
Application Note AC273

May 2020 1
© 2020 Microsemi, a Microchip company

Using EDAC RAM for RadTolerant RTAX-S FPGAs
and Axcelerator FPGAs
Applies to EDAC Core from Libero IDE v7.1 or Older

Table of Contents

Introduction
Actel's newest designed-for-space Field Programmable Gate Array (FPGA) family, the RTAX-S, is a
high-performance, high-density antifuse-based FPGA with embedded user static RAM (SRAM). Based
on Actel's new AX architecture, the RTAX-S family is the high-reliability version of its commercial
counterpart – the Axcelerator FPGA family. RTAX-S is single-event-upset (SEU) enhanced, specifically
designed for space and contains embedded triple-modular-redundancy (TMR) registers, transparent to
the user, which provide protection against heavy ions. In space applications, storage elements like
SRAMs are susceptible to the impact of heavy ions from cosmic galactic rays (CGRs). CGRs can collide
with the silicon lattice of a RAM cell with sufficient photovoltaic energy to produce a change of state, thus
invalidating the stored data and producing bit errors. These errors are called soft errors.
There are several ways to implement static RAM in space devices. One option is to do nothing to mitigate
soft errors. This is acceptable if the quality of the data stored in the SRAM is insensitive to single bit
changes, such as an image comprising millions of pixels or streaming video feed. However, it is not

Introduction . 1
Coding Theory Background . 2
EDAC . 2
Regular Hamming Codes and Shortened Hamming Codes . 2
User Word, EDAC RAM Word, and RTAX-S or Axcelerator RAM Word 3
Implementation of Shortened Hamming Encoding and Decoding . 4
Functional Overview of EDAC RAM . 6
Features of EDAC RAM from SmartGen . 7
Scrubbing Control Block . 7
Refresh Rate . 8
Test Ports . 8
Error Flags . 9
Design Flow with SmartGen . 9
Limitations of the SmartGen GUI . 10
Core Utilization of EDAC RAM . 10
Modifying the EDAC RAM Generated in SmartGen . 12
Adding Optional Ports . 12
Compiling a VITAL VHDL Library for Full Version ModelSim® . 12
Simulating the EDAC RAM Using ModelSim . 13
Radiation Performance Calculations for RTAX-S/SL/DSP FPGAs 14
Conclusion . 15
List of Changes . 15
References . 16
Appendix A . 17
Appendix B . 18

2

acceptable if data is sensitive to single bit changes, for example communication packet headers. Another
option is to implement a special hardened SRAM circuit. This consumes more chip real-estate and may
require custom or boutique processing, and therefore is an expensive proposition.
Actel has chosen to use a combination of the Axcelerator standard SRAM circuits and an error detection
and correction (EDAC) intellectual property (IP) core. The core is accessed via Actel's SmartGen Macro
Builder software and implements a class of linear block codes called shortened Hamming codes (see the
"Regular Hamming Codes and Shortened Hamming Codes" section on page 2). The SRAM/EDAC core
combination greatly mitigates the effects of soft errors. Error rates are better than 10-10 errors/bit-day.

Coding Theory Background
In recent years, there has been an increasing demand for efficient, reliable digital data transmission and
storage systems. A major concern is the control of errors so that one can obtain reliable data
reproduction.
Coding refers to a class of signal transformations designed to improve communications or data reliability.
The object of channel encoding is to reduce the probability of bit errors. Linear sums (using modulo-2
arithmetic) of the parity bits are called parity-check codes. Parity-check codes are widely used for EDAC.
Linear block codes are a class of parity check codes that are usually represented with an (n,k) notation
where k denotes the number of message digits in a longer code word of n digits. Each unique message
of k digits maps to a unique code word of n digits. The entire potential message space consists of 2k

distinct message sequences with each sequence forming what is referred to as a k-tuple (sequence of k
digits or bits). Similarly, the entire code word space has 2n code words or n-tuples. The mapping between
the 2k possible messages and the 2k code word n-tuples can be accomplished by the use of a lookup
table.
An important parameter of a block code is called the minimum distance. Minimum distance determines
the random error-detecting and random error-correcting capabilities of a code. The greater the distance
the less likely an error will be made in the decoding process because no two valid codes can exist within
dmin bits of each other.
When a single-bit error is added to a code word, then the resultant code word differs from the original in
one position. If the minimum distance of a block code C is dmin, any two distinct code vectors of C differ
in at least dmin places. For example, if u=(1010010) and v= (1110011), then the minimum distance is two
since the second and last bits differ. For this example code C, no error pattern of dmin-1 or fewer errors
can change one code vector into another.1

