
Application Note AC348

SmartFusion cSoC: Accessing External Memories
Using the External Memory Controller

Table of Contents

Introduction
The SmartFusion® customizable system-on-chip (cSoC) device contains a hard embedded
microcontroller subsystem (MSS), programmable analog circuitry and FPGA fabric consisting of logic
tiles, static random access memory (SRAM), and phase-locked loops (PLLs). The MSS consists of 100
MHz ARM® Cortex™-M3 processor, advanced high-performance bus (AHB) matrix, system registers,
Ethernet MAC, DMA engine, real-time counter (RTC), embedded nonvolatile memory (eNVM),
embedded SRAM (eSRAM), fabric interface controller (FIC), the Philips Inter-Integrated Circuit (I2C),
serial peripheral interface (SPI) peripherals, and external memory controller (EMC).

The EMC provides a glueless interface to the external memory devices that can be addressed by the
ARM Cortex-M3 processor or user logic in the FPGA fabric. The EMC is divided into two regions: Region
0 and Region1. Region 0 and Region 1 can be independently configured for three memory types
supported by EMC (NOR FLASH, Asynchronous RAM, and Synchronous RAM). The MSS configuration
tool provides a graphical user interface (GUI) to configure the memory type, port size, and latency.

Refer to the SmartFusion Microcontroller Subsystem User's Guide for more details on EMC.

This application note describes how to access external memories (SRAM and NOR Flash) using EMC on
the SmartFusion Development Kit Board. This document also describes the detailed description of EMC
configuration. A basic understanding of the SmartFusion design flow is assumed.

Refer to Using UART with SmartFusion cSoC - Libero SoC and SoftConsole Flow Tutorial to understand
the SmartFusion design flow.

Introduction . 1

Design Example Overview . 2

Description of the Design Example . 2
Microcontroller Subsystem Configuration . 4
Board Specific Settings . 6
Running the Design . 6
Release Mode . 7
Conclusion . 7
Appendix A – Design and Programming Files . 7

Appendix B – NOR Flash Driver APIs . 8

List of Changes . 9
February 2012 1

© 2012 Microsemi Corporation

http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf
http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf

SmartFusion cSoC: Accessing External Memories Using the External Memory Controller
Design Example Overview
This design example demonstrates accessing the external SRAM and NOR flash using EMC on the
SmartFusion Development Kit Board. It uses one UART peripheral and EMC in the MSS. The EMC
connects to Cypress SRAM, CY7C1061DV33-10ZSXI, at region 0 and Numonyx NOR flash,
JS28F640J3D-75, at region 1 in the SmartFusion Development Kit Board. The UART prints the memory
locations and data on HyperTerminal. Figure 1 shows the system-level block diagram.

Description of the Design Example
This design example mainly consists of EMC and a UART. Refer to the "Microcontroller Subsystem
Configuration" on page 4 for a detailed description of EMC configuration.

The EMC is mapped into system address space from 0x70000000 to 0x77FFFFFF. The EMC memory
space is divided into an upper and lower half. Each half memory space can be connected to a separate
external memory device (EMD) and supports up to 64 MBytes of memory. The addresses to the EMDs
are common. Access to each half memory space is determined by the assertion of the chip select signals
(EMC_CS0_N and EMC_CS1_N). Table 1 illustrates the starting and ending address for each chip
select.

This design example uses two 16-Mbit SRAM at region 0 and two 64-Mbit NOR flash at region 1 on the
SmartFusion Development Kit.

Refer to the SmartFusion Development Kit User's Guide, the Cypress CY7C1061DV33-10ZSXI
datasheet available at www.cypress.com, and the Numonyx JS28F640J3D-75 datasheet available at
www.micron.com for more information on the SmartFusion Development Kit Board, SRAM, and NOR
Flash.

