
Application Note AC346

SmartFusion cSoC: Loading and Booting from
External Memories

Table of Contents

Introduction
The SmartFusion® customizable system-on-chip (cSoC) device contains a hard embedded
microcontroller subsystem (MSS), programmable analog circuitry, and FPGA fabric consisting of logic
tiles, static random access memory (SRAM), and phase-locked loops (PLLs). The MSS consists of a 100
MHz ARM® Cortex™-M3 processor, advanced high-performance bus (AHB) matrix, system registers,
Ethernet MAC, DMA engine, real-time counter (RTC), embedded nonvolatile memory (eNVM),
embedded SRAM (eSRAM), fabric interface controller (FIC), the Philips Inter-Integrated Circuit (I2C), and
serial peripheral interface (SPI) peripherals.

The MSS has two identical SPI peripherals. These peripherals provide serial interface compliance with
the Motorola SPI, Texas Instruments synchronous serial, and National Semiconductor MICROWIRE™

formats. The SPI peripherals in the SmartFusion cSoC can operate as either a Master or a Slave. When
operating in the Master mode, the SPI peripherals generate a serial clock and data to the slave device
that needs to be accessed. The SPI peripherals can generate a serial clock from 390 KHz to 50 MHz by
dividing the MSS clock, which can be controlled by the software. The peripheral DMA (PDMA) in the
MSS can be used for continuous DMA streaming for large SPI transfers and thus helps to free up the
ARM Cortex-M3.

The external memory controller (EMC) provides glueless interface to external memory devices that can
be addressed by the ARM Cortex-M3 or user logic in the FPGA fabric. The EMC is divided into two
regions; namely, Region 0 and Region 1. The Region 0 and Region 1 can be independently configured
for three memory types supported by EMC (NOR flash, asynchronous RAM, and synchronous RAM).
The MSS configuration tool provides a graphical user interface (GUI) to configure the memory type, port
size, and latency.

Refer to the SmartFusion Microcontroller Subsystem User's Guide for more details on SPI peripherals
and the EMC.

Introduction . 1
Design Example Overview . 2
Design Example Description . 2
Creating an Executable Image for External Memories . 3
Loading the Executable Image from Host PC to External Flash Memory 3
Booting the Image from External Memories . 5

Microcontroller Subsystem (MSS) Configuration . 7

Board Specific Settings . 9
Running the Design . 9

Loading and Booting from External NOR Flash Memory . 11

Release Mode . 14
Conclusion . 14
Appendix A - Design Files . 14
Appendix B - Linker Description Files . 15
Appendix C - NOR Flash Driver Application Programming Interfaces (APIs) 18

List of Changes . 20
February 2012 1

© 2012 Microsemi Corporation

http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf

SmartFusion cSoC: Loading and Booting from External Memories
This application note describes how to load and boot the application code from the external memories
(SPI flash memory and NOR flash memory) on the SmartFusion Development Kit Board. This document
also describes the detailed design of the NOR flash driver and SPI flash driver.

A basic understanding of the SmartFusion design flow is assumed. Refer to the Using UART with a
SmartFusion cSoC - Libero SoC and SoftConsole Flow Tutorial to understand the SmartFusion design
flow.

Design Example Overview
This design example demonstrates loading and booting the application code from the external memory
devices on the SmartFusion Development Kit Board. It uses one SPI peripheral, one universal
asynchronous receiver/transmitter (UART) peripheral, the EMC, and three general purpose input/output
(GPIOs) in the MSS. The SPI peripheral, SPI_1, is connected to the Atmel SPI flash memory,
AT25DF641-MWH-T, while the EMC is connected to the Cypress SRAM, CY7C1061DV33-10ZSXI, at
Region 0 and Numonyx NOR flash, JS28F640J3D-75, at Region 1 in the SmartFusion Development Kit
Board. The GPIOs are configured as outputs and connected to test the LEDs in the SmartFusion
Development Kit Board. These LEDs blink continuously with certain delay while the UART prints the
memory location of the global variable on the HyperTerminal. Figure 1 shows the system level block
diagram.

Design Example Description
There are mainly two methods to load and boot the application code from the external memories in the
SmartFusion cSoC as mentioned below.

