

Analysis of SDI/DCLK Issue for RH1020 and RT1020

Background

The SDI and DCLK pins (pin numbers 61 and 62, respectively) do not function properly when configured as outputs on all Actel RT1020 devices and older RH1020 devices. This problem does not exist on RH1020 devices manufactured in mid-1999 or later and designated as "pass 8" silicon. In normal mode, the user must program the security fuse ("program fuse") in order to configure SDI and DCLK pins as outputs. However, as a result of the issue described in this report, the SDI/DCLK output configuration is not supported in the affected devices. This technical brief discusses the cause of this phenomenon, and its impact on reliability.

Functional Description

When SDI and DCLK are configured as outputs, the "program fuse" must be blown, as discussed in the *RadHard/RadTolerant Programming Guide* in table 1-2 on page 22, located on Actel's web site. When the "program fuse" is programmed, node 1 (as shown in Figure 1) becomes a logic "0." Node "SFUSBLO," which is the output-enable for SDI and DCLK pins should become a logical "1" (5 volts). In the design, there exists a latch that consists of inverters 2 and 3. The latch's function is to pull and keep node "SFUSBLO" at V_{CC} (logical "1").

Failure Description

SDI and DCLK become tristated when configured as outputs and the supply voltage is below 5.0 volts. However, if the voltage is increased to 6.0 volts and then decreased to 3.5 volts, the two outputs function properly.

Analysis

An experiment was performed to determine the state of the special I/Os: SDI and DCLK. A simple design was generated to use the SDI and DCLK pins as outputs ("program fuse" was blown). In addition, a 10K Ohm resistor was placed in series with the output pins (SDI/DCLK) to limit current flow. The output of SDI and DCLK could be pulled up in the experiment (resistor connected to V_{CC}), a characteristic of a tristated output.

Failure Mechanism

Figure 1 shows a simplified schematic diagram of the silicon signature portion of the circuit. Note: SFUSBLO is the point of interest since it must be a logic "1" to enable the output buffers of SDI and DCLK. This condition occurs when the "program fuse is blown."

Initially, the anomalous behavior was attributed to the high fuse resistance (due to the non-ideal programming path). However, an experiment proved this assumption inaccurate. Node 1 was shorted to GND, thus bypassing the fuse, using Focus Ion Beam (FIB) technology. With node 1 at logic "0," the output of SDI and DCLK remained tristated. This was further supported by SPICE simulation. (See "Appendix A" on page 4)

Figure 1 • Simplified Silicon Signature Circuit

Initially, when the "program fuse" is not blown, (unblown program fuse symbolized as a capacitor in Figure 1 on page 1, from node 1 to ground) node 1 is a logic "1." Nodes SFUSBLO and 2 (because the pass device is turned on) will be at logic "0" (0 volts).

For the purpose of this discussion, assume that nodes SFUSBLO and 2 are the same, since the pass device is on. When the "program fuse" is blown, node 1 has a path to ground, by way of a ruptured program fuse, and becomes a logic "0." Node SFUSBLO will begin making a transition from L->H (logic "0" to "1"). Simultaneously, since node 3 is initially "1," the NLV (NMOS, low voltage device in inverter 3) device is fully turned on, thereby causing the output of inverter 3 (SFUSBLO) to be "0." Since the output of inverter 3 is a logical "0" (0 volts) and the output of inverter 1 is a logical "1" (5 volts) (due to the programmed antifuse), we now have a state of contention. Bench microprobing of the SFUSBLO signal at Actel indicates that node SFUSBLO is at ~2.0V when the SDI/DCLK pins are not functioning as outputs. Please refer to Figure 2 for a simplified drawing of this effect. The p-channel of inverter 1 is constructed with a thick oxide of 350 angstroms.

This is a high voltage p-channel (PHV) device. The n-channel device in inverter 3 is a standard low voltage (oxide thickness of 190 angstroms) n-channel device, referred to as NLV. The final state is determined by the strongest device (NLV in this circuit, since PHV is especially weak in the RH process), which will cause SFUSBLO to stay at logic "0." Hence, it is crucial that the ratio of the ldsat(NLV)/ldsat(PHV) is correct. From previous simulations, the optimum ldsat(NLV)/ldsat(PHV) was found to be 4.7 for a commercial 1020 device. However, due to the difference in processes between commercial and RadHard devices, the ldsat(NLV)/ldsat(PHV) ratio is 7.9 (for the RH process).