The software design consists of setting the base address for SRAM and NOR flash, memory write and
read operations, and printing the memory locations and data on HyperTerminal. It uses following
functions in the main.c file.

static void emc_sram_wr(void);
static void emc_nor_wr(void);

Figure 1 • System Level Block Diagram

SmartFusion cSoC

MAINXIN

MSS_RESETCypress SRAM

Numonyx NOR
Flash

Host PC

SmartFusion Development Kit Board

Table 1 • EMC Memory Regions

Chip Select Starting Address Ending Address

EMC_CS0_N - Lower half (Region 0) 0x70000000 0x73FFFFFF

EMC_CS1_N - Upper half (Region 1) 0x74000000 0x77FFFFFF
2

http://www.actel.com/documents/A2F500_DEV_KIT_UG.pdf
http://www.actel.com/documents/A2F500_DEV_KIT_UG.pdf
www.cypress.com
www.micron.com
http://www.microsemi.com/soc/documents/A2F500_DEV_KIT_UG.pdf

Description of the Design Example
The following sections explain the SRAM and NOR flash write and read operations.

SRAM Write and Read Operations
The following code sets the base address of EMC SRAM to 0x70000000.

/* Setting the base address for EMC SRAM*/
#define EXT_RAM_BASE_ADDR 0x70000000

The design example uses the following code for external SRAM write and read operations. It fills the first
16 memory locations with 0xFFFFFFFF, and then overwrites the first 10 memory locations with a pattern.
It then reads back the first 16 location and prints the memory locations and data on HyperTerminal.

unsigned long * buff = (unsigned long *)EXT_RAM_BASE_ADDR;
int size;

/* Writing 0xFFFFFFFF to first 16 Memory locations*/
for (size = 0; size < 16; size++)
{
 buff [size] = 0xFFFFFFFF;
}

 /* Writing 0, 4, 8, C, 10.. pattern to first 10 Memory locations*/
for(size = 0; size < 10; size++)
{
 buff[size] = size*4;
}

/* Reading data from first 16 Memory locations and prints on HyperTerminal*/
for(size = 0; size < 16; size++)
{
 printf("%p -> 0x%08x \n\r", buff+size, (unsigned int)buff[size]);
}

NOR Flash Write and Read Operations
The following code sets the base address of EMC NOR Flash to 0x74000000.

/* Setting the base address for EMC NOR Flash*/
#define EXT_FLASH_BASE_ADDR 0x74000000

The NOR Flash write and read operations mainly consist of four steps, as follows:

1. EMC Initialization

2. Erasing the memory content

3. NOR flash write

4. NOR flash read

The design example uses the following software driver APIs for NOR flash write and read operations.

emc_init ()
This function initializes the EMC controller with proper wait states for read and write access.

emc_flash_chip_erase ()
This function erases the content of the external NOR flash from the address provided to this function until
the last address of the NOR flash.

emc_flash_write()
This function writes the content of the buffer passed as a parameter to external NOR flash. The data is
written from the memory location specified by the first parameter. This address is the absolute address in
the processor's memory space at which the external flash is located.
3

SmartFusion cSoC: Accessing External Memories Using the External Memory Controller
emc_flash_read()
This function reads content of the external NOR flash. The data is read from the memory location
specified by the first parameter. This address is the absolute address in the processor's memory space at
which the external flash is located.

Refer to "Appendix B – NOR Flash Driver APIs" on page 8 for more details on NOR flash driver APIs
used in this example design to access NOR Flash Memory.

A Verilog Libero SoC project and SoftConsole project are provided in the design files attached with this
design example.

Microcontroller Subsystem Configuration
The MSS is configured with one UART peripheral (UART_0) and EMC. The clock conditioning circuit
(CCC) in the MSS generates an 80 MHz clock and acts as clock source for the peripherals.

The EMC is divided into two regions: Region 0 and Region1. The MSS configuration tool provides a
graphical user interface to configure the Memory type, Port size and Latency for each region. The EMC
Read/Write Latency values can be configured as per the user requirements. The minimum latency values
at different MSS clock frequencies for the SmartFusion Development Kit Board are given in Table 2.

Figure 2 shows the timing diagram of EMC for Asynchronous Read. For more detail on Read/Write
latencies, refer to the SmartFusion Microcontroller Subsystem User's Guide.