• Loading the application code into the SPI flash memory and booting from the external SRAM

• Loading and booting the application code from the external NOR flash memory

This design example consists of mainly three steps as follows:

1. Creating the executable image for the application code that can be run from the external
memories

2. Loading the executable image from the Host PC to the external flash memories

3. Booting the image from the external memories

Figure 1 • System Level Block Diagram

SmartFusion

MAINXIN

MSS_RESET

Atmel SPI Flash

Cypress SRAM

Numonyx NOR
Flash

LEDs

Host PC

SmartFusion Development Board
2

http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf

Creating an Executable Image for External Memories
The following section gives a detailed description of each step for booting from the external SRAM and
the NOR flash memory.

Creating an Executable Image for External Memories

Creating an Executable Image for SPI Flash Memory
The SmartFusion cSoC does not support booting the application code directly from the SPI flash since it
is not directly memory mapped to the SmartFusion system memory map. You have to create an
executable image which can be executed from the external SRAM and that needs to be stored into the
SPI flash memory. You need to use the "production-execute-in-place-externalram.ld" linker description
file that is included in the design files to build the image. This linker description file creates an image with
instructions, data, and BSS sections in the external SRAM. For further details, refer to "Appendix A -
Design Files" on page 14.

In this design example the executable image starts from the start location of the external SRAM, that is,
0x70000000.

Creating an Executable Image for NOR Flash Memory
The SmartFusion cSoC supports loading and booting the application code directly from the NOR flash
memory. You need to use the "production-execute-in-place-emcflash.ld" linker description file that is
included in the design files to build the executable image. This linker description file creates an image
with data and BSS sections in the external SRAM and instructions in the external NOR flash. For further
details, refer to "Appendix B - Linker Description Files" on page 15.

In this design example, the executable image starts from the start location of the external NOR flash, that
is, 0x74000000.

Loading the Executable Image from Host PC to External Flash
Memory

Loading the Executable Image into SPI Flash Memory
This section describes accessing the SPI flash memory and running the flash loader. Refer to the
Accessing Serial Flash Memory Using SPI Interface application note for more details on the SPI flash
driver APIs used in this example design to access the SPI flash memory. The flash loader loads the
executable image from the development PC into the SPI flash memory. It uses the UART as the
communication channel between the PC and the SmartFusion Development Kit Board to load the image.
Refer to the "Flash Loader" section for more details on the usage of flash loader.

Loading the Executable Image into NOR Flash Memory
This section describes accessing the NOR flash memory and running the flash loader. Refer to
"Appendix C - NOR Flash Driver Application Programming Interfaces (APIs)" on page 18 for more details
on the NOR flash driver APIs used in this example design to access the NOR flash memory. The flash
loader loads the executable image into the NOR flash memory. Refer to the "Flash Loader" section for
more details on the usage of flash loader.

Flash Loader
The flash loader loads the executable image into the SPI flash memory and NOR flash memory. It
consists of two parts: the host loader and the target loader. The host loader is responsible for sending the
executable image from the PC to the UART port on the SmartFusion cSoC. The target loader is
responsible for reading the executable image from the PC UART and programming the corresponding
flash memory.
3

http://www.microsemi.com/soc/documents/SmartFusion_Accessing_SPI_Flash_AN.pdf

SmartFusion cSoC: Loading and Booting from External Memories
The flash loader uses the UART as a communication channel between the PC and the SmartFusion
cSoC to load the image. So the UART on host and target needs to be properly synchronized. For this,
you need to run the target loader first and make the target listen to the UART data from the host. Figure 2
illustrates the data flow of the flash loader.

The host loader (refer to "Appendix A - Design Files" on page 14) takes the following command line
parameters:

1. Type of the flash: SPI or EMC flash

2. Address where the image has to be loaded into the flash

3. The name of the image to be loaded

4. Comport number: The COM port number where the SFE USB to RS232 controller is connected.
(My Computer > Manage > Device Manager > Ports (COM & LPT))

A sample usage of the flash loader on host for EMC flash (that is, NOR flash in this design example) is
described below:

At the command prompt enter:

> f2flashloader.exe emc address filename comportnumber

Address range is from 0x70000000 to 0x73FFFFFF; if EMC region 0 is mapped to flash

Address range is from 0x74000000 to 0x77FFFFFF; if EMC region 1 is mapped to flash

For example, if the COM port number is 3 and the address where you are writing is from 0x74000000,
then the command is:

> f2flashloader.exe emc 0x74000000 filename.bin 3

The following functions are used in the design example to load the executable image into the SPI flash
memory and the NOR flash memory.

static void spi_flash_loader (void)
This function reads the executable image from the PC UART and programs the SPI flash memory. This
function is a part of the main.c file that is available at:

../ext_mem_load_boot/main.c.

