
Application Note AC326
GPIO Expansion Using UART
Design Example

Table of Contents

Overview
In order to keep cost to a minimum, microcontroller chips typically have a limited number of general
purpose I/Os (GPIOs) available, so external I/O expanders are needed to utilize the microcontroller’s
built-in serial interfaces. Microsemi’s ProASIC®3 FPGAs and IGLOO® FPGAs offer low-cost and low-
power solutions for microcontroller GPIO expansion using a number of different techniques. The design
example provided with this document enables users to implement a low-gate-count UART-to-GPIO
expander.

Design files for this design example can be downloaded from the Microsemi website:

http://soc.microsemi.com/download/rsc/?f=GPIO_Expansion_DF.

Design Description
This design can be used as a standalone block in an FPGA design, which can be a companion IC for a
microcontroller to add features or improve performance through co-processing, or it can be considered
as a module for an FPGA-based embedded processor application. The design can be used in
applications such as keyboards (inputs), LEDs/LCDs (outputs), or for meeting any bidirectional interface
requirement.

The design example contains a UART interface and four bidirectional, 8-bit ports. The design is
implemented on an IGLOO device on the M1AGL-DEV-KIT-SCS development board, but can be easily
adapted to work in a production system or many of Microsemi’s other demonstration boards. The UART
can be used as the interface to a processor; however, in this example, it interfaces to a UART-to-USB
converter chip, which is connected to a PC via USB. Commands are sent through UART to tell the design
if it should read or write, which port to connect to, and the data to be read or written.

The top-level block diagram of the design is shown in Figure 1 on page 3. The design makes use of
Microsemi’s CoreUART for sending and receiving the serial data pattern. CoreUART works at a
frequency of 20 MHz. This clock is derived from a 48 MHz external clock oscillator, with the help of a

Overview. . 1
Design Description. . 1
Interface Description. . 3
Utilization Details . 4
Software Interface and Details. . 4
Program Execution . 4
Testing Scheme . 7
Timing Diagram . 8
Conclusion . 8
June 2015 1
© 2015 Microsemi Corporation

http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits-boards
http://soc.microsemi.com/download/rsc/?f=GPIO_Expansion_DF

PLL. However, a PLL is not required to implement this design if the correct external frequency is
provided.

CoreUART must be configured with the following four parameters for this specific design.

baud_val
This parameter is required for setting the baud rate of the UART. It is a function of the system clock and
the desired baud rate. The value should be set according to EQ 1.

Baud rate = clk / (baud_val + 1) × 16

EQ 1

In the IP core, input clock frequency for the UART Core is set to 20 MHz and baud rate is set to 9600.
Changing the baud value changes the baud rate of the UART.

bit8
Control bit for setting the data bit width for both receive and transmit functions. When bit8 is logic 1, the
data width is 8 bits; otherwise, the data width is 7 bits. In this design, bit8 is tied to 1.

parity_en
Control bit to enable or disable parity for both receive and transmit functions.

odd_n_even
Control bit to define odd or even parity for receive and transmit functions.

For a detailed description of CoreUART, refer to the CoreUART handbook.

The Control logic block interfaces the CoreUART with the rest of the logic. The necessary control signals
for reading and writing from the UART as well as the GPIO interfaces are generated by the state machine
of the Control logic block.

Figure 1 • Address/Direction Register Details

BiDir
I/O

Ports

CLK

RX

TX

CLK_IN

NRESET_IN

RX

TX

CLK

NRESET

DATA_OUT
CLK

NRESET
WDATA_REG_ENB

8

Core
UART

UART to GPIO

WEN
OEN

NRESET

CLK

DATA_OUT
CLK

NRESET
ADD_DATA_REG_ENB

add_dir_reg
data
clk
reset
enb

Wdata_reg

data
clk
reset
enb

Control Logic

NRESET_IN NRESET

ADD_DATA_REG_ENB
DATA_OUT
DATA_IN

enb

0

1

2

3

DECODER_ENB

3

CLK_IN

NRESET

PLL

rst

CLK (33 MHz)

data
clk
enb rst

Output_Data_Reg_A

data
clk
enb rst

Output_Data_Reg_B

data
clk
enb rst

Output_Data_Reg_C

data
clk
enb rst

Output_Data_Reg_D

8

8 8

8

8

8

8

8

8

4

8

8

8

0

1

2

3

DATA_IN
8

ADD_REG[6:4]
3

sel

out

4:1

Port_A

Port_B

Port_C

Port_D
2

http://www.actel.com/ipdocs/CoreUART_HB.pdf

Interface Description
The ADD_DIR_Reg block shown in Figure 2 configures the port address and the direction (input or
output) of the port.

