
Actel HDL Coding

Style Guide

http://www.actel.com/survey/rating/?f=hdlcode_ug.pdf

Actel Corporation, Mountain View, CA 94043

© 2009 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5029105-8

Release: July 2009

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
Document Organization . 5

Document Assumptions . 5

Document Conventions . 5

HDL Keywords and Naming Conventions . 6

Your Comments . 7

Related Manuals . 7

Online Help . 8

1 Design Flow . 9
Design Flow Overview . 9

2 Technology Independent Coding Styles . 13
Sequential Devices . 13

Operators . 23

Datapath . 24

Finite State Machine . 37

Input-Output Buffers . 44

Generics and Parameters . 48

3 Performance Driven Coding . 51
Reducing Logic Levels on Critical Paths . 51

Resource Sharing . 53

Operators Inside Loops . 54

Coding for Combinability . 55

Register Duplication . 56

Partitioning a Design . 58

4 Technology Specific Coding Techniques . 61
Multiplexors . 61

Internal Tri-State to Multiplexor Mapping . 61

Registers . 63

Registered I/Os . 68

CLKINT/CLKBUF for Reset and/or High Fanout Networks 69

QCLKINT/QCLKBUF for Medium Fanout Networks . 71

SmartGen Counter . 71

Dual Architecture Coding in VHDL . 73

SRAM . 75

FIFO . 80

A Product Support . 87
Customer Service . 87

Actel Customer Technical Support Center . 87
Actel HDL Coding Style Guide 3

Table of Contents
Actel Technical Support . 87

Website . 87

Contacting the Customer Technical Support Center . 87

Index . 89
4 Actel HDL Coding Style Guide

Introduction

VHDL and Verilog® HDL are high level description languages for system and circuit design. These languages support
various abstraction levels of design, including architecture-specific design. At the higher levels, these languages can be
used for system design without regard to a specific technology. To create a functional design, you only need to consider a
specific target technology. However, to achieve optimal performance and area from your target device, you must become
familiar with the architecture of the device and then code your design for that architecture.

Efficient, standard HDL code is essential for creating good designs. The structure of the design is a direct result of the
structure of the HDL code. Additionally, standard HDL code allows designs to be reused in other designs or by other
HDL designers.

This document provides the preferred coding styles for the Actel architecture. The information is reference material with
instructions to optimize your HDL code for the Actel architecture. Examples in both VHDL and Verilog code are
provided to illustrate these coding styles and to help implement the code into your design.

For further information about HDL coding styles, synthesis methodology, or application notes, please visit Actel’s web
site at the following URL: http://www.actel.com/

Document Organization
The Actel HDL Coding Style Guide is divided into the following chapters:

Chapter 1 - Design Flow describes the basic design flow for creating Actel designs with HDL synthesis and simulation
tools.

Chapter 2 - Technology Independent Coding Styles describes basic high level HDL coding styles and techniques.

Chapter 3 - Performance Driven Coding illustrates efficient design practices and describes synthesis implementations
and techniques that can be used to reduce logic levels on a critical path.

Chapter 4 - Technology Specific Coding Techniques describes how to implement technology specific features and
technology specific cores for optimal area and performance utilization.

Appendix A - Product Support provides information about contacting Actel for customer and technical support.

Document Assumptions
The information in this manual is based on the following assumptions:

• You are familiar with Verilog or VHDL hardware description language, and HDL design methodology for designing
logic circuits.

• You are familiar with FPGA design software, including design synthesis and simulation tools.

Document Conventions
The following conventions are used throughout this manual.

Information input by the user follows this format:

keyboard input

The contents of a file follows this format:

file contents

HDL code appear as follows, with HDL keyword in bold:

entity actel is
port (
a: in bit;
y: out bit);
Actel HDL Coding Style Guide 5

Introduction
end actel;

Messages that are displayed on the screen appear as follows:

HDL Keywords and Naming Conventions
There are naming conventions you must follow when writing Verilog or VHDL code. Additionally, Verilog and VHDL
have reserved words that cannot be used for signal or entity names. This section lists the naming conventions and
reserved keywords for each.

VHDL
The following naming conventions apply to VHDL designs:

• VHDL is not case sensitive.

• Two dashes “--” are used to begin comment lines.

• Names can use alphanumeric characters and the underscore “_” character.

• Names must begin with an alphabetic letter.

• You may not use two underscores in a row, or use an underscore as the last character in the name.

• Spaces are not allowed within names.

• Object names must be unique. For example, you cannot have a signal named A and a bus named A(7 downto 0).

The following is a list of the VHDL reserved keywords:

Screen Message

abs downto library postponed subtype

access else linkage procedure then

after elsif literal process to

alias end loop pure transport

all entity map range type

and exit mod record unaffected

architecture file nand register units

array for new reject until

assert function next rem use

attribute generate nor report variable

begin generic not return wait

block group null rol when

body guarded of ror while

buffer if on select with

bus impure open severity xnor

case in or shared xor

component inertial others signal

configuration inout out sla

constant is package sra

disconnect label port srl
6 Actel HDL Coding Style Guide

Your Comments
Verilog
The following naming conventions apply to Verilog HDL designs:

• Verilog is case sensitive.

• Two slashes “//” are used to begin single line comments. A slash and asterisk “/*” are used to begin a multiple line
comment and an asterisk and slash “*/” are used to end a multiple line comment.

• Names can use alphanumeric characters, the underscore “_” character, and the dollar “$” character.

• Names must begin with an alphabetic letter or the underscore.

• Spaces are not allowed within names.

The following is a list of the Verilog reserved keywords:

Your Comments
Actel Corporation strives to produce the highest quality online help and printed documentation. We want to help you
learn about our products, so you can get your work done quickly. We welcome your feedback about this guide and our
online help. Please send your comments to documentation@actel.com.

Related Manuals
The following manuals provide additional information about designing and programming Actel FPGAs using HDL
design methodology:

Digital Design and Synthesis with Verilog HDL. Madhavan, Rajeev, and others. San Jose, CA: Automata Publishing
Company, 1993. This book contains information to allow designers to write synthesizable designs with Verilog HDL.

always endmodule medium reg tranif0

and endprimitive module release tranif1

assign endspecify nand repeat tri

attribute endtable negedge rnmos tri0

begin endtask nmos rpmos tri1

buf event nor rtran triand

bufif0 for not rtranif0 trior

bufif1 force notif0 rtranif1 trireg

case forever notif1 scalared unsigned

casex fork or signed vectored

casez function output small wait

cmos highz0 parameter specify wand

deassign highz1 pmos specparam weak0

default if posedge strength weak1

defparam ifnone primitive strong0 while

disable initial pull0 strong1 wire

edge inout pull1 supply0 wor

else input pulldown supply1 xnor

end integer pullup table xor

endattribute join remos task

endcase large real time

endfunction macromodule realtime tran
Actel HDL Coding Style Guide 7

Introduction
HDL Chip Design. Smith, Douglas J. Madison, AL: Doone Publications, 1996. This book describes and gives examples
of how to design FPGAs using VHDL and Verilog.

IEEE Standard VHDL Language Reference Manual. New York: Institute of Electrical and Electronics Engineers, Inc.,
1994. This manual specifies IEEE Standard 1076-1993, which defines the VHDL standard and the use of VHDL in
the creation of electronic systems.

Online Help
Libero IDE software comes with online help. Help for each software tool is available in all Actel tools.
8 Actel HDL Coding Style Guide

1
Design Flow

This chapter illustrates and describes the basic design flow for creating Actel designs using HDL synthesis and
simulation tools.

Figure 1-1 illustrates the HDL synthesis-based design flow for an Actel FPGA using third party CAE tools and
Designer software.

Design Flow Overview
The Actel HDL synthesis-based design flow has four main steps: design creation/verification, design implementation,
programming, and system verification. These steps are described in detail in the following sections.

Figure 1-1 · Actel HDL Synthesis-Based Design Flow

Libero® Integrated Design Environment (IDE)

DESIGN IMPLEMENTATION

PROGRAMMING AND DEBUG

In Silicon
Verification Setup

Debug Instrumentation
Identify® AE

Design Analysis

SmartTime

SmartPower

Design Planning

ChipPlanner

Global Planner

I/O Planner

Programming

FlashPro

ChainBuilder

Silicon Sculptor

RTL Creation/
Optimization

Synplify® DSP AE

Design Simulation
Functional and Timing

Pre/Post-Synthesis
Post Layout

ModelSim® AE

Testbench Generation

Graphical Generator
WaveFormer Lite™

User Testbench

Design Synthesis

Synthesis
Synplify®/Synplify Pro® AE

Physical Synthesis
PALACE™ AE

Debug

Silicon Explorer
(Antifuse Products)

Identify® AE
(Flash Products)

VERIFICATION

Physical Design

Compile

Layout and Routing

Back-Annotate

Bitstream Generation

DESIGN CREATION

System Tool
CoreConsole

Core Generator
SmartGenHDL Editor Schematic Editor

ViewDraw
Actel HDL Coding Style Guide 9

Design Flow
Design Creation/Verification
During design creation/verification, a design is captured in an RTL-level (behavioral) HDL source file. After capturing
the design, a behavioral simulation of the HDL file can be performed to verify that the HDL code is correct. The code
is then synthesized into an Actel gate-level (structural) HDL netlist. After synthesis, a structural simulation of the
design can be performed. Finally, an EDIF netlist is generated for use in Designer and an HDL structural netlist is
generated for timing simulation.

HDL Design Source Entry
Enter your HDL design source using a text editor or a context-sensitive HDL editor. Your HDL source file can contain
RTL-level constructs, as well as instantiations of structural elements, such as SmartGen cores.

Behavioral Simulation
You can perform a behavioral simulation of your design before synthesis. Behavioral simulation verifies the functionality
of your HDL code. Typically, unit delays are used and a standard HDL test bench can be used to drive simulation. Refer
to the documentation included with your simulation tool for information about performing behavioral simulation.

Synthesis
After you have created your behavioral HDL source file, you must synthesize it before placing and routing it in Designer.
Synthesis translates the behavioral HDL file into a gate-level netlist and optimizes the design for a target technology.
Refer to the documentation included with your synthesis tool for information about performing design synthesis.

Netlist Generation
After you have created, synthesized, and verified your design, you may place-and-route in Designer using an EDIF,
Verilog, or VHDL netlist. This netlist is also used to generate a structural HDL netlist for use in structural simulation.
Refer to the Designer Series documentation for information about generating a netlist.

Structural Netlist Generation
You can generate a structural HDL netlist from your EDIF netlist for use in structural simulation by either exporting it
from Designer or by using the Actel “edn2vhdl” or “edn2vlog” program. Refer to the Designer Series documentation for
information about generating a structural netlist.

Structural Simulation
You can perform a structural simulation of your design before placing and routing it. Structural simulation verifies the
functionality of your post-synthesis structural HDL netlist. Default unit delays included in the compiled Actel VITAL
libraries are used for every gate. Refer to the documentation included with your simulation tool for information about
performing structural simulation.

Design Implementation
During design implementation, a design is placed-and-routed using Designer. Additionally, timing analysis is performed
on a design in Designer with the Timer tool. After place-and-route, post-layout (timing) simulation is performed.

Place-and-Route
Use Designer to place-and-route your design. Refer to the Designer software online help for information about using
Designer.

Timing Analysis
Use the SmartTime tool in Designer to perform static timing analysis on your design. Refer to the online help for
information on SmartTime.
10 Actel HDL Coding Style Guide

Design Flow Overview
Timing Simulation
After placing-and-routing your design, you perform a timing simulation to verify that the design meets timing
constraints. Timing simulation requires timing information exported from Designer, which overrides default unit delays
in the compiled Actel VITAL libraries. Refer to the Designer Series documentation for information about exporting
timing information from Designer.

Programming
Programming a device requires software and hardware from Actel or a supported 3rd party programming system. Refer
to the Actel web site, www.actel.com, for information on programming an Actel device.

System Verification
You can perform system verification on a programmed device using Actel’s Silicon Explorer. Refer to Silicon Explorer II

Quick Start for information on using Silicon Explorer.
Actel HDL Coding Style Guide 11

2
Technology Independent Coding Styles

This chapter describes basic HDL coding styles and techniques. These coding styles are essential when writing efficient,
standard HDL code and creating technology independent designs.

Sequential Devices
A sequential device, either a flip-flop or a latch, is a one-bit memory device. A latch is a level-sensitive memory device
and a flip-flop is an edge-triggered memory device.

Flip-Flops (Registers)
Flip-flops, also called registers, are inferred in VHDL using wait and if statements within a process using either a rising
edge or falling edge detection expression. There are two types of expressions that can be used, a 'event attribute or a
function call. For example:

(clk'event and clk='1') --rising edge 'event attribute
(clk'event and clk='0') --falling edge 'event attribute
rising_edge(clock) --rising edge function call
falling_edge(clock) --falling edge function call

The examples in this guide use rising edge 'event attribute expressions, but falling edge expressions could be used. The
'event attribute expression is used because some VHDL synthesis tools may not recognize function call expressions.
However, using a function call expression is preferred for simulation because a function call only detects an edge
transition (0 to 1 or 1 to 0) but not a transition from X to 1 or 0 to X, which may not be a valid transition. This is
especially true if using a multi-valued data type like std_logic, which has nine possible values (U, X, 0, 1, Z, W, L, H, -).

This section describes and gives examples for different types of flip-flops. Refer to “Registers” on page 63 for additional
information about using specific registers in the Actel architecture.

