PCLK_DIV_128
• MSS_SPI_PCLK_DIV_256

frame_bit_length
Number of bits making up the frame. The maximum frame length is 32 bits. You must use the
MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE constant as the value for frame_bit_length when configuring
the MSS SPI master for block transfer transactions with the target SPI slave.

Return Value
This function does not return a value.

Example
 MSS_SPI_init(&g_mss_spi0);

 MSS_SPI_configure_master_mode

 (

 &g_mss_spi0,

 MSS_SPI_SLAVE_0,

 MSS_SPI_MODE2,

 MSS_SPI_PCLK_DIV_64,

 12

);

 MSS_SPI_configure_master_mode

 (

 &g_mss_spi0,

 MSS_SPI_SLAVE_1,

 MSS_SPI_TI_MODE,

 MSS_SPI_PCLK_DIV_128,

 MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE

);

Application Programming Interface

20 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

MSS_SPI_configure_slave_mode

Prototype
void MSS_SPI_configure_slave_mode

(

mss_spi_instance_t * this_spi,

mss_spi_protocol_mode_t protocol_mode,

mss_spi_pclk_div_t clk_rate,

uint8_t frame_bit_length

);

Description
The MSS_SPI_configure_slave_mode() function configure a MSS SPI block for operations as a slave SPI
device. It configures the SPI hardware with the selected SPI protocol mode and clock speed.
Note: The MSS SPI cannot be configured to operate as a NSC MICROWIRE protocol mode slave.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

protocol_mode
Serial peripheral interface operating mode. Allowed values are:

• MSS_SPI_MODE0
• MSS_SPI_MODE1
• MSS_SPI_MODE2
• MSS_SPI_MODE3
• MSS_SPI_TI_MODE

clk_rate
Divider value used to generate serial interface clock signal from PCLK. Allowed values are:

• MSS_SPI_PCLK_DIV_2
• MSS_SPI_PCLK_DIV_4
• MSS_SPI_PCLK_DIV_8
• MSS_SPI_PCLK_DIV_16
• MSS_SPI_PCLK_DIV_32
• MSS_SPI_PCLK_DIV_64
• MSS_SPI_PCLK_DIV_128
• MSS_SPI_PCLK_DIV_256

frame_bit_length
Number of bits making up the frame. The maximum frame length is 32 bits. You must use the
MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE constant as the value for frame_bit_length when configuring
the MSS SPI master for block transfer transactions with the target SPI slave.

Return Value
This function does not return a value.

Example
 MSS_SPI_init(&g_mss_spi0);

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 21

 MSS_SPI_configure_slave_mode

(

&g_mss_spi0,

MSS_SPI_MODE2,

MSS_SPI_PCLK_DIV_64,

MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE

);

Application Programming Interface

22 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

MSS_SPI_enable

Prototype
void MSS_SPI_enable

(

mss_spi_instance_t * this_spi

);

Description
The MSS_SPI_enable() function is used to re-enable a MSS SPI hardware block after it was disabled using
the SPI_disable() function.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

Return Value
This function does not return a value.

Example
 uint32_t transfer_size;

 uint8_t tx_buffer[8] = {1, 2, 3, 4, 5, 6, 7, 8};

 transfer_size = sizeof(tx_buffer);

 MSS_SPI_disable(&g_mss_spi0);

 MSS_SPI_set_transfer_byte_count(&g_mss_spi0, transfer_size);

 PDMA_start

 (

 PDMA_CHANNEL_0,

 (uint32_t)tx_buffer,

 PDMA_SPI1_TX_REGISTER,

 transfer_size

);

 MSS_SPI_enable(&g_mss_spi0);

 while(!MSS_SPI_tx_done(&g_mss_spi0))

 {

 ;

 }

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 23

MSS_SPI_disable

Prototype
void MSS_SPI_disable

(

mss_spi_instance_t * this_spi

);

Description
The MSS_SPI_disable() function is used to temporarily disable a MSS SPI hardware block. This function is
typically used in conjunction with the SPI_set_transfer_byte_count() function to setup a DMA controlled SPI
transmit transaction as the SPI_set_transfer_byte_count() function must only be used when the MSS SPI
hardware is disabled.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

Return Value
This function does not return a value.