EDAC
As mentioned earlier, heavy ions lead to soft errors in memory subsystems. In many computer systems,
the memory contents are protected effectively by EDAC codes. These codes are usually implemented by
employing redundant bits.
An error-correcting coding technique specifies how to add redundant bits to data to allow error detection
and correction if one (or possibly more) of the resulting bits are changed. Linear block codes are named
because each code word or vector is a linear combination of a set of generator code words that are
segmented into a message of separate blocks of a finite length. One class of linear block codes are
SEC/DED (single-error correcting/double-error-detecting) codes. One application of EDAC calls for the
use of SEC/DED codes in memory and storage applications where data may become corrupted. The
following section discusses the widely used Hamming codes and methods of implementing them.

Regular Hamming Codes and Shortened Hamming Codes
In recent years, there has been an increasing demand for efficient, reliable digital data transmission and
storage systems. A major concern is the control of errors so that one can obtain reliable data
reproduction.

1. Lin, Shu and Daniel J. Costello, Jr, Error Control Coding: Fundamentals and Applications (New Jersey: Prentice Hall,
1983).

User Word, EDAC RAM Word, and RTAX-S or Axcelerator RAM Word

3

Hamming codes are the first class of linear block systematic codes devised for error correction; these
codes and their variations are widely used for error correction. For any positive integer m>3, there exists
a Hamming code with the following parameters:

Code length: n=2m-1
Number of data bits: k= 2m-m-1
Number of parity check symbols: n-k = m
Error correction capability: one error (dmin=3)

The first few members of the class are (7,4), (15,11), (31,26), (63,57), and (127,120). The parity-check
matrix can be used to generate parity-check bits during the process of encoding and to generate bits
indicating the presence and location of errors – 'syndrome bits' – during the decoding process. The total
number of 1's in a given row is related to the number of logic levels required to generate the parity-check
or syndrome bits for the row. Hsiao developed a new class of SEC-DED codes obtained by shortening
the Hamming Codes. He showed that by deleting columns from H, a new matrix H0 could be developed
such that the code length could be reduced by L bits (where L is the number of deleted columns), thus
reducing the number of logic levels and minimizing the complexity of the hardware implementation. A
modified coding scheme was developed from the regular Hamming codes called shortened Hamming
codes.2
Shortened Hamming codes can have arbitrary code lengths.

Code length: n=2m -L - 1
Number of information symbols: k= 2m-m-1-L
Number of parity check symbols: n-k = m
Minimum distance: dmin = 4

This code has a minimum distance of four and can correct one error and detect two errors.

User Word, EDAC RAM Word, and RTAX-S or Axcelerator
RAM Word

The RTAX-S and Axcelerator FPGA families contain 36 (RTAX1000S, AX1000) and 64 (RTAX2000S,
AX2000) blocks of embedded memory. Each block is a 4.5k variable-aspect-ratio dual-port RAM. The
allowable variable aspect ratios are 128x36, 256x18, 512x9, 1kx4, 2kx2 or 4kx1. However, only the
memory blocks in one column can be cascaded in both width and depth to build larger blocks. This
allows a maximum of 16 blocks in the AX2000 to be cascaded in both width and depth to build larger
blocks.
For EDAC RAM Actel used the shortened Hamming code, which fully utilizes the data width of RTAX-S or
Axcelerator RAM.
Actel chose shortened Hamming codes (18,12), (36,29), and (54,47) for RTAX-S RAMs with data widths
of 18, 36, and 54 bits, respectively. The relationship between different data port widths is shown in
Table 1.