Rising Edge Flip-Flop
The following examples infer a D flip-flop without asynchronous or synchronous reset or preset. This flip-flop is a basic
sequential cell in the Actel antifuse architecture.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity dff is
port (data, clk : in std_logic;

q : out std_logic);
end dff;

architecture behav of dff is
begin
process (clk) begin

if (clk'event and clk = '1') then

Figure 2-1. D Flip Flop

data

clk

q

Actel HDL Coding Style Guide 13

Technology Independent Coding Styles
q <= data;
end if;

end process;
end behav;

Verilog
module dff (data, clk, q);

input data, clk;
output q;
reg q;

always @(posedge clk)
q = data;

endmodule

Rising Edge Flip-Flop with Asynchronous Reset
The following examples infer a D flip-flop with an asynchronous reset. This flip-flop is a basic sequential cell in the
Actel antifuse architecture.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_rst is
port (data, clk, reset : in std_logic;

q : out std_logic);
end dff_async_rst;

architecture behav of dff_async_rst is
begin
process (clk, reset) begin

if (reset = '0') then
q <= '0';

elsif (clk'event and clk = '1') then
q <= data;

end if;
end process;
end behav;

Verilog
module dff_async_rst (data, clk, reset, q);

input data, clk, reset;
output q;
reg q;

always @(posedge clk or negedge reset)
if (~reset)

Figure 2-2 · D Flip-Flop with Asynchronous Reset

data

clk

q

reset
14 Actel HDL Coding Style Guide

Sequential Devices
q = 1'b0;
else
q = data;

endmodule

Rising Edge Flip-Flop with Asynchronous Preset
The following examples infer a D flip-flop with an asynchronous preset. Refer to “Registers” on page 63 for additional
information about using preset flip-flops with the Actel architecture.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_pre is
port (data, clk, preset : in std_logic;

q : out std_logic);
end dff_async_pre;

architecture behav of dff_async_pre is
begin
process (clk, preset) begin

if (preset = '0') then
q <= '1';

elsif (clk'event and clk = '1') then
q <= data;

end if;
end process;
end behav;

Verilog
module dff_async_pre (data, clk, preset, q);
input data, clk, preset;
output q;
reg q;
always @(posedge clk or negedge preset)
if (~preset)
q = 1'b1;

else
q = data;

endmodule

Figure 2-3. D Flip-Flop with Asynchronous Preset

data

clk

q

preset
Actel HDL Coding Style Guide 15

Technology Independent Coding Styles
Rising Edge Filp-Flop with Asynchronous Reset and Preset
The following examples infer a D flip-flop with an asynchronous reset and preset. Refer to “Registers” on page 63 for
additional information about using preset flip-flops with the Actel architecture.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async is
port (data, clk, reset, preset : in std_logic;

q : out std_logic);
end dff_async;

architecture behav of dff_async is
begin
process (clk, reset, preset) begin

if (reset = '0') then
q <= '0';

elsif (preset = '1') then
q <= '1';

elsif (clk'event and clk = '1') then
q <= data;

end if;
end process;
end behav;

Verilog
module dff_async (reset, preset, data, q, clk);

input clk;
input reset, preset, data;
output q;
reg q;

always @ (posedge clk or negedge reset or posedge preset)
if (~reset)
q = 1'b0;

else if (preset)
q = 1'b1;

else q = data;
endmodule

Figure 2-4 · D Flip-Flop with Asynchronous Reset and Preset

data

clk

preset

q

reset
16 Actel HDL Coding Style Guide

Sequential Devices
Rising Edge Flip-Flop with Synchronous Reset
The following examples infer a D flip-flop with a synchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_sync_rst is
port (data, clk, reset : in std_logic;

q : out std_logic);
end dff_sync_rst;

architecture behav of dff_sync_rst is
begin
process (clk) begin

if (clk'event and clk = '1') then
if (reset = '0') then
q <= '0';

else q <= data;
end if;

end if;
end process;
end behav;

Verilog
module dff_sync_rst (data, clk, reset, q);

input data, clk, reset;
output q;
reg q;

always @ (posedge clk)
if (~reset)
q = 1'b0;

else q = data;
endmodule

Figure 2-5 · D Flip-Flop with Synchronous Reset

data

gnd

clk

reset

q

Actel HDL Coding Style Guide 17

Technology Independent Coding Styles
Rising Edge Flip-Flop with Synchronous Preset
The following examples infer a D flip-flop with a synchronous preset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_sync_pre is
port (data, clk, preset : in std_logic;

q : out std_logic);
end dff_sync_pre;

architecture behav of dff_sync_pre is
begin
process (clk) begin

if (clk'event and clk = '1') then
 if (preset = '0') then
 q <= '1';
 else q <= data;
 end if;
end if;

end process;
end behav;

Verilog
module dff_sync_pre (data, clk, preset, q);

input data, clk, preset;
output q;
reg q;

always @ (posedge clk)
if (~preset)
q = 1'b1;

else q = data;
endmodule

Figure 2-6. D Flip-Flop with Synchronous Preset

data

vcc

clk

preset

q

18 Actel HDL Coding Style Guide

Sequential Devices
Rising Edge Flip-Flop with Asynchronous Reset and Clock Enable
The following examples infer a D type flip-flop with an asynchronous reset and clock enable.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_ck_en is
port (data, clk, reset, en : in std_logic;

q : out std_logic);
end dff_ck_en;

architecture behav of dff_ck_en is
begin
process (clk, reset) begin

if (reset = '0') then
q <= '0';

elsif (clk'event and clk = '1') then
if (en = '1') then
q <= data;

end if;
end if;

end process;
end behav;

Verilog
module dff_ck_en (data, clk, reset, en, q);

input data, clk, reset, en;
output q;
reg q;

always @ (posedge clk or negedge reset)
if (~reset)
q = 1'b0;

else if (en)
q = data;

endmodule

D-Latches
This section describes and gives examples of different types of D-latches.

Figure 2-7 · D Flip-Flop with Asynchronous Reset and Clock Enable

data

en

clk

q

reset
Actel HDL Coding Style Guide 19

Technology Independent Coding Styles
D-Latch with Data and Enable
The following examples infer a D-latch with data and enable inputs.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch is
port(enable, data: in std_logic;

y : out std_logic);
end d_latch;

architecture behave of d_latch is
begin
process (enable, data)
begin

if (enable = '1') then
y <= data;

end if;
end process;
end behave;

Verilog
module d_latch (enable, data, y);

input enable, data;
output y;
reg y;

always @(enable or data)
if (enable)

y = data;
endmodule

D-Latch with Gated Asynchronous Data
The following examples infer a D-latch with gated asynchronous data.

VHDL
library IEEE;

Figure 2-8. D-Latch

Figure 2-9 · D-Latch with Gated Asynchronous Data

data

enable

y

data

enable

q
gate
20 Actel HDL Coding Style Guide

Sequential Devices
use IEEE.std_logic_1164.all;

entity d_latch_e is
port (enable, gate, data : in std_logic;

q : out std_logic);
end d_latch_e;

architecture behave of d_latch_e is
begin
process (enable, gate, data) begin

if (enable = '1') then
q <= data and gate;

end if;
end process;
end behave;

Verilog
module d_latch_e(enable, gate, data, q);

input enable, gate, data;
output q;
reg q;

always @ (enable or data or gate)
if (enable)
q = (data & gate);

endmodule

D-Latch with Gated Enable
The following examples infer a D-latch with gated enable.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch_en is
port (enable, gate, d: in std_logic;

q : out std_logic);
end d_latch_en;

architecture behave of d_latch_en is
begin
process (enable, gate, d) begin

if ((enable and gate) = '1') then
q <= d;

end if;
end process;
end behave;

Figure 2-10 · D-Latch with Gated Enable

enable

d q

gate
Actel HDL Coding Style Guide 21

Technology Independent Coding Styles
Verilog
module d_latch_en(enable, gate, d, q);

input enable, gate, d;
output q;
reg q;

always @ (enable or d or gate)
if (enable & gate)
q = d;

endmodule

D-Latch with Asynchronous Reset
The following examples infer a D-latch with an asynchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch_rst is
port (enable, data, reset: in std_logic;

q : out std_logic);
end d_latch_rst;

architecture behav of d_latch_rst is
begin
process (enable, data, reset) begin

if (reset = '0') then
q <= '0';

elsif (enable = '1') then
q <= data;

end if;
end process;
end behav;

Verilog
module d_latch_rst (reset, enable, data, q);

input reset, enable, data;
output q;
reg q;

always @ (reset or enable or data)
if (~reset)
q = 1'b0;

else if (enable)
q = data;

endmodule

Figure 2-11 · D-Latch with Asynchronous Reset

data

enable

reset

q

22 Actel HDL Coding Style Guide

Operators
Operators
A number of bit-wise operators are available to you: Arithmetic, Concentration and Replication, Conditional, Equality,
Logical Bit-wise, Logical Comparison, Reduction, Relational, Shift, and Unary Arithmetic (Sign). These operators and
their availability in VHDL or Verilog are compared in Table 2-1.

Table 2-1 · VHDL and Verilog Operators

Operation
Operator

VHDL Verilog

Arithmetic Operators
exponential
multiplication
division
addition
subtraction
modulus
remainder
absolute value

**
*
/
+
-
mod
rem
abs

*
/
+
-
%

Concentration and Replication Operators
concentration
replication

& { }
{{ }}

Conditional Operator
conditional ?:

Equality Operators
equality
inequality

=
/=

==
!=

Logical Bit-wise Operators
unary negation NOT
binary AND
binary OR
binary NAND
binary NOR
binary XOR
binary XNOR

not
and
or
nand
nor
xor
xnor

~
&
|

^
^~ or ~^

Logial Comparison Operators
NOT
AND
OR

not
and
or

!
&&
||

Reduction Operators
AND
OR
NAND
NOR
XOR
XNOR

&
|
~&
~|
^
^~ or ~^
Actel HDL Coding Style Guide 23

Technology Independent Coding Styles
Datapath
Datapath logic is a structured repetitive function. These structures are modeled in various different implementations
based on area and timing constraints. Most synthesis tools generate optimal implementations for the target technology.

Priority Encoders Using If-Then-Else
An if-then-else statement is used to conditionally execute sequential statements based on a value. Each condition of the
if-then-else statement is checked in order against that value until a true condition is found. Statements associated with
the true condition are then executed and the rest of the statement is ignored. If-then-else statements should be used to
imply priority on a late arriving signal. In the following examples, shown in Figure 2-12, signal c is a late arriving signal.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

Relational Operators
less than
less than or equal to
greater than
greater than or equal to

<
<=
>
>=

<
<=
>
>=

Shift Operators
logical shift left
logical shift right
arithmetic shift left
arithmetic shift right
logical rotate left
logical rotate right

sll
srl
sla
sra
rol
ror

<<
>>

Unary Arithmetic Operators
identity
negotiation

+
-

+
-

Table 2-1 · VHDL and Verilog Operators (continued)

Operation
Operator

VHDL Verilog

Figure 2-12 · Priority Encoder Using an If-Then-Else Statement

f

e

d

c
s=10

s=01

s=00

pout

Three C modules
24 Actel HDL Coding Style Guide

Datapath
entity my_if is
port (c, d, e, f: in std_logic;

s : in std_logic_vector(1 downto 0);
pout : out std_logic);

end my_if;

architecture my_arc of my_if is
begin
myif_pro: process (s, c, d, e, f) begin

if s = “00” then
pout <= c;

elsif s = “01” then
pout <= d;

elsif s = “10” then
pout <= e;

else pout <= f;
end if;

end process myif_pro;
end my_arc;

Verilog
module IF_MUX (c, d, e, f, s, pout);

input c, d, e, f;
input [1:0]s;
output pout;
reg pout;

always @(c or d or e or f or s) begin
if (s == 2'b00)
pout = c;

else if (s ==2'b01)
pout = d;

else if (s ==2'b10)
pout = e;

else pout = f;
end

endmodule

Multiplexors Using Case
A case statement implies parallel encoding. Use a case statement to select one of several alternative statement sequences
based on the value of a condition. The condition is checked against each choice in the case statement until a match is
found. Statements associated with the matching choice are then executed. The case statement must include all possible
values for a condition or have a default choice to be executed if none of the choices match. The following examples infer
multiplexors using a case statement. Refer to “Multiplexors” on page 61 for additional information about using
multiplexors with the Actel architecture.

VHDL synthesis tools automatically assume parallel operation without priority in case statements. However, some
Verilog tools assume priority, and you may need to add a directive to your case statement to ensure that no priority is
Actel HDL Coding Style Guide 25

Technology Independent Coding Styles
assumed. refer to the documentation provided with your synthesis tool for information about creating case statements
without priority.

4:1 Multiplexor
The following examples infer a 4:1 multiplexor using a case statement.

VHDL
--4:1 Multiplexor
library IEEE;
use IEEE.std_logic_1164.all;

entity mux is
port (C, D, E, F : in std_logic;

S : in std_logic_vector(1 downto 0);
mux_out : out std_logic);

end mux;

architecture my_mux of mux is
begin
mux1: process (S, C, D, E, F) begin
case s is

when “00” => muxout <= C;
when “01” => muxout <= D;
when “10” => muxout <= E;
when others => muxout <= F;

end case;
end process mux1;
end my_mux;

Verilog
//4:1 Multiplexor
module MUX (C, D, E, F, S, MUX_OUT);

input C, D, E, F;
input [1:0] S;
output MUX_OUT;
reg MUX_OUT;

always @(C or D or E or F or S)
begin
case (S)

2'b00 : MUX_OUT = C;
2'b01 : MUX_OUT = D;
2'b10 : MUX_OUT = E;
default : MUX_OUT = F;

endcase
end
endmodule

Figure 2-13 · Multiplexor Using a Case Statement

C

F

MUX_OUT
D

E
MUX

S(1:0)
26 Actel HDL Coding Style Guide

Datapath
12:1 Multiplexor
The following examples infer a 12:1 multiplexor using a case statement.