Example
 uint32_t transfer_size;

 uint8_t tx_buffer[8] = {1, 2, 3, 4, 5, 6, 7, 8};

 transfer_size = sizeof(tx_buffer);

 MSS_SPI_disable(&g_mss_spi0);

 MSS_SPI_set_transfer_byte_count(&g_mss_spi0, transfer_size);

 PDMA_start

 (

 PDMA_CHANNEL_0,

 (uint32_t)tx_buffer,

 PDMA_SPI1_TX_REGISTER,

 transfer_size

);

 MSS_SPI_enable(&g_mss_spi0);

 while(!MSS_SPI_tx_done(&g_mss_spi0))

 {

 ;

 }

Application Programming Interface

24 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

MSS_SPI_set_slave_select

Prototype
void MSS_SPI_set_slave_select

(

mss_spi_instance_t * this_spi,

mss_spi_slave_t slave

);

Description
The MSS_SPI_slave_select() function is used by a MSS SPI master to select a specific slave. This function
causes the relevant slave select signal to be asserted while data is clocked out onto the SPI data line. This
function also configures the MSS SPI master with the configuration settings necessary for communication
with the slave. These configuration settings must be specified in a previous call to the
MSS_SPI_configure_master_mode() function.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

slave
The slave parameter is one of the mss_spi_slave_t enumerated constants identifying a slave.

Return Value
This function does not return a value.

Example
 const uint8_t frame_size = 25;

 const uint32_t master_tx_frame = 0x0100A0E1;

 MSS_SPI_init(&g_mss_spi0);

 MSS_SPI_configure_master_mode

 (

 &g_mss_spi0,

 MSS_SPI_SLAVE_0,

 MSS_SPI_MODE1,

 MSS_SPI_PCLK_DIV_256,

 frame_size

);

 MSS_SPI_set_slave_select(&g_mss_spi0, MSS_SPI_SLAVE_0);

 MSS_SPI_transfer_frame(&g_mss_spi0, master_tx_frame);

 MSS_SPI_clear_slave_select(&g_mss_spi0, MSS_SPI_SLAVE_0);

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 25

MSS_SPI_clear_slave_select

Prototype
void MSS_SPI_clear_slave_select

(

mss_spi_instance_t * this_spi,

mss_spi_slave_t slave

);

Description
The MSS_SPI_clear_slave_select() function is used by a MSS SPI master to deselect a specific slave. This
function causes the relevant slave select signal to be de-asserted.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

slave
The slave parameter is one of the mss_spi_slave_t enumerated constants identifying a slave.

Return Value
This function does not return a value.

Example
 const uint8_t frame_size = 25;

 const uint32_t master_tx_frame = 0x0100A0E1;

 MSS_SPI_init(&g_mss_spi0);

 MSS_SPI_configure_master_mode

 (

 &g_mss_spi0,

 MSS_SPI_SLAVE_0,

 MSS_SPI_MODE1,

 MSS_SPI_PCLK_DIV_256,

 frame_size

);

 MSS_SPI_set_slave_select(&g_mss_spi0, MSS_SPI_SLAVE_0);

 MSS_SPI_transfer_frame(&g_mss_spi0, master_tx_frame);

 MSS_SPI_clear_slave_select(&g_mss_spi0, MSS_SPI_SLAVE_0);

Application Programming Interface

26 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

MSS_SPI_transfer_frame

Prototype
uint32_t MSS_SPI_transfer_frame

(

mss_spi_instance_t * this_spi,

uint32_t tx_bits

);

Description
The MSS_SPI_transfer_frame() function is used by a MSS SPI master to transmit and receive a frame up to
32 bits long. This function is typically used for transactions with a SPI slave where the number of transmit
and receive bits is not divisible by 8.
Note: The maximum frame size in NSC Microwire mode is 24 bits organized as an 8 bits command followed

by up to 16 bits of data.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

tx_bits
The tx_bits parameter is a 32-bit word containing the value that will be transmitted.
Note: The bit length of the value to be transmitted to the slave must be specified as the frame_bit_length

parameter in a previous call to the MSS_SPI_configure_master_mode() function.

Return Value
This function returns a 32-bit word containing the value that is received from the slave.

