

Actel SmartFusion™ MSS I2C Driver
User’s Guide

Version 2.0

http://www.actel.com/survey/rating/?f=MSS_I2C_Driver_UG.pdf�

Actel Corporation, Mountain View, CA 94043
© 2010 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200187-1

Release: February 2010

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of merchantability
or fitness for a particular purpose. Information in this document is subject to change without notice. Actel assumes no
responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized person
without prior written consent of Actel Corporation.

Trademarks

Actel, Actel Fusion, IGLOO, Libero, Pigeon Point, ProASIC, SmartFusion and the associated logos are trademarks
or registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their
respective owners.

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 3

Table of Contents

Introduction .. 5
Features .. 5
Supported Hardware IP ... 5

Files Provided ... 7
Documentation .. 7
Driver Source Code ... 7
Example Code .. 8

Driver Deployment ... 9

Driver Configuration... 11

Application Programming Interface ... 13
Theory of Operation .. 13
Types .. 17
Constant Values ... 18
Data structures ... 19
Global Variables ... 19
Functions ... 20

Product Support .. 31
Customer Service ... 31
Actel Customer Technical Support Center ... 31
Actel Technical Support .. 31
Website .. 31
Contacting the Customer Technical Support Center .. 31

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 5

Introduction

The SmartFusion™ microcontroller subsystem (MSS) includes two I2C peripherals for serial communication. This
driver provides a set of functions for controlling the MSS I2Cs as part of a bare metal system where no operating system
is available. These drivers can be adapted for use as part of an operating system, but the implementation of the
adaptation layer between this driver and the operating system's driver model is outside the scope of this driver.

Features
The MSS I2C driver provides the following features:

• Support for configuring each MSS I2C peripheral
• I2C master operations
• I2C slave operations

The MSS I2C driver is provided as C source code.

Supported Hardware IP
The MSS I2C bare metal driver can be used with Actel’s MSS_I2C IP version 0.2 or higher included in the
SmartFusion MSS.

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 7

Files Provided

The files provided as part of the MSS I2C driver fall into three main categories: documentation, driver source code, and
example projects. The driver is distributed via the Actel Firmware Catalog, which provides access to the documentation
for the driver, generates the driver’s source files into an application project, and generates example projects that
illustrate how to use the driver.

Documentation
The Actel Firmware Catalog provides access to these documents for the driver:

• User’s guide (this document)
• A copy of the license agreement for the driver source code
• Release notes

Driver Source Code
The Actel Firmware Catalog generates the driver’s source code into a drivers\mss_i2c subdirectory of the selected
software project directory. The files making up the driver are detailed below.

mss_i2c.h
This header file contains the public application programming interface (API) of the MSS I2C software driver. This file
should be included in any C source file that uses the MSS I2C software driver.

mss_i2c.c
This C source file contains the implementation of the MSS I2C software driver.

Files Provided

8 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

Example Code
The Actel Firmware Catalog provides access to example projects illustrating the use of the driver. Each example project
is self contained and is targeted at a specific processor and software toolchain combination. The example projects are
targeted at the FPGA designs in the hardware development tutorials supplied with Actel’s development boards. The
tutorial designs can be found on the Actel Development Kit web page (www.actel.com/products/hardware).

http://www.actel.com/products/hardware�
http://www.actel.com/products/hardware�

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 9

Driver Deployment

This driver is intended to be deployed from the Actel Firmware Catalog into a software project by generating the
driver’s source files into the project directory. The driver uses the SmartFusion ARM® Cortex™ Microcontroller
Software Interface Standard – Peripheral Access Layer (CMSIS-PAL) to access MSS hardware registers. You must
ensure that the SmartFusion CMSIS-PAL is either included in the software tool chain used to build your project or is
included in your project. The most up-to-date SmartFusion CMSIS-PAL files can be obtained using the Actel
Firmware Catalog.
The following example shows the intended directory structure for a SoftConsole ARM® Cortex™-M3 project targeted
at the SmartFusion MSS. This project uses the MSS I2C and MSS UART drivers. Both of these drivers rely on
SmartFusion CMSIS-PAL for accessing the hardware. The contents of the drivers directory result from generating the
source files for each driver into the project. The contents of the CMSIS directory result from generating the source files
for the SmartFusion CMSIS-PAL into the project.