VHDL
-- 12:1 mux
library ieee;
use ieee.std_logic_1164.all;

-- Entity declaration:
entity mux12_1 is
port
(
mux_sel: in std_logic_vector (3 downto 0);-- mux select
A: in std_logic;
B: in std_logic;
C: in std_logic;
D: in std_logic;
E: in std_logic;
F: in std_logic;
G: in std_logic;
H: in std_logic;
I: in std_logic;
J: in std_logic;
K: in std_logic;
M: in std_logic;
mux_out: out std_logic -- mux output

);
end mux12_1;

-- Architectural body:
architecture synth of mux12_1 is

begin

proc1: process (mux_sel, A, B, C, D, E, F, G, H, I, J, K, M)

begin

case mux_sel is
when "0000" => mux_out<= A;
when "0001" => mux_out <= B;
when "0010" => mux_out <= C;
when "0011” => mux_out <= D;
when "0100" => mux_out <= E;
when "0101" => mux_out <= F;
when "0110" => mux_out <= G;
when "0111" => mux_out <= H;
when "1000" => mux_out <= I;
when "1001" => mux_out <= J;
when "1010" => mux_out <= K;
when "1011" => mux_out <= M;
when others => mux_out<= '0';

end case;
end process proc1;

end synth;
Actel HDL Coding Style Guide 27

Technology Independent Coding Styles
Verilog
// 12:1 mux
module mux12_1(mux_out,

mux_sel,M,L,K,J,H,G,F,E,D,C,B,A
);

output mux_out;
input [3:0] mux_sel;
input M;
input L;
input K;
input J;
input H;
input G;
input F;
input E;
input D;
input C;
input B;
input A;

reg mux_out;

// create a 12:1 mux using a case statement
always @ ({mux_sel[3:0]} or M or L or K or J or H or G or F or E or D or C or B or A)
begin: mux_blk
case ({mux_sel[3:0]}) // synthesis full_case parallel_case

4'b0000 : mux_out = A;
4'b0001 : mux_out = B;
4'b0010 : mux_out = C;
4'b0011 : mux_out = D;
4'b0100 : mux_out = E;
4'b0101 : mux_out = F;
4'b0110 : mux_out = G;
4'b0111 : mux_out = H;
4'b1000 : mux_out = J;
4'b1001 : mux_out = K;
4'b1010 : mux_out = L;
4'b1011 : mux_out = M;
4'b1100 : mux_out = 1'b0;
4'b1101 : mux_out = 1'b0;
4'b1110 : mux_out = 1'b0;
4'b1111 : mux_out = 1'b0;

endcase
end

endmodule

Case X Multiplexor
The following Verilog example infers a multiplexor using a don’t care case x statement. Actel does not recommend using
don’t care case x statements in VHDL. VHDL synthesis tools do not typically support the don’t care value as well as
Verilog tools.

Verilog
//8 bit 4:1 multiplexor with don't care X, 3:1 equivalent mux
module mux4 (a, b, c, sel, q);
input [7:0] a, b, c;
input [1:0] sel;
output [7:0] q;
reg [7:0] q;
28 Actel HDL Coding Style Guide

Datapath
always @ (sel or a or b or c)
casex (sel)

2'b00: q = a;
2'b01: q = b;
2'b1x: q = c;
default: q = c;

endcase
endmodule

Decoders
Decoders are used to decode data that has been previously encoded using binary or another type of encoding. The
following examples infer a 3-8 line decoder with an enable.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity decode is
port (Ain : in std_logic_vector (2 downto 0);

En: in std_logic;
Yout : out std_logic_vector (7 downto 0));

end decode;

architecture decode_arch of decode is
begin

process (Ain)
begin

if (En='0') then
Yout <= (others => '0');

else
case Ain is

when "000" => Yout <= "00000001";
when "001" => Yout <= "00000010";
when "010" => Yout <= "00000100";
when "011" => Yout <= "00001000";
when "100" => Yout <= "00010000";
when "101" => Yout <= "00100000";
when "110" => Yout <= "01000000";
when "111" => Yout <= "10000000";
when others => Yout <= "00000000";

end case;
end if;

end process;
end decode_arch;

Verilog
module decode (Ain, En, Yout);

input En;
input [2:0] Ain;
output [7:0] Yout;

reg [7:0] Yout;

always @ (En or Ain)
begin
if (!En)
Yout = 8'b0;
Actel HDL Coding Style Guide 29

Technology Independent Coding Styles
else
case (Ain)
3'b000 : Yout = 8'b00000001;
3'b001 : Yout = 8'b00000010;
3'b010 : Yout = 8'b00000100;
3'b011 : Yout = 8'b00001000;
3'b100 : Yout = 8'b00010000;
3'b101 : Yout = 8'b00100000;
3'b110 : Yout = 8'b01000000;
3'b111 : Yout = 8'b10000000;
default : Yout = 8'b00000000;

endcase
end

endmodule

Counters
Counters count the number of occurrences of an event that occur either randomly or at uniform intervals. You can infer
a counter in your design. However, most synthesis tools cannot infer optimal implementations of counters higher than 8-
bits. If your counter is in the critical path of a speed and area critical design, Actel recommends that you use the
SmartGen Core Builder to build a counter. Once generated, instantiate the SmartGen counter in your design. Refer to
“SmartGen Counter” on page 71 for examples of SmartGen counter instantiation. The following examples infer
different types of counters.

8-bit Up Counter with Count Enable and Asynchronous Reset
The following examples infer an 8-bit up counter with count enable and asynchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity counter8 is
port (clk, en, rst : in std_logic;

count : out std_logic_vector (7 downto 0));
end counter8;

architecture behav of counter8 is
signal cnt: std_logic_vector (7 downto 0);
begin
process (clk, en, cnt, rst)

begin
if (rst = '0') then

cnt <= (others => '0');
elsif (clk'event and clk = '1') then

if (en = '1') then
cnt <= cnt + '1';

end if;
end process;

count <= cnt;
end behav;

Verilog
module count_en (en, clock, reset, out);

parameter Width = 8;
input clock, reset, en;
30 Actel HDL Coding Style Guide

Datapath
output [Width-1:0] out;
reg [Width-1:0] out;

always @(posedge clock or negedge reset)
if(!reset)

out = 8'b0;
else if(en)

out = out + 1;
endmodule

8-bit Up Counter with Load and Asynchronous Reset
The following examples infer an 8-bit up counter with load and asynchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity counter is
port (clk, reset, load: in std_logic;

data: in std_logic_vector (7 downto 0);
count: out std_logic_vector (7 downto 0));

end counter;

architecture behave of counter is
signal count_i : std_logic_vector (7 downto 0);

begin
process (clk, reset)
begin
if (reset = '0') then

count_i <= (others => '0');
elsif (clk'event and clk = '1') then
if load = '1' then

count_i <= data;
else

count_i <= count_i + '1';
end if;

end if;
end process;
count <= count_i;

end behave;

Verilog
module count_load (out, data, load, clk, reset);

parameter Width = 8;
input load, clk, reset;
input [Width-1:0] data;
output [Width-1:0] out;
reg [Width-1:0] out;

always @(posedge clk or negedge reset)
if(!reset)

out = 8'b0;
else if(load)

out = data;
else

out = out + 1;
Actel HDL Coding Style Guide 31

Technology Independent Coding Styles
endmodule

8-bit Up Counter with Load, Count Enable, Terminal Count and Asynchronous Reset
The following examples infer an 8-bit up counter with load, count enable, terminal count, and asynchronous reset.

Verilog
module count_load (out, cout, data, load, clk, en, reset);
parameter Width = 8;

input load, clk, en, reset;
input [Width-1:0] data;
output cout; // carry out
output [Width-1:0] out;
reg [Width-1:0] out;

always @(posedge clk or negedge reset)
if(!reset)
out = 8'b0;

else if(load)
out = data;

else if(en)
out = out + 1;

// cout=1 when all out bits equal 1
assign cout = &out;

endmodule

N-bit Up Counter with Load, Count Enable, and Asynchronous Reset
The following examples infer an n-bit up counter with load, count enable, and asynchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity counter is
generic (width : integer := n);
port (data : in std_logic_vector (width-1 downto 0);

 load, en, clk, rst : in std_logic;
 q : out std_logic_vector (width-1 downto 0));

end counter;

architecture behave of counter is
signal count : std_logic_vector (width-1 downto 0);
begin
process(clk, rst)
begin
if rst = '1' then
count <= (others => '0');

elsif (clk'event and clk = '1') then
if load = '1' then
count <= data;

elsif en = '1' then
count <= count + '1';

end if;
end if;

end process;
q <= count;
32 Actel HDL Coding Style Guide

Datapath
end behave;

Arithmetic Operators
Synthesis tools generally are able to infer arithmetic operators for the target technology. The following examples infer
addition, subtraction, division and multiplication operators.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity arithmetic is
port (A, B: in std_logic_vector(3 downto 0);
 Q1: out std_logic_vector(4 downto 0);
 Q2, Q3: out std_logic_vector(3 downto 0);
 Q4: out std_logic_vector(7 downto 0));

end arithmetic;

architecture behav of arithmetic is
begin
process (A, B)
begin
Q1 <= ('0' & A) + ('0' & B); --addition
Q2 <= A - B; --subtraction
Q3 <= A / B; --division
Q4 <= A * B; --multiplication

end process;
end behav;

If the multiply and divide operands are powers of 2, replace them with shift registers. Shift registers provide speed
optimized implementations with large savings in area. For example:

Q <= C/16 + C*4;

can be represented as:

Q <= shr (C, “100”) + shl (C, “10”);

or

VHDL Q <= “0000” & C (8 downto 4) + C (6 downto 0) & ”00”;

The functions “shr” and “shl” are available in the IEEE.std_logic_arith.all library.

Verilog
module arithmetic (A, B, Q1, Q2, Q3, Q4);
input [3:0] A, B;
output [4:0] Q1;
output [3:0] Q2, Q3;
output [7:0] Q4;
reg [4:0] Q1;
reg [3:0] Q2, Q3;
reg [7:0] Q4;

always @ (A or B)
begin
Q1 = A + B; //addition
Actel HDL Coding Style Guide 33

Technology Independent Coding Styles
Q2 = A - B; //subtraction
Q3 = A / 2; //division
Q4 = A * B; //multiplication

end
endmodule

If the multiply and divide operands are powers of 2, replace them with shift registers. Shift registers provide speed
optimized implementations with large savings in area. For example:

Q = C/16 + C*4;

can be represented as:

Q = {4b'0000 C[8:4]} + {C[6:0] 2b'00};

Relational Operators
Relational operators compare two operands and indicate whether the comparison is true or false. The following
examples infer greater than, less than, greater than equal to, and less than equal to comparators. Synthesis tools generally
optimize relational operators for the target technology.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity relational is
port (A, B : in std_logic_vector(3 downto 0);
 Q1, Q2, Q3, Q4 : out std_logic);

end relational;

architecture behav of relational is
begin
process (A, B)
begin
-- Q1 <= A > B; -- greater than
-- Q2 <= A < B; -- less than
-- Q3 <= A >= B; -- greater than equal to
if (A <= B) then –- less than equal to
Q4 <= '1';

else
Q4 <= '0';

end if;
end process;
end behav;

Verilog
module relational (A, B, Q1, Q2, Q3, Q4);
input [3:0] A, B;
output Q1, Q2, Q3, Q4;
reg Q1, Q2, Q3, Q4;

always @ (A or B)
begin
 // Q1 = A > B; //greater than
 // Q2 = A < B; //less than
 // Q3 = A >= B; //greater than equal to
 if (A <= B) //less than equal to
34 Actel HDL Coding Style Guide

Datapath
Q4 = 1;
 else
Q4 = 0;

 end
endmodule

Equality Operator
The equality and non-equality operators indicate a true or false output based on whether the two operands are equivalent
or not. The following examples infer equality operators.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity equality is
port (

 A: in STD_LOGIC_VECTOR (3 downto 0);
 B: in STD_LOGIC_VECTOR (3 downto 0);
 Q1: out STD_LOGIC;
 Q2: out STD_LOGIC
);

end equality;

architecture equality_arch of equality is
begin
process (A, B)
begin
Q1 <= A = B; -- equality
if (A /= B) then -- inequality
Q2 <= '1';

else
Q2 <= '0';

end if;
end process;

end equality_arch;

OR
library IEEE;
use IEEE.std_logic_1164.all;

entity equality is
port (

 A: in STD_LOGIC_VECTOR (3 downto 0);
 B: in STD_LOGIC_VECTOR (3 downto 0);
 Q1: out STD_LOGIC;
 Q2: out STD_LOGIC
);

end equality;

architecture equality_arch of equality is
begin

Q1 <= '1' when A = B else '0'; -- equality
Q2 <= '1' when A /= B else '0'; -- inequality

end equality_arch;

Verilog
module equality (A, B, Q1, Q2);
Actel HDL Coding Style Guide 35

Technology Independent Coding Styles
input [3:0] A;
input [3:0] B;
output Q1;
output Q2;
reg Q1, Q2;

always @ (A or B)
begin
Q1 = A == B; //equality
if (A != B) //inequality
Q2 = 1;

else
Q2 = 0;

end
endmodule

Shift Operators
Shift operators shift data left or right by a specified number of bits. The following examples infer left and right shift
operators.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity shift is
port (data : in std_logic_vector(3 downto 0);
q1, q2 : out std_logic_vector(3 downto 0));

end shift;

architecture rtl of shift is
begin
process (data)
begin
 q1 <= shl (data, "10"); -- logical shift left
 q2 <= shr (data, "10"); --logical shift right
end process;

end rtl;

OR
library IEEE;
use IEEE.std_logic_1164.all;

entity shift is
port (data : in std_logic_vector(3 downto 0);

q1, q2 : out std_logic_vector(3 downto 0));
end shift;

architecture rtl of shift is
begin
process (data)
begin
 q1 <= data(1 downto 0) & “10”; -- logical shift left
 q2 <= “10” & data(3 downto 2); --logical shift right
end process;

end rtl;
36 Actel HDL Coding Style Guide

Finite State Machine
Verilog
module shift (data, q1, q2);
input [3:0] data;
output [3:0] q1, q2;

parameter B = 2;
reg [3:0] q1, q2;

always @ (data)
begin
q1 = data << B; // logical shift left
q2 = data >> B; //logical shift right

end
endmodule

Finite State Machine
A finite state machine (FSM) is a type of sequential circuit that is designed to sequence through specific patterns of
finite states in a predetermined sequential manner. There are two types of FSM, Mealy and Moore. The Moore FSM
has outputs that are a function of current state only. The Mealy FSM has outputs that are a function of the current state
and primary inputs. An FSM consists of three parts:

1. Sequential Current State Register: The register, a set of n-bit flip-flops (state vector flip-flops) clocked by a single
clock signal is used to hold the state vector (current state or simply state) of the FSM. A state vector with a length
of n-bit has 2

n
 possible binary patterns, known as state encoding. Often, not all 2

n
 patterns are needed, so the unused

ones should be designed not to occur during normal operation. Alternatively, an FSM with m-state requires at least
log2(m) state vector flip-flops.

2. Combinational Next State Logic: An FSM can only be in one state at any given time, and each active transition of
the clock causes it to change from its current state to the next state, as defined by the next state logic. The next state
is a function of the FSM’s inputs and its current state.

3. Combinational Output Logic: Outputs are normally a function of the current state and possibly the FSM’s primary
inputs (in the case of a Mealy FSM). Often in a Moore FSM, you may want to derive the outputs from the next state
instead of the current state, when the outputs are registered for faster clock-to-out timings.

Moore and Mealy FSM structures are shown in Figure 2-14 and Figure 2-15.