Example
 const uint8_t frame_size = 25;

 const uint32_t master_tx_frame = 0x0100A0E1;

 uint32_t master_rx;

 MSS_SPI_init(&g_mss_spi0);

 MSS_SPI_configure_master_mode

 (

 &g_mss_spi0,

 MSS_SPI_SLAVE_0,

 MSS_SPI_MODE1,

 MSS_SPI_PCLK_DIV_256,

 frame_size

);

 MSS_SPI_set_slave_select(&g_mss_spi0, MSS_SPI_SLAVE_0);

 master_rx = MSS_SPI_transfer_frame(&g_mss_spi0, master_tx_frame);

 MSS_SPI_clear_slave_select(&g_mss_spi0, MSS_SPI_SLAVE_0);

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 27

MSS_SPI_transfer_block

Prototype
void MSS_SPI_transfer_block

(

mss_spi_instance_t * this_spi,

const uint8_t * cmd_buffer,

uint16_t cmd_byte_size,

uint8_t * rd_buffer,

uint16_t rd_byte_size

);

Description
The MSS_SPI_transfer_block() function is used by MSS SPI masters to transmit and receive blocks of data
organized as a specified number of bytes. It can be used for:

• Writing a data block to a slave
• Reading a data block from a slave
• Sending a command to a slave followed by reading the outcome of the command in a single SPI

transaction. This function can be used alongside peripheral DMA functions to perform the actual
moving to and from the SPI hardware block using peripheral DMA.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

cmd_buffer
The cmd_buffer parameter is a pointer to the buffer containing the data that will be sent by the master from
the beginning of the transfer. This pointer can be null (0) if the master does not need to send a command
before reading data or if the command part of the transfer is written to the SPI hardware block using DMA.

cmd_byte_size
The cmd_byte_size parameter specifies the number of bytes contained in cmd_buffer that will be sent. A
value of 0 indicates that no data needs to be sent to the slave. A non-zero value while the cmd_buffer
pointer is 0 is used to indicate that the command data will be written to the SPI hardware block using DMA.

rd_buffer
The rd_buffer parameter is a pointer to the buffer where the data received from the slave after the command
has been sent will be stored.

rd_byte_size
The rd_byte_size parameter specifies the number of bytes to be received from the slave and stored in the
rd_buffer. A value of 0 indicates that no data is to be read from the slave. A non-zero value while the
rd_buffer pointer is null (0) is used to specify the receive size when using DMA to read from the slave.
Note: When using DMA, all bytes received from the slave, including the bytes received while the command

is sent, will be read through DMA.

Application Programming Interface

28 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

Return Value
This function does not return a value.

Example
Polled write transfer example
 uint8_t master_tx_buffer[MASTER_TX_BUFFER] =

 {

 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A

 };

 MSS_SPI_init(&g_mss_spi0);

 MSS_SPI_configure_master_mode

 (

 &g_mss_spi0,

 MSS_SPI_SLAVE_0,

 MSS_SPI_MODE1,

 MSS_SPI_PCLK_DIV_256,

 MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE

);

 MSS_SPI_set_slave_select(&g_mss_spi0, MSS_SPI_SLAVE_0);

 MSS_SPI_transfer_block

 (

 &g_mss_spi0,

 master_tx_buffer,

 sizeof(master_tx_buffer),

 0,

 0

);

 MSS_SPI_clear_slave_select(&g_mss_spi0, MSS_SPI_SLAVE_0);

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 29

MSS_SPI_set_slave_tx_frame

Prototype
void MSS_SPI_set_slave_tx_frame

(

mss_spi_instance_t * this_spi,

uint32_t frame_value

);

Description
The MSS_SPI_set_slave_tx_frame() function is used by MSS SPI slaves to specify the frame that will be
transmitted when a transaction is initiated by the SPI master.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

frame_value
The frame_value parameter contains the value of the frame to be sent to the master.
Note: The bit length of the value to be transmitted to the master must be specified as the frame_bit_length

parameter in a previous call to the MSS_SPI_configure_slave_mode() function.

Return Value
This function does not return a value.

Example
 const uint16_t frame_size = 25;

 const uint32_t slave_tx_frame = 0x0110F761;

 uint32_t master_rx;

 MSS_SPI_init(&g_mss_spi1);

 MSS_SPI_configure_slave_mode

(

&g_mss_spi0,

MSS_SPI_MODE2,

MSS_SPI_PCLK_DIV_64,

frame_size

);

 MSS_SPI_set_slave_tx_frame(&g_mss_spi1, slave_tx_frame);

Application Programming Interface

30 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

MSS_SPI_set_slave_block_buffers

Prototype
void MSS_SPI_set_slave_block_buffers

(

mss_spi_instance_t * this_spi,

const uint8_t * tx_buffer,

uint32_t tx_buff_size,

uint8_t * rx_buffer,

uint32_t rx_buff_size,

mss_spi_block_rx_handler_t block_rx_handler

);

Description
The MSS_SPI_set_slave_block_buffers() function is used to configure an MSS SPI slave for block transfer
operations. It specifies one or more of the following:

• The data that will be transmitted when accessed by a master.
• The buffer where data received from a master will be stored.
• The handler function that must be called after the receive buffer has been filled.
• The number of bytes that must be received from the master before the receive handler function is

called.
These parameters allow the following use cases:

• Slave performing an action after receiving a block of data from a master containing a command.
The action will be performed by the receive handler based on the content of the receive data buffer.

