
Application Note AC324
SPI-to-I2C Interface Design Example

Contents

Introduction
This application note provides a design example for an interface between the standard SPI of a host and a
serial I2C bus. The I2C is a two-wire bus used to enable communication between two or more devices that
are normally on the same board. The speed is 100 Kbps or 400 Kbps for normal devices and 1 Mbps for fast
devices.

SPI is a serial bus and is very common in the embedded world. SPI supports full duplex communication
with higher throughput than I2C. Many embedded systems have only SPI interfaces, making them difficult
to connect with I2C peripheral devices. You can modify the connections, but the resulting system is not
efficient. One of the best ways to deal with this problem is to create an SPI-to-I2C interface and implement
it in an Actel IGLOO® device, such as an IGLOO/e, IGLOO nano, or IGLOO PLUS device. This provides design
flexibility as well as power flexibility. In addition, IGLOO FPGAs are reprogrammable and designed to meet
the demanding power and area requirements of today's portable and power-conscious electronics. This
application note provides a design example implemented in the Actel IGLOO FPGA.

I2C and SPI
I2C, a serial bus invented by Philips, is used to communicate with low-speed peripherals. It uses two
bidirectional open-drain lines: Serial Data (SDA) and Serial Clock (SCL). The master initially sends a start
bit, followed by the 7-bit address of the slave it wishes to communicate with, which is finally followed by
a single bit representing whether it wishes to write (0) to or read (1) from the slave. If the slave exists on
the bus, it will respond with an ACK bit (active low for acknowledged) for that address. The master then

Introduction . 1
I2C and SPI . 1
Design Description . 3
SPI Message Format . 4
SPI-to-I2C Top-Level I/O Description. 8
Utilization Details . 8
Testing Scheme . 8
Conclusion . 9
April 2009 1
© 2009 Actel Corporation

http://www.actel.com/survey/rating/?f=SPI_I2C_Interface_AN.pdf

SPI-to-I2C Interface Design Example
continues in either transmit or receive mode, and the slave continues in its complementary mode. Every
data byte put on the SDA line must be 8-bits long. Figure 1 shows the I2C communication scheme.

SPI, on the other hand, is a synchronous serial data link standard named by Motorola that operates in full
duplex mode. In addition, SPI is not limited to 8-bit words, so you can send any message size with arbitrary
content and purpose. Figure 2 shows the SPI communication scheme. Multiple slave devices are connected
to a single master with individual slave select (chip select) lines. The master pulls the slave select low for
the desired chip. The master then issues clock cycles. During each SPI clock cycle, a full duplex data
transmission occurs:

• Master sends a bit on the MOSI line; the slave reads it from that same line.

• Slave sends a bit on the MISO line; the master reads it from that same line.

The two clock parameters, CPOL and CPHA, set the clock polarity and clock phase.

Figure 1 • I2C Communication

Figure 2 • SPI Communication
2

SPI-to-I2C Interface Design Example
Design Description
The SPI-to-I2C interface design has three main blocks: the SPI Slave, SPI_I2C Controller, and I2C Master.
Figure 3 shows the block diagram of the design.

1. SPI Slave block: This is the SPI slave. This is a 32-bit SPI slave, which can operate with different CPOL
and CPHA settings. The top-level generic sets the CPOL and CPHA settings. The default settings are
CPOL = 0 and CPHA = 0. The SPI slave receives a command from the external SPI master and passes it
to SPI_I2C controller. It also sends the data read from the external I2C slave and status of I2C master
back to the external SPI master through the MISO port.

2. SPI_I2C Controller block: This is the main block that performs the SPI-to-I2C function. The SPI slave
receives the command from an external SPI master and passes it to this block. The SPI_I2C controller
decodes the command and takes appropriate action. The four MSB of the signal from the SPI
master (MOSI) defines the message, as shown in Table 1 on page 3. For a write or read operation to
the I2C slave, the SPI_I2C controller configures the I2C master to send the I2C slave address, and
then sends or receives data to or from the external I2C slave. During the "Send the read data back
to external SPI master" and "Read the status of I2C master" commands, the SPI_I2C controller sends
the data or status back to the SPI master through the SPI slave block.

3. I2C Master Block: The I2C master uses a custom I2C core. Refer to "Appendix A: Custom I2C Core"
on page 10 for more information on this core. This IP core has four generics that are used to
configure different modes of operation.

• SYNC_BE: This is used to configure the output signals from the core. If '0', the output signals are
synchronous to the SCLK clock and valid for an entire SCLK clock. If '1', the output signals are
synchronous to the input clock.

