@ Micr Osemi Application Note AC348

SmartFusion cSoC: Accessing External Memories
Using the External Memory Controller

Table of Contents

Introduction L 1
Design Example Overview 2
Description of the Design Example e 2
Microcontroller Subsystem Configuration 4
Board Specific Settings L 6
Runningthe Design e e e e 6
Release Mode 7
Conclusion L. e 7
Appendix A — Design and Programming Files oL oo 7
Appendix B—NOR Flash Driver APIs e 8
Listof Changes e e e e 9
Introduction

The SmartFusion® customizable system-on-chip (cSoC) device contains a hard embedded
microcontroller subsystem (MSS), programmable analog circuitry and FPGA fabric consisting of logic
tiles, static random access memory (SRAM), and phase-locked loops (PLLs). The MSS consists of 100
MHz ARM® Cortex™-M3 processor, advanced high-performance bus (AHB) matrix, system registers,
Ethernet MAC, DMA engine, real-time counter (RTC), embedded nonvolatile memory (eNVM),
embedded SRAM (eSRAM), fabric interface controller (FIC), the Philips Inter-Integrated Circuit (I2C),
serial peripheral interface (SPI) peripherals, and external memory controller (EMC).

The EMC provides a glueless interface to the external memory devices that can be addressed by the
ARM Cortex-M3 processor or user logic in the FPGA fabric. The EMC is divided into two regions: Region
0 and Region1. Region 0 and Region 1 can be independently configured for three memory types
supported by EMC (NOR FLASH, Asynchronous RAM, and Synchronous RAM). The MSS configuration
tool provides a graphical user interface (GUI) to configure the memory type, port size, and latency.

Refer to the SmartFusion Microcontroller Subsystem User's Guide for more details on EMC.

This application note describes how to access external memories (SRAM and NOR Flash) using EMC on
the SmartFusion Development Kit Board. This document also describes the detailed description of EMC
configuration. A basic understanding of the SmartFusion design flow is assumed.

Refer to Using UART with SmartFusion cSoC - Libero SoC and SoftConsole Flow Tutorial to understand
the SmartFusion design flow.

February 2012 1
© 2012 Microsemi Corporation

http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf
http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf

& Microsemi

SmartFusion cSoC: Accessing External Memories Using the External Memory Controller

Design Example Overview

This design example demonstrates accessing the external SRAM and NOR flash using EMC on the
SmartFusion Development Kit Board. It uses one UART peripheral and EMC in the MSS. The EMC
connects to Cypress SRAM, CY7C1061DV33-10ZSXI, at region 0 and Numonyx NOR flash,
JS28F640J3D-75, at region 1 in the SmartFusion Development Kit Board. The UART prints the memory
locations and data on HyperTerminal. Figure 1 shows the system-level block diagram.

IMAWXH¢

MSS_RESET
e

A

Cypress SRAM

SmartFusion cSoC

Numonyx NOR
Flash il

A
\

Host PC
SmartFusion Development Kit Board

Figure 1+ System Level Block Diagram

Description of the Design Example

This design example mainly consists of EMC and a UART. Refer to the "Microcontroller Subsystem
Configuration" on page 4 for a detailed description of EMC configuration.

The EMC is mapped into system address space from 0x70000000 to 0x77FFFFFF. The EMC memory
space is divided into an upper and lower half. Each half memory space can be connected to a separate
external memory device (EMD) and supports up to 64 MBytes of memory. The addresses to the EMDs
are common. Access to each half memory space is determined by the assertion of the chip select signals

(EMC_CSO0_N and EMC_CS1_N). Table 1 illustrates the starting and ending address for each chip
select.

Table 1+ EMC Memory Regions

Chip Select Starting Address Ending Address
EMC_CSO0_N - Lower half (Region 0) 0x70000000 0x73FFFFFF
EMC_CS1_N - Upper half (Region 1) 0x74000000 O0x77FFFFFF

This design example uses two 16-Mbit SRAM at region 0 and two 64-Mbit NOR flash at region 1 on the
SmartFusion Development Kit.

Refer to the SmartFusion Development Kit User's Guide, the Cypress CY7C1061DV33-10ZSXI
datasheet available at www.cypress.com, and the Numonyx JS28F640J3D-75 datasheet available at

www.micron.com for more information on the SmartFusion Development Kit Board, SRAM, and NOR
Flash.