• Slave returning a block of data to the master. The type of information is always the same but the
actual values change over time. For example, returning the voltage of a predefined set of analog
inputs.

• Slave returning data based on a command contained in the first part of the SPI transaction. For
example, reading the voltage of the analog input specified by the first data byte by the master. This
is achieved by using the MSS_SPI_set_slave_block_buffers() function in conjunction with functions
MSS_SPI_set_cmd_handler() and MSS_SPI_set_cmd_response().
Refer to the MSS_SPI_set_cmd_handler() function description for details of this use case.

Note: This function cannot be used on the A2F200 SmartFusion device due to slave mode limitations in the
SPI hardware block of this device.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

tx_buffer
The tx_buffer parameter is a pointer to a buffer containing the data that will be sent to the master. This
parameter can be set to 0 if the MSS SPI slave is not intended to be the target of SPI read.

tx_buff_size
The tx_buff_size parameter specifies the number of bytes that will be transmitted by the SPI slave. It is the
number of bytes contained in the tx_buffer. This parameter can be set to 0 if the MSS SPI slave is not
intended to be the target of SPI read transactions.

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 31

rx_buffer
The rx_buffer parameter is a pointer to the buffer where data received from the master will be stored. This
parameter can be set to 0 if the MSS SPI slave is not intended to be the target of SPI write or write-read
transactions.

rx_buff_size
The rx_buff_size parameter specifies the size of the receive buffer. It is also the number of bytes that must
be received before the receive handler is called, if a receive handler is specified using the block_rx_handler
parameter. This parameter can be set to 0 if the MSS SPI slave is not intended to be the target of SPI write
or write-read transactions.

block_rx_handler
The block_rx_handler parameter is a pointer to a function that will be called when the receive buffer has
been filled. This parameter can be set to 0 if the MSS SPI slave is not intended to be the target of SPI write
or write-read transactions.

Return Value
This function does not return a value.

Example
Slave Performing Operation Based on Master Command
In this example the SPI slave is configured to receive 10 bytes of data or command from the SPI slave and
process the data received from the master.
 uint32_t nb_of_rx_handler_calls = 0;

 void spi1_block_rx_handler_b

 (

 uint8_t * rx_buff,

 uint16_t rx_size

)

 {

 ++nb_of_rx_handler_calls;

 }

 void setup_slave(void)

 {

 uint8_t slave_rx_buffer[10] =

 {

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

 };

 MSS_SPI_init(&g_mss_spi1);

 MSS_SPI_configure_slave_mode

(

 &g_mss_spi0,

 MSS_SPI_MODE2,

 MSS_SPI_PCLK_DIV_64,

 MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE

);

 MSS_SPI_set_slave_block_buffers

 (

 &g_mss_spi1,

Application Programming Interface

32 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

 0,

 0,

 slave_rx_buffer,

 sizeof(master_tx_buffer),

 spi1_block_rx_handler_b

);

 }

Slave Responding to Command
In this example the slave will return data based on a command sent by the master. The first part of the
transaction is handled using polled mode where each byte returned to the master is written as part of the
interrupt service routine. The second part of the transaction, where the slave returns data based on the
command value, is sent using a DMA transfer initiated by the receive handler.
The MSS_SPI_set_slave_block_buffers() function specifies that five bytes of preamble data will be
transmitted before the actual response is sent by the slave. These five bytes will be transmitted while the
one byte command, followed by four turnaround bytes, is received. The turnaround bytes give time to the
slave to call the command handler and setup the PDMA transfer that will return the response data.