Figure 2 • Flash Loader Flow Chart

Target Loader Host Loader

SmartFusion UART Initialization

Handshaking with Host UART

Is
Handshaking

Ok

Reading the data from PC UART and
writing to SPI Flash/EMC NOR Flash

Host PC UART Initialization

Handshaking with Target UART

Is
Handshaking

Ok

Sending the executable image to be
loaded into SPI Flash/ EMC NOR flash

with synchronization

Yes

No

Yes

No

Start Start

End End
4

Booting the Image from External Memories
static void emc_flash_loader (void)
This function reads the executable image from the PC UART and programs the NOR flash memory. This
function is a part of the main.c file that is available at:

../ext_mem_load_boot/main.c.

Booting the Image from External Memories

Booting from External SRAM
This section describes copying the image from the SPI flash to the external SRAM, copying the vector
table from the external SRAM to the MSS eSRAM, branching to the user boot code, and booting from the
external SRAM. Figure 3 illustrates the boot process.

The design example uses the following function to carry out the boot process.

void spi_flash_to_esram(uint32_t srcAddr, uint32_t size)
This API copies the contents of the SPI flash (in this example, the executable file built with
ext_RamImage SoftConsole project) to the external SRAM and executes as explained in the above flow
chart. This function is a part of the main.c file that is available at:

../ext_mem_load_boot/main.c.

Figure 3 • Flow Chart for Booting From The External SRAM

START

1. Copy the contents of SPI Flash to
 external EMC SRAM 0x70000000

2. Copy the vector table from EMC SRAM
 0x70000000 to eSRAM 0x20000000

1. Initialize the Stack pointer with content of
 eSRAM location 0x20000000.

2. Jump the execution to the reset vector
 copied into eSRAM 0x20000004. (The
 contents of this location is the pointer to
 the reset vector in external Flash).

END

Execution starts from external SRAM.

1. Reset Handler in external EMC SRAM
2. Uninitialized global variables will initialized
 to zero
3. Jumps to main()

Example Bootloader for copying the image
from SPI Flash to External SRAM and boot

from External SRAM
5

SmartFusion cSoC: Loading and Booting from External Memories
Booting from NOR Flash Memory
This section describes copying the vector table from the NOR flash to the MSS eSRAM, branching to the
user boot code, and booting from the NOR flash. Figure 4 illustrates the boot process.

The design example uses the following function to carry out the boot process.

static void emc_flash_boot(void):
This API executes as explained in the above flow chart. This function is a part of the main.c file that is
available at:

../ext_mem_load_boot/main.c.

Figure 4 • Flow Chart for Booting From the NOR Flash Memory

START

1. Copy the Vector Table from NOR Flash
 0x74000000 to eSRAM 0x20000000

1. Initialize the Stack pointer with content of
 eSRAM location 0x20000000.

2. Jump the execution to the reset vector
 copied into eSRAM 0x20000004. (The
 content of this location is the pointer to
 the reset vector in external Flash).

END

Example Boot loader for NOR flash

Execution starts form NOR Flash.

1. Reset Handler in NOR Flash copies the
 DATA section and BSS section to external
 SRAM.
2. Uninitialized global variables are initialized
 to zero
3. Jumps to main()
6

Microcontroller Subsystem (MSS) Configuration
Microcontroller Subsystem (MSS) Configuration
The MSS is configured with one SPI peripheral (SPI_1), one UART peripheral (UART_0), EMC, and
three GPIOs. The clock conditioning circuit (CCC) in the MSS generates an 80 MHz clock and acts as a
clock source for the peripherals. The GPIOs are configured as outputs and connected to test the LEDs in
the SmartFusion Development Kit Board. The test LEDs D1, D2, and D3 are connected to the FPGA I/O
B19, B20, and C19 respectively.

The EMC is divided into two regions: Region 0 and Region1. The MSS configuration tool provides a GUI
to configure the memory type, port size, and latency for each region. The EMC read/write latency values
can be configured as per the user requirements. The minimum latency values at different MSS clock
frequencies for the SmartFusion Development Kit Board are given in Table 1.