As a result, if a user requests a 16-bit EDAC Protected RAM, the backend Axcelerator RAM has a word
length of 36. Although SmartGen generates EDAC modules assuming input data word widths of 8, 16, or
32 bits, the designer can use up to 12, 29, or 47 bits of input data for the EDAC module. Please see the

2. . M.Y. Hsiao, "A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes," IBM Journal of Research and
Development [online] (Vol. 14, No. 4) (July 1970), available from:
http://www.research.ibm.com/journal/rd/144/ibmrd1404I.pdf.

Table 1 • Relationship of Different Data Port Widths

Data Port Width

Users wdata/rdata width 8 16 32

EDAC module wdata/rdata width 12 29 47

Axcelerator RAM wdata/rdata width 18 36 54

4

"Modifying the EDAC RAM Generated in SmartGen" section on page 12 for more information. Refer to
"Appendix B" on page 18 for more information on shortened Hamming codes.

Implementation of Shortened Hamming Encoding and
Decoding

In order to implement shortened Hamming codes, the user needs an encoder that converts the input data
to coded words. The encoding can be done by matrix multiplication of the input word with a generator
matrix. The encoding process is essentially the same as the original Hamming Code.
Below is an example given in systematic form of matrix multiplication for an (n,k) code. Specifically, this
example addresses a (7,4) code. Let u= (u0,u1,u2,u3) be the message to be encoded and let
v=(v0,v1,v2,v3,v4,v5,v6) be the corresponding code word. Then

By matrix multiplication, the digits of the code word v were obtained:
v6 = u3
v5 = u2
v4 = u1
v3 = u0
v2 = u1+ u2+ u3
v1 = u0+u1+ u2
v0 = u0+ u2+ u3

The code word corresponding to the message (1 0 1 1) is (1 0 0 1 0 1 1).
The following example shows the generator matrix for shortened Hamming code (18,12):3

Therefore, if the input data is "100000000000," then the coded word is "111000100000000000." Note
there are six extra bits in the coded word – these are the syndrome bits, which indicate the presence and
location of errors.
During decoding, the coded bits enter the decoding circuit; the syndrome bits are computed using a
parity check matrix.
The single-bit error correction is accomplished by using a look-up table (Table 2). For example, if the six
syndrome bits are "000000," then the coded bits are correct. If the syndrome bits are "100000," then an
error exists at the first bit of the coded word. For any possible sequence of syndrome bits, Table 2
indicates which bits need to be corrected. Double error detection is accomplished by examining the

3. . M.Y. Hsiao, "A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes."

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

v = (v0,v1,v2,v3,v4,v5,v6) = (u0,u1,u2,u3) *

1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Implementation of Shortened Hamming Encoding and Decoding

5

number of '1's in the syndrome vector. If the syndrome contains an even number of '1's, then either a
double-error pattern or a multiple-even-error pattern has occurred.

Syndrome (1 x n-k)=coded word (1 x n) * parity check
matrix (n-k x n)T, where T denotes the transpose of the matrix.
This parity check matrix was derived from the method by M.Y.Hsiao. This matrix was generated so that it
results in the smallest circuit implementation. The parity check matrix for the same shortened Hamming
code (18,12) is shown below:

In summary, during decoding perform the following:
Syndrome (1 x n-k)=coded word (1 x n) * parity check matrix (n-k x n)T

Decoded word (1 x n) = lookup table (syndrome) + coded word
The following sections discuss how to generate EDAC RAM for prototyping the RTAX-S FPGA family
with the RTAX-S or Axcelerator families employing Actel software. The next sections also describe how
the user can instantiate these components in the code. Since the EDAC RAM uses the shortened
Hamming Code described above, the hardware performs single-bit error correction and double-bit error
detection.

Table 2 • Syndrome Bits and Lookup Table
Syndrome Bits Lookup Table
0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1
0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1

6

Functional Overview of EDAC RAM
The EDAC RAM provides an interface compatible with the RTAX-S or Axcelerator RAM transparent
access mode. In addition to encoding and decoding, it reads the contents of memory periodically and
resolves all correctable errors where possible. This periodic operation is called scrubbing. The EDAC
RAM block, shown in Figure 1, consists of an RTAX-S or an Axcelerator RAM block and an EDAC block.
The EDAC block, which is the heart of the EDAC RAM, contains a shortened Hamming code encoder, a
shortened Hamming code decoder, a background scrubbing control unit, two sets of multiplexers, and a
timer. The background scrubbing control block controls the multiplexers that provide access to the user
memory and the background scrubbing process.