Figure 2-14 · Basic Structure of a Moore FSM

Inputs
OutputsNext State

Logic
(Combinatorial)

Current State
Register*

(Sequential)

Output
Logic

(Combinatorial)

Asychronous ResetSychronous Reset

Next

State

Current

State

* State Vector Flip-flops
Actel HDL Coding Style Guide 37

Technology Independent Coding Styles
Use a reset to guarantee fail-safe behavior. This ensures that the FSM is always initialized to a known valid state before
the first active clock transition and normal operation begins. In the absence of a reset, there is no way of predicting the
initial value of the state register flip-flops during the “power up” operation of an Actel FPGA. It could power up and
become permanently stuck in an unencoded state. The reset should be implemented in the sequential current state
process of the FSM description.

An asynchronous reset is generally preferred over a synchronous reset because an asynchronous reset does not require
decoding unused states, minimizing the next state logic.

Because FPGA technologies are register rich, “one hot” state machine implementations generated by the synthesis tool
may generate optimal area and performance results

Mealy Machine
The following examples represent a Mealy FSM model for the Mealy state diagram shown in Figure 2-16.

Figure 2-15 · Basic Structure of a Mealy FSM

Inputs
OutputsNext State

Logic
(Combinatorial)

Current State
Register*

(Sequential)

Output
Logic

(Combinatorial)

Asychronous ResetSychronous Reset

Next

State
Current

State

* State Vector Flip-flops

Figure 2-16 · Mealy State Diagram

x0/1

x1/1 1x/1

10/1

11/1

00/0 x1/0

11/1 0x/0

00/0

01/1

10/1
0x/0

10/0

ST3

ST2

ST1ST0

ST4
38 Actel HDL Coding Style Guide

Finite State Machine
VHDL
-- Example of a 5-state Mealy FSM

library ieee;
use ieee.std_logic_1164.all;

entity mealy is
port (clock, reset: in std_logic;
data_out: out std_logic;
data_in: in std_logic_vector (1 downto 0));

end mealy;

architecture behave of mealy is
type state_values is (st0, st1, st2, st3, st4);
signal pres_state, next_state: state_values;

begin
-- FSM register
statereg: process (clock, reset)
begin
if (reset = '0') then
pres_state <= st0;

elsif (clock'event and clock ='1') then
pres_state <= next_state;

end if;
end process statereg;

-- FSM combinational block
fsm: process (pres_state, data_in)
begin

case pres_state is
when st0 =>
case data_in is
when "00" => next_state <= st0;
when "01" => next_state <= st4;
when "10" => next_state <= st1;
when "11" => next_state <= st2;
when others => next_state <= (others <= ‘x’);

end case;
when st1 =>
case data_in is
when "00" => next_state <= st0;
when "10" => next_state <= st2;
when others => next_state <= st1;

end case;
when st2 =>
case data_in is
when "00" => next_state <= st1;
when "01" => next_state <= st1;
when "10" => next_state <= st3;
when "11" => next_state <= st3;
when others => next_state <= (others <= ‘x’);

end case;
when st3 =>
case data_in is
when "01" => next_state <= st4;
when "11" => next_state <= st4;
when others => next_state <= st3;

end case;
when st4 =>
case data_in is
Actel HDL Coding Style Guide 39

Technology Independent Coding Styles
when "11" => next_state <= st4;
when others => next_state <= st0;

end case;
when others => next_state <= st0;

end case;
end process fsm;

-- Mealy output definition using pres_state w/ data_in
outputs: process (pres_state, data_in)
begin

case pres_state is
when st0 =>
case data_in is
when "00" => data_out <= '0';
when others => data_out <= '1';

end case;
when st1 => data_out <= '0';
when st2 =>
case data_in is
when "00" => data_out <= '0';
when "01" => data_out <= '0';
when others => data_out <= '1';

end case;
when st3 => data_out <= '1';
when st4 =>
case data_in is
when "10" => data_out <= '1';
when "11" => data_out <= '1';
when others => data_out <= '0';

end case;
when others => data_out <= '0';

end case;
end process outputs;

end behave;

Verilog
// Example of a 5-state Mealy FSM

module mealy (data_in, data_out, reset, clock);
output data_out;
input [1:0] data_in;
input reset, clock;

reg data_out;
reg [2:0] pres_state, next_state;

parameter st0=3'd0, st1=3'd1, st2=3'd2, st3=3'd3, st4=3'd4;

// FSM register
always @ (posedge clock or negedge reset)
begin: statereg

if(!reset)// asynchronous reset
pres_state = st0;

else
pres_state = next_state;

end // statereg

// FSM combinational block
40 Actel HDL Coding Style Guide

Finite State Machine
always @(pres_state or data_in)
begin: fsm

case (pres_state)
st0: case(data_in)
2'b00: next_state=st0;
2'b01: next_state=st4;
2'b10: next_state=st1;
2'b11: next_state=st2;

endcase
st1: case(data_in)
2'b00: next_state=st0;
2'b10: next_state=st2;
default: next_state=st1;

endcase
st2: case(data_in)
2'b0x: next_state=st1;
2'b1x: next_state=st3;

endcase
st3: case(data_in)
2'bx1: next_state=st4;
default: next_state=st3;

endcase
st4: case(data_in)
2'b11: next_state=st4;
default: next_state=st0;

endcase
default: next_state=st0;
endcase

end // fsm

// Mealy output definition using pres_state w/ data_in
always @(data_in or pres_state)
begin: outputs
case(pres_state)
st0: case(data_in)
2'b00: data_out=1'b0;
default: data_out=1'b1;

endcase
st1: data_out=1'b0;
st2: case(data_in)
2'b0x: data_out=1'b0;
default: data_out=1'b1;

endcase
st3: data_out=1'b1;
st4: case(data_in)
2'b1x: data_out=1'b1;
default: data_out=1'b0;

endcase
default: data_out=1'b0;
endcase

end // outputs

endmodule

Moore Machine
The following examples represent a Moore FSM model for the Mealy state diagram shown in Figure 2-16 on page 38.
Actel HDL Coding Style Guide 41

Technology Independent Coding Styles
VHDL
-- Example of a 5-state Moore FSM

library ieee;
use ieee.std_logic_1164.all;

entity moore is
port (clock, reset: in std_logic;
data_out: out std_logic;
data_in: in std_logic_vector (1 downto 0));

end moore;

architecture behave of moore is
type state_values is (st0, st1, st2, st3, st4);
signal pres_state, next_state: state_values;

begin
-- FSM register
statereg: process (clock, reset)
begin
if (reset = '0') then
pres_state <= st0;

elsif (clock ='1' and clock'event) then
pres_state <= next_state;

end if;
end process statereg;

-- FSM combinational block
fsm: process (pres_state, data_in)
begin
 case pres_state is

when st0 =>
case data_in is
when "00" => next_state <= st0;
when "01" => next_state <= st4;
when "10" => next_state <= st1;
when "11" => next_state <= st2;
when others => next_state <= (others <= ‘x’);

end case;
when st1 =>
case data_in is
when "00" => next_state <= st0;
when "10" => next_state <= st2;
when others => next_state <= st1;

end case;
when st2 =>
case data_in is
when "00" => next_state <= st1;
when "01" => next_state <= st1;
when "10" => next_state <= st3;
when "11" => next_state <= st3;
when others => next_state <= (others <= ‘x’);

end case;
when st3 =>
case data_in is
when "01" => next_state <= st4;
when "11" => next_state <= st4;
when others => next_state <= st3;

end case;
when st4 =>
42 Actel HDL Coding Style Guide

Finite State Machine
case data_in is
when "11" => next_state <= st4;
when others => next_state <= st0;

end case;
when others => next_state <= st0;

 end case;
end process fsm;

-- Moore output definition using pres_state only
outputs: process (pres_state)
begin
 case pres_state is

when st0 => data_out <= '1';
 when st1 => data_out <= '0';
 when st2 => data_out <= '1';
 when st3 => data_out <= '0';
 when st4 => data_out <= '1';
when others => data_out <= '0';

end case;
end process outputs;

end behave;

Verilog
// Example of a 5-state Moore FSM

module moore (data_in, data_out, reset, clock);
output data_out;
input [1:0] data_in;
input reset, clock;

reg data_out;
reg [2:0] pres_state, next_state;

parameter st0=3'd0, st1=3'd1, st2=3'd2, st3=3'd3, st4=3'd4;

//FSM register
always @(posedge clock or negedge reset)
begin: statereg
if(!reset)
pres_state = st0;

else
pres_state = next_state;

end // statereg

// FSM combinational block
always @(pres_state or data_in)
begin: fsm
case (pres_state)
st0: case(data_in)

2'b00: next_state=st0;
2'b01: next_state=st4;
2'b10: next_state=st1;
2'b11: next_state=st2;

endcase
st1: case(data_in)

2'b00: next_state=st0;
2'b10: next_state=st2;
default: next_state=st1;
Actel HDL Coding Style Guide 43

Technology Independent Coding Styles
endcase
st2: case(data_in)

2'b0x: next_state=st1;
2'b1x: next_state=st3;

endcase
st3: case(data_in)

2'bx1: next_state=st4;
default: next_state=st3;

endcase
st4: case(data_in)

2'b11: next_state=st4;
default: next_state=st0;

endcase
default: next_state=st0;

endcase
end // fsm

// Moore output definition using pres_state only
always @(pres_state)
begin: outputs
case(pres_state)
st0: data_out=1'b1;
st1: data_out=1'b0;
st2: data_out=1'b1;
st3: data_out=1'b0;
st4: data_out=1'b1;
default: data_out=1'b0;

endcase
end // outputs

endmodule // Moore

Input-Output Buffers
You can infer or instantiate a I/O buffers in your design. The following examples represent both techniques. Regardless
of which method you use, all I/O buffers should be declared at the top level of the design.

Tri-State Buffer
A tri-state buffer is an output buffer with high-impedance capability. The following examples show how to infer and
instantiate a tri-state buffer.

Inference

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity tristate is

Figure 2-17 · Tri-State Buffer

a

e

y

44 Actel HDL Coding Style Guide

Input-Output Buffers
port (e, a : in std_logic;
 y : out std_logic);

end tristate;

architecture tri of tristate is
begin
process (e, a)
begin
if e = '1' then
y <= a;

else
y <= 'Z';

end if;
end process;

end tri;

OR
library IEEE;
use IEEE.std_logic_1164.all;

entity tristate is
port (e, a : in std_logic;

y : out std_logic);
end tristate;

architecture tri of tristate is
begin
Y <= a when (e = '1') else 'Z';

end tri;

Verilog
module TRISTATE (e, a, y);
input a, e;
output y;
reg y;

always @ (e or a) begin
if (e)
y = a;

else
y = 1'bz;

end
endmodule

OR
module TRISTATE (e, a, y);
input a, e;
output y;

assign y = e ? a : 1'bZ;

endmodule

Instantiation

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
Actel HDL Coding Style Guide 45

Technology Independent Coding Styles
entity tristate is
port (e, a : in std_logic;
y : out std_logic);
end tristate;

architecture tri of tristate is

component TRIBUFF
port (D, E: in std_logic;
PAD: out std_logic);

end component;

begin
U1: TRIBUFF port map (D => a,

E => e,
PAD => y);

end tri;

Verilog
module TRISTATE (e, a, y);
input a, e;
output y;

TRIBUFF U1 (.D(a), .E(e), .PAD(y));

endmodule

Bi-Directional Buffer
A bi-directional buffer can be an input or output buffer with high impedance capability. The following examples show
how to infer and instantiate a bi-directional buffer.

Inference

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity bidir is
port (y : inout std_logic;

e, a: in std_logic;
b : out std_logic);

end bidir;

architecture bi of bidir is

Figure 2-18 · Bi-Directional Buffer

e

ya

b

46 Actel HDL Coding Style Guide

Input-Output Buffers
begin
process (e, a)
begin
case e is
when '1' => y <= a;
when '0' => y <= 'Z';
when others => y <= 'X';

end case;
end process;

b <= y;
end bi;

Verilog
module bidir (e, y, a, b);

input a, e;
inout y;
output b;
reg y_int;
wire y, b;

always @ (a or e)
begin
if (e == 1'b1)
y_int <= a;

else
y_int <= 1'bz;

end
assign y = y_int;
assign b = y;
endmodule

Instantiation

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity bidir is
port (y : inout std_logic;
e, a: in std_logic;
b : out std_logic);
end bidir;

architecture bi of bidir is

component BIBUF
port (D, E: in std_logic;
Y : out std_logic;
PAD: inout std_logic);

end component;

begin
U1: BIBUF port map (D => a,

 E => e,
 Y => b,
 PAD => y);

end bi;
Actel HDL Coding Style Guide 47

Technology Independent Coding Styles
Verilog
module bidir (e, y, a, b);

input a, e;
inout y;
output b;

BIBUF U1 (.PAD(y), .D(a), .E(e), .Y(b));

endmodule

Generics and Parameters
Generics and parameters are used to define the size of a component. This allows the design of parameterized
components for the size and feature sets that may be defined by values of the instantiation parameters. The following
examples show how to use generics and parameters when describing a parameterized adder. Furthermore, this adder is
instantiated for varying widths.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity adder is
generic (WIDTH : integer := 8);
port (A, B: in UNSIGNED(WIDTH-1 downto 0);

CIN: in std_logic;
COUT: out std_logic;
Y: out UNSIGNED(WIDTH-1 downto 0));

end adder;

architecture rtl of adder is
begin
process (A,B,CIN)
variable TEMP_A,TEMP_B,TEMP_Y:UNSIGNED(A'length downto 0);
begin
TEMP_A := '0' & A;
TEMP_B := '0' & B;
TEMP_Y := TEMP_A + TEMP_B + CIN;
Y <= TEMP_Y (A'length-1 downto 0);
COUT <= TEMP_Y (A'length);

end process;
end rtl;

“Width” indicates the width of the adder. The instantiation for this parameterized adder for a bit width of 16 is:

U1: adder generic map(16) port map (A_A, B_A, CIN_A, COUT_A,
Y_A);

Verilog
module adder (cout, sum, a, b, cin);
parameter Size = 8;
output cout;
output [Size-1:0] sum;
input cin;
input [Size-1:0] a, b;
48 Actel HDL Coding Style Guide

Generics and Parameters
assign {cout, sum} = a + b + cin;

endmodule

“Size” indicates the width of the adder. The instantiation for this parameterized adder for a bit width of 16 is:

adder #(16) adder16(cout_A, sun_A, a_A, b_A, cin_A)
Actel HDL Coding Style Guide 49

3
Performance Driven Coding

Unlike ASICs, FPGAs are module based arrays. Each logic level used on a path can add delay. As a result, meeting
timing constraints on a critical path with too many logic levels becomes difficult. Using an efficient coding style is very
important because it dictates the synthesis logic implementation. This chapter describes synthesis implementations,
techniques, and efficient design practices that can be used to reduce logic levels on a critical path.