Figure 5 shows the timing diagram of EMC for Asynchronous Read. For more detail on read/write
latencies, refer to the SmartFusion Microcontroller Subsystem User's Guide.

Table 1 • EMC Read/Write Latency Values

Parameters

MSS Clock - 100 MHz MSS Clock - 80 MHz

Asynchronous
RAM

NOR flash
Asynchronous

RAM
NOR flash

Read Latency for First Access
(HCLK cycles)

1 5 1 4

Read Latency for Remaining
Accesses (HCLK cycles)

1 1 1 1

Write Latency (HCLK cycles) 0 0 0 0

Figure 5 • Timing Diagram of EMC for Asynchronous Read
7

http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf

SmartFusion cSoC: Loading and Booting from External Memories
Figure 6 shows the EMC configuration for Region 0 that is configured as Asynchronous RAM and port
size as half word.

Similarly Figure 7 shows the EMC configuration for Region 1 that is configured as NOR flash and port
size as half word. Refer to the EMC Configuration User's Guide for more details on EMC configuration.

Figure 6 • EMC Configuration for Region 0

Figure 7 • EMC Configuration for Region 1
8

http://coredocs.actel-ip.com/Actel/SmartFusionMSS/MSS_EMI/mss_emc_config_ug_1.pdf

Board Specific Settings
Board Specific Settings
Table 2 gives the jumper settings needed to access the SRAM and NOR flash.

Refer to the SmartFusion Development Kit User's Guide for more details.

Running the Design
Program the SmartFusion Development Kit Board with the downloaded PDB file (refer to "Appendix A -
Design Files" on page 14) using the FlashPro and then power cycle the board.

This design example on SoftConsole work space consists of the following three projects:

• emcFlashImage_MSS_CM3_0_app

• ext_RamImage

• ext_mem_load_boot

emcFlashImage_MSS_CM3_0_app
This project contains the software application to blink the LEDs continuously with certain delay while the
UART prints the memory location of global variable on HyperTerminal. This project is built with the linker
description file "production-execute-in-place-emc-flash.ld" to generate a bin file.

ext_RamImage
This project contains the software application to blink the LEDs continuously with certain delay while the
UART prints the memory location of global variable on HyperTerminal. This project is built with the linker
description file "production-execute-in-place-externalram.ld" to generate a bin file.

ext_mem_load_boot
This project is the target loader and bootloader for NOR flash and SPI flash. This project is used to load
and execute (boot) the image from external NOR flash and SPI flash with the bin file generated by the
emcFlashImage_MSS_CM3_0_app project and the ext_RamImage project. You need to run the
debugger in the SoftConsole with the linker description file "debug-in-actel-smartfusion-esram.ld".

The linker description files "production-execute-in-place-emc-flash.ld" and
"production-execute-in-place-externalram.ld" are specific to this design example and are provided in the
design files.

Figure 8 shows the project explorer windows with three projects.

Table 2 • Jumper Settings to Interface EMC with SRAM and NOR Flash

Jumper Pin Pin

JP17 2 3

JP19 2 3

JP24 1 2

JP16 2 3
9

http://www.microsemi.com/soc/documents/A2F_DEV_KIT_UG.pdf

SmartFusion cSoC: Loading and Booting from External Memories
Figure 8 • Project Explorer View
10

Loading and Booting from External NOR Flash Memory
Loading and Booting from External NOR Flash Memory
Use the following steps to run the application in the SoftConsole:

1. Click on the project "emcFlashImage_MSS_CM3_0_app".

2. Build the project using the build option already set in the project. The emcFlashImage.bin file is
generated under the Debug folder.

Note: If the emcFlashImage.bin file is not generated under the Debug folder, run the
Bin_File_Generator.bat file given in the emcFlashImage_MSS_CM3_0_app project folder to
generate the emcFlashImage.bin file.
You need to add the SoftConsole installation path, for example,
C:\Microsemi\Libero_v10.0\SoftConsole\Sourcery-G++\bin, to the ‘Environment Variables’ before
invoking the batch file.

Now the executable bin file for loading and booting from the external NOR flash is generated.