Figure 1 · SmartFusion MSS Project Example

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 11

Driver Configuration

The configuration of all features of the MSS I2Cs is covered by this driver with the exception of the SmartFusion
IOMUX configuration. SmartFusion allows multiple non-concurrent uses of some external pins through IOMUX
configuration. This feature allows optimization of external pin usage by assigning external pins for use by either the
microcontroller subsystem or the FPGA fabric. The MSS I2Cs serial signals are routed through IOMUXes to the
SmartFusion device external pins. These IOMUXes are automatically configured correctly by the MSS configurator
tool in the hardware flow when the MSS I2Cs are enabled in that tool. You must ensure that the MSS I2Cs are enabled
by the MSS configurator tool in the hardware flow; otherwise the serial inputs and outputs will not be connected to the
chip's external pins. For more information on IOMUX, refer to the IOMUX section of the SmartFusion Datasheet.
The base address, register addresses and interrupt number assignment for the MSS I2C blocks are defined as constants
in the SmartFusion CMSIS-PAL. You must ensure that the SmartFusion CMSIS-PAL is either included in the
software toolchain used to build your project or is included in your project.

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 13

Application Programming Interface

This section describes the driver’s API. The functions and related data structures described in this section are used by
the application programmer to control the MSS I2C peripheral from the user’s application.

Theory of Operation
The MSS I2C driver functions are grouped into the following categories:

• Initialization and configuration functions
• Interrupt control
• I2C master operations – functions to handle write, read and write-read transactions
• I2C slave operations – functions to handle write, read and write-read transactions

Initialization and Configuration
The MSS I2C driver is initialized through a call to the MSS_I2C_init() function. This function takes the MSS I2C's
configuration as parameters. The MSS_I2C_init() function must be called before any other MSS I2C driver functions
can be called. The first parameter of the MSS_I2C_init() function is a pointer to one of two global data structures used
by the driver to store state information for each MSS I2C. A pointer to these data structures is also used as first
parameter to any of the driver functions to identify which MSS I2C will be used by the called function. The names of
these two data structures are g_mss_i2c0 and g_mss_i2c1. Therefore any call to an MSS I2C driver function should be of
the form MSS_I2C_function_name(&g_mss_i2c0, ...) or MSS_I2C_function_name(&g_mss_i2c1, ...).
The MSS_I2C_init() function call for each MSS I2C also takes the I2C serial address assigned to the MSS I2C and the
serial clock divider to be used to generate its I2C clock as configuration parameters.

Interrupt Control
The MSS I2C driver is interrupt driven and it enables and disables the generation of interrupts by MSS I2C at various
times when it is operating. The driver automatically handles MSS I2C interrupts internally, including enabling
disabling and clearing MSS I2C interrupts in the Cortex-M3 interrupt controller when required.
The function MSS_I2C_register_write_handler() is used to register a write handler function with the MSS I2C driver
that it will call on completion of an I2C write transaction by the MSS I2C slave. It is your responsibility to create and
register the implementation of this handler function that will process or trigger the processing of the received data.

Transaction Types
The MSS I2C driver is designed to handle three types of 2transactions:

• Write transactions
• Read transactions
• Write-read transactions

Application Programming Interface

14 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

Write transaction
The master I2C device initiates a write transaction by sending a START bit as soon as the bus becomes free. The
START bit is followed by the 7-bit serial address of the target slave device followed by the read/write bit indicating the
direction of the transaction. The slave acknowledges receipt of its address with an acknowledge bit. The master sends
data one byte at a time to the slave, which must acknowledge receipt of each byte for the next byte to be sent. The
master sends a STOP bit to complete the transaction.

addressS PW byte 0 byte nA A

START bit R/W bit

Serial addres of target I2C device acknowledgement bit

STOP bit

master to slave slave to master

data written

A

Figure 2 · I2C write transaction

The slave can abort the transaction by replying with a non-acknowledge bit instead of an acknowledge.
The application programmer can choose not to send a STOP bit at the end of the transaction causing the next
transaction to begin with a repeated START bit.