The software design consists of setting the base address for SRAM and NOR flash, memory write and
read operations, and printing the memory locations and data on HyperTerminal. It uses following
functions in the main.c file.

static void emc sram wr (void);

static void emc_nor wr (void);

http://www.actel.com/documents/A2F500_DEV_KIT_UG.pdf
http://www.actel.com/documents/A2F500_DEV_KIT_UG.pdf
www.cypress.com
www.micron.com
http://www.microsemi.com/soc/documents/A2F500_DEV_KIT_UG.pdf

& Microsemi

Description of the Design Example

The following sections explain the SRAM and NOR flash write and read operations.

SRAM Write and Read Operations

The following code sets the base address of EMC SRAM to 0x70000000.

/* Setting the base address for EMC SRAM*/
#define EXT RAM BASE ADDR 0x70000000

The design example uses the following code for external SRAM write and read operations. It fills the first
16 memory locations with OxFFFFFFFF, and then overwrites the first 10 memory locations with a pattern.
It then reads back the first 16 location and prints the memory locations and data on HyperTerminal.
unsigned long * buff = (unsigned long *)EXT RAM BASE ADDR;

int size;

/* Writing OxFFFFFFFF to first 16 Memory locations*/
for (size = 0; size < 16; size+t+)

{
buff [size] = OxXFFFFFFFF;

}

/* Writing 0, 4, 8, C, 10.. pattern to first 10 Memory locations*/
for(size = 0; size < 10; size++)

{
buff[size] = size*4;

}

/* Reading data from first 16 Memory locations and prints on HyperTerminal*/
for(size = 0; size < 16; size+t+)
{
printf ("%p -> 0x%08x \n\r", buff+size, (unsigned int)buff[size]);
}

NOR Flash Write and Read Operations

The following code sets the base address of EMC NOR Flash to 0x74000000.

/* Setting the base address for EMC NOR Flash*/
#define EXT FLASH BASE ADDR 0x74000000

The NOR Flash write and read operations mainly consist of four steps, as follows:
1. EMC Initialization
2. Erasing the memory content
3. NOR flash write
4. NOR flash read
The design example uses the following software driver APIs for NOR flash write and read operations.

emc_init ()
This function initializes the EMC controller with proper wait states for read and write access.

emc_flash_chip_erase ()

This function erases the content of the external NOR flash from the address provided to this function until
the last address of the NOR flash.

emc_flash_write()

This function writes the content of the buffer passed as a parameter to external NOR flash. The data is
written from the memory location specified by the first parameter. This address is the absolute address in
the processor's memory space at which the external flash is located.

& Microsemi

SmartFusion cSoC: Accessing External Memories Using the External Memory Controller

emc_flash_read()

This function reads content of the external NOR flash. The data is read from the memory location
specified by the first parameter. This address is the absolute address in the processor's memory space at
which the external flash is located.

Refer to "Appendix B — NOR Flash Driver APIs" on page 8 for more details on NOR flash driver APls
used in this example design to access NOR Flash Memory.

A Verilog Libero SoC project and SoftConsole project are provided in the design files attached with this
design example.

Microcontroller Subsystem Configuration

The MSS is configured with one UART peripheral (UART_0) and EMC. The clock conditioning circuit
(CCC) in the MSS generates an 80 MHz clock and acts as clock source for the peripherals.

The EMC is divided into two regions: Region 0 and Region1. The MSS configuration tool provides a
graphical user interface to configure the Memory type, Port size and Latency for each region. The EMC
Read/Write Latency values can be configured as per the user requirements. The minimum latency values
at different MSS clock frequencies for the SmartFusion Development Kit Board are given in Table 2.

Table 2+ EMC Read/Write Minimum Latency Values

Parameters MSS Clock — 100 MHz MSS Clock — 80 MHz
Asynchronous Asynchronous
RAM NOR flash RAM NOR flash

Read Latency for First Access 1 5 1 4
(HCLK cycles)
Read Latency for Remaining 1 1 1 1
Accesses (HCLK cycles)
Write Latency (HCLK cycles) 0 0 0 0

Figure 2 shows the timing diagram of EMC for Asynchronous Read. For more detail on Read/Write
latencies, refer to the SmartFusion Microcontroller Subsystem User's Guide.