 #define SLAVE_NB_OF_COMMANDS 4

 #define SLAVE_PACKET_LENGTH 8

 const uint8_t g_slave_data_array[SLAVE_NB_OF_COMMANDS][SLAVE_PACKET_LENGTH] =

 {

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18},

 {0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28},

 {0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}

 };

 void spi1_rx_handler_d

 (

 uint8_t * rx_buff,

 uint32_t rx_size

)

 {

 uint8_t index;

 const uint8_t * p_response;

 index = rx_buff[0];

 if(index < 4)

 {

 p_response = &g_slave_data_array[index][0];

 }

 else

 {

 p_response = &g_slave_data_array[0][0];

 }

 PDMA_start

 (

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 33

 PDMA_CHANNEL_0,

 (uint32_t)p_response,

 PDMA_SPI1_TX_REGISTER,

 SLAVE_PACKET_LENGTH

);

 }

 void setup_slave(void)

 {

 uint8_t slave_tx_buffer[16] = { 0x12, 0x34, 0x56, 0x78, 0x9A };

 PDMA_init();

 PDMA->RATIO_HIGH_LOW = 0xFF;

 PDMA_configure

 (

 PDMA_CHANNEL_0,

 PDMA_TO_SPI_1,

 PDMA_LOW_PRIORITY | PDMA_BYTE_TRANSFER | PDMA_INC_SRC_ONE_BYTE,

 PDMA_DEFAULT_WRITE_ADJ

);

 MSS_SPI_init(&g_mss_spi1);

 MSS_SPI_configure_slave_mode

 (

 &g_mss_spi1,

 MSS_SPI_MODE1,

 MSS_SPI_PCLK_DIV_256,

 MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE

);

 MSS_SPI_set_slave_block_buffers

 (

 &g_mss_spi1,

 slave_tx_buffer,

 5,

 slave_rx_buffer,

 sizeof(slave_rx_buffer),

 spi1_rx_handler_d

);

 MSS_SPI_set_cmd_handler

 (

 &g_mss_spi1,

 spi1_slave_cmd_handler,

 1

);

 }

Application Programming Interface

34 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

MSS_SPI_set_frame_rx_handler

Prototype
void MSS_SPI_set_frame_rx_handler

(

mss_spi_instance_t * this_spi,

mss_spi_frame_rx_handler_t rx_handler

);

Description
The MSS_SPI_set_frame_rx_handler() function is used by MSS SPI slaves to specify the receive handler
function that will be called by the MSS SPI driver interrupt handler when a frame of data is received by the
MSS SPI slave.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

rx_handler
The rx_handler parameter is a pointer to the frame receive handler that must be called when a frame is
received by the MSS SPI slave.

Return Value
This function does not return a value.

Example
 uint32_t g_slave_rx_frame = 0;

 void slave_frame_handler(uint32_t rx_frame)

 {

 g_slave_rx_frame = rx_frame;

 }

 int setup_slave(void)

 {

 const uint16_t frame_size = 25;

 MSS_SPI_init(&g_mss_spi1);

 MSS_SPI_configure_slave_mode

 (

 &g_mss_spi0,

 MSS_SPI_MODE2,

 MSS_SPI_PCLK_DIV_64,

 frame_size

);

 MSS_SPI_set_frame_rx_handler(&g_mss_spi1, slave_frame_handler);

 }

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 35

MSS_SPI_set_transfer_byte_count

Prototype
void MSS_SPI_set_transfer_byte_count

(

mss_spi_instance_t * this_spi,

uint16_t byte_count

);

Description
The MSS_SPI_set_transfer_byte_count() function is used as part of setting up a SPI transfer using DMA. It
specifies the number of bytes that must be transferred before MSS_SPI_tx_done() indicates that the transfer
is complete.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

byte_count
The byte_count parameter specifies the number of bytes that must be transferred by the SPI hardware block
before MSS_SPI_tx_done() indicates that the transfer is complete.

Return Value
This function does not return a value.

Example
 uint32_t transfer_size;

 uint8_t tx_buffer[8] = {1, 2, 3, 4, 5, 6, 7, 8};

 transfer_size = sizeof(tx_buffer);

 MSS_SPI_disable(&g_mss_spi0);

 MSS_SPI_set_transfer_byte_count(&g_mss_spi0, transfer_size);

 PDMA_start(PDMA_CHANNEL_0, (uint32_t)tx_buffer, PDMA_SPI1_TX_REGISTER, transfer_size);

 MSS_SPI_enable(&g_mss_spi0);

 while(!MSS_SPI_tx_done(&g_mss_spi0))

 {

 ;

 }

Application Programming Interface

36 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

MSS_SPI_tx_done

Prototype
uin32_t MSS_SPI_tx_done

(

mss_spi_instance_t * this_spi

);

Description
The MSS_SPI_tx_done() function is used to find out if a DMA controlled transfer has completed.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block to be initialized. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with
MSS SPI 0 and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1
global data structure defined within the SPI driver.