The following steps demonstrate the loading and execution of the above image from EMC NOR flash:

1. Click on the "ext_mem_load_boot" project and then build the project using the build options
provided in the project.

2. Launch the debugger and run the project ext_mem_load_boot.

3. This step loads the executable bin file (emcFlashImage.bin) from the host PC to NOR Flash. Run
the host loader tool in the command prompt. Before running the host loader tool, make sure that
the COM port is not used by any other application like HyperTerminal or PuTTY.

Open a command prompt window in the development PC and change to the directory where the
host tool is located (refer to "Appendix A - Design Files" on page 14) and then type
f2flashloader.exe. It prints the help on how to load the bin file generated by the
"emcFlashImage_MSS_CM3_0_app" project and "ext_RamImage" project. Figure 9 shows the
host loader (Flash loader) help.

4. If the COM port number is 3 and the address range where you are writing is from 0x74000000,
then the command is:

> f2flashloader.exe emc 0x74000000 emcFlashImage.bin 3

Figure 9 • Flash Loader
11

SmartFusion cSoC: Loading and Booting from External Memories
The emcFlashImage.bin file is written into the external NOR flash. Figure 10 shows the NOR flash
programming.

Once the emcFlashImage.bin file is written into the external NOR flash memory, the test LEDs
D1, D2, and D3 in the SmartFusion Development Kit Board start blinking.

5. Start HyperTerminal or PuTTY with the baud rate set to 57600, 8 bits data, 1 stop bit, no parity,
and no flow control. The application starts printing the memory location of global variable on the
HyperTerminal. Figure 11 shows the screen shot of HyperTerminal with the memory location of
global variable.

Figure 10 • NOR Flash Programming

Figure 11 • Screen-shot of HyperTerminal with Memory Location of Global Variable
12

Loading and Booting from External NOR Flash Memory
Loading the Application into the SPI Flash Memory and Booting
from External SRAM
Use the following steps to run the application in the SoftConsole:

1. Click on the project "ext_RamImage".

2. Build the project using the build option already set in the project. The externalRAMImage.bin file
is generated under the Debug folder.

Note: If the externalRAMImage.bin file is not generated under the Debug folder, run the
Bin_File_Generator.bat file given in the ext_RamImage project folder to generate the
externalRAMImage.bin file. You need to add the SoftConsole installation path, for example,
C:\Microsemi\Libero_v10.0\SoftConsole\Sourcery-G++\bin, to the ‘Environment Variables’ before
invoking the batch file.

Now the executable bin file for loading into the SPI flash memory and booting from the external SRAM is
generated. The following steps demonstrate the loading into the SPI flash memory and booting from the
external SRAM:

1. Click on the "ext_mem_load_boot" project and then build the project using the build options
provided in the project.

2. Launch the debugger and run the project ext_mem_load_boot.

3. Load the executable bin file (externalRAMImage.bin) from the host PC to the SPI Flash. Run the
host loader tool in the command prompt. Before running the host loader tool ensure that the COM
port is not being used by any other application like HyperTerminal or PuTTY.

Open the command prompt window in the development PC and change to the directory where the
host tool is located (refer to "Appendix A - Design Files" on page 14) and then type
f2flashloader.exe. It prints the help on how to load the bin file generated by the
"emcFlashImage_MSS_CM3_0_app" project and "ext_RamImage" project.

Enter the following command to load the Image created from the "ext_RamImage" project to the
SPI flash, at start location:

> f2flashloader.exe spi 0 externalRAMImage.bin 3

The externalRAMImage.bin file is written into the SPI flash. Figure 12 shows the SPI flash
programming.

Once the externalRAMImage.bin file is written into the SPI flash memory, the test LEDs D1, D2,
and D3 in the SmartFusion Development Kit Board start blinking.

Figure 12 • SPI Flash Programming
13

SmartFusion cSoC: Loading and Booting from External Memories
4. Start HyperTerminal with the baud rate set to 57600, 8 bits data, 1 stop bit, no parity, and no flow
control. The application then starts printing the memory location of the global variable on
HyperTerminal. Figure 13 shows the screen shot of HyperTerminal with the memory location of
the global variable.

Release Mode
The release mode programming file (STAPL) is also provided. Refer to the Readme.txt file included in the
programming zip file for more information.

Refer to the Building Executable Image in the Release Mode and Loading into eNVM Tutorial for more
information on building an application in the release mode.