Table 2 • EMC Read/Write Minimum Latency Values

Parameters MSS Clock – 100 MHz MSS Clock – 80 MHz

Asynchronous
RAM NOR flash

Asynchronous
RAM NOR flash

Read Latency for First Access
(HCLK cycles)

1 5 1 4

Read Latency for Remaining
Accesses (HCLK cycles)

1 1 1 1

Write Latency (HCLK cycles) 0 0 0 0

Figure 2 • Timing Diagram of EMC for Asynchronous Read

Row 0FCLK

HADDR

A0

An An+1 1

HSEL EMC 2

HSEL OTHER 3

HTRANS1 4

HWRITE 5

HWDATA 6

HRDATA DATA6 7

HREADYOUT 8

EMC_CLK 9

EMC_AB 10

EMC_CSx_N (CSFE = 0) 11

EMC_CSx_N (CSFE = 1) 12

EMC_RW_N (RWPOL = 0) 13

EMC_RW_N (RWPOL = 1) 14

EMC_PAD_OE 15

EMC_OEx_N 16

17

18

EMC_WDB 19

EMC_RDB Dn0 20

EMC_BYTE_ENx (WENBEN = 0)

EMC_BYTE_ENx (WENBEN = 1)

Start of next access delayed by IDD

1, 2, 4 Access
Transactions

2 and 4 Access
Transactions Only

4 Access Transactions Only 1, 2, 4 Acc.
Transactions

Initial Latency Cycle
EMC_RDLATFIRSTx = 1

Latency Cycle
EMC_RDLATRESTx = 1

Latency Cycle
EMC_RDLATR ESTx = 1

0 1 2 2
+

 X

8
+

 X
 +

 3
Y

6
+

 X
 +

 2
Y

7
+

 X
 +

 2
Y

8
+

 X
 +

 2
Y

5
+

 X
 +

 Y

3
+

 X

4
+

 X

4
+

 X
 +

 Y

6
+

 X
 +

 Y

9
+

 X
 +

 3
Y

9
+

 X
 +

 3
Y

 +
 Z

IDD Cycle; EMC_IDDx = 1

EMC_RDB is registered in the EMC here.

Latency Cycle
EMC_RDLATRESTx = 1

10
 +

 X
 +

 3
Y

 +
 Z

Notes:

1) EMC_MEMTYPEx = 01 or EMC_MEMTYPEx = 11

2) EMC_PIPERDNx is ignored for these memory types.

3) EMC_PIPEWRNx is ignored for these memory types.
4) Initial shaded latency cycle is EMC_RDLATFIRST FCLK cycles wide.

An EMC_RDLATFIRST value of 0 will remove this cycle.
5) Shaded latency cycles are EMC_RDLATREST FCLK cycles wide.

An EMC_RDLATREST value of 0 will remove these cycles.
6) For single access reads:

For two access reads:

If HADDR[1:0] = 00, DATA = --- --- --- D0
If HADDR[1:0] = 01, DATA = --- --- D0 ---
If HADDR[1:0] = 10, DATA = --- D0 --- ---
If HADDR[1:0] = 11, DATA = D0 --- --- ---

If HADDR[1] = 0, DATA = --- --- D1 D0
If HADDR[1:0] = 01, DATA = D1 D0 --- ---

For four access reads:

DATA = D3 D2 D1 D0

7) Where EMC_BYTE_ENx is shown low, only EMC_BYTE_ENx
for the active byte lane(s) will go low. EMC_BYTE_ENx for
inactive byte lanes will remain high.

An

D00 D01 D02 D03

A02 A03A0 + 14
4

http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf

Microcontroller Subsystem Configuration
Figure 3 shows the EMC configuration for Region 0, which is configured as Asynchronous RAM and port
size as half word. Similarly, Figure 4 shows the EMC configuration for Region 1, which is configured as
NOR flash and port size as half word. Refer to the EMC Configuration User's Guide for more details on
EMC configuration.

Figure 3 • EMC Configuration for Region 0

Figure 4 • EMC Configuration for Region 1
5

http://coredocs.actel-ip.com/Actel/SmartFusionMSS/MSS_EMI/mss_emc_config_ug_1.pdf
http://coredocs.actel-ip.com/Actel/SmartFusionMSS/MSS_EMI/mss_emc_config_ug_1.pdf

SmartFusion cSoC: Accessing External Memories Using the External Memory Controller
Board Specific Settings
Table 3 gives the jumper settings needed to access the SRAM and NOR flash.