• MODE: This is used to specify the speed of the I2C transactions. If '0', the STD speed (100 Kbps) is
selected and if '1', the FAST speed (400 Kbps) is selected. This generic and REFCLK_SPEED are used
to configure the clock rate for the mode desired.

• REFCLK_SPEED: This is used to specify the frequency input to the reference clock input.

• BC_WIDTH: This is used to specify the width of the byte counter in the master core. Valid values are
any integer from 2 through 10.

Figure 3 • SPI-to-I2C Interface Top-Level Block Diagram

Table 1 • SPI Commands

Command Message

0001 Write one or two bytes to I2C slave

0010 Read one or two bytes from I2C slave

0100 Send the read data back to external SPI master

1000 Read the status of I2C Master

SPI
Slave

SPI_I2c
Controller

I2C
Master

sclk

ss

pclk

preset_n
done

miso
mosi

SCLK
SDA

byte_cnt

data_in
r_wrn

slave_addr

next_addr

data_valid_int

i2c_status

data_out
read_now

command_data_now

spi_tx_data

slv_add_row

TOP_SPI_I2C

FPGA
3

SPI-to-I2C Interface Design Example
Figure 4 shows the status register bit definitions for a generic BC_WIDTH setting of 4. The status bit (3:0)
keeps track of the number of data written to I2C slave or read from the I2C slave. By reading the I2C status
and comparing against the SPI command, you can decide whether to repeat the last command or not. This
is useful when theI2C slave does not send an acknowledgement and the transmission stops without any
write or read phase.

Files for this design example can be downloaded from the Actel website:
www.actel.com/download/rsc/?f=SPI_I2C_Interface_DF.

SPI Message Format
The following section explains SPI messages and operation of the SPI-to-I2C interface in detail.

Write 2 Bytes to I2C Slave Device

The SPI host issues the write command by sending a "0001" command followed by the total number of
data bytes to be sent ("0010" for 2 bytes) and the address of the I2C slave followed by the data bytes,
beginning with the first byte and ending with the second byte. Note that there is a redundant zero bit
after the address, which has no effect on the read or write command. After receiving the message, the SPI-
to-I2C interface accesses the I2C bus and begins sending the I2C bus signal. The interface sends the start bit
followed by the I2C slave address and I2C write command. It waits for an acknowledgement from the
slave and sends the data bytes using the standard I2C protocol. If the I2C slave does not send an
acknowledgement, the interface sends a stop and ends the transmission. When the I2C bus write
transaction has successfully finished, it asserts the done signal for one clock cycle.

Figure 4 • I2C Master Status Register

Figure 5 • Write 2 Bytes to I2C Slave Device

0001
C om m and

0001
N um ber of

Bytes
Slave Address

+ 0 D ata1 null

Star t Slave Address D ata 1W A A/Ã Stop
4

http://www.actel.com/download/rsc/?f=SPI_I2C_Interface_DF

SPI-to-I2C Interface Design Example
Write 1 Byte to I2C Slave Device

The SPI host issues the write command by sending a "0001" command followed by the total number of
data bytes to be sent ("0001" for 1 bytes) and the address of the I2C slave followed by the data bytes.
After receiving the message, the SPI-to-I2C interface accesses the I2C and begins sending the I2C bus
signal. It sends the start bit followed by the I2C slave address and I2C write command. It waits for an
acknowledgement from the slave and sends the data byte using the standard I2C protocol. When the I2C
bus write transaction has successfully finished, it asserts the done signal for one clock cycle.

Read 2 Bytes from I2C Slave Device

The SPI host issues the read command by sending a "0010" command followed by the total number of
data bytes to be read ("0010" for 2 bytes) and the address of the I2C slave. Note that there is a redundant
zero bit after the address, which has no effect on the read or write command. After receiving the
message, the SPI-to-I2C interface accesses the I2C and begins sending the I2C bus signal. It sends the start
bit followed by the I2C slave address and I2C read command. It waits for an acknowledgement from the
slave and reads the data bytes using the standard I2C protocol. If the I2C slave does not send an
acknowledgement, it sends a stop and ends the transmission. When the I2C bus read transaction has
successfully finished, it asserts the done signal for one clock cycle.