Conclusion
The design example demonstrates the loading and booting the application code from the external
memories (SPI Flash and EMC NOR Flash) on the SmartFusion Development Kit Board. This document
also describes the usage of the NOR flash driver APIs, SPI flash driver APIs, Flash Loader, and Linker
description files for creating the images for external memories.

Appendix A - Design Files
You can download the design files from the Microsemi SoC Products Group website:

www.microsemi.com/soc/download/rsc/?f=A2F_AC346_DF.

The design zip file consists of Libero System-on-Chip (cSoC) projects and programming file (*.stp) for
A2F500 and A2F200. Refer to the Readme.txt file included in the design file for directory structure and
description.

You can download the programming files (*.stp) in release mode from the Microsemi SoC Products
Group website: www.microsemi.com/soc/download/rsc/?f=A2F_AC346_PF.

The programming zip file consists of STAPL programming files (*.stp) for A2F500, A2F200, and a
Readme.txt file.

Figure 13 • Screen-shot of HyperTerminal with Memory Location of Global Variable
14

http://www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf
http://www.microsemi.com/soc/download/rsc/?f=A2F_AC346_PF
http://www.microsemi.com/soc/download/rsc/?f=A2F_AC346_DF

Appendix B - Linker Description Files
Appendix B - Linker Description Files

Linker Description Files to Execute from External SRAM

Memory region
MEMORY
{
 /* SmartFusion external EMC RAM */
 ram (rwx) : ORIGIN = 0x70000000, LENGTH = 2M
}

Vector table and Init code
.reset :
 {
 *(.isr_vector)
 *sys_boot.o(.text)
 . = ALIGN(0x4);
 } >ram

Data
.data :
 {
 __data_load = LOADADDR(.data);
 _sidata = LOADADDR (.data);
 __data_start = .;
 _sdata = .;
 KEEP(*(.jcr))
 *(.got.plt) *(.got)
 *(.shdata)
 (.data .data. .gnu.linkonce.d.*)
 . = ALIGN (4);
 _edata = .;
 } >ram

BSS
.bss :
 {
 __bss_start__ = . ;
 _sbss = .;
 *(.shbss)
 (.bss .bss. .gnu.linkonce.b.*)
 *(COMMON)
 . = ALIGN (8);
 __bss_end__ = .;
 _end = .;
 __end = _end;
 _ebss = .;
 PROVIDE(end = .);
 } >ram

Instructions
.text :
 { CREATE_OBJECT_SYMBOLS
 __text_load = LOADADDR(.text);
 __text_start = .;
 (.text .text. .gnu.linkonce.t.*)
 *(.plt)
 *(.gnu.warning)
 *(.glue_7t) *(.glue_7) *(.vfp11_veneer)
 . = ALIGN(0x4);
 /* These are for running static constructors and destructors under ELF. */
 KEEP (*crtbegin.o(.ctors))
 KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
15

SmartFusion cSoC: Loading and Booting from External Memories
 KEEP (*(SORT(.ctors.*)))
 KEEP (*crtend.o(.ctors))
 KEEP (*crtbegin.o(.dtors))
 KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
 KEEP (*(SORT(.dtors.*)))
 KEEP (*crtend.o(.dtors))
 (.rodata .rodata. .gnu.linkonce.r.*)
 (.ARM.extab .gnu.linkonce.armextab.*)
 *(.gcc_except_table)
 *(.eh_frame_hdr)
 *(.eh_frame)
 KEEP (*(.init))
 KEEP (*(.fini))
 PROVIDE_HIDDEN (__preinit_array_start = .);
 KEEP (*(.preinit_array))
 PROVIDE_HIDDEN (__preinit_array_end = .);
 PROVIDE_HIDDEN (__init_array_start = .);
 KEEP (*(SORT(.init_array.*)))
 KEEP (*(.init_array))
 PROVIDE_HIDDEN (__init_array_end = .);
 PROVIDE_HIDDEN (__fini_array_start = .);
 KEEP (*(.fini_array))
 KEEP (*(SORT(.fini_array.*)))
 PROVIDE_HIDDEN (__fini_array_end = .);
 } >ram
 /* .ARM.exidx is sorted, so has to go in its own output section. */
 __exidx_start = .;
 .ARM.exidx :
 {
 (.ARM.exidx .gnu.linkonce.armexidx.*)
 } >ram
 __exidx_end = .;
 _etext = .;