The three MSB bits of this register indicate the address of the port being addressed. The four LSB bits
indicate the direction control bit of each of the four ports. For writing the data to any of the ports, that
particular port must be addressed first, with the direction bit set as output. For reading data from any of
the ports, the port must be addressed with the direction bit set as input.

The output data registers shown in Figure 1 on page 3 store the data being written to the GPIO ports.
Depending upon the port being addressed, the corresponding Data Register will be updated. The
contents of this register will be available, until that port content is overwritten.

The input data is selected, based on the port being addressed, and is fed to the data input of the
CoreUART.

Interface Description
The Interface details of the IP are given in Table 1.

Figure 2 • Address/Direction Register Details

ADD_DIR_REG

D7 D6 D5 D4 D3 D2 D1 D0

port_a Configuration Bit
 0 = Configured as input
 1 = Configured as output

port_b Configuration Bit
 0 = Configured as input
 1 = Configured as output

port_c Configuration Bit
 0 = Configured as input
 1 = Configured as output

port_d Configuration Bit
 0 = Configured as input
 1 = Configured as output

Port_address_bits
(used to address the
port to be accessed)

D6, D5, D4 Port Address

001

010

011

100

port_a

port_b

port_c

port_d

Table 1 • Interface Description

Port Direction Description

CLK_IN Input 48 MHz input clock

NRESET_IN Input Active low Reset

RX Input Serial data in to the IP core

TX Output Serial data out for from the IP core

port_a Bidirectional 8-bit data port a

port_b Bidirectional 8-bit data port b

port_c Bidirectional 8-bit data port c

port_d Bidirectional 8-bit data port d
3

Utilization Details
This design was verified in the ARM® Cortex®-M1–enabled IGLOO M1AGL600V2-FG484 device, but
can easily be instantiated in other IGLOO and ProASIC3 devices that contain the minimum required
resources. The device utilization values for the M1AGL600V2-FG484 device are given in Table 2.

Software Interface and Details
The software for testing the IP is developed in the C language on a Windows® platform. The program
configures the port direction as input or output and performs the read or write functions.

The software program is tested with Microsemi’s IGLOO Development Kit (M1AGL-DEV-KIT-SCS). You
will connect the pc running this software to the USB port of the IGLOO developments board.

The flow chart of a read/write cycle is shown in Figure 3.

First, the port to be accessed must be addressed with the direction (input or output). This step must be
followed by either sending or receiving data, depending upon whether write or read was selected.

The usage of the software is covered in the "Program Execution" section.

Program the M1AGL600 device in the IGLOO development kit (M1AGL-DEV-KIT-SCS) using the STAPL
file included with the design files.

Program Execution
When you execute the program GPIO_Expansion.exe, the program prompts you with the menu options
required for data transfer. The program runs in a continuous loop, waiting for your input. To exit the
program, press Ctrl-C.

The menu options are shown in Figure 4 through Figure 8 on page 7.

Table 2 • Utilization Details

Resource Used/Total Percentage

Core 307/ 13824 2.22%

Globals (chip + quadrant) 2/18 11.11%

PLL 1 100%

RAM/FIFO 0 0.0%

Figure 3 • Read/Write Flow Chart

Write Data Read Data

Read OperationWrite Operation

Configure adc_dr_reg

Start
4

Program Execution
COM Port Selection
Select the communication port, which is the USB Port through which data will be transmitted or received.
The IGLOO development board J2 is connected to this port on the PC/Laptop. Figure 4 shows the
program prompt for the COM Port.

You can identify the COM port to which the IGLOO development board is connected as follows,
beginning from the Windows Start menu: Start > Settings Control Panel > System > Hardware >
Device Manager Ports.

For the IGLOO development board, the USB to UART bridge controller device CP2101 is listed, as
shown in Figure 5.

In this example, the board is connected to COM3.

Figure 4 • Entering the COM Port

Figure 5 • COM Port Identification
5

After entering the COM port, you are prompted to select the mode of operation.

Operation Mode Selection
Select whether to perform a read or write operation to the selected port.