Figure 6 • Write 1 Byte to I2C Slave Device

Figure 7 • Read 2 Bytes from I2C Slave Device

0001
C om m and

0001
N um ber of

Bytes
Slave Address

+ 0 D ata1 null

Star t Slave Address D ata 1W A A/Ã Stop

0010
Command

0010
Number of

Bytes

Slave Address
+ 0 null

SPI Message

Start Slave Address

I2C Bus

Data1 Data2R A A A/Ã Stop
5

SPI-to-I2C Interface Design Example
Read 1 Bytes from I2C Slave Device

The SPI host issues the read command by sending a "0010" command followed by the total number of
data bytes to be sent ("0001" for 1 bytes) and the address of the I2C slave followed by the data bytes.
After receiving the message, the SPI-to-I2C interface accesses the I2C and begins sending I2C bus signal
and I2C read command. It sends the start bit followed by the I2C slave address. It waits for an
acknowledgement from the slave and reads the data byte using the standard I2C protocol. If the I2C slave
does not send an acknowledgement, it sends a stop and ends the transmission. When the I2C bus read
transaction has successfully finished, an interrupt is generated on the done pin.

When the I2C bus read transaction has successfully finished, it asserts the done signal for one clock cycle.

Figure 8 • Read 1 Bytes from I2C Slave Device

0010
Command

0001
Number of

Bytes

Slave Address
+ 0 null

SPI Message

Start Slave Address

I2C Bus

Data1R A A/Ã Stop
6

SPI-to-I2C Interface Design Example
Send the Read Data Back to External SPI Master

The SPI host issues the "Send the read data back to external SPI master" command by sending a "0100"
command followed by the total number of data bytes to be read ("0010" for 2 bytes, "0001" for 1 bytes).
The SPI-to-I2C interface block sends the data back using the MISO pin. This occurs in the same transaction
cycle.

Read the Status of the I2C Master

The SPI host issues "Read the status of I2C master" command by sending a "1000" command. The SPI-to-
I2C interface block sends the status back using the MISO pin. This occurs in the same transaction cycle.

Figure 9 • Send the Read Back Data (2 bytes or 1 byte) to External SPI Master

Figure 10 • Send the Status of I2C Master

0100
Command null

SPI Message

0010
Number of

Bytes

SPI Message

0100
Command null

0001
Number of

Bytes

1000
Command null

SPI Message
7

SPI-to-I2C Interface Design Example
SPI-to-I2C Top-Level I/O Description
Table 2 shows descriptions for the top-level ports for the SPI-to-I2C interface design.

Utilization Details
This design is targeted to Actel's AGLP125V2-CS289 device. The utilization details are given in Table 3.

Testing Scheme
Verification of the core is done by simulation in ModelSim®. Hardware validation is done on Actel's IGLOO
PLUS development board. In simulation verification, the testbench creates a system with an SPI master, SPI-
to-I2C interface design, and an I2C slave. The SPI master signals are generated using CPOL = 0 and CPHA =
0 settings. However, you can easily modify the testbench for other CPOL and CPHA settings. The backend

Table 2 • Ports Description of SPI-to-I2C Interface Design

Port Direction Description

sclk Input Input Clock from the SPI master. Frequency depends upon the SPI master.

MOSI Input SPI data input from SPI master

MISO Output SPI data output to SPI master from SPI_I2C interface

ss Input Active low slave select output signal

PCLK Input Input clock (20 Mhz)

PRESET_N Input Active low reset signal

done Output Active high signal indicates the I2C transaction is complete

SDA Input I2C Serial Data

SCL Output I2C Serial Clock

Table 3 • SPI-to-I2C Interface Design Utilization

Resource Utilized Total Percentage

Core 474 3,120 15.19%

I/Os 9 212 4.25%

Global (Chip +
Quadrant)

3 18 16.67%

PLL 0 1 0.00%

RAM/FIFO 0 8 0.00%

Low Static ICC 0 1 0.00%

FlashROM 0 1 0.00%

User JTAG 0 1 0.00%
8

SPI-to-I2C Interface Design Example
I2C slave uses a custom I2C slave block. The Simulation results for the write and read cycle are illustrated in
Figure 11 and Figure 12 on page 9.

Conclusion
In the portable electronics market, the final product must be as small as possible. In addition, it must be
power friendly. The SPI-to-I2C interface in IGLOO family FPGAs is a very good fit for this application.

Figure 11 • Write Cycle

Figure 12 • Read Cycle
9

SPI-to-I2C Interface Design Example
Appendix A: Custom I2C Core
This custom core is compliant to the I2C specification v2.1 and meets all AC timing specifications. It
supports single-master multiple-slave systems. Figure 13 shows the architecture of the custom master core.
The filter block on the SDA and SCL inputs filter out glitches and noise that may be present on these
inputs so that clean edge transitions are presented to the state machine block for processing. The SDA
logic block controls the assertion and release of the SDA line for the transmission of data and ACKs to the
slave I2C block.