Effects On Reliability

Figure 3 shows the resultant circuit when the aforementioned phenomenon occurs. The current passes through a high-voltage PMOS pull-up, an NMOS pass transistor, and a NMOS pull down to ground. Although the potential increase in current is likely, it is not significant enough to be measured on the bench. SPICE simulations (refer to "Appendix B" on page 5) show that the worst case increase in ldd is 240μ A (at +25°C) and 350μ A (-55°C). However, analyses performed by Actel (including radiation effects) indicate that this current is too low to cause any reliability issue, such as dielectric rupture, hot carrier degradation, or electromigration. Explanations are as follows:

Figure 2 • State of nodes 1, 2, and 3 when "program fuse" is programmed

Figure 3 • Schematic Diagram of the Effects of Both NLV and PHV on

Hot Carrier (Figure 4)

It is well known that as NMOS channel lengths are reduced, the electric field at the drain of a transistor in saturation increases (for a fixed drain voltage). The electric field can become so high that electrons acquire enough kinetic energy to become what is termed "hot." These hot electrons can penetrate the gate oxide layer and produce a gate current. The trapping of charges injected into the oxide can, eventually, lead to degradation of the MOS device parameters such as threshold, subthreshold current, and transconductance, which in turn could lead to failures in circuits. For p-channel devices, since the mobility of holes is much less than that of the electrons in the n-channel device, there is no risk of hot holes. Thus the hot electron effect is limited to the n-channel devices and is a strong function of both the Vds voltage and the channel length of the device.

In the case of the circuit shown above, both n-channel devices are larger than minimum channel length (by 2.2μ m) and exhibit a lower Vds voltage than the worst case characterized at 5.5V. For transistor (1), the effective Vds is equivalent to the threshold drop of the transistor. For transistor (2), the effective Vds, when the circuit is non-functional, is equivalent to V1-Vtn, where V1 was measured to be ~2.0V. In summary, there is no hot carrier issue with this circuitry.

Electromigration

Electromigration refers to the displacement of atoms within the conducting material (metals). This displacement is due to the transfer of momentum from the mobile carriers to the atomic lattices and vice versa. When a high current passes through thin metal conductors in integrated circuits, metal ions in some regions will pile up and voids will form in other regions. Thus, discontinuity in metal conductors can occur.

In the case of the circuit shown above, the maximum current through simulation was found to be $240\mu A$ at $+25^{\circ}C$ and $350\mu A$ at $-55^{\circ}C$. Based on the layout dimensions, the maximum current density, J (mA/ μ m), through this circuit is:

 $J = Idd \text{ (worst case)} / W_{min}$; where $W_{min} = 2.7 \mu m$

was calculated to be 0.09mA/µm (+25°C) and 0.13mA/µm (-55°C), where the process was designed for a minimum current density of 1.0mA/µm. For room temp, there is 10X margin to electromigration. It is known that electromigration is a function of temperature as illustrated in the following equation:

MTF ~ $l/J2 \rightarrow 1/J^2$

thus there is additional margin at -55° C due to the temperature effects. At hot temp, the Idd current is significantly reduced as both the n-channel and the p-channel devices become weaker.

Conclusion

The security feature of blowing the program fuse is functional for all RT1020 and RH1020 devices. There is no impact on the performance or reliability of these devices by programming the security fuse (program fuse). The feature of the SDI/DCLK pins functioning as outputs is not supported in the RT1020 or early ("pass 7") RH1020 devices.

Corrective Action

Actel has implemented a fix for RH1020 devices to allow designers to use the SDI/DLK pins as outputs designated as "pass 8" material. No silicon fix is planned for RT1020 devices. We have also reviewed the circuitry to ensure that no other similar failures exist due to the weakness of the PHV devices.