Reducing Logic Levels on Critical Paths
Each logic level on the critical path in an FPGA can add significant delay. To ensure that timing constraints can be met,
logic level usage must be considered when describing the behavior of a design. The following examples illustrate how to
reduce logic levels on critical paths.

Example 1
In the following VHDL example, the signal “critical” goes through three logic levels.

if (((Crtical='0' and Obi='1' and Sar='1')
or CpuG='0') and CpuR='0') then
Des <= Adr;

elsif (((Crtical='0' and Obi='1' and Sar='1')
or CpuG='0') and CpuR='1') then
Des <= Bdr;

elsif (Sar='0' and

The signal “critical” is a late arriving signal. To reduce the logic level usage on “critical”, imply priority by using an if-
then-else statement. As a result, the signal “critical” goes through one logic level, as shown below.

if (Critical='0') then
if (((Obi='1' and Sar='1')
or CpuG='0') and CpuR='0') then
Des <= Adr;

elsif (((Obi='1' and Sar='1')
or CpuG='0' and CpuR='1') then
Des <= Bdr;

end if;

Figure 3-1 · Logic Levels on Critical Paths - Three Logic Levels

Figure 3-2 · Logic Levels on Critical Paths - One Logic Level

Critical
Obi

CpuG

CpuR

Sar

Des

Critical

Obi

CpuG

CpuR

Sar

Des
Actel HDL Coding Style Guide 51

Performance Driven Coding
end if;

Example 2
In the following example, the signal “critical” goes through two logic levels.

if (clk'event and clk ='1') then
if (non_critical and critical) then
out1 <= in1 ;

else
out1 <= in2 ;

end if;
end if;

To reduce the logic level usage on “critical”, multiplex inputs “in1” and “in2” based on “non_critical”, and call this output
“out_temp”. Then multiplex “out_temp” and “in2” based on “critical”. As a result, the signal “critical” goes through one
logic level, as shown below.

signal out_temp : std_logic
if (non_critical)

out_temp <= in1;
else out_temp <= in2;

if (clk'event and clk ='1') then
if (critical) then

out1 <= out_temp;
else out1 <= in2;
end if;

end if;
end if;

Figure 3-3 · Critical Signal Through Two Logic Levels

Figure 3-4 · Critical Signal Through One Logic Level

in1

in2

out1

clk

non_critical

critical

in1

in2 out1

clk

non_critical

critical
52 Actel HDL Coding Style Guide

Resource Sharing
Resource Sharing
Resource sharing can reduce the number of logic modules needed to implement HDL operations. Without it, each
HDL description is built into a separate circuit. The following VHDL examples illustrate how to use resource sharing to
reduce logic module utilization.

Example 1
This example implements four adders.

if (...(siz == 1)...)
count = count + 1;

else if (...((siz ==2)...)
count = count + 2;

else if (...(siz == 3)...)
count = count + 3;

else if (...(siz == 0)...)
count = count + 4;

By adding the following code, two adders can be eliminated:

if (...(siz == 0)...)
count = count + 4;

else if (...)
count = count + siz

Example 2
This example uses poor resource sharing to implement adders.

if (select)
sum <= A + B;

else
sum <= C + D;

Figure 3-5 · Poor Resource Sharing to Implement Adders

A

B

sum

sel

C

D

MUX
Actel HDL Coding Style Guide 53

Performance Driven Coding
Adders use valuable resources. To reduce resource usage, rewrite the code to infer two multiplexors and one adder, as
shown below.

if (sel)
temp1 <= A;
temp2 <= B;

else
temp1 <= C;
temp2 <= D;

sum <= temp1 + temp2;

Note: This example assumes the select line is not a late arriving signal.

Operators Inside Loops
Operators are resource intensive compared to multiplexors. If there is an operator inside a loop, the synthesis tool has to
evaluate all conditions. In the following VHDL example, the synthesis tool builds four adders and one multiplexor. This
implementation is only advisable if the select line “req” is a late arriving signal.

vsum := sum;
for i in 0 to 3 loop

if (req(i)='1') then
vsum <= vsum + offset(i);

end if;
end loop;

Figure 3-6 · Improved Resource Sharing Using Two Multiplexors and One Adder

A

C

sum

B

sel

D

temp 1

temp 2

Figure 3-7 · Four Adders and One Multiplexor Example

offset[3]

vsum

vsum

sum

req[3:0]

offset[2]

offset[1]

vsum

offset[0]

vsum
54 Actel HDL Coding Style Guide

Coding for Combinability
If the select line “req” is not critical, the operator should be moved outside the loop so the synthesis tool can multiplex
the data before performing the adder operation. The area efficient design is implemented in a larger multiplexor and a
single adder, as shown below.

vsum := sum;
for i in 0 to 3 loop

if (req(i)='1') then
offset_1 <= offset(i);

end if;
end loop;
vsum <= vsum + offset_1;

Coding for Combinability
Combinatorial modules in ACT2, ACT3, DX, and MX families can be merged into sequential modules in the antifuse
architecture. This results in a significant reduction in delay on the critical path as well as area reduction. However, cells
are only merged if the combinatorial module driving a basic flip-flop has a load of 1. In the following VHDL example,
the AND gate driving the flip-flop has a load of 2. As a result, the AND gate cannot be merged into the sequential
module.

one :process (clk, a, b, c, en) begin
if (clk'event and clk ='1') then

if (en = '1') then
q2 <= a and b and c;

end if;
q1 <= a and b and c;

end if;
end process one;

To enable merging, the AND gate has to be duplicated so that it has a load of 1. To duplicate the AND gate, create two
independent processes, as shown below. Once merged, one logic level has been removed from the critical path.

Figure 3-8 · Larger Multiplexor and Single Adder Example

offset[2]
offset[3]

offset[1]

req[3:0]

vsum

offset[0]

offset_1

Figure 3-9 · Coding for Compatibility Example

a
b q1

q2

c

clk

en
Actel HDL Coding Style Guide 55

Performance Driven Coding
Note: Some synthesis tools automatically duplicate logic on the critical path. Other synthesis tools detect the function
“a & b & c” in the two processes and share the function on a single gate. If the function is shared, the logic is not
duplicated and you should consider instantiation.

part_one: process (clk, a, b, c, en) begin
if (clk'event and clk ='1') then

if (en = '1') then
q2 <= a and b and c;

end if;
end if;
end process part_one;
part_two: process (clk, a, b, c) begin
if (clk'event and clk ='1') then

q1 <= a and b and c;
end if;
end process part_two;

Register Duplication
The delay on a net rises as the number of loads increase in the antifuse architecture. This is acceptable for networks such
as reset, but not others such as tri-state enable, etc. It is important to keep the fanout of a network below 16. In the
following VHDL example, the signal “Tri_en” has a fanout of 24.

Figure 3-10 · Two Independent Processes

a
b q1

q2

c

a
b
c en

clk

clk

Figure 3-11 · Register Duplication Example

Clk

Tri_en Tri_end

Out(23:0)Data_in(23:0)

24 Loads
56 Actel HDL Coding Style Guide

Register Duplication
architecture load of four_load is
signal Tri_en std_logic;

begin
loadpro: process (Clk)

begin
if (clk'event and clk ='1') then

Tri_end <= Tri_en;
end if;

end process loadpro;

endpro : process (Tri_end, Data_in)
begin

if (Tri_end = '1') then
out <= Data_in;

else
out <= (others => 'Z');

end if;
end process endpro;
end load;

To decrease the fanout by half, registers are duplicated on the signal “Tri_en” so the load is split in half, as shown in the
following example.

Note: Some synthesis tools duplicate registers to resolve timing and fanout violations and do not require this coding
technique.

architecture loada of two_load is
signal Tri_en1, Tri_en2 : std_logic;

begin
loadpro: process (Clk)

begin
if (clk'event and clk ='1') then

Tri_en1 <= Tri_en;
Tri_en2 <= Tri_en;

end if;
end process loadpro;

Figure 3-12 · Duplicated Registers with a Load Split in Half to Decrease Fanout

Clk

Tri_en

Out(23:0)

Data_in(23:0)

12 Loads

12 Loads

Clk

Tri_en
Tri_en2

Tri_en1
Actel HDL Coding Style Guide 57

Performance Driven Coding
process (Tri_en1, Data_in)
begin
if (Tri_en1 = '1') then

out(23:12) <= Data_in(23:12);
else

out(23:12) <= (others => 'Z');
end if;

end process;

process (Tri_en2, Data_in)
begin
if (Tri_en2 = '1') then

out(11:0) <= Data_in(11:0);
else

out(11:0) <= (others => 'Z');
end if;

end process;

Partitioning a Design
For large designs, it is often desirable to break the design up into smaller blocks. When partitioning a design into various
blocks, it is good design practice to have registers at hierarchical boundaries. This eliminates the need for time budgeting
on the inputs and outputs. The following example shows how to modify your HDL code so that registers are placed at
hierarchical boundaries.

Registers Embedded Within a Module

process (clk, a, b) begin
if (clk'event and clk = '1') then
a1 <= a;
b1 <=b;

end if;
end process;

process (a1, b1)
begin c <= a1 + b1;
end process;

Figure 3-13 · Registers Embedded within a Module

a1

b1

b

clk

clk

a

c

58 Actel HDL Coding Style Guide

Partitioning a Design
Registers Pushed Out at the Hierarchical Boundary

process (clk, a, b) begin
if (clk'event and clk = '1') then

c <= a + b;
end if;

end process;

Figure 3-14 · Registers Pushed Out at the Hierarchical Boundary

clk

c
a

b

Actel HDL Coding Style Guide 59

4
Technology Specific Coding Techniques

In addition to technology independent and performance driven coding, there are coding techniques that you can use to
take advantage of the Actel architecture to improve speed and area utilization of your design. Additionally, most
synthesis tools can implement random logic, control logic and certain datapath cores. However, they may not generate
technology optimal implementations for datapath elements that cannot be inferred using operators, such as counters,
RAM, FIFO, etc. This chapter describes coding techniques to take advantage of technology specific features and how to
instantiate technology specific cores generated by the SmartGen Core Builder tool for optimal area and performance.

Multiplexors
Using case statements with the multiplexor based Actel architecture provides area and speed efficient solutions and is
more efficient than inference of priority encoders using if-then-else statements. Actel recommends that you use case
statements instead of long, nested if-then-else statements to force mapping to multiplexors in the Actel architecture.
Refer to “Multiplexors Using Case” on page 25 for examples of multiplexor coding.

VHDL synthesis tools automatically assume parallel operation without priority in case statements. However, some
Verilog tools assume priority, and you may need to add a directive to your case statement to ensure that no priority is
assumed. Refer to the documentation provided with your synthesis tool for information about creating case statements
without priority.

Internal Tri-State to Multiplexor Mapping
All internal tri-states must be mapped to multiplexors. The antifuse technology only supports tri-states as in/out ports,
but not internal tri-states. The following examples show an internal tri-state followed by a multiplexor that the internal
tri-state should change to (as in Figure 4-1).

Note: Some synthesis tools automatically map internal tri-states to multiplexors.

VHDL Tri-State
library IEEE;
use IEEE.std_logic_1164.all;
entity tribus is
port (A, B, C, D : in std_logic_vector(7 downto 0);

E0, E1, E2, E3 : in std_logic;
Q : out std_logic_vector(7 downto 0));

end tribus;

architecture rtl of tribus is
begin

Figure 4-1 · Internal Tri-State and the Related Multiplexor

A[7:0]

E0

E1

E2

E3

D[7:0]

Q[7:0]B[7:0]

C[7:0]

TRI-STATE

TRI-STATE

TRI-STATE

TRI-STATE

A[7:0]

D[7:0]

Q[7:0]
B[7:0]

C[7:0]
MUX

E3..E0
Actel HDL Coding Style Guide 61

Technology Specific Coding Techniques
Q <= A when(E0 = '1') else "ZZZZZZZZ";
Q <= B when(E1 = '1') else "ZZZZZZZZ";
Q <= C when(E2 = '1') else "ZZZZZZZZ";
Q <= D when(E3 = '1') else "ZZZZZZZZ";

end rtl;

VHDL Multiplexor
library IEEE;
use IEEE.std_logic_1164.all;
entity muxbus is
port (A, B, C, D : in std_logic_vector(7 downto 0);
E0, E1, E2, E3 : in std_logic;
Q : out std_logic_vector(7 downto 0));
end muxbus;

architecture rtl of muxbus is
signal E_int : std_logic_vector(1 downto 0);
begin
process (E0, E1, E2, E3)
variable E : std_logic_vector(3 downto 0);
begin
E := E0 & E1 & E2 & E3;

case E is
when "0001" => E_int <= "00";
when "0010" => E_int <= "01";
when "0100" => E_int <= "10";
when "1000" => E_int <= "11";
when others => E_int <= "--";

end case;
end process;

process (E_int, A, B, C, D)
begin
 case E_int is
 when "00" => Q <= D;
 when "01" => Q <= C;
 when "10" => Q <= B;
 when "11" => Q <= A;
 when others => Q <= (others => '-');
end case;

end process;
end rtl;

Verilog Tri-State
module tribus (A, B, C, D, E0, E1, E2, E3, Q);

input [7:0]A, B, C, D;
output [7:0]Q;
input E0, E1, E2, E3;

assign Q[7:0] = E0 ? A[7:0] : 8'bzzzzzzzz;
assign Q[7:0] = E1 ? B[7:0] : 8'bzzzzzzzz;
assign Q[7:0] = E2 ? C[7:0] : 8'bzzzzzzzz;
assign Q[7:0] = E3 ? D[7:0] : 8'bzzzzzzzz;

endmodule
62 Actel HDL Coding Style Guide

Registers
Verilog Multiplexor
module muxbus (A, B, C, D, E0, E1, E2, E3, Q);

input [7:0]A, B, C, D;
output [7:0]Q;
input E0, E1, E2, E3;
wire [3:0] select4;
reg [1:0] select2;
reg [7:0]Q;

assign select4 = {E0, E1, E2, E3};

always @ (select4)
begin
case(select4)
4'b0001 : select2 = 2'b00;
4'b0010 : select2 = 2'b01;
4'b0100 : select2 = 2'b10;
4'b1000 : select2 = 2'b11;
default : select2 = 2'bxx;

endcase
end

always @ (select2 or A or B or C or D)
begin
case(select2)
2'b00 : Q = D;
2'b01 : Q = C;
2'b10 : Q = B;
2'b11 : Q = A;

endcase
end

endmodule

Registers
The XL, DX, MX, SX and ACT3 families have dedicated asynchronous reset registers in the sequential modules
(SMOD). In each SMOD is a 4:1 multiplexor with some gating logic on the select lines. Implementing a simple register
or an asynchronous reset register allows the gating logic in front of the register to be pulled into the SMOD, reducing
the path delay by one level. This is called full combinability. Full combinability offers improved speed, increasing a
50MHz operation to 75MHz in some designs. The following examples show how to use registers for combinability and
discuss any speed or area penalty associated with using the register.
Actel HDL Coding Style Guide 63

Technology Specific Coding Techniques
Synchronous Clear or Preset
The synchronous clear or preset register only uses part of the SMOD multiplexor, allowing for some combinability. The
following example and Figure 4-2 shows how to share a synchronous register with a 2:1 multiplexor.