Refer to the SmartFusion Development Kit User's Guide for more details.

Running the Design
Program the SmartFusion Development Kit Board with the generated/provided STP file (refer to
"Appendix A – Design and Programming Files" on page 7) using FlashPro and then power cycle the
board.

Invoke the SoftConsole IDE (refer to "Appendix A – Design and Programming Files" on page 7) by
clicking Write Application code under Develop Firmware in Libero SoC and launch the debugger. Start
a HyperTerminal session with 57,600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow control. If
your computer does not have the HyperTerminal program, use any free serial terminal emulation
program such as PuTTY or Tera Term. Refer to the Configuring Serial Terminal Emulation Programs
tutorial for configuring HyperTerminal, Tera Term, and PuTTY.

When you run the debugger in SoftConsole, the application starts printing the memory location and data
on HyperTerminal. Figure 5 shows the screen shot of HyperTerminal with SRAM memory location and
data.

Table 3 • Jumper Settings to Interface EMC with SRAM and NOR Flash

Jumper Pin Pin

JP17 2 3

JP19 2 3

JP24 1 2

JP16 2 3

Figure 5 • Screen Shot of HyperTerminal with SRAM Memory Location and Data
6

http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
http://www.microsemi.com/soc/documents/A2F500_DEV_KIT_UG.pdf

Release Mode
Figure 6 shows the screen shot of HyperTerminal with NOR Flash memory location and data.

Release Mode
The release mode programming file (STAPL) is also provided. Refer to the Readme.txt file included in the
programming zip file for more information. Refer to the Building Executable Image in Release Mode and
Loading into eNVM tutorial for more information on building an application in release mode.

Conclusion
The design example demonstrates accessing the external SRAM and NOR flash using EMC on the
SmartFusion Development Kit Board. This document also describes the detailed description of EMC
configuration and NOR flash driver APIs.

Appendix A – Design and Programming Files
You can download the design files from the Microsemi SoC Products Group website:

www.microsemi.com/soc/download/rsc/?f=A2F_AC348_DF.

The design file consists of Libero SoC Verilog, SoftConsole software project, and programming files
(*.stp) for A2F500-DEV-KIT. Refer to the Readme.txt file included in the design file for the directory
structure and description.

You can download the programming files (*.stp) in release mode from the Microsemi SoC Products
Group website: www.microsemi.com/soc/download/rsc/?f=A2F_AC348_PF.

The programming zip file consists of a STAPL programming file (*.stp) for A2F500-DEV-KIT and a
Readme.txt file.

Figure 6 • Screen Shot of HyperTerminal with NOR Flash Memory Location and Data
7

www.microsemi.com/soc/download/rsc/?f=A2F_AC348_DF
www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf
www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf
www.microsemi.com/soc/download/rsc/?f=A2F_AC348_PF

SmartFusion cSoC: Accessing External Memories Using the External Memory Controller
Appendix B – NOR Flash Driver APIs
This section describes the software driver APIs used in this design to carry out transactions with NOR
flash. These drivers are included in the design files with this design example.

Function Description of Data Structures

Enum : emc_flash_status_t
This enum represents the status of the different APIs, such as emc_flash_write, emc_flash_read,
emc_flash_chip_erase, and emc_flash_block_erase.

typedef enum {
 NOR_SUCCESS = 0,
 NOR_BLOCK_LOCK_ERROR = 0x2,
 NOR_PROGRAM_SUSPEND = 0x4,
 NOR_GENERAL_ERROR = 0x08,
 NOR_PROGRAM_ERROR = 0x10,
 NOR_ERASE_ERROR = 0x20,
 NOR_CMD_SEQ_ERROR = 0x30,
 NOR_ERASE_SUSPEND = 0x40,
 NOR_INVALID_ARGUMENTS,
 NOR_INVALID_ADDRESS,
 NOR_UNSUCCESS};

Function Description of Application Programming Interface (API)

emc_Init()
This function initializes the EMC controller with proper wait states for read and write access.