During a user write, the write data is encoded by the encoder and then fed into the RTAX-S RAM block.
The write address and enable (waddr and we) are fed into the RAM block through the B set of
multiplexers as shown in Figure 1. During a user read, the read address line and enable (raddr and re)
are fed into the RAM block through the MUX B, then a coded word is read into the decoder and
reconstructed into its original word. In addition, during this process, the decoder corrects any error
detected in the coded word. During a user read/write, the scrubbing control block halts the background
scrubbing process until there is no user read/write access. The background scrubbing process only runs
when the read and write enable signals for memory (we and re) are inactive. The user read/write always
takes priority over background scrubbing.
The user RAM interface to the EDAC RAM is identical to Axcelerator RAM access, but access time is
increased due to additional encoding, decoding, and scrubbing processes.
The user can generate an EDAC RAM using the SmartGen tool. When the user generates an EDAC
RAM from SmartGen, the tool generates a top-level shell for RAM encoding, an RTAX-S or Axcelerator

Figure 1 • Functional Diagram of EDAC RAM

Encoder

Decoder

wdata

rdata

waddr, raddr, we,re

wdata

rdata

waddr, raddr
we,re Timer

A

slowdown flag

B
Scrubbing

Control

R

error flags

Testing, error and
optional ports

Axcelerator
RAM
Block

edaci/edacii Block

Features of EDAC RAM from SmartGen

7

RAM block and an EDAC module (Figure 2). Please see "Appendix A" on page 17 for the port definition
of the EDAC RAM.

Features of EDAC RAM from SmartGen
The SmartGen Macro Builder can generate an EDAC module with various configurations. The main
features of the EDAC module are:

1. 8-, 16-, 32-bit word widths
2. Background refreshing with variable refresh rate
3. Read and write clocks from the same clock source or separate read and write clocks
4. Encoder/decoder supports correction of one error and detection of two errors
5. Variable RAM depth support from 256 to 4k words

Scrubbing Control Block
The scrubbing control block handles access to the memory background scrubbing process. During this
process, the background scrubbing control generates control signals for two sets of multiplexers (A and
B in Figure 1 on page 6). These control signals switch the generation of the read/write data, read/write
addresses, and read/write enables of the RTAX-S or Axcelerator RAM to the background scrubbing
control unit. A read address counter inside the background scrubbing control unit generates addresses,
which sweep through all RAM locations. Meanwhile, the control unit monitors the decoder's error flag to
determine whether or not to write the corrected data back into the RTAX-S or Axcelerator RAM. When
STOP_SCRUB is set to high, the scrubbing stops. The output signal SCRUB_DONE indicates the
scrubbing logic has gone through all RAM cells. The user can monitor the SCRUB_DONE signal and
turn the STOP_SCRUB signal on or off accordingly. The scrub logic also sets the SCRUB_CORRECTED

Figure 2 • EDAC Module in EDAC RAM

WCLK, RCLK

AXWE

AXRE

AXRDATA

AXRADDR

AXWADDR

AXWDATA

Axcelerator
RAM

edacrami

AXWE

AXRE

AXWADDR

AXRADDR

AXRDATA

AXWDATA

RSTN

CLK

WE

RE

WADDR

RADDR

WDATA

RDATA

Optional Ports

Test Ports

Error Ports

CLK
RSTN

CLK

WE

RE

WADDR

RADDR

WDATA

RDATA

Optional Ports

Test Ports

Error Ports

SmartGen Generated Wrapper

edaci

8

flag high when the scrubbing logic has corrected a data error; the output bus CADDR tells the user the
address of the corrected error. Table 3 describes the scrubbing signals.

