
Application Note AC392

SmartFusion2 SoC FPGA SRAM Initialization from
eNVM - Libero SoC v11.7

Table of Contents

Purpose
This application note describes two different methods of initializing the large static random access
memory (LSRAM) and micro SRAMs (uSRAM) using design examples where ARM® Cortex®-M3
processor or fabric logic is used as the master. The design examples describe initializing the fabric
SRAM blocks after power-up with the initialization data from the embedded non-volatile memory (eNVM)
block.

Introduction
The SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) devices have
embedded SRAM blocks in fabric. There are two types of SRAM blocks in SmartFusion2 SoC FPGA
fabric— LSRAMs and uSRAMs. The LSRAMs are used for storing large data or for creating large FIFOs.
The LSRAM and uSRAM blocks are volatile memory types, the stored data disappears in the absence of
power. After the device is powered-up, the content of SRAM is unknown. There are some applications
which require the SRAM data to be initialized and validated after power-up.

Purpose . 1
Introduction . 1
References . 2
Design Requirements . 2
Embedded SRAM Blocks in SmartFusion2 SoC FPGAs . 2

SmartFusion2 SoC FPGA eNVM Controller for Data Storage . 3
SRAM to APB3 Wrapper . 5

SRAM Initialization Reference Designs . 6
Cortex-M3 Processor as Master . 6
Fabric Master . 7

Initializing SRAM Using Cortex-M3 Processor as Master . 10
Hardware Implementation . 10
Firmware and Application Code Software Implementation . 12
Simulating Reference Design with Cortex-M3 Processor as Master . 12
Running the Design with Cortex-M3 Processor as Master . 13

Initializing SRAM using Fabric Master . 16
Hardware Implementation . 17
Simulating Reference Design with a Fabric as Master . 18
Running the Design with a Fabric Master . 20

Customizing Wrapper Interface . 22
Conclusion . 23

Appendix: Design and Programming Files . 24

List of Changes . 25
March 2016 1

© 2016 Microsemi Corporation

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
There are several methods of initializing the LSRAM and uSRAM. This document provides two solutions
for implementing this initialization method, and also provides the design examples. The design examples
describe initializing the fabric SRAM blocks after power-up with the initialization data from the eNVM
block using the Cortex-M3 processor or fabric logic as the master. The Cortex-M3 processor or the fabric
master transfers the data from eNVM to the SRAM blocks after power-up.

Figure 4 on page 7 and Figure 5 on page 9 show block diagrams of the design examples. The reference
designs use the SRAM block configured as a two-port memory, but this initialization approach can be
used for all the variations of LSRAM and uSRAM in the SmartFusion2 SoC FPGA device. The reference
design is simulated and tested on silicon using SmartFusion2 Security Evaluation Kit board.

References
The list of references are:

• UG0331: SmartFusion2 Microcontroller Subsystem User Guide

• TU0530: SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools Tutorial

• SmartFusion2 MSS Embedded Nonvolatile Memory (eNVM) Simulation

• UG0445: IGLOO2 FPGA and SmartFusion2 SoC FPGA Fabric User Guide

Design Requirements
Table 1 lists the design requirements.

Note: *For this application note, SoftConsole v3.4 SP1 is used. For using SoftConsole v4.0, see the
TU0546: SoftConsole v4.0 and Libero SoC v11.7 Tutorial.

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs
This section describes the fabric SRAM blocks in various SmartFusion2 devices and clarifies their
differences.