Read transaction
The master I2C device initiates a read transaction by sending a START bit as soon as the bus becomes free. The
START bit is followed by the 7-bit serial address of the target slave device followed by the read/write bit indicating the
direction of the transaction. The slave acknowledges receipt of its slave address with an acknowledge bit. The slave
sends data one byte at a time to the master, which must acknowledge receipt of each byte for the next byte to be sent.
The master sends a non-acknowledge bit following the last byte it wishes to read followed by a STOP bit.

RaddressS Pbyte 0 byte nA A

START bit R/W bit STOP bitdata read

Serial addres of target I2C device acknowledgement bit

master to slave slave to master

A

Figure 3 · I2C read transaction

The application programmer can choose not to send a STOP bit at the end of the transaction causing the next
transaction to begin with a repeated START bit.

Theory of Operation

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 15

Write-read transaction
The write-read transaction is a combination of a write transaction immediately followed by a read transaction. There is
no STOP bit between the write and read phases of a write-read transaction. A repeated START bit is sent between the
write and read phases.
The write-read transaction is typically used to send a command or offset in the write transaction specifying the logical
data to be transferred during the read phase.

P wr byte 0 rd byte nS rd byte 0 A ARaddressA wr byte n AWaddressS

write phase read phase

master to slave slave to master

Repeated
START bitSTART bit data read STOP bitdata writtenR/W bit R/W bit

A

Figure 4 · I2C write-read transaction

The application programmer can choose not to send a STOP bit at the end of the transaction causing the next
transaction to begin with a repeated START bit.

Master Operations
The application can use the MSS_I2C_write(), MSS_I2C_read() and MSS_I2C_write_read() functions to initiate an
I2C bus transaction. The application can then wait for the transaction to complete using the MSS_I2C_wait_complete()
function or poll the status of the I2C transaction using the MSS_I2C_get_status() function until it returns a value
different from MSS_I2C_IN_PROGRESS.

Slave Operations
The configuration of the MSS I2C driver to operate as an I2C slave requires the use of the following functions:

• MSS_I2C_set_slave_tx_buffer()
• MSS_I2C_set_slave_rx_buffer()
• MSS_I2C_set_slave_mem_offset_length()
• MSS_I2C_register_write_handler()
• MSS_I2C_enable_slave_rx()

Use of all functions is not required if the slave I2C does not need to support all types of I2C read transactions. The
subsequent sections list the functions that must be used to support each transaction type.

Responding to read transactions
The following functions are used to configure the MSS I2C driver to respond to I2C read transactions:

• MSS_I2C_set_slave_tx_buffer()
• MSS_I2C_enable_slave_rx()

The function MSS_I2C_set_slave_tx_buffer() specifies the data buffer that will be transmitted when the I2C slave is the
target of an I2C read transaction. It is then up to the application to manage the content of that buffer to control the
data that will be transmitted to the I2C master as a result of the read transaction.
The function MSS_I2C_enable_slave_rx() enables the MSS I2C hardware instance to respond to I2C transactions. It
must be called after the MSS I2C driver has been configured to respond to the required transaction types.

Application Programming Interface

16 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

Responding to write transactions
The following functions are used to configure the MSS I2C driver to respond to I2C write transactions:

• MSS_I2C_set_slave_rx_buffer()
• MSS_I2C_register_write_handler()
• MSS_I2C_enable_slave_rx()

The function MSS_I2C_set_slave_rx_buffer() specifies the data buffer that will be used to store the data received by the
I2C slave when it is the target an I2C write transaction.
The function MSS_I2C_register_write_handler() specifies the handler function that must be called on completion of the
I2C write transaction. It is this handler function that will process or trigger the processing of the received data.
The function MSS_I2C_enable_slave_rx() enables the MSS I2C hardware instance to respond to I2C transactions. It
must be called after the MSS I2C driver has been configured to respond to the required transaction types.