VHDL
-- register with active low sync preset shared with a 2-to-1 mux.

library ieee;
use ieee.std_logic_1164.all;
entity dfm_sync_preset is
PORT (d0, d1: in std_logic;
clk, preset, sel: in std_logic;
q: out std_logic;

end dfm_sync_preset;

architecture behav of dfm_sync_preset is
signal tmp_sel: std_logic_vector(1 downto 0);
signal q_tmp: std_logic;
begin
process (clk) begin
tmp_sel <= preset & sel;
if (clk'event and clk ='1') then

case tmp_sel is
when "00" => q_tmp <= '1';
when "01" => q_tmp <= '1';
when "10" => q_tmp <= d0;
when "11" => q_tmp <= d1;
when others => q_tmp <= '1';

end case;
end if;

end process;
q <= q_tmp;

end behav;

Verilog
/* register with active-low synchronous preset shared with
2-to-1 mux */

module dfm_sync_preset (d0, d1, clk, sync_preset, sel, q);
input d0, d1;
input sel;
input clk, sync_preset;
output q;
reg q;
always @ (posedge clk)

Figure 4-2 · Single Module Implementation of a Synchronous Clear or Preset Register

clk
sel

sync_preset

d1
d0 q

D00
D01
D10
D11

S0
S1

SMOD
64 Actel HDL Coding Style Guide

Registers
begin
case ({sync_preset, sel})
 2'b00: q = 1'b1;
 2'b01: q = 1'b1;
 2'b10: q = d0;
 2'b11: q = d1;
endcase

end
endmodule

Clock Enabled
The clock enabled register uses a 2:1 multiplexor with output feedback, which uses some of the SMOD multiplexor. The
following example shows how to share a clock enabled register with the input logic (Figure 4-3).

VHDL
-- register with active low async reset, shared with a 2-to-1
-- mux, and an active high clock enable.

library ieee;
use ieee.std_logic_1164.all;
entity dfm_clken is
PORT (d0, d1: in std_logic;
clk, reset, clken, sel: in std_logic;
q: out std_logic;

end dfm_clken;

architecture behav of dfm_clken is
signal tmp_sel: std_logic_vector(1 downto 0);
signal q_tmp: std_logic;
begin
process (clk, reset) begin
tmp_sel <= clken & sel;
if (reset = '0') then

q_tmp <= '0';
elsif (clk'event and clk ='1') then

case tmp_sel is
when "00" => q_tmp <= d0;
when "01" => q_tmp <= d1;
when "10" => q_tmp <= q_tmp;
when "11" => q_tmp <= q_tmp;
when others => q_tmp <= q_tmp;

end case;
end if;

Figure 4-3 · Single Module Implementation of a Clock Enabled Register

clk
sel

clken

d1
d0

q

D00
D01
D10
D11

S0
S1

SMOD
Actel HDL Coding Style Guide 65

Technology Specific Coding Techniques
end process;
q <= q_tmp;

end behav;

Verilog
/* register with asynchronous reset, clock enable,
shared with a 2-to-1 mux */

module dfm_clken (d0, d1, clk, reset, clken, sel, q);
input d0, d1;
input sel;
input clk, reset, clken;
output q;
reg q;
always @ (posedge clk or negedge reset)
begin
if (!reset)
q = 1'b0;

else
case ({clken, sel})
2'b00: q = d0;
2'b01: q = d1;
2'b10: q = q;
2'b11: q = q;

endcase
end
endmodule

Asynchronous Preset
Some synthesis tools automatically translate an asynchronous preset register into an asynchronous reset register without
performance penalties. The bubbled logic can then be pushed into the surrounding logic without any delay penalty.
There are various types of preset registers in the Actel libraries. Some of the registers use two combinatorial modules
(CMOD) and most use an inverter, which consumes part of the SMOD multiplexor. If your synthesis tool does not
automatically translate an asynchronous preset register into a functionally equivalent asynchronous preset register using
an asynchronous reset register (Figure 4-4), use the following examples to design an asynchronous reset register.

Verilog Asynchronous Preset
// Active-low async preset flip-flop

module dfp (q, d, clk, preset);
input d, clk, preset;
output q;
reg q;

Figure 4-4 · Asynchronous Reset (left) and Equivalent Asynchronous Reset (right)

d

clk

q

preset
d

clk

q

preset
66 Actel HDL Coding Style Guide

Registers
always @(posedge clk or negedge preset)
if (!preset)
q = 1'b1;

else
q = d;

endmodule

Verilog Equivalent Asynchronous Preset
/* Equivalent active-low async preset flip-flop, using an async reset flop with bubbled d
and q */

module dfp_r (q, d, clk, preset);
input d, clk, preset;
output q;
wire d_inv, reset;
reg q_inv;

assign d_inv = !d;
assign q = !q_inv;
assign reset = preset;
always @(posedge clk or negedge reset)
if (!reset)
q_inv = 1'b0;

else
q_inv = d_inv;

endmodule

VHDL Asynchronous Preset
-- register with active low async preset.

library ieee;
use ieee.std_logic_1164.all;
entity dfp is

port (d, clk, preset : in std_logic;
q : out std_logic;

end dfp;

architecture behav of dfp is
begin
process (clk, preset) begin
if (preset = '0') then
q <= '1';

elsif (clk'event and clk = '1') then
q <= d;

end if;
end process;
end behav;

VHDL Equivalent Asynchronous Preset
-- register with active low async preset.

library ieee;
use ieee.std_logic_1164.all;
entity dfp_r is

port (d, clk, preset : in std_logic;
q : out std_logic);

end dfp_r;
Actel HDL Coding Style Guide 67

Technology Specific Coding Techniques
architecture behav of dfp_r is
signal reset, d_tmp, q_tmp : std_logic;
begin
reset <= preset;
d_tmp <= NOT d;
process (clk, reset) begin
if (reset = '0') then
q_tmp <= '0';

elsif (clk'event and clk ='1') then
q_tmp <= d_tmp;

end if;
end process;
q <= NOT q_tmp;
end behav;

Asynchronous Preset and Clear
This is the most problematic register for the ACT2, XL, DX, MX, SX and ACT3 architectures. You can only use one
cell (the DFPC cell) to design an asynchronous preset and clear register. The DFPC uses two CMODs to form a master
latch and a slave latch that together form one register. This uses two CMODs per register and offers no logic
combinability with the SMOD. The DFPC requires more setup time and no combinability. The net timing loss can
often be as high as 10ns. Actel recommends that you do not use any asynchronous preset and clear registers on critical
paths. Use a synchronous preset with asynchronous clear or a synchronous clear register instead.

You can use an asynchronous preset and clear register if it does not affect a critical path or cause high utilization in the
design.

Registered I/Os
The ACT3 technology has registers in the I/O ring, with both reset and preset, which allow for fast input setup and
clock-to-out delays. Because most synthesis tools do not infer these special resources, the following example shows how
to instantiate a registered I/O cell, BREPTH, in your design (Figure 4-5).

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity regio is

Figure 4-5 · Registered I/O Cell

data Q_pad

en

clock

preset

bidir

D

ODE

CLK

Y

D Q

ODE

CLK

PRE

E
BREPTH

Tri_en

PAD
68 Actel HDL Coding Style Guide

CLKINT/CLKBUF for Reset and/or High Fanout Networks
port (data, en, Tri_en, clock, preset : in std_logic;
 bidir : inout std_logic;
 q_pad : out std_logic);

end regio;

architecture rtl of regio is

-- Component Declaration
component BREPTH

port (D, ODE, E, IOPCL, CLK : in std_logic;
 Y : out std_logic;
 PAD : inout std_logic);

end component;

begin
-- Concurrent Statement
U0 : BREPTH port map (D => data,

ODE => en,
E => Tri_en,
IOPCL => preset,
CLK => clock,
Y => q_pad,
PAD => bidir);

end rtl;

Verilog
module regio (data, Q_pad, clock, preset, Tri_en, en, bidir);

input data, clock, preset, Tri_en, en;
output Q_pad;
inout bidir;

BREPTH U1 (.PAD(Q_pad), .D(data), .CLK(clock), .IOPCL(preset), .E(Tri_en), .ODE(en),
.Y(bidir));

endmodule

Note: As a good design practice, instantiate all input/output cells at the top level of your design.

CLKINT/CLKBUF for Reset and/or High Fanout Networks
Many designs have internally generated clocks, high fanout control signals, or internally generated reset signals. These
signals need a large internal driver, CLKINT, to meet both area and performance goals for the circuit. If the high fanout
signals come directly into the design through an I/O, a CLKBUF driver is used. Most synthesis tools do not
automatically use these drivers. Instead, the synthesis tool builds a buffer tree that consumes one module per driver. On
a high fanout net this can affect both the area and timing for that signal. If the global drivers for a given array are still
available, you should instantiate the CLKINT or CLKBUF driver into the design. The following example shows how to
instantiate these drivers.
Actel HDL Coding Style Guide 69

Technology Specific Coding Techniques
CLKINT
The following examples instantiate the CLKINT driver (Figure 4-6).

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity design is
port (………………… : in std_logic;

 ………………… : out std_logic);
end design;

architecture rtl of design is
signal neta, int_clk : std_logic;

-- Component Declaration
component CLKINT

port (A : in std_logic;
 Y : out std_logic);

end component;

begin
-- Concurrent Statement
U2 : CLKINT port map (A => neta,

Y => int_clk);
end rtl;

Verilog
module design (……………);

input …………………;
output …………………;

CLKINT U2 (.Y(int_clk), .A(neta));
……………………
……………………

endmodule

Figure 4-6 · CLKINT Driver

CLKINT

U2

neta int_clk
YA
70 Actel HDL Coding Style Guide

QCLKINT/QCLKBUF for Medium Fanout Networks
CLKBUF
The following examples instantiate a CLKBUF driver (Figure 4-7).

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity design is
port (PAD : in std_logic;

 Y : out std_logic);
end component;

begin
-- Concurrent Statement

U2 : CLKBUF port map (PAD => reset, Y => rst_rst);
end rtl;

Verilog
module design (……………);

input …………………;
output …………………;

CLKBUF U2 (.Y(rst), .PAD(reset));
……………………
……………………

endmodule

QCLKINT/QCLKBUF for Medium Fanout Networks
The DX and MX have four quadrant clocks that can be used to drive internally generated high fanout nets (QCLKINT)
or high fanout nets generated from I/O ports (QCLKBUF). The methodology and instantiation are similar to the
CLKINT/CLKBUF drivers. However, the QCLK drivers can only drive within a quadrant. Although the placement of
the cells into a quadrant is automated by the Designer place-and-route software, you must limit the number of fanouts
and prevent the use of multiple QCLK signals to drive the same cell or gate.

You can double your fanout limit and drive half the chip by combining two drivers into one to drive 2 quadrants.
However, each time you combine drivers, you reduce the number of available QCLKs by one. The Designer place-and-
route software automatically combines QCLKs when necessary

SmartGen Counter
Several synthesis tools cannot build an optimal counter implementation for the Actel architecture. If a counter is on a
critical path, this implementation can increase logic level usage and decrease performance. To reduce critical path delays
and to achieve optimal results from your design, Actel recommends that you instantiate counters generated by the

Figure 4-7 · CLKBUF Driver

CLKBUF

U2reset

rst
Actel HDL Coding Style Guide 71

Technology Specific Coding Techniques
SmartGen Core Builder. The SmartGen Core Builder supports a wide variety of counters for area and performance
needs.

Figure 4-8 uses a 5-bit counter with load, count enable, and asynchronous reset that has been generated with SmartGen
and saved as a structural HDL netlist called “CNT5”. The counter is instantiated as follows:

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity counter is
port (bus_d : in std_logic_vector(4 downto 0);

 bus_q : out std_logic_vector(4 downto 0);
 net_clock, net_aclr, net_enable : in std_logic;
 net_sload : in std_logic);

end counter;

architecture rtl of counter is

-- Component Declaration
component CNT5

port (Data : in std_logic_vector(4 downto 0);
 Sload, Enable, Aclr, Clock : in std_logic;
 Q : out std_logic_vector(4 downto 0));

end component;

begin
-- Concurrent Statement
U0 : CNT5 port map (Data => bus_d,

 Sload => net_sload,
 Enable => net_enable,
 Aclr => net_aclr,
 Clock => net_clock,
 Q => bus_q);

end rtl;

Verilog
module counter (bus_q, bus_d, net_clock, net_aclr, net_enable,

net_sload);
input [4:0] data;
input net_sload, net_enable, net_aclr, net_clock;
output [4:0] bus_q;

CNT5 U0 (.Q(bus_q), .Data(bus_d), .Clock(net_clock), .Aclr(net_aclr),
.Enable(net_enable), .Sload(net_sload));

Figure 4-8 · Instantiating a 5-Bit Counter

net_sload
net_enable

net_aclr

net_clock

bus_d<4:0>

sload
enable
aclr

clock

data<4:0>

bus_q<4:0>Q<4:0>

CNT5
UO
72 Actel HDL Coding Style Guide

Dual Architecture Coding in VHDL
endmodule

Dual Architecture Coding in VHDL
It is possible to maintain technology independence after instantiating an SmartGen core into your design. By adding a
second technology independent architecture, you can maintain two functionally equivalent architectures of the same
entity in your design. The SmartGen core is Actel specific and instantiated in your design to take advantage of the
architectural features of the target Actel FPGA. This allows you to meet your design goals quickly. The technology
independent architecture is functionally equivalent to the Actel specific architecture (verified by simulation) and can be
used to synthesize the design to another technology if necessary. The following example shows the technology
independent (RTL) and Actel specific (structural) architecture for a counter called “CNT5” and illustrates how to write
your code so that you can choose which architecture to use.