Table 2 lists the types of fabric SRAM blocks in various SmartFusion2 devices.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

SmartFusion2 Security Evaluation Kit M2S090TS-1FGG484

Software Requirements

Libero® System-on-Chip (SoC) v11.7

FlashPro programming software v11.7

SoftConsole v3.4 SP1*

Table 2 • SRAM Blocks in Various SmartFusion2 Devices

Features M2S005 M2S010 M2S025 M2S050 M2S060 M2S090 M2S150

LSRAM 18 K Blocks 10 21 31 69 69 109 236

uSRAM 1 K Blocks 11 22 34 72 72 112 240

Total RAM (Kbits) 191 400 592 1314 1314 2074 4488
2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS/sf2_mss_envm_sim_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133136
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133700

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs
The LSRAM blocks can be configured as a dual-port SRAM or two-port SRAM. LSRAM configured as
dual-port SRAM provides two independent access ports— Port A and Port B. In dual-port mode, data can
be transferred through these ports independently based on various parameters. Each port has its own
address, data in, data out, clock, clock enable, and write enable. LSRAM configured as two-port SRAM
has Port A dedicated to read operations, and Port B dedicated to write operations. The read and write
operations in LSRAM are synchronous and require a clock edge.

The uSRAM has two read ports (Port A and Port B) and one write port (Port C). The read ports operate
either in synchronous or asynchronous modes. The write operation is performed only in synchronous
mode.

The SRAM blocks support rich variations in size and features of memory blocks for SmartFusion2 SoC
FPGA devices. Although these variations require changes for a specific implementation of initializing the
SRAM blocks, the changes are not significant enough to affect the fundamentals of the reference design.
Therefore, the two reference designs target only the LSRAM block. The effects of feature and size
variations on the reference designs are discussed in the "Customizing Wrapper Interface" section on
page 24.

SmartFusion2 eNVM Controller for Data Storage
The design example uses the eNVM array in microcontroller subsystem (MSS) as the source of the
SRAM initialization. The flash memory block in the eNVM is used to store the SRAM initialization data,
and it is loaded to SRAM after power-up. The eNVM controller is an advanced high-performance bus
(AHB) slave that provides access to eNVM. It converts the logical AHB addresses to physical eNVM
addresses, and allows to command the eNVM to perform specific tasks such as read, and write
operations. For more information, see the Embedded eNVM Controller section in the
UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

In the design examples, the data is defined first to be programmed into eNVM, which is used for the
SRAM initialization. The user can define an eNVM "Data Client", which is configured as 64 × 8 using the
eNVM configurator. Figure 1 shows the eNVM configurator graphical user interface (GUI) in Libero SoC
that is accessed through the System Builder tools.
3

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
Figure 1 • Data Storage eNVM Client (System Builder)
4

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs
Page 16 (start address 0x800) is used here for demonstration purposes. Figure 2 shows an excerpt of
the data storage client content using Microsemi binary scheme (sram_envm.mem) that is defined in the
eNVM. The sram_envm.mem file is included in the Libero project under the constraint folder.

Figure 2 • Memory File Content Saved into eNVM
5

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
SRAM to APB3 Wrapper
The section describes connecting the SRAM block to the advanced microcontroller bus architecture
(AMBA®) advanced peripheral bus 3 (APB3) bus system. To move the data from eNVM to SRAM using
the Cortex-M3 processor as the master or a fabric master, the user needs to create a wrapper logic
around the SRAM block. The wrapper generates the write enable and read enable for SRAM using the
APB3 bus signals. Figure 3 shows the state diagram for the APB3 bus specification.

Following are the three states:

• IDLE: This is the default state for the peripheral bus.

• SETUP: When a transfer is required, the bus moves to this state where the appropriate select
signal PSELx is asserted. The bus remains in this state for one clock cycle only and always
moves to the ACCESS state on the next rising edge of the clock.

• ACCESS: In this state, the enable signal PENABLE is asserted. The address, write, and select
signals should be stable during the transition from SETUP to ACCESS state. The transition from
the ACCESS state is controlled by the PREADY signal from the slave.

– If PREADY is held low by the slave, then the peripheral bus remains in the ACCESS state.

– If PREADY is held high by the slave and no more transfers are required, the bus transitions
from the ACCESS state to the IDLE state. Alternatively, if another transfer follows, the bus
moves directly to the SETUP state.

In this design example, the wrapper logic generates the write enable and read enable for SRAM using
the PSEL, PWRITE, and PENABLE signals. The PREADY signal is used to insert the wait state.