Responding to write-read transactions
The following functions are used to configure the MSS I2C driver to respond to write-read transactions:

• MSS_I2C_set_slave_tx_buffer()
• MSS_I2C_set_slave_rx_buffer()
• MSS_I2C_set_slave_mem_offset_length()
• MSS_I2C_enable_slave_rx()

The function MSS_I2C_set_slave_mem_offset_length() specifies the number of bytes expected by the I2C slave during
the write phase of the write-read transaction.
The function MSS_I2C_set_slave_tx_buffer() specifies the data that will be transmitted to the I2C master during the
read phase of the write-read transaction. The value received by the I2C slave during the write phase of the transaction
will be used as an index into the transmit buffer specified by this function to decide which part of the transmit buffer
will be transmitted to the I2C master as part of the read phase of the write-read transaction.
The function MSS_I2C_set_slave_rx_buffer() specifies the data buffer that will be used to store the data received by the
I2C slave during the write phase of the write-read transaction. This buffer must be at least large enough to
accommodate the number of bytes specified through the MSS_I2C_set_slave_mem_offset_length() function.
The function MSS_I2C_enable_slave_rx() enables the MSS I2C hardware instance to respond to I2C transactions. It
must be called after the MSS I2C driver has been configured to respond to the required transaction types.

Types

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 17

Types

mss_i2c_clock_divider_t

Prototype
typedef enum mss_i2c_clock_divider {

 MSS_I2C_PCLK_DIV_256 = 0,

 MSS_I2C_PCLK_DIV_224,

 MSS_I2C_PCLK_DIV_192,

 MSS_I2C_PCLK_DIV_160,

 MSS_I2C_PCLK_DIV_960,

 MSS_I2C_PCLK_DIV_120,

 MSS_I2C_PCLK_DIV_60,

 MSS_I2C_BCLK_DIV_8

} mss_i2c_clock_divider_t;

Description
The mss_i2c_clock_divider_t type is used to specify the divider to be applied to the MSS I2C BCLK signal in order to
generate the I2C clock.

mss_i2c_status_t

Prototype
typedef enum mss_i2c_status {

 MSS_I2C_SUCCESS = 0,

 MSS_I2C_IN_PROGRESS,

 MSS_I2C_FAILED

} mss_i2c_status_t;

Description
The mss_i2c_status_t type is used to report the status of I2C transactions.

mss_i2c_slave_handler_ret_t

Prototype
typedef enum mss_i2c_slave_handler_ret {

 MSS_I2C_REENABLE_SLAVE_RX = 0,

 MSS_I2C_PAUSE_SLAVE_RX = 1

} mss_i2c_slave_handler_ret_t;

Description
The mss_i2c_slave_handler_ret_t type is used by slave write handler functions to indicate whether the received data
buffer should be released or not.

Application Programming Interface

18 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

mss_i2c_slave_wr_handler_t

Prototype
typedef mss_i2c_slave_handler_ret_t (*mss_i2c_slave_wr_handler_t)(uint8_t *, uint16_t);

Description
This defines the function prototype that must be followed by MSS I2C slave write handler functions. These functions
are registered with the MSS I2C driver through the MSS_I2C_register_write_handler() function.

Declaring and Implementing Slave Write Handler Functions
Slave write handler functions should follow the following prototype:
mss_i2c_slave_handler_ret_t write_handler(uint8_t * data, uint16_t size);

The data parameter is a pointer to a buffer (received data buffer) holding the data written to the MSS I2C slave.
The size parameter is the number of bytes held in the received data buffer.
Handler functions must return one of the following values:

• MSS_I2C_REENABLE_SLAVE_RX
• MSS_I2C_PAUSE_SLAVE_RX.

If the handler function returns MSS_I2C_REENABLE_SLAVE_RX, the driver will release the received data buffer
and allow further I2C write transactions to the MSS I2C slave to take place.
If the handler function returns MSS_I2C_PAUSE_SLAVE_RX, the MSS I2C slave will respond to subsequent write
requests with a non-acknowledge bit (NACK), until the received data buffer content has been processed by some other
part of the software application.
A call to MSS_I2C_enable_slave_rx() is required at some point after returning MSS_I2C_PAUSE_SLAVE_RX in
order to release the received data buffer so it can be used to store data received by subsequent I2C write transactions.

Constant Values

MSS_I2C_RELEASE_BUS
The MSS_I2C_RELEASE_BUS constant is used to specify the options parameter to functions MSS_I2C_read(),
MSS_I2C_write() and MSS_I2C_write_read() to indicate that a STOP bit must be generated at the end of the I2C
transaction to release the bus.

MSS_I2C_HOLD_BUS
The MSS_I2C_HOLD_BUS constant is used to specify the options parameter to functions MSS_I2C_read(),
MSS_I2C_write() and MSS_I2C_write_read() to indicate that a STOP bit must not be generated at the end of the I2C
transaction in order to retain the bus ownership. This will cause the next transaction to begin with a repeated START
bit and no STOP bit between the transactions.