RTL Architecture
This implementation of “CNT5” is written as a behavioral description directly into the design.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity CNT5 is
port (Data: in std_logic_vector(4 downto 0);

 Sload, Enable, Aclr, Clock: in std_logic;
 Q: out std_logic_vector(4 downto 0));

end CNT5;

architecture RTL of CNT5 is

signal cnt: std_logic_vector(4 downto 0);

begin
counter : process (Aclr, Clock)
begin
if (Aclr = '0') then
cnt <= (others => '0'); -- asynchronous reset

elsif (Clock'event and Clock = '1') then
if (Sload = '1') then
cnt <= Data;-- synchronous load

elsif (Enable = '1') then
cnt <= cnt + '1'; -- increment counter

end if;
end if;
end process;
Q <= cnt; -- assign counter output to output port
end RTL;

Structural Architecture
This implementation of “CNT5” is created by the SmartGen core builder. The port names for the RTL description
must match the port names of the structural “CNT5” netlist generated by SmartGen.

library ieee;
use ieee.std_logic_1164.all;
library ACT3;

entity CNT5 is
Actel HDL Coding Style Guide 73

Technology Specific Coding Techniques
port (Data : in std_logic_vector(4 downto 0);Enable, Sload,
 Aclr, Clock : in std_logic; Q : out std_logic_vector(4
 downto 0)) ;

end CNT5;

architecture DEF_ARCH of CNT5 is

component DFM7A
port(D0, D1, D2, D3, S0, S10, S11, CLR, CLK : in
std_logic; Q : out std_logic);

end component;

. . .

end DEF_ARCH;

Instantiating “CNT5” in the Top Level Design
Once you have created both architectures, instantiate “CNT5” into your design, adding binding statements for both
architectures. The binding statements are used to specify which architecture the synthesis tool uses in the design. The
technology independent RTL architecture might not meet the performance requirements. The Actel specific
DEF_ARCH architecture is optimized for the Actel FPGA architecture and may provide higher performance. By
removing the comment on one of the “use” statements in the code, a particular architecture can be chosen to meet the
design needs.

library IEEE;
use IEEE.std_logic_1164.all;

entity counter is
port (bus_d: in std_logic_vector(4 downto 0);

 bus_q: out std_logic_vector(4 downto 0);
 net_clock, net_aclr, net_enable: in std_logic;
 net_sload: in std_logic);

end counter;

architecture RTL of counter is

-- Component Declaration
component CNT5
port (Data : in std_logic_vector(4 downto 0);Enable, Sload,

 Aclr, Clock : in std_logic; Q : out std_logic_vector(4
 downto 0));

end component;

-- Binding statements to specify which CNT5 architecture to use
-- RTL architecture for behavioral CNT5
-- DEF_ARCH architecture for structural (SmartGen) CNT5
-- for all: CNT5 use entity work.CNT5(RTL);
-- for all: CNT5 use entity work.CNT5(DEF_ARCH);

begin
-- Concurrent Statement
U0: CNT5 port map (Data => bus_d,

Sload => net_sload,
Enable => net_enable,
Aclr => net_aclr;
Clock => net_clock,
Q => bus_q);

end rtl;
74 Actel HDL Coding Style Guide

SRAM
SRAM
The following examples show how to create register-based SRAM for non-SRAM based Actel devices (Figure 4-9).

Register-Based Single Port SRAM
The following example shows the behavioral model for a 8x8 RAM cell. To modify the width or depth, simply modify
the listed parameters in the code. The code assumes that you want to use “posedge clk” and “negedge reset.” Modify the
“always” blocks if that is not the case.

VHDL
-- ***
-- Behavioral description of a single-port SRAM with:
-- Active High write enable (WE)
-- Rising clock edge (Clock)
-- ***

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity reg_sram is
generic (width : integer:=8;

depth : integer:=8;
addr : integer:=3);

port (Data : in std_logic_vector (width-1 downto 0);
Q : out std_logic_vector (width-1 downto 0);
Clock : in std_logic;
WE : in std_logic;
Address : in std_logic_vector (addr-1 downto 0));

end reg_sram;

architecture behav of reg_sram is
type MEM is array (0 to depth-1) of std_logic_vector(width-1
downto 0);
signal ramTmp : MEM;

begin
process (Clock)
begin

Figure 4-9 · RAM Behavioral Simulation Model

Register Array (8x8)

Write
Address
Decode

Read
Address
Decode
Actel HDL Coding Style Guide 75

Technology Specific Coding Techniques
if (clock'event and clock='1') then
if (WE = '1') then
ramTmp (conv_integer (Address)) <= Data;

end if;
end if;

end process;
Q <= ramTmp(conv_integer(Address));
end behav;

Verilog
`timescale 1 ns/100 ps
//##
//# Behavioral single-port SRAM description :
//# Active High write enable (WE)
//# Rising clock edge (Clock)
//###

module reg_sram (Data, Q, Clock, WE, Address);

parameter width = 8;
parameter depth = 8;
parameter addr = 3;

input Clock, WE;
input [addr-1:0] Address;
input [width-1:0] Data;
output [width-1:0] Q;
wire [width-1:0] Q;
reg [width-1:0] mem_data [depth-1:0];

always @(posedge Clock)
if(WE)

mem_data[Address] = #1 Data;

assign Q = mem_data[Address];

endmodule

Register-Based Dual-Port SRAM
The following example shows the behavioral model for a 8x8 RAM cell. This code was designed to imitate the behavior
of the Actel DX family dual-port SRAM and to be synthesizeable to a register based SRAM module. To modify the
width or depth, modify the listed parameters in the code. The code assumes that you want to use “posedge clk” and
“negedge reset.” Modify the “always” blocks if that is not the case.

VHDL
-- Behavioral description of dual-port SRAM with :
-- Active High write enable (WE)
-- Active High read enable (RE)
-- Rising clock edge (Clock)

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity reg_dpram is
generic (width : integer:=8;
76 Actel HDL Coding Style Guide

SRAM
depth : integer:=8;
addr : integer:=3);

port (Data : in std_logic_vector (width-1 downto 0);
Q : out std_logic_vector (width-1 downto 0);
Clock : in std_logic;
WE : in std_logic;
RE : in std_logic;

WAddress: in std_logic_vector (addr-1 downto 0);
RAddress: in std_logic_vector (addr-1 downto 0));

end reg_dpram;

architecture behav of reg_dpram is
type MEM is array (0 to depth-1) of std_logic_vector(width-1
downto 0);
signal ramTmp : MEM;

begin

-- Write Functional Section

process (Clock)
begin
if (clock'event and clock='1') then
if (WE = '1') then
ramTmp (conv_integer (WAddress)) <= Data;

end if;
end if;

end process;

-- Read Functional Section

process (Clock)
begin
if (clock'event and clock='1') then
if (RE = '1') then
Q <= ramTmp(conv_integer (RAddress));

end if;
end if;

end process;

end behav;

Verilog
`timescale 1 ns/100 ps
//##
//# Behavioral dual-port SRAM description :
//# Active High write enable (WE)
//# Active High read enable (RE)
//# Rising clock edge (Clock)
//###

module reg_dpram (Data, Q, Clock, WE, RE, WAddress, RAddress);

parameter width = 8;
parameter depth = 8;
parameter addr = 3;

input Clock, WE, RE;
input [addr-1:0] WAddress, RAddress;
input [width-1:0] Data;
output [width-1:0] Q;
Actel HDL Coding Style Guide 77

Technology Specific Coding Techniques
reg [width-1:0] Q;
reg [width-1:0] mem_data [depth-1:0];

// ###
// # Write Functional Section
// ###
always @(posedge Clock)
begin

if(WE)
mem_data[WAddress] = #1 Data;

end

//###
//# Read Functional Section
//###
always @(posedge Clock)
begin

if(RE)
Q = #1 mem_data[RAddress];

end

endmodule

SmartGen RAM
The RAM cells in the MX family supports asynchronous and synchronous dual-port RAM. The basic RAM cells can be
configured as 32x8 or 64x4. However, most synthesis tools cannot infer technology specific features (such as RAM cells).
The following example shows an SmartGen structural implementation for instantiation. Although the behavioral
description is synthesizeable, the implementation is not optimal for speed and area.

Using SmartGen, generate a 32x16 dual port RAM with the configuration shown in Figure 4-10. Save the structured
Verilog or VHDL implementations as “ram.”

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram32_16 is
port (WAddress, RAddress:in std_logic_vector(4 downto 0);

 Data : in std_logic_vector (15 downto 0);
 Aclr, WClock, RClock,WE,RE:in std_logic;
 Q :out std_logic_vector (15 downto 0));

end ram32_16;

Figure 4-10 · RAM Cells

32x16Data Q

RE

WE

WClock

RClock

WAddress

RAddress
78 Actel HDL Coding Style Guide

SRAM
architecture rtl of ram32_16 is

component ram
port (Data : in std_logic_vector (15 downto 0);

 Aclr : in std_logic;
 WE : in std_logic ;
 RE : in std_logic ;
 WClock : in std_logic ;
 RClock : in std_logic ;
 WAddress : in std_logic_vector (4 downto 0);
 RAddress : in std_logic_vector (4 downto 0);
 Q : out std_logic_vector (15 downto 0));

end component;

begin

R_32_16: ram
port map (Data => Data,

 Aclr => Aclr,
 WE => WE,
 WAddress => WAddress,
 RE => RE,
 RAddress => RAddress,
 WClock => WClock,
 RClock => RClock,
 Q => Q);

end rtl;

Verilog
module ram (WAddress, RAddress, Data, WClock, WE,

 RE, Rclock, Q);
input [4:0] WAddress, RAddress;
input [15:0] Data;
input Rclock, WClock;
input WE, RE;
output [15:0] Q;

ram R_32_16 (.Data(Data), .WE(WE), .RE(RE), .WClock(WClock),
.Rclock(Rclock), .Q(Q), .WAddress(WAddress),
.RAddress(RAddress));

endmodule
Actel HDL Coding Style Guide 79

Technology Specific Coding Techniques
FIFO
The following example shows how to create a register-based FIFO for non-SRAM based Actel devices (as shown in
Figure 4-11).

Register-Based FIFO
The following example show the behavioral model for an 8x8 FIFO. This code was designed to imitate the behavior of
the Actel DX family dual-port SRAM based FIFO and to be synthesizeable to a register-based FIFO. To modify the
width or depth, simply modify the listed parameters in the code. However, the code does assume that you want to use
posedge clk and negedge reset. Modify the always blocks if that is not the case.

VHDL
-- ***
-- Behavioral description of dual-port FIFO with :
-- Active High write enable (WE)
-- Active High read enable (RE)
-- Active Low asynchronous clear (Aclr)
-- Rising clock edge (Clock)
-- Active High Full Flag
-- Active Low Empty Flag
-- ***

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity reg_fifo is

generic (width : integer:=8;
 depth : integer:=8;
 addr : integer:=3);

port (Data : in std_logic_vector (width-1 downto 0);
 Q : out std_logic_vector (width-1 downto 0);
 Aclr : in std_logic;
 Clock : in std_logic;
 WE : in std_logic;
 RE : in std_logic;
 FF : out std_logic;

Figure 4-11 · FIFO Behavioral Simulation Mode

fifo_ff_ef (8x8)

Counter Comparator
80 Actel HDL Coding Style Guide

FIFO
 EF : out std_logic);

end reg_fifo;

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

architecture behavioral of reg_fifo is

type MEM is array(0 to depth-1) of std_logic_vector(width-1 downto 0);
signal ramTmp : MEM;
signal WAddress : std_logic_vector (addr-1 downto 0);
signal RAddress : std_logic_vector (addr-1 downto 0);
signal words : std_logic_vector (addr-1 downto 0);

begin

-- ##
-- # Write Functional Section
-- ##

WRITE_POINTER : process (Aclr, Clock)
begin
if (Aclr = '0') then
WAddress <= (others => '0');

elsif (Clock'event and Clock = '1') then
if (WE = '1') then
if (WAddress = words) then
WAddress <= (others => '0');

else
WAddress <= WAddress + '1';

end if;
end if;

end if;
end process;

WRITE_RAM : process (Clock)
begin
if (Clock'event and Clock = '1') then

if (WE = '1') then
ramTmp (conv_integer (WAddress)) <= Data;

end if;
end if;

end process;

-- ##
-- # Read Functional Section
-- ##

READ_POINTER : process (Aclr, Clock)
begin
if (Aclr = '0') then
RAddress <= (others => '0');

elsif (Clock'event and Clock = '1') then
if (RE = '1') then
if (RAddress = words) then
RAddress <= (others => '0');

else
Actel HDL Coding Style Guide 81

Technology Specific Coding Techniques
RAddress <= RAddress + '1';
end if;

end if;
end if;

end process;

READ_RAM : process (Clock)
begin
if (Clock'event and Clock = '1') then
if (RE = '1') then
Q <= ramTmp(conv_integer(RAddress));

end if;
end if;

end process;

-- ##
-- # Full Flag Functional Section : Active high
-- ##

FFLAG : process (Aclr, Clock)
begin
if (Aclr = '0') then
FF <= '0';

elsif (Clock'event and Clock = '1') then
if (WE = '1' and RE = '0') then
if ((WAddress = RAddress-1) or

((WAddress = depth-1) and (RAddress = 0))) then
FF <= '1';

end if;
else
FF <= '0';

end if;
end if;

end process;

-- ##
-- # Empty Flag Functional Section : Active low
-- ##

EFLAG : process (Aclr, Clock)
begin
if (Aclr = '0') then
EF <= '0';

elsif (Clock'event and Clock = '1') then
if (RE = '1' and WE = '0') then
if ((WAddress = RAddress+1) or