Figure 3 • APB3 State Diagram

No Transfer

Transfer

PREADY = 1
and Transfer

PREADY = 1
and No
Transfer

PREADY = 0

IDLE
PSELx = 0

PENABLE = 0

SETUP
PSELx = 1

PENABLE = 0

ACCESS
PSELx = 1

PENABLE = 1
6

SRAM Initialization Reference Designs
SRAM Initialization Reference Designs
This document discusses two methods of initializing the fabric SRAM. The first method uses the
Cortex-M3 processor as the master that transfers the data from eNVM to SRAM. The second method
uses a master in the fabric to transfer the data from eNVM to SRAM. The two reference designs are
described and analyzed in the following sections:

• Cortex-M3 Processor as Master—describes the method of initializing SRAM using the Cortex-M3
processor as the master.

• Fabric Master—describes the method of initializing SRAM using a fabric master.

Cortex-M3 Processor as Master
The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. This design
implements an APB3 slave wrapper interface on Port A and Port B of the SRAM block, and the APB3
wrapper is memory mapped to the MSS. The user can also implement the AHBLite wrapper instead of
APB3 wrapper on the SRAM block and connect to the MSS. However, the APB3 interface is much
simpler than the AHBLite interface, and it is easy to create this interface with the SRAM ports. This APB3
slave wrapper interface is connected to the MSS through the CoreAPB3, CoreAHBTOAPB3,
CoreAHBLite and fabric interface controller (FIC_0) interface as shown in Figure 4. FIC_0 and FIC_1
enable the connectivity between the fabric and the MSS. The FIC_0 is part of the MSS, and performs a
bridging functionality between MSS and FPGA fabric. The FIC can be configured either in the AHBLite
mode or in the APB3 mode. In this design example, the FIC_0 is configured in the AHBLite, so that the
other AHBLite blocks in the fabric can be connected to MSS through FIC. Figure 4 shows a top-level
block diagram of the design example using the Cortex-M3 processor as the master.

The muxing arbiter block in the APB3 slave wrapper allows switching the SRAM ports as user-ports after
the initialization is done. The Cortex-M3 processor in MSS acts as a master to read data from eNVM after
powering-up and initializing the fabric SRAM block. After the initialization is done, the APB3 wrapper
interface asserts a SEL signal for muxing arbiter to switch the SRAM ports as user-ports. After the
initialization in done, the user reads/writes from/to SRAM block can be started. Figure 4 shows the
design example block diagram using the Cortex-M3 processor as the master.

Figure 4 • Design Example Block Diagram

SRAM
Block

Muxing ArbiterSRAM to APB3
Slave Wrapper

User RAM
Interface

CoreAHBLITETOAPB

eNVM

CoreAPB3

CoreAHBLite

Cortex-M3
Processor

RAM_with_wrapper

SEL

FIC_0

Fabric

Microcontroller Subsystem (MSS)
7

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
Interface Description
Table 3 shows the top-level Cortex-M3 processor as the master interface signal descriptions.
For more information about LSRAM and uSRAM functionalities and features, refer to UG0445: IGLOO2
FPGA and SmartFusion2 SoC FPGA Fabric User Guide.

Status Output
The INIT_DONE output of the reference design indicates the sequence of initialization done.
At power-up, it is asserted as low to indicate the start of initialization process. It remains low until the
Cortex-M3 processor or a fabric master finishes reading the data from eNVM and writing it to SRAM.
Once INIT_DONE output is asserted, the asserted state indicates the end of initialization process. Port A
and Port B of SRAM interface are available to the user for read and write access operations.

Fabric Master
The design is similar to the design that is implemented using the Cortex-M3 processor as the master.
The fabric acts as a master to read data from eNVM after powering-up and initializing the SRAM block.
After the initialization is done, the APB3 wrapper interface asserts a SEL signal for muxing arbiter to
switch the SRAM ports as user-ports. After the initialization is done, the write and read data to/from the
SRAM block can be started. The INIT_DONE output of the reference design indicates the sequence of
initialization done.