Port Selection
Select the port intended for data transfer by typing the number corresponding to PortA, PortB, PortC, or
PortD, as shown in the menu in Figure 6.

On the IGLOO development board, PortC is mapped to the bank of LEDs and PortD is mapped to the
bank of switches, SW2. PortA and PortB are mapped to headers P5 and P1, as indicated in Table 3.

Table 3 • Port Mapping

Port FPGA Pin PCB Signal Header

port_a(0) A6 GPIOC_1 P5:5

port_a(1) A7 GPIOC_3 P5:7

port_a(2) A10 GPIOC_5 P5:9

port_a(3) A11 GPIOC_7 P5:11

port_a(4) B6 GPIOC_9 P5:13

port_a(5) B7 GPIOC_11 P5:15

port_a(6) B10 GPIOC_13 P5:17

port_a(7) AB17 GPIOC_15 P5:19

port_b(0) D10 GPIOA_2 P1:6

port_b(1) G11 GPIOA_4 P1:8

port_b(2) D11 GPIOA_6 P1:10

port_b(3) H11 GPIOA_8 P1:12

port_b(4) E12 GPIOA_10 P1:14

port_b(5) G12 GPIOA_12 P1:16

port_b(6) F13 GPIOA_14 P1:18

port_b(7) E13 GPIOA_16 P1:20

Figure 6 • Selecting the Ports
6

Testing Scheme
Data to be Read/ Written
After the port selection, the read value is displayed in the console for a read operation (Figure 7).

If it is a write operation, you must enter the value to the console. The data is reflected in the
corresponding port that is selected (Figure 8). Note that PortD is not available in write mode in order to
avoid conflict with the hardwired drivers on the M1AGL-DEV-KIT-SCS.

The program is written in C using the Visual C++ compiler 6.0. The files used for this application are
GPIO_Main.c and UsbCom.c.

GPIO_Main.c
This file provides the main functionality of the program. User interaction and communication with the
USB port is done inside this file. User input is validated and sent to the USB port sequentially.

UsbCom.c
This source file manages the USB communication.

Testing Scheme
Verification of the core is done by simulation in ModelSim® for best case and worst case timing delays.
The simulation testbench generates the RX (serial input), clock, and reset input for the design. The
simulation results for write and read cycles are illustrated in Figure 9 and Figure 10 on page 8.

Hardware validation was done on Microsemi’s IGLOO development board (M1AGL-DEV-KIT-SCS). The
application GPIO_Expansion.exe is used for communicating with the GPIOs. Depending upon the switch
settings, the input values are displayed. Based on the output data entered, the LED pattern changes.

Figure 7 • Data Read from Ports

Figure 8 • Entering the Data to Be Written
7

Timing Diagram
Figure 9 gives the sequence of a write cycle to port_c.

Figure 10 gives the sequence of a read cycle from port_b.

Conclusion
When targeted to Microsemi’s low-power, low-cost IGLOO and ProASIC3 flash-based FPGAs, this
design becomes a simple, low-power, economically viable solution as an I/O expander. System
designers can continue to use low-cost processors by solving the requirement of more I/Os, features, or
co-processing through the use of FPGAs, maximizing overall system and development costs.

Figure 9 • Write Cycle

Figure 10 • Read Cycle
8

List of Changes
List of Changes
The following table shows important changes made in this document for each revision.

Date Changes Page

Revision 1
(June 2015)

Non-technical Updates. NA

Revision 0
(April 2009)

Initial Release. NA

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
9

51900194-1/06.15

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system
solutions for communications, defense & security, aerospace and industrial markets. Products
include high-performance and radiation-hardened analog mixed-signal integrated circuits,
FPGAs, SoCs and ASICs; power management products; timing and synchronization devices
and precise time solutions, setting the world's standard for time; voice processing devices; RF
solutions; discrete components; security technologies and scalable anti-tamper products;
Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has
approximately 3,600 employees globally. Learn more at www.microsemi.com.

© 2015 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	Table of Contents
	Overview
	Design Description
	baud_val
	bit8
	parity_en
	odd_n_even

	Interface Description
	Utilization Details
	Software Interface and Details
	Program Execution
	COM Port Selection
	Operation Mode Selection
	Port Selection
	Data to be Read/ Written
	GPIO_Main.c
	UsbCom.c

	Testing Scheme
	Timing Diagram
	Conclusion
	List of Changes