Appendix A

Appendix B

<pre>*** voltage xources subokt element 0:voc volts</pre>	nodal cepecitance table node cap node = cap node = cap +0:in - 24.4407f 0:vcc = 72.70812 0:vL = 29.0952L	maximum qodal capacitance∸ 7.2715.14 on mode 0:vcc	<pre>***** ***** operating point status is all simulation time is 0. ***** operating point status is all simulation time is 0. *node -voltage node =voltage *0:in = 1.5942 0:vrc = 5.0000 0:vl = 1.4045</pre>	0;m3 4.07 4.07 4.44-22 4.49-22 752.69m 92.460 ****** Star-HSPICE 97.1 (9703.7) 13:49:58 98/08/06 solaris ****** cpetating point information those 25.000 temp= -55.000	*** mosfet element parameters nume rd eff rs eff cdsal cssal vto beta 0:ml 797.35 '997.36 '2.9e-17 2.3e-17 1.12 104.39u 0:m2 2.09 2.97 4.4e-22 4.4e-22 822.23m 7.74m	is= 1.0e-28 amp pb= 931.49m volL cjo= C. farad jsw= 0. Amp pip= 391.49m volt cjp= 0. битод jov- 0. volt tt C. secs ше 500.00m eq= 1.11 ev rs= C. ohma	jsw= 2.27p amp php= 943.44m volt cjp= 172.12p farad bv- 20.00 volt ct 0. secs m 500.00m eg= 1.11 ev x8= 0. olims ^** name: 0:jden1 ccmp= -55.0000
analysis time # points tor, iter conv.iter op puss. 0.03 J 14 roadin 0.62 J 14 arreak 0.12 setup 0.01 utilal cpu Lime 0.78 seconds job started at 13:49:59 98/08/06 job ended at 13:50:01 98/08/06	<pre>/ test: t-n t-p t cd c cox t load 5v 10b statistics summary thom= 25.000 temp= -55.000 total memory weed</pre>	***** Job concluded ***** Slar-WSPICE 97.1 [97D317] 13:49:58 98/08/06 solaris	edetet 11.21126 [4.2596 20.44476 edetet 10.21126 [4.2596 20.44476 edetet 10.21736 [4.39416 1.9.24476 educt 19.5756 [8.6363 9.1750] egg 7.59426 5.64476 [8.11236]	VCh -1.1886 1.0446 752.9261m Vdaac -2.7661 1.2255 3.538 beta 68.57380 255.5224 74.33070 gAm eff 956.9586m 283.3031m 266.5996m gmb 1.91320 1.51386 186.81160 gmb 45.39530 1.513540 14.51280	element 0:m2 id 0:b1v id 3:50.9272u ib 7.221e-17 ib 6.525e-19 ibd 6.526e-19 ibd 6.526e-19 ibd 0:5122 ibd 0:5122 ibd 0:5122 ibd 0:5212 ibd 0:5212 <	**** mogfets subckL	total voltage source nower dissipation= 1.7946m watts

lmfs0,8um

test.out

		Instruction of the second s		
jnw= 3.514 amp bv= 20.00 volt eg= 1.11 ev	php- 574.92m volt cip= 174. tt- 0. secs m= 500. xz= 0. ulmm	18р Енгні ПЛт		
*** name: 0:ideal	temp 125.000	seriar jetot	gu suurce power dissipation= 813.03	340u watt <i>a</i>
is= 5.5e+19 amp jsw= 0. xmp bv: 0. volt eg= 1.11 ev	ph= 634.86m volt cjo= 0. php= 634.86m volt cjp= 0. tt= 0. sets m= 500. zx= 0. chms	fatad **** mosfets farað GCm eubeke		
*** coafet element baramerera		elemant (im) model (ip)tyli id 162.si	0:m2 0:m3 2 მ:ილივ.1 0:nmივ.2 0454 162.6045ო 162.6004თ	
nance ⊥deft ⊤sef	ff cdsat cssac vto beta	ibs 300.3	952p -2.0454n -853.1730f 989p2.3228n -2.0441n 033 3.4127 5.0000	
0:m2 797.36 797.3 0:m2 2.07 2.0	56 97.94p 97.94p 1.51 47.3 07 1.29n 1.29n 822.23m 3.1	יניט איש איז	967 216.0402m 1.5873 967 - 1. 5873 0.	
0:m3 4.07 4.0 ***** 5:ar HSFICE 97	07 1.29n 1.29a 752.69m 37.5 7.1 [970317] 15:10:76 98/08/14	Vth 1.5 solaris vdsat -2.7 bela 33.9	227 1.0621 752.79395 697 1.7056 3.6286 5890 354.11250 31.08780	
<pre>****** * test: t-n t-p t-od t-tox t-</pre>	·load 5v	gam off 934,4. gm 83.0 gm 234.0	466m 274.9837m 266.6896m 102u 57.2975u 40.8057u 108m 692 9529u 76 6201u	
****** operating point info ******	ornation thom= 25,000 tempe 12:	, נוווע קותנ 21.5 מלדמה 19.6 בקדמה 10.6	5554 5.88234 6.43454 398f 13.4659f 14.5307f 359f 14.4214f 20.3406f	
****` operating point status node =voltage code	ie ail simulation time is 2 =vnltage node voltage	0, cstot 10.5 chtat 21.2 cgd 3.7	045f 14.1456t 19.4636f 598f 8.7939f 9.6333f 598f 7.2252f 11.1262f	
+0:in 1.8033 0:vec	= 5.0000 C:v1 = 1,587:			
maximum oodal capacitance=	7.556B-14 on node 0:vec	++++++ Stat-HS	Jab concluded PCCE 97.⊥ (9703⊥7) 15:10:30	5 98/08/14 <i>s</i> olaris
rodal capacitance table rode =sp node	9 · cap node = cep	: test: t-n t-p ****** jab st	c-ed c-log L-logd Sv mtisting summary teom 21	5,000 temp: 125,000
+G:10 = 23.9705F 0;vcc	- 75.6576E 0:vl = 28.676	ונ ניזרא]	musmury used 450 kbytes	
		‡ nodes = 1 † diodes:=	0 k elénve:)L≤= 4 A kjts = 0 k jfets ∸	C ♯ mosźeta = 3
•••• voltage sources		aiavlene	Line A swints Lat. Ther co	prv.itor
vubckt element ():v:c volts 5.0000		ryp pein: readin serup output	0.32 0.59 9.10 0.31 0.31	
ситгерт -162.6068и ромет 813.0340и			nga time obscorted at 15:10:26 93/68/14 obscded at 15:10:17 98/68/14	