Table 3 • Top-Level Cortex-M3 Processor as the Master Interface Signals

Signal Direction Description

raddr_user[5:0] Input User read address

rclk_user Input User read clock

rd_enable_user Input User read enable

waddr_user[5:0] Input User write address

wclk_user Input User write clock

wdata_user[7:0] Input User write data

wr_enable_user Input User write enable

rdata_user[7:0] Output User read data

INIT_DONE Output Initialization complete

DEVRST_N Input Active low reset

MMUART_1_RXD Input Uart RX input (for debug only)

MMUART_1_TXD Output Uart TX output (for debug only)

SEL Output Selection for RAM muxing logic (for debug only)
8

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920

SRAM Initialization Reference Designs
Figure 5 shows a top-level block diagram of the design example.

The fabric Master block shown in Figure 5 acts as a master logic to read data from eNVM and write it to
SRAM. The AHB-Lite master drives the address and controls the signals onto the bus after the rising
edge of HCLK. If HREADY is in low state, the Fabric Master waits. If HREADY is in high state, the logic
moves to the data phase. During the data phase, if HREADY is in low state, the AHB-Lite master holds
the data stable throughout the extended cycle for a write operation, or read the data only after HREADY
is in high state.

Figure 5 • Design Example Block Diagram using Fabric Master

SRAM block

Muxing ArbiterSRAM to APB3
Slave Wrapper

User RAM
Interface

CoreAHBLITETOAPB3

Microcontroller Subsystem (MSS) eNVM

CoreAPB3

CoreAHBLite

RAM_with_wrapper

Fabric Master

SEL
9

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
Figure 6 shows the state diagram for the fabric master.

Figure 6 • Fabric Master State Diagram
10

Initializing SRAM Using Cortex-M3 Processor as Master
Interface Description for Fabric Master Design
Table 4 shows the top-level interface signal descriptions.

Initializing SRAM Using Cortex-M3 Processor as Master
This section explains the following topics:

• Hardware Implementation

• Firmware and Application Code Software Implementation

• Simulating Reference Design with Cortex-M3 Processor as Master

• Running the Design with Cortex-M3 Processor as Master

Hardware Implementation
The hardware implementation involves configuring the MSS along with the SRAM block configuration.
The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. The MSS along
with FIC_0, MMUART, and the eNVM are configured using System Builder. Through the System Builder,
the design is configured to use a 50 MHz RC oscillator as a reference clock for the fabric phase-locked
loop (PLL). The fabric PLL then generates a 100 MHz clock that is used as the main system clock. The
design example consists MSS, SRAM wrapper logic, and IP cores (CoreAHBToAPB3, CoreAPB3) as
shown in Figure 7 on page 12.

Table 4 • Top-Level Interface Signals

Signal Direction Description

raddr_user[5:0] Input User read address

rclk_user Input User read clock

rd_enable_user Input User read enable

waddr_user[5:0] Input User write address

rdata_user[7:0] Output User read data

wclk_user Input User write clock

wdata_user[7:0] Input User write data

wr_enable_user Input User write enable

INIT_DONE Output Initialization complete

DEVRST_N Input Active Low reset

MMUART_1_RXD Input Uart RX input (for debug only)

MMUART_1_TXD Output Uart TX output (for debug only)

RESP_err[1:0] Output Ahb error response

ram_init_done Output Initialization complete

SEL Output Selection for RAM muxing logic (for debug only)

ahb_busy Output Ahb busy indication
11

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

CoreAHBLite IP is generated and used automatically inside the System Builder block. The IP cores along
with the SRAM wrapper are used to initialize the fabric SRAM by moving the data from eNVM to the
fabric SRAM through the FIC_0 AHB master interface. A Data Storage client is defined in the eNVM with
the data to be written to the SRAM.