Data structures

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 19

Data structures

mss_i2c_instance_t
There is one instance of this structure for each of the microcontroller subsystem's I2Cs. Instances of this structure are
used to identify a specific I2C. A pointer to an instance of the mss_i2c_instance_t structure is passed as the first
parameter to MSS I2C driver functions to identify which I2C will perform the requested operation.

Global Variables

g_mss_i2c0

Prototype
mss_i2c_instance_t g_mss_i2c0;

Description
This instance of mss_i2c_instance_t holds all data related to the operations performed by MSS I2C 0. A pointer to
g_mss_i2c0 is passed as the first parameter to MSS I2C driver functions to indicate that MSS I2C 0 will perform the
requested operation.

g_mss_i2c1

Prototype
mss_i2c_instance_t g_mss_i2c1;

Description
This instance of mss_i2c_instance_t holds all data related to the operations performed by MSS I2C 1. A pointer to
g_mss_i2c1 is passed as the first parameter to MSS I2C driver functions to indicate that MSS I2C 1 will perform the
requested operation.

Application Programming Interface

20 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

Functions

MSS_I2C_init

Prototype
void MSS_I2C_init

(

 mss_i2c_instance_t * this_i2c,

 uint8_t ser_address,

 mss_i2c_clock_divider_t ser_clock_speed

);

Description
The MSS_I2C_init() function initializes and configures hardware and data structures of one of the SmartFusion MSS
I2Cs.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block to be
initialized. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS I2C 0 and MSS I2C 1
respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data structure defined within the
I2C driver.

ser_address

This parameter sets the I2C serial address being initialized. It is the I2C bus address to which the MSS I2C instance will
respond. Any 8 bit address is allowed.

ser_clock_speed

This parameter sets the I2C serial clock frequency. It selects the divider that will be used to generate the serial clock
from the APB clock. It can be one of the following:

• MSS_I2C_PCLK_DIV_256
• MSS_I2C_PCLK_DIV_224
• MSS_I2C_PCLK_DIV_192
• MSS_I2C_PCLK_DIV_160
• MSS_I2C_PCLK_DIV_960
• MSS_I2C_PCLK_DIV_120
• MSS_I2C_PCLK_DIV_60
• MSS_I2C_BCLK_DIV_8

Return Value
This function does not return a value.

Functions

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 21

MSS_I2C_write

Prototype
void MSS_I2C_write

(

 mss_i2c_instance_t * this_i2c,

 uint8_t serial_addr,

 const uint8_t * write_buffer,

 uint16_t write_size,

uint8_t options

);

Description
This function initiates an I2C master write transaction. This function returns immediately after initiating the
transaction. The content of the write buffer passed as parameter will not be modified until the write transaction
completes. It also means that the memory allocated for the write buffer will not be freed or go out of scope before the
write completes. You can check for the write transaction completion using the MSS_I2C_status() function.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

serial_addr

This parameter specifies the serial address of the target I2C device.

write_buffer

This parameter is a pointer to a buffer holding the data to be written to the target I2C device.
Care must be taken not to release the memory used by this buffer before the write transaction completes. For example,
it is not appropriate to return from a function allocating this buffer as an array variable before the write transaction
completes as this would result in the buffer's memory being de-allocated from the stack when the function returns.
This memory could then be subsequently reused and modified causing unexpected data to be written to the target I2C
device.

write_size

Number of bytes held in the write_buffer to be written to the target I2C device.

Options

The options parameter is used to indicate if the I2C bus should be released on completion of the write transaction.
Using the MSS_I2C_RELEASE_BUS constant for the options parameter causes a STOP bit to be generated at the
end of the write transaction causing the bus to be released for other I2C devices to use. Using the
MSS_I2C_HOLD_BUS constant as options parameter prevents a STOP bit from being generated at the end of the
write transaction, preventing other I2C devices from initiating a bus transaction.

Return Value
This function does not return a value.