Figure 13 • Custom I2C Master Architecture

Table 4 • I/O Descriptions for Custom I2C Core

Signal Direction Description

Go Input HI active pulse that initiates an I2C operation controlled by Master

Restart Input HI active level that is used to continue a transaction with an addressed slave
or address a new slave without having to STOP and then START again.

Data_in(7:0) Input Data input to be transmitted to the slave during a master write operation

Slave_addr(6:0) Input 7-bit value assigned to the I2C slave resource—usually hardwired

R_WRN Input 0=write to slave; 1=read from slave

Byte_cnt(X:0)1 Input Any non-zero value is used by the master to determine the number of bytes
to send or receive from the master before issuing a NACK (master read
from slave) or STOP (master write to slave) to complete the transfer

Refclk Input Reference clock can be from 2 Mhz to 64 Mhz based on whether STD or
FAST mode I2C is desired. See below for valid frequencies of REFCLK.

Reset_n Input Lo active asynchronous clear signal for all internal registers

SCL Bidi I2C serial clock

SDA Bidi I2C serial data

Data_out(7:0) Output Data output received from the master during a write to slave operation

Data_valid Output HI active pulse indicating data_out is valid

Next_addr(X:0)1 Output Next address for data to be stored/transmitted

Read_now Output HI active pulse to request next data word; Only valid during a read from
slave

I2C_status(Y:0)2 Output 8-bit status register indicating the state of the I2C master core.

Notes:

1. The X value is defined by as BC_WIDTH-1

2. The Y value is defined by as 4+BC_WIDTH-1

State Machine

Backend
Logic

Clock Generator

Status

SCL

SCA

Lo
g

ic
Fi

lt
er

Fi
lt

er
Lo

g
ic
10

SPI-to-I2C Interface Design Example
Figure 14 shows the state transitions of the state machine block. Once the GO signal is asserted to the
master core, the SLAVE_ADDRESS and R_WRN are sampled and shifted out onto the I2C bus to address the
slave device of interest. For a data transfer from the slave (READ), the master will issue ACKs until the
value of BYTE_CNT (BC) is reached. The value of BC is used by the master to determine when to generate
a NACK to the slave thereby completing the data transfer. For a write of data from the master to the slave
(WRITE), the BC value is used to determine when the master is to expect a NACK from the slave and if
none is received, then the master issues a STOP bus condition.

The backend logic block is used to simplify interfacing to the I2C master core. The NEXT_ADDR signal can
be used to address registers or RAM outside the core for retrieval and storage of I2C bus transactions.

When starting an I2C, the GO, R_WRN, and SLAVE_ADDR signals must be present at the I2C core 20.0 ns
before the rising edge of the SCL clock.

Figure 14 • State Machine Diagram

Figure 15 • Starting an I2C Transaction

RW=0

GO=1

RW=1

IDLE

NACK

READ

ADDRACK

WRITE
11

SPI-to-I2C Interface Design Example
During the I2C write, READ_NOW pulses to request the next data word. The SCL signal is used to capture
the data presented by the backend on the DATA_IN bus.

For a read operation from the slave, the DATA_VALID signal indicates to the backend when a valid data
byte has been received by the I2C master core. DATA_VALID is valid for 10 µs in STD speed mode and 2.5
µs in FAST speed mode. The DATA_OUT bus is valid for 20 µs in STD speed mode and 5.0 µs in FAST speed
mode.

Figure 16 • Timing Diagram for I2C Master Write Operation

Figure 17 • Timing Diagram for I2C Master Read Operation
12

Ac

20
Mo
94
US
Ph
Fa

Ac
sys
tel Corporation

61 Stierlin Court
untain View, CA

043-4655
A
one 650.318.4200
x 650.318.4600

Actel Europe Ltd.

River Court, Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

tel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of
tem and power management solutions. Power Matters. Learn more at www.actel.com.
51900192-1/4.09

http://jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	Introduction
	I2C and SPI
	Design Description
	SPI Message Format
	Write 2 Bytes to I2C Slave Device
	Write 1 Byte to I2C Slave Device
	Read 2 Bytes from I2C Slave Device
	Read 1 Bytes from I2C Slave Device
	Send the Read Data Back to External SPI Master
	Read the Status of the I2C Master

	SPI-to-I2C Top-Level I/O Description
	Utilization Details
	Testing Scheme
	Conclusion
	Appendix A: Custom I2C Core