Figure 7 • Top-Level Hardware Design for Cortex-M3 Processor as Master
12

Initializing SRAM Using Cortex-M3 Processor as Master
Firmware and Application Code Software Implementation
Firmware and application code is required only while using the Cortex-M3 processor as the master. This
design example includes the MSS MMUART_1 block. The MMUART_1 block is used so that the
initialization sequence and the debug of SRAM block can be viewed through HyperTerminal. The
software design includes an initialization function (nvm_access()) that reads the eNVM content and
writes it to the SRAM block.

nvm_access ()
This function reads the eNVM content which is loaded during SmartFusion2 SoC FPGA device
programming. Each read output is 64-bit data. It converts the 64-bit data to four sets of 8-bit data, and
then writes each set of 8-bit data to four SRAM locations. This process (read, convert, and write)
continues until the last SRAM address is initialized. It also reads back the SRAM content to check the
data.

Note: Once the last address location is written, the SEL signal is generated and the SRAM interface is
switched to User mode, so the last address read back should be seen as zeros.

Simulating Reference Design with Cortex-M3 Processor as Master
The design file includes the test bench files to run simulation in the Libero SoC. The simulation uses the
bus functional model (BFM) command to exercise data transfer between the MSS and the fabric.

Note: After system reset, the BFM has several commands to load the eNVM content, which is not needed
for software implementation.

The BFM has the following sequence:

1. Setting access privileges to eNVM

2. Writing the initialization data to eNVM (for simulation only)

3. Reading from eNVM and then write to SRAM Reading SRAM through the MSS and check the
data

Figure 8 shows the BFM simulation transcript results and Figure 9 on page 14 shows the ModelSim
presynthesis simulation waveform results.

Figure 8 • BFM Transcript Simulation Results
13

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
Running the Design with Cortex-M3 Processor as Master
This section describes running Cortex-M3 processor as master design example in SmartFusion2
Security Evaluation Kit.

1. Open the MSS_MSTR_RAM_INIT Libero project (refer to
"Appendix: Design and Programming Files" on page 25).

2. Update the eNVM client memory file path. For more information, refer to

http://soc.microsemi.com/kb/article.aspx?id=SL5657.

3. Program the SmartFusion2 Security Evaluation Kit board by selecting Run PROGRAM Action
option in the Libero Design Flow window or with the provided Cortex-M3 processor as master
STAPL file (refer to "Appendix: Design and Programming Files" on page 25) using FlashPro4.

4. Connect the USB to PC.

5. Launch the SoftConsole v4.0 and browse the SoftConsole folder project where the Libero project
is created as shown in Figure 10 on page 15.

Figure 9 • MSS Master Design Example Waveform
14

http://soc.microsemi.com/kb/article.aspx?id=SL5657

Initializing SRAM Using Cortex-M3 Processor as Master
6. Click OK.

SoftConsole opens with the project automatically loaded as shown in Figure 11.

7. In SoftConsole, click the Project Explorer tab and click the
SF2_GNU_SC4_MMUART_polled_uart folder on the left pane.

8. Inspect the main code by double-clicking the main.c file as shown in Figure 11.

9. Choose Project > Clean to perform a clean build of the code.

10. Retain the default settings in the Clean dialog box and click OK.

Note: Ensure that errors are not displayed throughout the design configuration and build flow.

Figure 10 • Specifying the SoftConsole Workspace Location

Figure 11 • SoftConsole Window
15

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
11. Choose Run > Debug Configurations > Debug option. The Debugger window is displayed as
shown in Figure 12. Click on Debug from the Debugger window.

12. Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. If the computer does not have the HyperTerminal program, any free serial terminal
emulation program such as PuTTY or Tera Term can be used. Refer to the Configuring Serial
Terminal Emulation Programs Tutorial for configuring HyperTerminal, Tera Term, or PuTTY.

13. Run the debugger by pressing the F8 (function key) on the keyboard or double-click the Resume
icon as shown in Figure 13.

Figure 12 • Launch the Debugger

Figure 13 • Resume Icon
16

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

Initializing SRAM using Fabric Master
The HyperTerminal window shows the initialization sequence by reading eNVM and writing to
SRAM. Figure 14 shows the screenshot of HyperTerminal.

Initializing SRAM using Fabric Master
The fabric master design implementation is similar to the Cortex-M3 processor master design except that
the master is responsible for moving the initialization data from the eNVM to SRAM master in the fabric.