((RAddress = depth-1) and (WAddress = 0))) then
EF <= '0';

end if;
else
EF <= '1';

end if;
end if;

end process;

end behavioral;
82 Actel HDL Coding Style Guide

FIFO
Verilog
`timescale 1 ns/100 ps
//##
//# Behavioral description of FIFO with :
//# Active High write enable (WE)
//# Active High read enable (RE)
//# Active Low asynchronous clear (Aclr)
//# Rising clock edge (Clock)
//# Active High Full Flag
//# Active Low Empty Flag
//###

module reg_fifo (Data, Q, Aclr, Clock, WE, RE, FF, EF);

parameter width = 8;
parameter depth = 8;
parameter addr = 3;

input Clock, WE, RE, Aclr;
input [width-1:0] Data;
output FF, EF;//Full & Empty Flags
output [width-1:0] Q;
reg [width-1:0] Q;
reg [width-1:0] mem_data [depth-1:0];
reg [addr-1:0] WAddress, RAddress;
reg FF, EF;

// ###
// # Write Functional Section
// ###
// WRITE_ADDR_POINTER
always @ (posedge Clock or negedge Aclr)
begin

if(!Aclr)
WAddress = #2 0;

else if (WE)
WAddress = #2 WAddress + 1;

end

// WRITE_REG
always @ (posedge Clock)
begin

if(WE)
mem_data[WAddress] = Data;

end

//###
//# Read Functional Section
//###
// READ_ADDR_POINTER
always @ (posedge Clock or negedge Aclr)
begin

if(!Aclr)
RAddress = #1 0;

else if (RE)
RAddress = #1 RAddress + 1;

end
Actel HDL Coding Style Guide 83

Technology Specific Coding Techniques
// READ_REG
always @ (posedge Clock)
begin

if (RE)
Q = mem_data[RAddress];

end

//###
//# Full Flag Functional Section : Active high
//###
always @ (posedge Clock or negedge Aclr)
begin

if(!Aclr)
FF = #1 1'b0;

else if ((WE & !RE) && ((WAddress == RAddress-1) ||
((WAddress == depth-1) && (RAddress == 1'b0))))
FF = #1 1'b1;

else
FF = #1 1'b0;

end

//###
//# Empty Flag Functional Section : Active low
//###
always @ (posedge Clock or negedge Aclr)
begin

if(!Aclr)
EF = #1 1'b0;

else if ((!WE & RE) && ((WAddress == RAddress+1) ||
((RAddress == depth-1) && (WAddress == 1'b0))))
EF = #1 1'b0;

else
EF = #1 1'b1;

end

endmodule

SmartGen FIFO
The RAM cells in the DX and MX families can be used to implement a variety of FIFOs. The behavioral description of
a 32x8 FIFO for simulation is shown below. However, most synthesis tools cannot infer technology specific features
such as RAM cells. Synthesizing this model will result in high area utilization. SmartGen can generate an area and
performance optimized structured HDL netlist for instantiation.
84 Actel HDL Coding Style Guide

FIFO
Using SmartGen, generate a 32x8 FIFO with the configuration shown in Figure 4-12. Save it as a Verilog or VHDL
netlist called “fifo_ff_ef.”

VHDL
library IEEE;
use IEEE.std_logic_1164.all;

entity fifo_32_8 is

port (D : in std_logic_vector(7 downto 0);
 OUT : out std_logic_vector(7 downto 0);
 Reset : in std_logic;
 Rd_En, Wr_En : in std_logic;
 Rd_En_F, Wr_En_F : in std_logic;
 clk : in std_logic;
 E_Flag, F_Flag : out std_logic);

end fifo_32_8;

architecture fifo_arch of fifo_32_8 is

component fifo_ff_ef
generic (width : integer;

depth : integer;
clrPola : integer;
clkEdge : integer);

port (Data : in std_logic_vector (width-1 downto 0);
 Aclr : in std_logic;
 WE : in std_logic ;
 WEF : in std_logic ;
 RE : in std_logic ;
 REF : in std_logic ;
 Clock : in std_logic ;
 Q : out std_logic_vector (width-1 downto 0);
 FF : out std_logic;
 EF : out std_logic);

end component;

begin

F_32_8: fifo_ff_ef
generic map (width => 8, depth => 32, clrPola => 1,

clkEdge => 1)

Figure 4-12 · 32x8 FIFO

fifo_ff_ef

fifo_32_8

Reset

OUT[7:0]D[7:0]

CLK

Rd_En

Rd_En_F

Wr_En

Wr_En_F

Aclr

Data[7:0]

Clock

RE

REF

WE

WEF

F_Flag

E_Flag

Q[7:0]

FF

EF
Actel HDL Coding Style Guide 85

Technology Specific Coding Techniques
port map (Data => D,
 Aclr => Reset,
 WE = > We_En,
 WEF => We_En_F,
 RE => Rd_En,
 REF => Rd_En_F,
 Clock => CLK,
 Q => OUT,
 FF => F_Flag,
 EF => E_Flag);

end fifo_arch;

Verilog
module fifo_32_8 (D, OUT, Reset, Rd_En, Wr_En, CLK, E_Flag,

Rd_En_F, Wr_En_F, F_Flag);
input [7:0] D;
output [7:0] OUT;
input Reset;
input Rd_En;
input Rd_En_F;
input Wr_En;
input Wr_En_F;
input CLK;
output E_Flag;
output F_Flag;
wire [7:0] OUT;
wire E_Flag;
wire F_Flag;

fifo_ff_ef F_32_8 (.Data(D), .Aclr(Reset), .WE(Wr_En),
.WEF(Wr_En_F), .RE(Rd_En), .REF(Rd_En_F)
.Clock(CLK), .Q(OUT), .FF(F_Flag), .EF(E_Flag));

endmodule
86 Actel HDL Coding Style Guide

A
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0)1276.401500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650. 318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (http://www.actel.com/custsup/) for more information and support. Many
answers available on the searchable web resource include diagrams, illustrations, and links to other resources on the Actel
web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
Actel HDL Coding Style Guide 87

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/
http://www.actel.com
http://www.actel.com

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
88 Actel HDL Coding Style Guide

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
A
ACT 3 I/O 68
Actel

web site 87
web-based technical support 87

Addition 33
Arithmetic Operator 33

Shift Register Implementation 34
Assumptions 5

B
Behavioral Simulation 10
BREPTH 68

C
Capturing a Design 10
Case Statement 25, 61

Adding Directive 61
CLKBUF 69
CLKINT 69
Coding Dual Architecture 73

Instantiating 74
RTL 73
Structural 73

Combinatorial/Sequential Module Merging 55
Combining Logic 53, 55
Component

Size 48
Width 48

Contacting Actel
customer service 87
electronic mail 87
telephone 88
web-based technical support 87

Conventions 5
Document 5
Naming, Verilog 7
Naming, VHDL 6

Counter 30–33
8-Bit, Count Enable, Asynchronous Reset 30
8-Bit, Load and Asynchronous Reset 31
8-Bit, Load, Count Enable, Terminal Count and

Asynchronous Reset 32
Instantiation 71
N-Bit, Load, Count Enable, and Asynchronous Reset

32

Recommendations 30, 71
Critical Path Logic Reduction 51
Customer service 87

D
Data Shift 36
Datapath 24–37

Arithmetic Operator 33
Counter 30
Decoder 29
Equality Operator 35
If-Then-Else 24
Multiplexor 25
Relational Operator 34
Shift Operator 36

Decoder 29
Design Creation/Verification 10

Behavioral Simulation 10
EDIF Netlist Generation 10
HDL Source Entry 10
Structural Netlist Generation 10
Structural Simulation 10
Synthesis 10

Design Flow
Design Creation/Verification 10
Design Implementation 10
Programming 11
System Verification 11

Design Implementation 10
Place and Route 10
Timing Analysis 10
Timing Simulation 11

Design Layout 10
Design Partitioning 58
Design Synthesis 10
Designer

DT Analyze Tool 10
Place and Route 10
Timing Analysis 10

Device Programming 11
DFPC Cell 68
Division 33
D-Latch 13–22

with Asynchronous Reset 22
with Data and Enable 20
with Gated Asynchronous Data 20
with Gated Enable 21
Actel HDL Coding Style Guide 89

Index
Document
Assumptions 5
Conventions 5
Organization 5

Document Conventions 5
Don’t Care 28
DT Analyze 10
Dual Architecture Coding 73

Instantiating 74
RTL 73
Structural 73

Dual Port SRAM 76, 78
Duplicating Logic 56

E
Edge-Triggered Memory Device 13
EDIF Netlist Generation 10
Electronic mail 87, 88
Equality Operator 35

F
Fanout

High Fanout Networks 69, 71
Reducing 56

FIFO 80–86
Behavioral Implementation 80
Register-Based 80
SmartGen Implementation 84
Structural Implementation 84

Finite State Machine 37–44
Combinational Next State Logic 37
Combinational Output Logic 37
Mealy 38
Moore 41
One Hot 38
Sequential Current State Register 37
Structure 37

Flip-Flop 13–19
See Also Register
Positive Edge Triggered 13
with Asynchronous Preset 15
with Asynchronous Reset 14
with Asynchronous Reset and Clock Enable 19
with Asynchronous Reset and Preset 16
with Synchronous Preset 18
with Synchronous Reset 17

FSM. See Finite State Machine

G
Gate-Level Netlist 10
Generating

EDIF Netlist 10
Gate-Level Netlist 10
Structural Netlist 10

Generics 48–49
Greater Than 34
Greater Than Equal To 34

H
HDL Design Flow

Design Creation/Verification 10
Design Implementation 10
Programming 11
System Verification 11

HDL Source Entry 10

I
If-Then-Else Statement 24
Input-Output Buffer 44–47

Bi-Directional 46
Tri-State 44

Instantiating
CLKBUF Driver 69
CLKINT Driver 69
Counters 71
Dual Coding 73
FIFO 84
QCLKBUF Driver 71
QCLKINT Driver 71
RAM 78
Registered I/Os 68

Internal Tri-State Mapping 61
Internally Generated Clock 69, 71

K
Keywords

Verilog 7
VHDL 6

L
Latch 13

Master 68
Slave 68

Less Than 34
90 Actel HDL Coding Style Guide

Index
Less Than Equal To 34
Level-Sensitive Memory Device 13
Load Reduction 56
Logic Level Reduction 51
Loops 54

M
Merging Logic Modules 55
Module Block Partitioning 58
Multiplexor 25, 61

Case X 28
Four to One 26
Mapping Internal Tri-State to 61
Moving Operators Outside Loops 54
Twelve to One 27

Multiplication 33

N
Naming Conventions

Verilog 7
VHDL 6

Netlist Generation
EDIF 10
Gate-Level 10
Structural 10

O
One Hot State Machine 38
Online Help 8
Operators 23

Arithmetic 33
Equality 35
Inside Loops 54
Relational 34
Removing from Loops 54
Shift 36
Table of 23

P
Parallel

Encoding 25
Operation 61

Parameters 48–49
Partitioning a Design 58
Performance Driven Coding 51–59
Place and Route 10

Priority Encoding 24
Product Support 87–88
Product support

customer service 87
electronic mail 87, 88
technical support 87
web site 87

Programming a Device 11

Q
QCLKBUF 71
QCLKINT 71
Quadrant Clock 71

Limitations 71

R
RAM 78
Reducing Fanout 56
Reducing Logic

on a Critical Path 51
Usage 53

Register 63
See Also Flip-Flop
Asynchronous Preset 66
Asynchronous Preset and Clear 68
Clock Enabled 65
Duplication 56
Functionally Equivalent Asynchronous Preset 66
Placed at Hierarchical Boundaries 58
Recommended Usage 63–68
Synchronous Clear or Preset 64

Register-Based
FIFO 80
SRAM 75–78

Dual Port 76
Single Port 75

Registered I/O 68
BREPTH 68

Related Manuals 7
Relational Operator 34
Removing Operators from Loops 54
Reset Signals 69, 71
Resource Sharing 53

S
Sequential Device 13–19
Actel HDL Coding Style Guide 91

Ac
Ph

Ac
Ph

Ac
Ph

Ac
Ph

Ac
an
tel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 • USA
one 650.318.4200 • Fax 650.318.4600 • Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

tel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom
one +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

tel Japan • EXOS Ebisu Building 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
one +81.03.3445.7671 • Fax +81.03.3445.7668 • http://jp.actel.com

tel Hong Kong • Room 2107, China Resources Building • 26 Harbour Road • Wanchai • Hong Kong
one +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

tel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of system
d power management solutions. Power Matters. Learn more at www.actel.com.

D-Latch 13
Flip-Flop 13

Sharing Resources 53
Shift

Operator 36
Register 34

Simulation
Behavioral 10
Structural 10
Timing 11

Single Port SRAM 75
Size 48
SmartGen

Counter Instantiation 71
FIFO 84
RAM 78

SRAM 75–79
Dual Port 76
Register Based 75
Single Port 75
SmartGen Implementation 78
Structural Implementation 78

Static Timing Analysis 10
Structural Netlist Generation 10
Structural Simulation 10
Subtraction 33
Synthesis 10

Reducing Duration of 58

System Verification, Silicon Explorer 11

T
Technology Independent Coding 13–49
Technology Specific Coding 61–86
Timing

Analysis 10
Constraints 51
Simulation 11

Tri-State Mapping 61
True/False Operands 35

U
Unit Delays 10

V
Verilog

Naming Conventions 7
Reserved Words 7

VHDL
Naming Conventions 6
Reserved Words 6

W
Web-based technical support 87

Width 48
5029105-8/07.09

http://jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	Introduction
	Document Organization
	Document Assumptions
	Document Conventions
	HDL Keywords and Naming Conventions
	Your Comments
	Related Manuals
	Online Help

	Design Flow
	Design Flow Overview

	Technology Independent Coding Styles
	Sequential Devices
	Operators
	Datapath
	Finite State Machine
	Input-Output Buffers
	Generics and Parameters

	Performance Driven Coding
	Reducing Logic Levels on Critical Paths
	Resource Sharing
	Operators Inside Loops
	Coding for Combinability
	Register Duplication
	Partitioning a Design

	Technology Specific Coding Techniques
	Multiplexors
	Internal Tri-State to Multiplexor Mapping
	Registers
	Registered I/Os
	CLKINT/CLKBUF for Reset and/or High Fanout Networks
	QCLKINT/QCLKBUF for Medium Fanout Networks
	SmartGen Counter
	Dual Architecture Coding in VHDL
	SRAM
	FIFO

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center

	Index