The user needs to exercise care when using the EDAC RAM with different read and write clocks. For this
type of EDAC RAM, if the write clock is faster than the read clock, set the W2R to the write-clock-to-read-
clock frequency ratio. This gives the state machine inside the EDAC module time to reject a correction
request in case there is a user write to the same RAM location that the read state machine has just read.
If the read clock frequency is faster or equal to write clock, set the W2R to "0000."
If RCLK is greater than or equal to WCLK, then W2R = "0000" and if RCLK < WCLK, then W2R=
integer2vector (WCLK/RCLK). The maximum value of W2R is "1111," so WCLK can be a maximum of 15
times faster than RCLK.

Refresh Rate
The user can control the scrubbing rate to help reduce power consumption. The maximum allowable
refresh period is given by:

Refresh period = clock period * tmout
where tmout is the refresh timer's time-out value (set in the SmartGen GUI; see the "Design Flow with
SmartGen" section on page 9).

When the read address counter returns to 0 (the condition for asserting the STOP_SCRUB signal), the
scrubbing process will stop until it receives a time-out from the EDAC timer. This implementation helps
the background scrubbing process save power because needless refresh cycles are eliminated. When a
timer time-out is indicated (TMOUTFLG is asserted high; see Table 4) and the read address counter has
NOT returned to 0, the SLOWDOWN flag is asserted (Table 4). This warns the system to slow down
memory accesses or risk losing data. If the system can guarantee idle time to memory access, the
SLOWDOWN flag can be ignored. (This is the exception rather than the rule; monitoring SLOWDOWN is
necessary in most systems). The tmout setting should be larger than the RAM depth to ensure that a
complete refresh cycle can be completed within the refresh period.

Test Ports
The EDAC RAM is capable of reading the coded data directly from the RTAX-S or Axcelerator memory,
which is useful during debugging. If the input signal BYPASS is set to 1, the user has direct access to the
RTAX-S or Axcelerator RAM block. During this time, the scrubbing process is stopped. In order to access

Table 3 • Scrubbing Signals

Signal Description

SCRUB_STOP Low to turn on scrubbing, High to turn off scrubbing

SCRUB_DONE Transition from Low to High means scrubbing is done

SLOWDOWN High when scrubbing cannot finish within designated period

SCRUB_CORRECTED High indicates scrubbing logic has corrected one error

CADDR The address of RAM has been corrected

TMOUTFLG High indicates timer has expired

Table 4 • TMOUTFLG Signal and SLOWDOWN Signal

Signal Type Active Size Description

SLOWDOWN out high 1 Optional flag when scrubbing cannot finish within designated period

TMOUTFLG out high 1 High indicates timer has expired

Error Flags

9

the full coded word, port wp is used to write to the coded parity bits directly and port rp is used to read the
coded parity bits directly. The widths of wp and rp are given in Table 5 for various data widths.

Error Flags
The EDAC RAM has two error flags, CORRECTABLE and ERROR, which allow the user to monitor error
correction and detection (Table 6).

Design Flow with SmartGen
The SmartGen tool enables the user to generate the EDAC RAM. The designer can generate an EDAC
RAM with either a single read/write clock or independent read and write clocks. Figure 3 on page 10
shows the SmartGen GUI for EDAC RAM generation, while Table 7 on page 11 lists the user-definable
fields.
To generate the EDAC RAM:

1. Invoke SmartGen
2. Open a new macro file. From the File menu, select New, or click the New button
3. Specify the family. Select RTAX-S or Axcelerator from pull-down menu
4. From the Macros menu, select RAM
5. Click the EDAC RAM tab
6. Set the desired variations for EDAC RAM and click Generate

Click the Test Ports and Error Flags check boxes to generate additional ports. Users cannot generate a
Test Port without selecting Error Flags.
Use the generated netlist in the design to take the complete design through a synthesis flow and to
generate a netlist that can be imported into Actel’s Designer software. By employing the Designer
software’s Timer tool, the user can set timing constraints and perform timing-driven layout to meet timing
needs.

Table 5 • Relationship of User Ports and Test Ports

Data Signals Width

User WDATA/RDATA width 8 16 32

EDAC module WDATA/RDATA width 18 36 54

EDAC module wp/rp 6 7 7

Table 6 • Error Flags

CORRECTABLE ERROR Description

0 0 No error has occurred

1 0 One bit error occurred

0 1 Two or more bit errors detected

10

Limitations of the SmartGen GUI
The SmartGen GUI has the following limitations:

• Supports only specific width and depth values
• Does not support pipelined read for RTAX-S or Axcelerator RAM
• Read and write enables must always be present
• The No-Enable case is not supported

Users can change the input word width by modifying the netlist located in the "Adding More User Ports"
section on page 12.