The following section describes the hardware implementation using a fabric master. It also details how to
simulate the provided design along with the steps on how to run the design on the SmartFusion2 Security
Evaluation Kit board.

Figure 14 • Screenshot of HyperTerminal Showing the Design Example
17

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
Hardware Implementation
The hardware implementation involves configuring the MSS along with the SRAM block configuration.
The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. Through the
System Builder, the design is configured to use a 50 MHz RC oscillator as a reference clock for the fabric
phase-locked loop (PLL). The fabric PLL then generates a 100 MHz clock that is used as the main
system clock. The design example consists MSS, SRAM wrapper logic, fabric master
(AHBMASTER_FIC_0) as shown in Figure 15.

Figure 15 • Top-Level Hardware Design for Fabric Master
18

Initializing SRAM using Fabric Master
The SRAM wrapper along with the fabric master is used to initialize the fabric SRAM by moving data from
the eNVM to the fabric SRAM through the FIC_0 AHB master interface. The System Builder is mainly
used to configure the MSS, eNVM Data Storage client, and FIC interface. A Data Storage client is
defined in the eNVM with the data to write to SRAM. Refer to Figure 1 on page 4 and Figure 2 on page 5
for more details.

At power-up or at power-on reset, the Cortex-M3 processor fetches the initial stack pointer from
0x00000000 (eNVM address 0x60000000) and address of the reset handler from 0x00000004 (eNVM
address 0x60000004). If the execution control goes to the default reset handler, the boot up sequence is
executed and the execution control moves to the user boot code. The Cortex-M3 processor is not used
for this particular design since there is no user boot code implemented for it. The user can expose the
reset signal M3_RESET_N and tie it LOW to keep the Cortex-M3 in reset as shown in Figure 15 on page
18.

Note: To expose the M3_RESET_N signal, the System Builder block is re-opened as SmartDesign block.
Refer to the SmartFusion2 System Builder User Guide for more information on
Modifying/Inspecting Your System Builder Design.

Simulating Reference Design with a Fabric as Master
This section describes the pre-synthesis simulation detail of simulating the fabric master design using the
top-level test bench, Top_Fabric_Master, and Use Content for Simulation option in the Data Storage
Client Configurator, as shown in Figure 16.

Using the User Content for Simulation option, the Data Client mem file content is automatically used by
the simulation model and the user do not have to emulate the process of writing into eNVM.

Figure 16 • Use Content for Simulation Data Storage for Client Option
19

http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
Figure 17 shows the simulation transcript waveform results showing the eNVM read data at the
equivalent eNVM address.

Figure 18 shows the ModelSim presynthesis simulation waveform results.

Figure 17 • Transcript eNVM Data and Address Results

Figure 18 • Fabric Master Design Example Simulation Waveform (1)
20

Initializing SRAM using Fabric Master
Figure 19 shows the HRDATA is 04030201 at the eNVM address 800 which matches with the SRAM
read data on WD.

Running the Design with a Fabric Master
This section describes running the design example in SmartFusion2 Security Evaluation Kit board where
SRAM is initialized using a master in the fabric instead of the Cortex-M3 processor. The content of eNVM
and SRAM is checked with real-time data using the SmartDebug tools as shown in the following steps:

1. Open the FAB_MSTR_RAM_INIT Libero project
(refer to "Appendix: Design and Programming Files" on page 25).

2. Update the eNVM client memory file path, if needed. For more information, refer to

http://soc.microsemi.com/kb/article.aspx?id=SL5657.

3. Program the SmartFusion2 Security Evaluation Kit board by selecting Run PROGRAM Action
option in the Libero Design Flow window or with the provided fabric master version of STAPL file
(refer to "Appendix: Design and Programming Files" on page 25) using FlashPro4.

Figure 19 • Fabric Master Design Example Simulation Waveform (2)
21

http://soc.microsemi.com/kb/article.aspx?id=SL5657

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
4. Launch SmartDebug by selecting the SmartDebug Design option from the Design Flow
window as shown in Figure 20. The SmartDebug window is displayed.