Linker Descriptions File for Execute-In-Place from External NOR
Flash

Memory region
MEMORY
{ /* SmartFusion external EMC Flash */
 rom (rx) : ORIGIN = 0x74000000, LENGTH = 16M
/* SmartFusion external emc RAM */
 ram (rwx) : ORIGIN = 0x70000000, LENGTH = 2M
}

Vector table and Init code
.reset :
 {
 *(.isr_vector)
 *sys_boot.o(.text)
 . = ALIGN(0x4);
 } >rom

Data
.data :
 {
 __data_load = LOADADDR(.data);
 _sidata = LOADADDR (.data);
 __data_start = .;
 _sdata = .;
 KEEP(*(.jcr))
 *(.got.plt) *(.got)
 *(.shdata)
16

Appendix B - Linker Description Files
 (.data .data. .gnu.linkonce.d.*)
 . = ALIGN (4);
 _edata = .;
 } >ram AT>rom

BSS
.bss :
 {
 __bss_start__ = . ;
 _sbss = .;
 *(.shbss)
 (.bss .bss. .gnu.linkonce.b.*)
 *(COMMON)
 . = ALIGN (8);
 __bss_end__ = .;
 _end = .;
 __end = _end;
 _ebss = .;
 PROVIDE(end = .);
 } >ram AT>rom

Instructions
.text :
 {
 CREATE_OBJECT_SYMBOLS
 __text_load = LOADADDR(.text);
 __text_start = .;

 (.text .text. .gnu.linkonce.t.*)
 *(.plt)
 *(.gnu.warning)
 *(.glue_7t) *(.glue_7) *(.vfp11_veneer)

 . = ALIGN(0x4);
 /* These are for running static constructors and destructors under ELF. */
 KEEP (*crtbegin.o(.ctors))
 KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
 KEEP (*(SORT(.ctors.*)))
 KEEP (*crtend.o(.ctors))
 KEEP (*crtbegin.o(.dtors))
 KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
 KEEP (*(SORT(.dtors.*)))
 KEEP (*crtend.o(.dtors))

 (.rodata .rodata. .gnu.linkonce.r.*)

 (.ARM.extab .gnu.linkonce.armextab.*)
 *(.gcc_except_table)
 *(.eh_frame_hdr)
 *(.eh_frame)

 KEEP (*(.init))
 KEEP (*(.fini))

 PROVIDE_HIDDEN (__preinit_array_start = .);
 KEEP (*(.preinit_array))
 PROVIDE_HIDDEN (__preinit_array_end = .);
 PROVIDE_HIDDEN (__init_array_start = .);
 KEEP (*(SORT(.init_array.*)))
 KEEP (*(.init_array))
 PROVIDE_HIDDEN (__init_array_end = .);
 PROVIDE_HIDDEN (__fini_array_start = .);
 KEEP (*(.fini_array))
 KEEP (*(SORT(.fini_array.*)))
 PROVIDE_HIDDEN (__fini_array_end = .);
17

SmartFusion cSoC: Loading and Booting from External Memories
 } >rom
 /* .ARM.exidx is sorted, so has to go in its own output section. */
 __exidx_start = .;
 .ARM.exidx :
 {
 (.ARM.exidx .gnu.linkonce.armexidx.*)
 } >rom
 __exidx_end = .;
 _etext = .;

Appendix C - NOR Flash Driver Application Programming
Interfaces (APIs)

This section describes the software driver APIs used in this design to carry out the transactions with the
NOR Flash. These drivers are included in the design files with this design example.

Function Description of Data Structures

Enum : emc_flash_status_t
This enum represents the status of the different APIs like emc_flash_write, emc_flash_read,
emc_flash_chip_erase, and emc_flash_block_erase.

typedef enum {
 NOR_SUCCESS = 0,
 NOR_BLOCK_LOCK_ERROR = 0x2,
 NOR_PROGRAM_SUSPEND = 0x4,
 NOR_GENERAL_ERROR = 0x08,
 NOR_PROGRAM_ERROR = 0x10,
 NOR_ERASE_ERROR = 0x20,
 NOR_CMD_SEQ_ERROR = 0x30,
 NOR_ERASE_SUSPEND = 0x40,
 NOR_INVALID_ARGUMENTS,
 NOR_INVALID_ADDRESS,
 NOR_UNSUCCESS};

Function Description of API

emc_Init()
This function initializes the EMC controller with proper wait states for read and write access.