Return Value
This function indicates if a SPI transfer has completed. It returns 1 if the number of bytes specified through a
previous call to MSS_SPI_set_transfer_byte_count() has been sent by the MSS SPI. It returns 0 if some
bytes remain to be sent.

Example
 uint32_t transfer_size;

 uint8_t tx_buffer[8] = {1, 2, 3, 4, 5, 6, 7, 8};

 transfer_size = sizeof(tx_buffer);

 MSS_SPI_disable(&g_mss_spi0);

 MSS_SPI_set_transfer_byte_count(&g_mss_spi0, transfer_size);

 PDMA_start

 (

 PDMA_CHANNEL_0,

 (uint32_t)tx_buffer,

 PDMA_SPI1_TX_REGISTER,

 transfer_size

);

 MSS_SPI_enable(&g_mss_spi0);

 while(!MSS_SPI_tx_done(&g_mss_spi0))

 {

 ;

 }

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 37

MSS_SPI_set_cmd_handler

Prototype
void MSS_SPI_set_cmd_handler

(

 mss_spi_instance_t * this_spi,

 mss_spi_block_rx_handler_t cmd_handler,

 uint32_t cmd_size

);

Description
The MSS_SPI_set_cmd_handler() function specifies a command handler function that will be called when
the number of bytes received reaches the command size specified as parameter.
This function is used by SPI slaves performing block transfers. Its purpose is to allow a SPI slave to decide
the data that will be returned to the master while a SPI transaction is taking place. Typically, one or more
command bytes are sent by the master to request some specific data. The slave interprets the command
byte(s) while one or more turn-around bytes are transmitted. The slave adjusts its transmit data buffer based
on the command during the turnaround time.
The diagram below provides an example of the use of this function where the SPI slave returns data bytes
D0 to D6 based on the value of a command. The 3 bytes long command is made up of a command opcode
byte followed by an address byte followed by a size byte. The cmd_handler() function specified through an
earlier call to MSS_SPI_set_cmd_handler() is called by the SPI driver once the third byte is received. The
cmd_handler() function interprets the command bytes and calls MSS_SPI_set_cmd_response() to set the
SPI slave's response transmit buffer with the data to be transmitted after the turn around bytes (T0 to T3).
The number of turnaround bytes must be sufficient to give enough time for the cmd_handler() to execute.
The number of turnaround bytes is specified by the protocol used on top of the SPI transport layer so that
master and slave agree on the number of turnaround bytes.

C A S T0 T1 T2 T3 T4 D0 D1 D2 D3 D4 D5 D6

Command Turnaround Data

t0 t1 t2 t3 t4

cmd_handler() called here.

MSS_SPI_set_cmd_response() called here by
implementation of cmd_handler() to set the data that
will be transmitted by the SPI slave.

Note: This function cannot be used on the A2F200 SmartFusion device due to slave mode limitations in the

SPI hardware block of this device.

Application Programming Interface

38 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block used. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with MSS SPI 0
and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1 global data
structure defined within the SPI driver.

cmd_handler
The cmd_handler parameter is a pointer to a function with prototype:
void cmd_handler(uint8_t * rx_buff, uint32_t rx_size);

It specifies the function that will be called when the number of bytes specified by parameter cmd_size has
been received.

cmd_size
The cmd_size parameter specifies the number of bytes that must be received before the command handler
function specified by cmd_handler is called.

Return Value
This function does not return a value.

Example
The example below demonstrates how to configure SPI1 to implement the protocol given as example in the
diagram above. The configure_slave() function configures SPI1. It sets the receive and transmit buffers. The
transmit buffer specified through the call to MSS_SPI_set_slave_block_buffers() specifies the data that will
be returned to the master in bytes between t0 and t3. These are the bytes that will be sent to the master
while the master transmits the command and dummy bytes. The spi1_slave_cmd_handler() function will be
called by the driver at time t1 after the 3 command bytes have been received. The spi1_block_rx_handler()
function will be called by the driver at time t4 when the transaction completes when the slave select signal
becomes de-asserted.