Application Programming Interface

22 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

MSS_I2C_read

Prototype
void MSS_I2C_read

(

 mss_i2c_instance_t * this_i2c,

 uint8_t serial_addr,

 uint8_t * read_buffer,

 uint16_t read_size,

 uint8_t options

);

Description
This function initiates an I2C master read transaction. This function returns immediately after initiating the
transaction.
The content of the read buffer passed as parameter will not be modified until the read transaction completes. It also
means that the memory allocated for the read buffer will not be freed or go out of scope before the read completes. You
can check for the read transaction completion using the MSS_I2C_status() function.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

serial_addr

This parameter specifies the serial address of the target I2C device.

read_buffer

Pointer to a buffer where the data received from the target device will be stored.
Care must be taken not to release the memory used by this buffer before the read transaction completes. For example, it
is not appropriate to return from a function allocating this buffer as an array variable before the read transaction
completes as this would result in the buffer's memory being de-allocated from the stack when the function returns.
This memory could then be subsequently reallocated resulting in the read transaction corrupting the newly allocated
memory.

read_size

This parameter is the number of bytes to read from the target device. This size must not exceed the size of the
read_buffer buffer.

Options

The options parameter is used to indicate if the I2C bus should be released on completion of the read transaction.
Using the MSS_I2C_RELEASE_BUS constant for the options parameter causes a STOP bit to be generated at the
end of the read transaction causing the bus to be released for other I2C devices to use. Using the
MSS_I2C_HOLD_BUS constant as options parameter prevents a STOP bit from being generated at the end of the
read transaction, preventing other I2C devices from initiating a bus transaction.

Return Value
This function does not return a value.

Functions

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 23

MSS_I2C_write _read

Prototype
void MSS_I2C_write_read

(

 mss_i2c_instance_t * this_i2c,

 uint8_t serial_addr,

 const uint8_t * addr_offset,

 uint16_t offset_size,

 uint8_t * read_buffer,

 uint16_t read_size,

 uint8_t options

);

Description
This function initiates an I2C write-read transaction where data is first written to the target device before issuing a
restart condition and changing the direction of the I2C transaction in order to read from the target device.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

serial_addr

This parameter specifies the serial address of the target I2C device.

addr_offset

This parameter is a pointer to the buffer containing the data that will be sent to the slave during the write phase of the
write-read transaction. This data is typically used to specify an address offset specifying to the I2C slave device what
data it must return during the read phase of the write-read transaction.

offset_size

This parameter specifies the number of offset bytes to be written during the write phase of the write-read transaction.
This is typically the size of the buffer pointed to by the addr_offset parameter.

read_buffer

This parameter is a pointer to the buffer where the data read from the I2C slave will be stored.

read_size

This parameter specifies the number of bytes to read from the target I2C slave device. This size must not exceed the
size of the buffer pointed to by the read_buffer parameter.

Options

The options parameter is used to indicate if the I2C bus should be released on completion of the write-read transaction.
Using the MSS_I2C_RELEASE_BUS constant for the options parameter causes a STOP bit to be generated at the
end of the write-read transaction causing the bus to be released for other I2C devices to use. Using the
MSS_I2C_HOLD_BUS constant as options parameter prevents a STOP bit from being generated at the end of the
write-read transaction, preventing other I2C devices from initiating a bus transaction.

Application Programming Interface

24 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

Return Value
This function does not return a value.

MSS_I2C_get_status

Prototype
mss_i2c_status_t MSS_I2C_get_status

(

 mss_i2c_instance_t * this_i2c

);

Description
This function indicates the current state of a MSS I2C instance.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

Return Value
The return value indicates the current state of a MSS I2C instance or the outcome of the previous transaction if no
transaction is in progress. Possible return values are:

SUCCESS

The last I2C transaction has completed successfully.

IN_PROGRESS

There is an I2C transaction in progress.

FAILED

The last I2C transaction failed.

Functions

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 25

MSS_I2C_wait_complete

Prototype
mss_i2c_status_t MSS_I2C_wait_complete

(

 mss_i2c_instance_t * this_i2c

);

Description
This function waits for the current I2C transaction to complete. The return value indicates whether the last I2C
transaction was successful, or is still in progress, or failed.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

Return Value
The return value indicates the outcome of the last I2C transaction. It can be one of the following:

MSS_I2C_SUCCESS

The last I2C transaction has completed successfully.