Core Utilization of EDAC RAM
The user can generate the EDAC RAM from SmartGen and instantiate it in their code. However,
designers should be cautious about the core utilization and ensure that it has enough space to fit the
EDAC RAM. Table 8 on page 11 describes the utilization for three configurations of the EDAC RAM.

Figure 3 • SmartGen GUI for EDAC Module

Core Utilization of EDAC RAM

11

Table 7 • User Definable Fields for the EDAC RAM Module

Selection Description

Clocks Single Read/Write Clocks
Independent Read/Write Clocks (The default value is "single Read/Write" Clocks)

Width RAM word width 8, 16 or 32; the default is 8

Depth Data word depth 256 * N where
N from 1 to 16 when Width is 8
N from 1 to 8 when Width is 16
N from 1 to 5 when Width is 32; The default value of N is 1 (Depth=256)

Test Ports Enables or disables Test ports, requires Error flags

Error Flags Yes or No; the default is No. If "Test Ports" is checked in (Yes), "Error Ports" will
be checked automatically. "Error Flags" cannot be checked as long as "Test
Ports" is checked

Refresh Period is equal to refresh
rate multiplied by the clock period

Refresh rate is a hexadecimal number between 0 and 3FFFFFFFFFF. The edit
box for entering a value is limited to 11 characters. There is no default value for
refresh rate

Table 8 • EDAC Core Utilization

EDAC RAM Block Data Depth Utilization

Same read and write clock 8 4,096 Sequential (R-cells):
Combinatorial (C-cells):
RAM/FIFO blocks:
I/O with clocks:

85
303
16
76

16 2,048 Sequential (R-cells):
Combinatorial (C-cells):
RAM/FIFO blocks:
I/O with clocks:

103
441
16
91

32 1,280 Sequential (R-cells):
Combinatorial (C-cells):
RAM/FIFO blocks:
I/O with clocks:

121
516
15
123

Different read and write clock 8 4,096 Sequential (R-cells):
Combinatorial (C-cells):
RAM/FIFO blocks:
I/O with clocks:

101
383
16
81

16 2,048 Sequential (R-cells):
Combinatorial (C-cells):
RAM/FIFO blocks:
I/O with clocks:

119
483
16
96

32 1,280 Sequential (R-cells):
Combinatorial (C-cells):
RAM/FIFO blocks:
I/O with clocks:

141
614
15
128

12

Modifying the EDAC RAM Generated in SmartGen
Users can modify the VHDL/Verilog EDAC RAM netlist generated from SmartGen to add ports for more
data inputs or debugging. The following The following examples contain code showing how to modify the
VHDL netlist. Use a similar procedure to modify the Verilog netlist.

Adding More User Ports
SmartGen allows the designer to generate a word width of 8, 16, or 32 bits. However, designers can use
up to 12, 29, or 47 bits of input data by modifying the netlist. Open the top-level netlist and modify the port
width and component port map as follows:
……………………….
entity edacrami_top is

port(WDATA : in std_logic_vector(11 downto 0); --modified
--WDATA : in std_logic_vector(7 downto 0); --modified

……………………….
uedaci : edaci
port map(
……………………

wdata(11 downto 0)=>WDATA (11 downto 0),
-- wdata(8)=>gnd_1_net, --modified
-- wdata(9)=>gnd_1_net, --modified
-- wdata(10)=>gnd_1_net, --modified
-- wdata(11)=>gnd_1_net, --modified

Adding Optional Ports
SmartGen ties some EDAC ports to GND in the top level. However, the user can open the top-level
netlist and use these ports. For example, users who want to bring out the RDS and TMOUT ports must
modify the top-level file as shown in the following code:
……………………….
entity edacrami_top is

port(……………………….
TMOUT : out std_logic_vector (41 downto 0); --added
RDS : in std_logic_vector (3 downto 0); --added

……………………….
uedaci : edaci

port map(
…………………………
tmout(41 downto 0) => TMOUT (41 downto 0),
-- tmout(0)=>gnd_1_net,
-- tmout(1)=>gnd_1_net,
.
.
.
tmout(41)=>gnd_1_net,
.
.
rds (3 downto 0) => RDS (3 downto 0),
-- rds(0)=>gnd_1_net,
-- rds(1)=>gnd_1_net,
-- rds(2)=>gnd_1_net,
-- rds(3)=>vcc_1_net,

…………………………..