FCLK

HADDR
HSEL EMC
HSEL OTHER
HTRANS1
HWRITE
HWDATA
HRDATA
HREADYOUT

EMC_CLK

EMC_AB

EMC_CSX_N (csFe=0)
EMC_CSx_N (csFe=1)

EMC_RW_N (RwPoL = 0)
EMC_RW_N (RwpoL = 1)

EMC_PAD_OE
EMC_OEx_N

EMC_BYTE_ENx (WENBEN = 0)
EMC_BYTE_ENX (WENBEN = 1)

EMC_WDB
EMC_RDB

0
1
2

-2+ X
34X
4+X
4+X+Y
5+X+Y
6+X+Y
6+X+2Y
74X+2Y
8+X+2Y
84X +3Y
9+X+3Y
9+ X+3Y+2Z
104X +3Y+2Z

L

?
:

Row 0

Notes:
1) EMC_MEMTYPEx = 01 or EMC_MEMTYPEx = 11

2) EMC_PIPERDNx is ignored for these memory types.
3) EMC_PIPEWRNK is ignored for these memory types.
4) Initial shaded latency cycle is EMC_RDLATFIRST FCLK cycles wide.
An EMC_RDLATFIRST value of 0 will remove this cycle.
5) Shaded latency cycles are EMC_RDLATREST FCLK cycles wide.
An EMC_RDLATREST value of 0 will remove these cycles.
6) For single access reads:
If HADDR(1:0] = 00, DATA =
If HADDR([1:0] = 01, DATA =
If HADDR(1:0] = 10, DATA = -
If HADDR([1:0] = 11, DATA = DO -~ - -
For two access reads:
If HADDR{1] = 0, DATA = — —— D1 DO
If HADDR{[1:0] = 01, DATA = D1 D0 — -
For four access reads:
DATA=D3 D2 D1 DO
7) Where EMC_BYTE_ENX is shown low, only EMC_BYTE_ENx
17 for the active byte lane(s) will go low. EMC_BYTE_ENXx for
inactive byte lanes will remain high.

/

N\

T
Ag+ 1

e T

D,0

_______ e oL __L.__________ EMC_RDBis registered in the EMC here
Initial Latency Cycle Latency Cycle Latency Cycle Latency Cycle IDD Cycle; EMC_IDDx = 1
EMC_RDLATFIRSTx = 1 EMC_RDLATRESTx =1 EMC_RDLATRESTx =1 EMC_RDLATRESTx = 1

Start of next access delayed by DD

1,2, 4 Access, 2and 4 Access 4 Access Ti Only 1,2, 4 Acc. /
Transactions Transactions Only’ | Transactions

Figure 2 »« Timing Diagram of EMC for Asynchronous Read

http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf

& Microsemi

Microcontroller Subsystem Configuration

Figure 3 shows the EMC configuration for Region 0, which is configured as Asynchronous RAM and port
size as half word. Similarly, Figure 4 shows the EMC configuration for Region 1, which is configured as
NOR flash and port size as half word. Refer to the EMC Configuration User's Guide for more details on
EMC configuration.

B Configuring MSS_EMI_O (MSS_EMI - 1.0.100)

Configuration

Region 0
Memory Type
Part Size 'Wl
Invert Readfi'rite Signal Polarity I

Read Latency for First Access (HCLE cycles) 1
Read Latency for Remaining Accesses (HCLK cycles) | 1
Write Latency (HILK cvcles) i}

Use Alternate Chip Seleckion I
Configure BYTEM Part as ’m
Pipelined Synchronous Read Cycle ™
Pipelined Synchronous Write Cycle i~

Inter Device Latency (HCLK cycles) o

Figure 3« EMC Configuration for Region 0

Region 1
IMemory Type MOR. Flash
Park Size ’W‘
Invert Read/Write Signal Polariky r

Read Latency for First Access (HCLK cycles) 4
Read Latency for Remaining Accesses (HCLK cycles) |1
‘Write Lakency (HCLK cycles) i}

Use alternate Chip Selection r
Configure EYTEM Port as ’m
Pipelined Synchronous Read Cycle ~
Pipelined Synchronous Write Cycle ~

Inter Device Latency (HCLK cycles) i}

Help - a4 | Cancel

Figure 4 - EMC Configuration for Region 1

http://coredocs.actel-ip.com/Actel/SmartFusionMSS/MSS_EMI/mss_emc_config_ug_1.pdf
http://coredocs.actel-ip.com/Actel/SmartFusionMSS/MSS_EMI/mss_emc_config_ug_1.pdf

& Microsemi

SmartFusion cSoC: Accessing External Memories Using the External Memory Controller

Board Specific Settings
Table 3 gives the jumper settings needed to access the SRAM and NOR flash.
Table 3+ Jumper Settings to Interface EMC with SRAM and NOR Flash

Jumper Pin Pin
JP17 2 3
JP19 2 3
JP24 1 2
JP16 2 3

Refer to the SmartFusion Development Kit User's Guide for more details.

Running the Design

Program the SmartFusion Development Kit Board with the generated/provided STP file (refer to
"Appendix A — Design and Programming Files" on page 7) using FlashPro and then power cycle the

board.