For example:

emc_init();

emc_flash_chip_erase (uint32_t start_addr)
This function erases the content of the external NOR flash from the address provided to this function till
the last address of the NOR flash. For example:

emc_flash_chip_erase(0x74000000);

emc_flash_block_erase (uint16_t *blockAddr)
This function erases the content of a particular block of the external NOR flash based on the address
provided to this function. For example:

emc_flash_block_erase (0x74000000)
18

Appendix C - NOR Flash Driver Application Programming Interfaces (APIs)
emc_flash_read(uint32_t start_addr, uint8_t * p_data, size_t nb_bytes)
This function reads the content of the SmartFusion EMC external NOR Flash. The data is read from the
memory location specified by the first parameter. This address is the absolute address in the processor's
memory space at which the external flash is located.

• @param start_addr: This is the address at which data is read. This address is the absolute
address in the processor's memory space at which the external flash is located.

• @param p_data: This is a pointer to the buffer for holding the read data.

• @param nb_bytes: This is the number of bytes to be read from the external flash.

• @return: The return value indicates if the read was successful. The possible values are:

– NOR_SUCCESS: Describes that the NOR Flash operation is correct and complete

– NOR_INVALID_ADDRESS: Describes that the function has received invalid address

– NOR_UNSUCCESS: Describes that the NOR Flash operation is incomplete

For example:

status = emc_flash_read(0x74000000 + ii, output_buffer, length);

emc_flash_write (uint32_t start_addr,const uint8_t * p_data, size_t
nb_bytes)
This function writes the content of the buffer passed as parameter to the external NOR Flash. The data is
written from the memory location specified by the first parameter. This address is the absolute address in
the processor's memory space at which the External Flash is located.

• @param start_addr: This is the address at which the data is written. This address is the absolute
address in the processor memory space at which the External Flash is located.

• @param p_data: This is a pointer to the buffer holding the data to be written into the External
Flash.

• @param nb_bytes: This is the number of bytes to be written into the External Flash.

• @return: The return value indicates if the write was successful. The possible values are:

– NOR_SUCCESS: Describes the NOR Flash operation is correct and complete

– NOR_INVALID_ADDRESS:Describes that function has received invalid address

– NOR_UNSUCCESS: Describes the NOR Flash operation is incomplete

For example:

status = emc_flash_write(0x74000000 + ii, input_buffer, length);
19

List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page

Revision 3
(February 2012)

Removed ".zip" extension in the link (SAR 36763). 14

Revision 2
(January 2012)

Changed Figure 8 (SAR 36034). 10

Changed Figure 9 (SAR 36034). 11

Changed Figure 10 (SAR 36034). 12

Changed Figure 12 (SAR 36034). 13

Added the section "Release Mode" (SAR 36034). 14

Modified the section "Appendix A - Design Files" (SAR 36034). 14

Revision 1
(August 2010)

Modified the section "Running the Design" (SAR 27472). 9

Modified the section "Loading and Booting from External NOR Flash Memory" (SAR
27472)

11

Modified the section "Appendix A - Design Files" (SAR 27472) 14

Removed Table 3.

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.

51900214-3/02.12

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com

	SmartFusion cSoC: Loading and Booting from External Memories
	Introduction
	Design Example Overview
	Design Example Description
	Creating an Executable Image for External Memories
	Creating an Executable Image for SPI Flash Memory
	Creating an Executable Image for NOR Flash Memory

	Loading the Executable Image from Host PC to External Flash Memory
	Loading the Executable Image into SPI Flash Memory
	Loading the Executable Image into NOR Flash Memory
	Flash Loader

	Booting the Image from External Memories
	Booting from External SRAM
	Booting from NOR Flash Memory

	Microcontroller Subsystem (MSS) Configuration
	Board Specific Settings
	Running the Design
	Loading and Booting from External NOR Flash Memory
	Loading the Application into the SPI Flash Memory and Booting from External SRAM

	Release Mode
	Conclusion
	Appendix A - Design Files
	Appendix B - Linker Description Files
	Linker Description Files to Execute from External SRAM
	Linker Descriptions File for Execute-In-Place from External NOR Flash

	Appendix C - NOR Flash Driver Application Programming Interfaces (APIs)
	Function Description of Data Structures
	Function Description of API

	List of Changes