Compiling a VITAL VHDL Library for Full Version ModelSim®

To simulate the EDAC RAM macros targeted for the RTAX-S or Axcelerator device families, first compile
the Actel VITAL VHDL library for the Axcelerator family. To complete the library:

1. Create a directory called "mti" in the "$ALSDIR\lib\vtl\95" directory.

Simulating the EDAC RAM Using ModelSim

13

2. Invoke the ModelSim simulator.
3. Change the current working directory to "$ALSDIR\lib\vtl\95\mti" directory.
4. Create an Actel family library directory. Type the following command at the prompt:

vlib Axcelerator
5. Compile the Actel VITAL VHDL library. Type the following command at the prompt:

vcom -work Axcelerator ..\ Axcelerator.vhd
6. Map the Actel VITAL VHDL library to the family library directory. Type the following command at

the prompt:
vmap Axcelerator $ALSDIR\lib\vtl\95\mti\Axcelerator

Simulating the EDAC RAM Using ModelSim
Before starting simulation, modify the testbench, since this testbench is meant for testing all depths and
all ports. When generating an EDAC RAM with Test Ports and Error Flags using name EDAC_8, notice
the following files are generated:

• EDAC_8_top.vhd: EDAC wrapper
• edaci_18.vhd: Main EDAC
• EDAC_8.vhd: Ram block

This EDAC testbench has two extra ports (RAM depth setting and refresh rate) to check the main EDAC
block. To match the testbench and EDAC wrapper, open the testbench "edactb.vhd" and modify as
shown below:
……………………….
entity edactb is
end edactb;
architecture edactb_behav of edactb is
component edac_8_256_top --modified edacrami
……………………….
begin
<top>_0 : edac_8_256_top --modified edacrami
-- TL=42 : 2^42 * 2 * 10^-8 --/24/3600 = 1 day, period = tout*period of
--modified --tmout : in std_logic_vector(TL-1 downto 0);
-- RAM depth selection, --total RAM words=(rds+1)*256
--modified --rds : in std_logic_vector(3 downto 0);
……………………….
end component;
……………………….

uedacrami : edac_8_256_top -modified edacrami
port map(

--modified -- tmout => drvsig.tmout,
--modified -- rds => drvsig.rds,

……………………….

Then open the edacconfig.vhd file and modify it according to the EDAC RAM. For example, if the EDAC
RAM has input data width of 8 and address of 256, change to the following parameter:
package edacconfig is
constant ML : integer := 8;-- user data length
constant CL : integer := 14;-- coded word length
constant SL : integer := CL-ML;-- ecc syndrome length
constant AL : integer := 8;-- address bus width
constant TL : integer := 42;-- timer length
constant CLKP : std_logic := '1';-- clock polarity
constant CLKPN : std_logic := '0';-- clock polarity NOT CLKP
end edacconfig;

The following steps describe how to simulate the EDAC RAM in ModelSim:
1. Invoke ModelSim simulator.

14

2. Change to the working directory. This directory contains your EDAC RAM and testbench and the
package files. Type the following commands:
cd <working folder>

3. Create the "work" libraries. This step creates the required library directories. Type the following
command at the prompt:
vlib work
vmap work ./work

4. Compile the EDAC RAM and the testbench. Type the following commands at the prompt or create
a .do file and execute the .do file:
vcom -93 -work work edac_8_256.vhd
vcom -93 -work work edaci_18.vhd
vcom -93 -work work edac_8_256_top.vhd
vcom -93 -work work edacconfig.vhd
vcom -work work edactb.vhd

5. Simulate the testbench. Type the following command at the prompt:
vsim work.edactb

6. Add the waveforms for display and run the simulations.
add wave sim:/edactb/*
run-all

This performs the operations mentioned in the testbench.