Invoke the SoftConsole IDE (refer to "Appendix A — Design and Programming Files" on page 7) by
clicking Write Application code under Develop Firmware in Libero SoC and launch the debugger. Start
a HyperTerminal session with 57,600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow control. If
your computer does not have the HyperTerminal program, use any free serial terminal emulation
program such as PuTTY or Tera Term. Refer to the Configuring Serial Terminal Emulation Programs

tutorial for configuring HyperTerminal, Tera Term, and PuTTY.

When you run the debugger in SoftConsole, the application starts printing the memory location and data
on HyperTerminal. Figure 5 shows the screen shot of HyperTerminal with SRAM memory location and

data.

#& UART - HyperTerminal

File Edit Wiew Call Transfer Help

Connected 0:00:15 AN 57600 &-M-1 W

W BE M W E B MR BEME R ME M MR M ME WM M MR M E M3 M M E MM M M M MMM j
Accessing External SRAM Using EMC
ADDRESS DATA
Ax70000000 -> 000000000
Ax70000004 -> OxDO0000A0L
A=70000008 -> 0200000008
Ax7000000c -> Ox0000000c
Ax7/0000010 -> O«PO000A10
0x70000014 > Ox00000014
Ax7/0000018 -> 000000018
Ax7000001c -> Ox0O00001c
Ax70000020 > Ox00000020
Ax70000024 -> Q00000024
Ax70000028 -> Quffffffff
Ax7000002c -> Ouffffffff
Ax70000030 -> Quffffffff
0=70000034 > Oxffffffff :j

Figure 5« Screen Shot of HyperTerminal with SRAM Memory Location and Data

http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
http://www.microsemi.com/soc/documents/A2F500_DEV_KIT_UG.pdf

& Microsemi

Release Mode

Figure 6 shows the screen shot of HyperTerminal with NOR Flash memory location and data.

“g UART - HyperTerminal

File Edit Wiew Call Transfer Help

D] @3] =0
W E N W E N W IE N W IE WM W PE W W PE W WE W BE W WE W BE W WE W DE W BB DE W BE W IE NN .

Accessing External NOR Flash Using EMC

B IR NE B B IE N IE B W IE NI BE N IE BN B BE N BE R MBI M BE N IE BN MBI MM

Erasing the content of NOR Flash ..
ADDRESS DATA

0x74000000 —> 0x0
Bk 74000001 > Bxl
Bx74000002 —> Ox2
Bk 74000003 -—> Bx3
Ox74000004 —> Ox4
0x74000005 —> Ox5
0= 74000006 > 0Oxb6
0x74000007 —> 0x7
0x74000008 > 0x8
0x74000009 —> 0x9
Bx7400080Ba > Axa

L L

Connected 0:01:10 ANSIW 57600 8-MN-1 MM

Figure 6 = Screen Shot of HyperTerminal with NOR Flash Memory Location and Data

Release Mode

The release mode programming file (STAPL) is also provided. Refer to the Readme.txt file included in the
programming zip file for more information. Refer to the Building Executable Image in Release Mode and
Loading into eNVM tutorial for more information on building an application in release mode.

Conclusion

The design example demonstrates accessing the external SRAM and NOR flash using EMC on the
SmartFusion Development Kit Board. This document also describes the detailed description of EMC
configuration and NOR flash driver APIs.

Appendix A — Design and Programming Files

You can download the design files from the Microsemi SoC Products Group website:
www.microsemi.com/soc/download/rsc/?f=A2F _AC348 DF.

The design file consists of Libero SoC Verilog, SoftConsole software project, and programming files
(*.stp) for A2F500-DEV-KIT. Refer to the Readme.txt file included in the design file for the directory
structure and description.

You can download the programming files (*.stp) in release mode from the Microsemi SoC Products
Group website: www.microsemi.com/soc/download/rsc/?f=A2F AC348 PF.

The programming zip file consists of a STAPL programming file (*.stp) for A2F500-DEV-KIT and a
Readme.txt file.

www.microsemi.com/soc/download/rsc/?f=A2F_AC348_DF
www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf
www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf
www.microsemi.com/soc/download/rsc/?f=A2F_AC348_PF

& Microsemi

SmartFusion cSoC: Accessing External Memories Using the External Memory Controller

Appendix B — NOR Flash Driver APls

This section describes the software driver APIs used in this design to carry out transactions with NOR
flash. These drivers are included in the design files with this design example.