MSS_I2C_IN_PROGRESS

The current I2C transaction is still in progress.

MSS_I2C_FAILED

The last I2C transaction failed.

Application Programming Interface

26 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

MSS_I2C_set_slave_tx_buffer

Prototype
void MSS_I2C_set_slave_tx_buffer

(

 mss_i2c_instance_t * this_i2c,

 uint8_t * tx_buffer,

 uint16_t tx_size

);

Description
This function specifies the memory buffer holding the data that will be sent to the I2C master when this MSS I2C
instance is the target of an I2C read or write-read transaction.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2\2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

tx_buffer

This parameter is a pointer to the memory buffer holding the data to be returned to the I2C master when this MSS I2C
instance is the target of an I2C read or write-read transaction.

tx_size

Size of the transmit buffer pointed to by the tx_buffer parameter.

Return Value
This function does not return a value.

Functions

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 27

MSS_I2C_set_slave_rx_buffer

Prototype
void MSS_I2C_set_slave_rx_buffer

(

 mss_i2c_instance_t * this_i2c,

 uint8_t * rx_buffer,

 uint16_t rx_size

);

Description
This function specifies the memory buffer that will be used by the MSS I2C instance to receive data when it is a slave.
This buffer is the memory where data will be stored when the MSS I2C is the target of an I2C master write or write-
read transaction (i.e. when it is the slave).

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

rx_buffer

This parameter is a pointer to the memory buffer allocated by the caller software to be used as a slave receive buffer.

rx_size

Size of the slave receive buffer. This is the amount of memory that is allocated to the buffer pointed to by rx_buffer.
Note: This buffer size will indirectly specify the maximum I2C write transaction length this MSS I2C instance can be

the target of. This is because this MSS I2C instance will respond to further received bytes with a non-
acknowledge bit (NACK) as soon as its receive buffer is full. This will cause the write transaction to fail.

Return Value
This function does not return a value.

Application Programming Interface

28 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

MSS_I2C_set_slave_mem_offset_length

Prototype
void MSS_I2C_set_slave_mem_offset_length

(

 mss_i2c_instance_t * this_i2c,

 uint8_t offset_length

);

Description
This function is used as part of the configuration of a MSS I2C instance for operation as a slave supporting write-read
transactions. It specifies the number of bytes expected as part of the write phase of a write-read transaction. The bytes
received during the write phase of a write-read transaction will be interpreted as an offset into the slave’s transmit
buffer. This allows random access into the I2C slave transmit buffer from a remote I2C master.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

offset_length

The offset_length parameter configures the number of bytes to be interpreted by the MSS I2C slave as a memory offset
value during the write phase of write-read transactions.

 Return Value
This function does not return a value.

Functions

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 29

MSS_I2C_register_write_handler

Prototype
void MSS_I2C_register_write_handler

(

 mss_i2c_instance_t * this_i2c,

 mss_i2c_slave_wr_handler_t handler

);

Description
Register the function that will be called to process the data written to this MSS I2C instance when it is the slave in an
I2C write transaction.
Note: The write handler is not called as a result of a write-read transaction. The write data of a write read transaction

is interpreted as an offset into the slave’s transmit buffer and handled by the driver.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

handler

Pointer to the function that will process the I2C write request.

Return Value
This function does not return a value.

Application Programming Interface

30 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

MSS_I2C_enable_slave_rx

Prototype
void MSS_I2C_enable_slave_rx

(

 mss_i2c_instance_t * this_i2c

);

Description
Enables the MSS I2C instance identified through the this_i2c parameter, to receive data when it is the target of an I2C
read, write or write-read transaction.

Parameters

this_i2c

The this_i2c parameter is a pointer to an mss_i2c_instance_t structure identifying the MSS I2C hardware block that will
perform the requested function. There are two such data structures, g_mss_i2c0 and g_mss_i2c1, associated with MSS
I2C 0 and MSS I2C 1 respectively. This parameter must point to either the g_mss_i2c0 or g_mss_i2c1 global data
structure defined within the I2C driver.

Return Value
This function does not return a value.

Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0 31

Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.
From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650. 318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating
application notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we
have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (http://www.actel.com/support/search/default.aspx) for more information
and support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other
resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at http://www.actel.com/.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday
through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the
email account throughout the day. When sending your request to us, please be sure to include your full name, company
name, and your contact information for efficient processing of your request.

http://www.actel.com/support/search/default.aspx�
http://www.actel.com/support/search/default.aspx�
http://www.actel.com/�
http://www.actel.com/�

Product Support

32 Actel SmartFusion™ MSS I2C Driver User’s Guide Version 2.0

The technical support email address is tech@actel.com.

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00
A.M. to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email
(tech@actel.com) or contact a local sales office. Sales office listings can be found at
www.actel.com/company/contact/default.aspx.

mailto:tech@actel.com�
http://www.actel.com/company/contact/default.aspx�
http://www.actel.com/company/contact/default.aspx�
http://www.actel.com/company/contact/default.aspx�

50200187-1/02.10

Actel is the leader in low-power FPGAs and mixed-signal FPGAs and offers the most
comprehensive portfolio of system and power management solutions. Power Matters. Learn
more at http://www.actel.com .

Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 • USA
Phone 650.318.4200 • Fax 650.318.4600 • Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060
Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom
Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540
Actel Japan • EXOS Ebisu Building 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • http://jp.actel.com
Actel Hong Kong • Room 2107, China Resources Building • 26 Harbour Road • Wanchai • Hong Kong
Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

http://www.actel.com/�
http://jp.actel.com/�
http://www.actel.com.cn/�

	Introduction
	Features
	Supported Hardware IP

	Files Provided
	Documentation
	Driver Source Code
	mss_i2c.h
	mss_i2c.c

	Example Code

	Driver Deployment
	Driver Configuration
	Application Programming Interface
	Theory of Operation
	Initialization and Configuration
	Interrupt Control
	Transaction Types
	Write transaction
	Read transaction
	Write-read transaction

	Master Operations
	Slave Operations
	Responding to read transactions
	Responding to write transactions
	Responding to write-read transactions

	Types
	mss_i2c_clock_divider_t
	Prototype
	Description

	mss_i2c_status_t
	Prototype
	Description

	mss_i2c_slave_handler_ret_t
	Prototype
	Description

	mss_i2c_slave_wr_handler_t
	Prototype
	Description
	Declaring and Implementing Slave Write Handler Functions

	Constant Values
	MSS_I2C_RELEASE_BUS
	MSS_I2C_HOLD_BUS

	Data structures
	mss_i2c_instance_t

	Global Variables
	g_mss_i2c0
	Prototype
	Description

	g_mss_i2c1
	Prototype
	Description

	Functions
	MSS_I2C_init
	Prototype
	Description
	Parameters
	this_i2c
	ser_address
	ser_clock_speed

	Return Value

	MSS_I2C_write
	Prototype
	Description
	Parameters
	this_i2c
	serial_addr
	write_buffer
	write_size
	Options

	Return Value

	MSS_I2C_read
	Prototype
	Description
	Parameters
	this_i2c
	serial_addr
	read_buffer
	read_size
	Options

	Return Value

	MSS_I2C_write _read
	Prototype
	Description
	Parameters
	this_i2c
	serial_addr
	addr_offset
	offset_size
	read_buffer
	read_size
	Options

	Return Value

	MSS_I2C_get_status
	Prototype
	Description
	Parameters
	this_i2c

	Return Value
	SUCCESS
	IN_PROGRESS
	FAILED

	MSS_I2C_wait_complete
	Prototype
	Description
	Parameters
	this_i2c

	Return Value
	MSS_I2C_SUCCESS
	MSS_I2C_IN_PROGRESS
	MSS_I2C_FAILED

	MSS_I2C_set_slave_tx_buffer
	Prototype
	Description
	Parameters
	this_i2c
	tx_buffer
	tx_size

	Return Value

	MSS_I2C_set_slave_rx_buffer
	Prototype
	Description
	Parameters
	this_i2c
	rx_buffer
	rx_size

	Return Value

	MSS_I2C_set_slave_mem_offset_length
	Prototype
	Description
	Parameters
	this_i2c
	offset_length

	Return Value

	MSS_I2C_register_write_handler
	Prototype
	Description
	Parameters
	this_i2c
	handler

	Return Value

	MSS_I2C_enable_slave_rx
	Prototype
	Description
	Parameters
	this_i2c

	Return Value

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone
	650.318.4460 800.262.1060