For example:

emc_init();

emc_flash_chip_erase (uint32_t start_addr)
This function erases the content of the external NOR flash from the address provided to this function until
the last address of the NOR flash. For example:

emc_flash_chip_erase(0x74000000);

emc_flash_block_erase (uint16_t *blockAddr)
This function erases the content of a particular block of the external NOR flash based on the address
provided to this function. For example:

emc_flash_block_erase (0x74000000)

emc_flash_read(uint32_t start_addr, uint8_t * p_data, size_t nb_bytes)
This function reads content of the SmartFusion EMC external NOR flash. The data is read from the
memory location specified by the first parameter. This address is the absolute address in the processor's
memory space at which the external flash is located.

• @param start_addr: This is the address at which data will be read. This address is the absolute
address in the processor's memory space at which the external flash is located.

• @param p_data: This is a pointer to the buffer for holding the read data.

• @param nb_bytes: This is the number of bytes to be read from external flash.

• @return: The return value indicates if the read was successful. The possible values are:

– NOR_SUCCESS: Describes that the NOR flash operation is correct and complete

– NOR_INVALID_ADDRESS: Describes that the function has received an invalid address

– NOR_UNSUCCESS: Describes that the NOR flash operation is incomplete

For example:

status = emc_flash_read(0x74000000 + ii, output_buffer, length);
8

List of Changes
emc_flash_write
(uint32_t start_addr, const uint8_t * p_data, size_t nb_bytes)
This function writes the content of the buffer passed as a parameter to the external NOR flash. The data
is written from the memory location specified by the first parameter. This address is the absolute address
in the processor's memory space at which the external flash is located.

• @param start_addr: This is the address at which data will be written. This address is the absolute
address in the processor memory space at which the external flash is located.

• @param p_data: This is a pointer to the buffer holding the data to be written into external flash.

• @param nb_bytes: This is the number of bytes to be written into external flash.

• @return: The return value indicates if the write was successful. The possible values are:

– NOR_SUCCESS: Describes the NOR flash operation is correct and complete

– NOR_INVALID_ADDRESS: Describes that function has received an invalid address

– NOR_UNSUCCESS: Describes the NOR flash operation is incomplete

For example:

status = emc_flash_write(0x74000000 + ii, input_buffer, length);

List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page

Revision 3
(February 2012)

Removed ".zip" extension in the Design and Programming files link (SAR 36763). 7

Revision 2
(January 2012)

Modified last two lines in "Introduction" section (SAR 35788). 1

Modified first five lines in "Running the Design" section (SAR 35788). 6

Added a new section called "Release Mode" (SAR 35788). 7

Modified "Appendix A – Design and Programming Files" section (SAR 35788). 7

Revision 1
(August 2010)

Design files for this application note have been modified to support Libero SP2 and
A2F500 based development board. Also removed and added few lines on page 6
under "Running the Design" (SAR 27474).

6

Removed and added few lines on page 8 under "Appendix A – Design and
Programming Files"
(SAR 27474).

7

Removed Table 4 on page 8 (SAR 27474). 8

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
9

crosemi

ductor
ial and
nd RF
mplete
re at

Microse
One Ente
Within th
Sales: +1
Fax: +1 (
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Mi

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semicon
solutions for: aerospace, defense and security; enterprise and communications; and industr
alternative energy markets. Products include high-performance, high-reliability analog a
devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and co
subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn mo
www.microsemi.com.

mi Corporate Headquarters
rprise, Aliso Viejo CA 92656 USA
51900216-3/02.12

Corporation. All other trademarks and service marks are the property of their respective owners.
e USA: +1 (949) 380-6100
 (949) 380-6136
949) 215-4996

http://www.microsemi.com

	SmartFusion cSoC: Accessing External Memories Using the External Memory Controller
	Introduction
	Design Example Overview
	Description of the Design Example
	SRAM Write and Read Operations
	NOR Flash Write and Read Operations

	Microcontroller Subsystem Configuration
	Board Specific Settings
	Running the Design
	Release Mode
	Conclusion
	Appendix A – Design and Programming Files
	Appendix B – NOR Flash Driver APIs
	Function Description of Data Structures
	Function Description of Application Programming Interface (API)

	List of Changes