Function Description of Data Structures

Enum : emc_flash_status_t

This enum represents the status of the different APIs, such as emc_flash_write, emc_flash_read,
emc_flash_chip_erase, and emc_flash_block_erase.

typedef enum {
NOR_SUCCESS = 0,
NOR BLOCK_LOCK_ERROR = 0x2,
NOR PROGRAM SUSPEND = 0x4,
NOR_GENERAL ERROR = 0x08,
NOR PROGRAM ERROR = 0x10,
NOR_ERASE ERROR = 0x20,
NOR_CMD SEQ ERROR = 0x30,
NOR _ERASE SUSPEND = 0x40,
NOR_INVALID ARGUMENTS,
NOR_ INVALID ADDRESS,
NOR UNSUCCESS};

Function Description of Application Programming Interface (API)

emc_Init()

This function initializes the EMC controller with proper wait states for read and write access.
For example:

emc_init();

emc_flash_chip_erase (uint32_t start_addr)

This function erases the content of the external NOR flash from the address provided to this function until
the last address of the NOR flash. For example:

emc_flash chip erase(0x74000000) ;

emc_flash_block_erase (uint16_t *blockAddr)

This function erases the content of a particular block of the external NOR flash based on the address
provided to this function. For example:

emc_flash block erase (0x74000000)

emc_flash_read(uint32_t start_addr, uint8_t * p_data, size_t nb_bytes)

This function reads content of the SmartFusion EMC external NOR flash. The data is read from the
memory location specified by the first parameter. This address is the absolute address in the processor's
memory space at which the external flash is located.

* (@param start_addr: This is the address at which data will be read. This address is the absolute
address in the processor's memory space at which the external flash is located.

* (@param p_data: This is a pointer to the buffer for holding the read data.
* @param nb_bytes: This is the number of bytes to be read from external flash.
* @return: The return value indicates if the read was successful. The possible values are:
— NOR_SUCCESS: Describes that the NOR flash operation is correct and complete
— NOR_INVALID_ADDRESS: Describes that the function has received an invalid address
— NOR_UNSUCCESS: Describes that the NOR flash operation is incomplete
For example:
status = emc_flash read(0x74000000 + ii, output buffer, length);

& Microsemi

List of Changes

emc_flash_write
(uint32_t start_addr, const uint8_t * p_data, size_t nb_bytes)

This function writes the content of the buffer passed as a parameter to the external NOR flash. The data
is written from the memory location specified by the first parameter. This address is the absolute address
in the processor's memory space at which the external flash is located.

* (@param start_addr: This is the address at which data will be written. This address is the absolute
address in the processor memory space at which the external flash is located.

* @param p_data: This is a pointer to the buffer holding the data to be written into external flash.
* @param nb_bytes: This is the number of bytes to be written into external flash.
* @return: The return value indicates if the write was successful. The possible values are:
— NOR_SUCCESS: Describes the NOR flash operation is correct and complete
— NOR_INVALID_ADDRESS: Describes that function has received an invalid address
— NOR_UNSUCCESS: Describes the NOR flash operation is incomplete
For example:
status = emc_flash write(0x74000000 + ii, input buffer, length);

List of Changes

The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page
Revision 3 Removed ".zip" extension in the Design and Programming files link (SAR 36763). 7
(February 2012)
Revision 2 Modified last two lines in "Introduction” section (SAR 35788). 1
(January 2012)
Modified first five lines in "Running the Design" section (SAR 35788). 6
Added a new section called "Release Mode" (SAR 35788). 7
Modified "Appendix A — Design and Programming Files" section (SAR 35788). 7
Revision 1 Design files for this application note have been modified to support Libero SP2 and 6
(August 2010) A2F500 based development board. Also removed and added few lines on page 6
under "Running the Design" (SAR 27474).
Removed and added few lines on page 8 under "Appendix A — Design and 7
Programming Files"
(SAR 27474).
Removed Table 4 on page 8 (SAR 27474). 8

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.

Microsemi.

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100

Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial and
alternative energy markets. Products include high-performance, high-reliability analog and RF
devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete
subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi
Corporation. All other trademarks and service marks are the property of their respective owners.

51900216-3/02.12

http://www.microsemi.com

	SmartFusion cSoC: Accessing External Memories Using the External Memory Controller
	Introduction
	Design Example Overview
	Description of the Design Example
	SRAM Write and Read Operations
	NOR Flash Write and Read Operations

	Microcontroller Subsystem Configuration
	Board Specific Settings
	Running the Design
	Release Mode
	Conclusion
	Appendix A – Design and Programming Files
	Appendix B – NOR Flash Driver APIs
	Function Description of Data Structures
	Function Description of Application Programming Interface (API)

	List of Changes