element 0:vcc	.OUT op point 0.02 1 14
current -243.5362u power 1.2177m	seruchi 0.10 setup 0.01 output 0.01 output total cpu time 0.72 seconds job started at 15:38:05 98/08/14 job ended at 15:38:06 98/08/14
total voltage source power dissipation= 1.2177m watts **** mosfets	the following time statistics are already included in the analysis time load 0.00 solver 0.00
	sourcer () # external nodes = 4 # internal nodes = 6 # branch currents= 1 total matrix size= 11 since based and non minimize contribution times
element 0:m1 0:m2 0:m3	non pivotting: decompose 0.00 solve 0.00
model 0:phv.2 0:nmos.1 0:nmos.2 id 243.53620 243.53620 243.53620	matrix size(39) = initial size(38) + fill(1)
ibs 540.35285 -15.40045 -9.919e-18	Lic: Release token(s)
Vgs -1,7499 3.4605 5.0000	- Pri Aug 14 15:38:06 PDF 1998
vds 3.2501 210.4074m 1.5395 vbs 3.2501 -1.5395 0.	Fri Aug 14 15;38:06 PD7 1998
vth -1.3370 1.0577 752.8484m	
beta 47.7119u 543.6186u 47.9256u	
gam eff 955.9372m 278.4061m 266.6525m gmm 117.9765u 83.3528u 60.5252u	
gds 598.1576n 1.0464m 118.8510u	
Ginu 31.34491 0.77401 7.09334 cdtot 18.0145f 13.4336f 14.6270f	
cgtot 11.0520f 14.4225f 20.3701f cstot 10.9320f 14.0931f 19.2056f	
cbtot 20.4317£ 8.6719£ 9.3442£	
cgs 2.3500∓ 7.4140E 11.0763∓ cgd 7.6283£ 6.8084£ 7.9201€	
***** job concluded ***** Star-HSPECE 97.1 (970317) 15:38:05 98/08/14 solaris	
: test: t-n t-p t-cd t-tox t-load fv	
****** job statistics summary tnom= 25.000 temp= 25.000	

total memory used 450 kbytes	
≰ nodes = 10 # elements= 4 # diodes= 0 # bjts = 0 # jfets = 0 # mosfets = 3	
analysis time # points tot. iter conv.iter	

7

Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.

http://www.actel.com

Actel Europe Ltd.

Maxfli Court, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Tel: +44 (0)1276 401450 Fax: +44 (0)1276 401590 Actel Corporation 955 East Arques Avenue Sunnyvale, California 94086 USA Tel: (408) 739-1010 Fax: (408) 739-1540 Actel Asia-Pacific

EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan **Tel:** +81-(0)3-3445-7671 **Fax:** +81-(0)3-3445-7668