 #define COMMAND_SIZE 3

 #define NB_OF_DUMMY_BYTES 4

 #define MAX_TRANSACTION_SIZE 16

 uint8_t slave_tx_buffer[COMMAND_SIZE + NB_OF_DUMMY_BYTES];

 uint8_t slave_rx_buffer[MAX_TRANSACTION_SIZE];

 void configure_slave(void)

 {

 MSS_SPI_init(&g_mss_spi1);

 MSS_SPI_configure_slave_mode

 (

 &g_mss_spi1,

 MSS_SPI_MODE1,

 MSS_SPI_PCLK_DIV_256,

 MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE

);

 MSS_SPI_set_slave_block_buffers

 (

 &g_mss_spi1,

 slave_tx_buffer,

 COMMAND_SIZE + NB_OF_DUMMY_BYTES,

Functions

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 39

 slave_rx_buffer,

 sizeof(slave_rx_buffer),

 spi1_block_rx_handler

);

 MSS_SPI_set_cmd_handler

 (

 &g_mss_spi1,

 spi1_slave_cmd_handler,

 COMMAND_SIZE

);

 }

 void spi1_slave_cmd_handler

 (

 uint8_t * rx_buff,

 uint32_t rx_size

)

 {

 uint8_t command;

 uint8_t address;

 uint8_t size;

 uint8_t * p_response;

 uint32_t response_size;

 command = rx_buff[0];

 address = rx_buff[1];

 size = rx_buff[2];

 p_response = get_response_data(command, address, size, &response_size);

 MSS_SPI_set_cmd_response(&g_mss_spi1, p_response, response_size);

 }

 void spi1_block_rx_handler

 (

 uint8_t * rx_buff,

 uint32_t rx_size

)

 {

 process_rx_data(rx_buff, rx_size);

 }

Application Programming Interface

40 SmartFusion™ MSS SPI Driver User's Guide Version 2.1

MSS_SPI_set_cmd_response

Prototype
void MSS_SPI_set_cmd_response

(

 mss_spi_instance_t * this_spi,

 const uint8_t * resp_tx_buffer,

 uint32_t resp_buff_size

);

Description
The MSS_SPI_set_cmd_response() function specifies the data that will be returned to the master. See the
description of MSS_SPI_set_cmd_handler() for details.
Note: This function cannot be used on the A2F200 SmartFusion device due to slave mode limitations in the

SPI hardware block of this device.

Parameters
this_spi
The this_spi parameter is a pointer to an mss_spi_instance_t structure identifying the MSS SPI hardware
block used. There are two such data structures, g_mss_spi0 and g_mss_spi1, associated with MSS SPI 0
and MSS SPI 1 respectively. This parameter must point to either the g_mss_spi0 or g_mss_spi1 global data
structure defined within the SPI driver.

resp_tx_buffer
The resp_tx_buffer parameter is a pointer to the buffer containing the data that must be returned to the host
in the data phase of a SPI transaction.

resp_buff_size
The resp_buff_size parameter specifies the size of the buffer pointed to by the resp_tx_buffer parameter.

Return Value
This function does not return a value.

Customer Service

SmartFusion™ MSS SPI Driver User's Guide Version 2.1 41

Product Support

Microsemi backs its products with various support services including Customer Service, a Customer
Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Microsemi and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.
Actel's customer service representatives are available Monday through Friday, from 8 AM to 5 PM Pacific
Time, to answer non-technical questions.
Phone: +1 650.318.2470

Customer Technical Support Center
Microsemi staffs its Customer Technical Support Center with highly skilled engineers who can help answer
your hardware, software, and design questions. The Customer Technical Support Center spends a great
deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our
online resources. It is very likely we have already answered your questions.

Technical Support
Microsemi customers can receive technical support on Microsemi SoC products by calling Technical
Support Hotline anytime Monday through Friday. Customers also have the option to interactively submit and
track cases online at My Cases or submit questions through email anytime during the week.
Web: www.actel.com/mycases
Phone (North America): 1.800.262.1060
Phone (International): +1 650.318.4460
Email: soc_tech@microsemi.com

ITAR Technical Support
Microsemi customers can receive ITAR technical support on Microsemi SoC products by calling ITAR
Technical Support Hotline: Monday through Friday, from 9 AM to 6 PM Pacific Time. Customers also have
the option to interactively submit and track cases online at My Cases or submit questions through email
anytime during the week.
Web: www.actel.com/mycases
Phone (North America): 1.888.988.ITAR
Phone (International): +1 650.318.4900
Email: soc_tech_itar@microsemi.com

http://www.actel.com/mycases�
mailto:soc_tech@microsemi.com�
http://www.actel.com/mycases�
mailto:soc_tech@microsemi.com�
http://www.actel.com/mycases�
mailto:soc_tech_itar@microsemi.com�
http://www.actel.com/mycases�
mailto:soc_tech_itar@microsemi.com�

5-02-00284-1/05.11

Microsemi Corporate Headquarters
2381 Morse Avenue, Irvine, CA 92614
Phone; 949.221.7100 · Fax: 949.756.0308
www.microsemi.com

Microsemi Corporation (NASDAQ: MSCC) offers the industry’s most comprehensive portfolio of
semiconductor technology. Committed to solving the most critical system challenges,
Microsemi’s products include high-performance, high-reliability analog and RF devices, mixed
signal integrated circuits, FPGAs and customizable SoCs, and complete subsystems. Microsemi
serves leading system manufacturers around the world in the defense, security, aerospace,
enterprise, commercial, and industrial markets. Learn more at www.microsemi.com .