5. From the SmartDebug window, click View Flash Memory Content to retrieve the eNVM content
from the device. The Flash Memory window is displayed as shown in Figure 21 on page 22.

6. Enter the Start Page and End Page as 16 because the data storage client is stored in page16.
Page 16 is used for demonstration purposes.

7. Click Read from Device as shown in Figure 21.

Figure 20 • SmartDebug Window Debug Options

Figure 21 • Flash Memory (eNVM) Content Read from the Device
22

Initializing SRAM using Fabric Master
8. From the SmartDebug window, click Debug FPGA Array. The Debug FGPA Array window
opens.

Note: Libero SoC generates the Debug File, <projectName>_debug.txt, during Place and Route and
stores the file into the <project path>\designer folder. The Debug File contains information used by
SmartDebug mainly for mapping the user design names to their respective physical addresses on
the device. It also contains other information used during the debug process. SmartDebug when
launched, automatically points to the debug file.

9. Select the Memory Blocks tab under FPGA Array Debug Data as shown in Figure 22 on page
23.

The fabric master locks and gets exclusive access to the eNVM as it fetches the data from the eNVM to
SRAM. In that case, no other masters, for example, SmartDebug, can access the eNVM until the fabric
master completes the access operation and releases the lock on the eNVM.

In the fabric master example, SmartDebug is used to read the data, not the Cortex-M3 processor.
SmartDebug reads the data from the eNVM and SRAM separately and validates both the data to be the
same.

Before the fabric master unlocking the access on the eNVM if SmartDebug accesses the eNVM, the
following error message is displayed:

Error: Unable to access embedded Flash Memory for your selected device: The firmware was unable to
obtain exclusive access to the eNVM within the allotted time.

To release the lock on the eNVM after the fabric master has completed its access operations, you need
to write 0×00 to REQACCESS register in eNVM control registers (address 0×600801FC) to release the
access. Refer to the fabric master code (AHBMASTER_FIC.v) for more information.

j. Click Read Block to read the SRAM content in real-time from the device. The content of the
SRAM is displayed as shown in Figure 22. This is the same eNVM data, as shown in Figure 2 on
page 5, that is used to initialize the SRAM.

Figure 22 • SRAM Content Read from the Device
23

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
Customizing Wrapper Interface
This section describes how to customize SRAM initialization block.

The RAM_with_wrapper block presented in the design example can be modified based on the user
SRAM configuration. In addition, the software code needs to be modified based on the user SRAM
setting. Figure 23 on page 24 shows the RAM_with_wrapper block. It has three blocks as mentioned
below:

• SRAM_64x8_0: Two-port SRAM block with depth 64 and width 8.

• mem_apb_wrp_0: Creates APB3 wrapper on SRAM port.

• mux_blk_0: Creates the Muxing arbiter.

Depending on the user SRAM block configuration, the SRAM64x8_0 setting needs to be updated. In
addition, the DATA_WIDTH and ADDR_WIDTH parameter in mem_apb_wrp, and mux_blk file should be
modified according to their design requirement and the blocks should be re-connected, if needed.

Note: The wrapper interface used in the design example supports up to 32-bit DATA_WIDTH.

Conclusion
This design example shows how the SRAM blocks in SmartFusion2 SoC FPGA fabric can be initialized
after power-up either by using the Cortex-M3 processor as the master or by using a master in the fabric.
This example application uses an eNVM to initialize the SRAM after power-up. The eNVM can also be
updated using the methods of programming, flash loader, or writing to eNVM, if needed. This application
note presents an interface that can be instantiated into the user's design, performing the initialization at
power-up. The reference design utilizes a very small portion of the FPGA logic for implementation, and
does not affect the performance of the main design. The design in this document initializes a 64x8 SRAM
block, but can be easily modified to support memory organizations of different width and depth.