© 2011 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi
Corporation. All other trademarks and service marks are the property of their respective owners.

http://www.microsemi.com/�
http://www.microsemi.com/�

	Introduction
	Features
	Supported Hardware IP

	Files Provided
	Documentation
	Driver Source Code
	mss_spi.h
	mss_spi.c

	Example Code

	Driver Deployment
	Driver Configuration
	Application Programming Interface
	Theory of Operation
	Initialization
	Configuration
	Master configuration
	Slave configuration

	SPI master frame transfer control
	SPI master block transfer control
	SPI slave frame transfer control
	SPI slave block transfer control
	DMA block transfer control

	Types
	mss_spi_protocol_mode_t
	Prototype
	Description

	mss_spi_pclk_div_t
	Prototype
	Description

	mss_spi_slave_t
	Prototype
	Description

	mss_spi_frame_rx_handler_t
	Prototype
	Description
	Declaring and Implementing Slave Frame Receive Handler Functions

	mss_spi_block_rx_handler_t
	Prototype
	Description
	Declaring and Implementing Slave Block Receive Handler Functions

	Constant Values
	MSS_SPI_BLOCK_TRANSFER_FRAME_SIZE

	Data structures
	mss_spi_instance_t

	Global Variables
	g_mss_spi0
	Prototype
	Description

	g_mss_spi1
	Prototype
	Description

	Functions
	MSS_SPI_init
	Prototype
	Description
	Parameters
	this_spi

	Return Value
	Example

	MSS_SPI_configure_master_mode
	Prototype
	Description
	Parameters
	this_spi
	slave
	protocol_mode
	clk_rate
	frame_bit_length

	Return Value
	Example

	MSS_SPI_configure_slave_mode
	Prototype
	Description
	Parameters
	this_spi
	protocol_mode
	clk_rate
	frame_bit_length

	Return Value
	Example

	MSS_SPI_enable
	Prototype
	Description
	Parameters
	this_spi

	Return Value
	Example

	MSS_SPI_disable
	Prototype
	Description
	Parameters
	this_spi

	Return Value
	Example

	MSS_SPI_set_slave_select
	Prototype
	Description
	Parameters
	this_spi
	slave

	Return Value
	Example

	MSS_SPI_clear_slave_select
	Prototype
	Description
	Parameters
	this_spi
	slave

	Return Value
	Example

	MSS_SPI_transfer_frame
	Prototype
	Description
	Parameters
	this_spi
	tx_bits

	Return Value
	Example

	MSS_SPI_transfer_block
	Prototype
	Description
	Parameters
	this_spi
	cmd_buffer
	cmd_byte_size
	rd_buffer
	rd_byte_size

	Return Value
	Example
	Polled write transfer example

	MSS_SPI_set_slave_tx_frame
	Prototype
	Description
	Parameters
	this_spi
	frame_value

	Return Value
	Example

	MSS_SPI_set_slave_block_buffers
	Prototype
	Description
	Parameters
	this_spi
	tx_buffer
	tx_buff_size
	rx_buffer
	rx_buff_size
	block_rx_handler

	Return Value
	Example
	Slave Performing Operation Based on Master Command
	Slave Responding to Command

	MSS_SPI_set_frame_rx_handler
	Prototype
	Description
	Parameters
	this_spi
	rx_handler

	Return Value
	Example

	MSS_SPI_set_transfer_byte_count
	Prototype
	Description
	Parameters
	this_spi
	byte_count

	Return Value
	Example

	MSS_SPI_tx_done
	Prototype
	Description
	Parameters
	this_spi

	Return Value
	Example

	MSS_SPI_set_cmd_handler
	Prototype
	Description
	Parameters
	this_spi
	cmd_handler
	cmd_size

	Return Value
	Example

	MSS_SPI_set_cmd_response
	Prototype
	Description
	Parameters
	this_spi
	resp_tx_buffer
	resp_buff_size

	Return Value

	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	ITAR Technical Support