Figure 23 • RAM_with_wrapper Block
24

Appendix: Design and Programming Files
Appendix: Design and Programming Files
The user can download the design files from the Microsemi website:

http://soc.microsemi.com/download/rsc/?f=m2s_ac392_liberov11p7_df_pf

The design file consists Libero Verilog projects, SoftConsole software project, and programming files
(*.stp) for SmartFusion2 Security Evaluation Kit. Two programming files are included: the Cortex-M3
processor as the master (Top_M3_Master.stp), and the fabric master (Top_Fabric_Master.stp) files.
Refer to the Readme.txt file included in the design file for the directory structure and description.
25

http://soc.microsemi.com/download/rsc/?f=m2s_ac392_liberov11p7_df_pf

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
List of Changes
The following table shows important changes made in this document for each revision:

Revision* Changes Page

Revision 10

(March 2016)

Updated the document for Libero v11.7 software release (SAR 76443). NA

Revision 9
(October 2015)

Updated the document for Libero v11.6 software release (SAR 68375). NA

Revision 8
(January 2015)

Updated the document for Libero v11.5 software release (SAR 62937). NA

Revision 7
(December 2014)

Removed all instances of and references to M2S100 device from Table 2
(SAR 62858).

2

Revision 6
(September 2014)

Updated the document for Libero v11.4 software release (SAR 59071). NA

Updated the document for SmartFusion2 Evaluation Kit details (SAR 59071). NA

Revision 5
(March 2014)

Added "Purpose" section (SAR 51324) 1

Updated Figure 1, Figure 2, Figure 5, Figure 6, and Figure 8 (SAR 51324) 4, 5, 9, 10,
and 13

Updated "SRAM Initialization Reference Designs" section (SAR 51324) 7

Added "Cortex-M3 Processor as Master" section (SAR 51324) 7

Updated "Running the Design with Cortex-M3 Processor as Master" section (SAR
51324)

14

Added "Initializing SRAM using Fabric Master" section (SAR 51324) 17

Added "Simulating Reference Design with a Fabric as Master" section (SAR 51324) 19

Added "Running the Design with a Fabric Master" section (SAR 51324) 21

Updated "Appendix: Design and Programming Files" section (SAR 51324) 25

Revision 4
(December 2013)

Updated Figure 1 and Figure 8 (SAR 51324). 4, 13

Revision 3
(June 2013)

Modified "Introduction" section (SAR 48177). 1

Modified "SmartFusion2 eNVM Controller for Data Storage" section (SAR 48177). 3

Modified "SRAM Initialization Reference Designs" section (SAR 48177). 7

Modified "Fabric Master" section (SAR 48177). 8

Modified "Appendix: Design and Programming Files" section (SAR 48177). 25

Modified Table 2 (SAR 48177). 2

Added Figure 5, Figure 6 and Figure 8 (SAR 48177). 9, 10, 13

Revision 2
(March 2013)

Updated the document for Libero SoC v11.0 beta SP1 release and made required
changes for better usage of the term ’SEL’ (SAR 45591).

NA

Revision 1
(November 2012)

Updated "Introduction" section. (SAR 42893) 1

Updated "Appendix: Design and Programming Files" section (SAR 42893) 25
26

51900260-10/03.16

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; Enterprise Storage and
Communication solutions, security technologies and scalable anti-tamper products; Ethernet
Solution; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800
employees globally. Learn more at www.microsemi.com.

© 2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
	Purpose
	Introduction
	References
	Design Requirements
	Embedded SRAM Blocks in SmartFusion2 SoC FPGAs
	SmartFusion2 eNVM Controller for Data Storage
	SRAM to APB3 Wrapper

	SRAM Initialization Reference Designs
	Cortex-M3 Processor as Master
	Fabric Master

	Initializing SRAM Using Cortex-M3 Processor as Master
	Hardware Implementation
	Firmware and Application Code Software Implementation
	Simulating Reference Design with Cortex-M3 Processor as Master
	Running the Design with Cortex-M3 Processor as Master

	Initializing SRAM using Fabric Master
	Hardware Implementation
	Simulating Reference Design with a Fabric as Master
	Running the Design with a Fabric Master

	Customizing Wrapper Interface
	Conclusion
	Appendix: Design and Programming Files
	List of Changes