Radiation Performance Calculations for RTAX-S/SL/DSP
FPGAs

For an EDAC-protected SRAM word of N bits (data and syndrome bits) with scrubbing (or refreshing)
period of X days, the upset rate can be estimated as follows:

Probability of upset (P) = 1-exp(-); if  << 1, P  

Where, is the rate of upset/bit-day of non-mitigated SRAM

EQ 1

Upset per bit in X days  •X

EQ 2

Probability ( rate) of two bits in an N-bit word upset in X days  [N (N-1)/2]•(•X)2

EQ 3

Example of Upset Rate Calculation
Assuming the following radiation environment conditions:

Scenario 1 (Geostationary Orbit (GEOMIN)):
• Altitude:22,236 miles/ 35,786 km
• Inclination: 0 degrees

The calculated rate of upset of non-mitigated SRAM for this scenario based on the above conditions is
Rate () = 2.41E-7 upset/bit-day

Scenario 2 (Typical Low Earth Orbit):
• Altitude:500 miles/ 800 km
• Inclination: 85 degrees

The calculated rate of upset of non-mitigated SRAM for this scenario based on the above conditions is
Rate () = 7.12E-8 upset/bit-day

Scenario 3:
• Orbit: 150 nmi circular at 57 degrees inclination

Conclusion

15

• Shielding: Spherical shield with total of 160 mils of aluminum
• Minimum solar and quiet geomagnetic conditions
• Daily average trapped proton flux

The calculated rate of upset of non-mitigated SRAM for this scenario based on the above conditions is
Rate () = 2.61E-8 upset/bit-day

Scenario 4:
• Orbit: 150 nmi circular at 57 degrees inclination
• Shielding: Spherical shield with total of 160 mils of aluminum
• Maximum solar and stormy geomagnetic conditions
• Worst day trapped proton flux

The calculated rate of upset of non-mitigated SRAM for this scenario based on the above conditions is
Rate () = 3.67E-6 upset/bit-day

EDAC Mitigated SRAM
Given the rate of upset/bit-day ( of non-mitigated SRAM, EQ3 above can be used to calculate the
upset rate for EDAC mitigated RAM.
The following examples demonstrate how to calculate the upset rate using EQ3 and the non-mitigated SRAM
upset/bit-day rate (for the different scenarios shown above.
Example 1:
For an EDAC mitigated RAM where EDAC RAM word of N = 14 bits (8 data, 6 protection bits) and
scrubbing period is 1 day, using EQ3 above the upset rate calculation for scenario 1 will be 
((14x13)/2)x(2.41E-7)2 = 5.29E-12 per word-day

Example2:
For an EDAC mitigated RAM where EDAC RAM word of N = 14 bits (8 data, 6 protection bits) and scrubbing period
is 1 day, using EQ3 above the upset rate calculation for scenario 4 will be  ((14x13)/2)x(3.67E-6)2 = 12.26E-10 per
word-day

Conclusion
Semiconductor memories are susceptible to errors when exposed to radiation. The use of error-
correcting codes to improve semiconductor memory reliability is becoming a standard design feature.
This application note presented a hardware-implemented EDAC technique for protecting memories.
Users can employ Actel’s SmartGen tool and generate the EDAC module. This EDAC module checks all
the data that is read from memory and corrects single-bit errors. Also, it enables users to control the
background scrubbing. Users can add Test Ports and use them for debugging. Actel’s EDAC RAM
module provides better reliability and, when possible, should be the first choice for protecting the main
memory.

List of Changes
The following table lists critical changes that were made in the current version of the document.

Previous Version Changes in Current Version (51900041-2) Page

Revision 2
May 2020

Information about "EDAC Mitigated SRAM" was updated (SAR 61250) 15

Revision 1
January 2014

The "Radiation Performance Calculations for RTAX-S/SL/DSP FPGAs" section is
added (SAR 36425).

14

16

References
Hsiao, M.Y. July 1970. A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes. [online]. IBM
Journal of Research and Development. vol.14 no. 4. Available from World Wide Web:
http://www.research.ibm.com/journal/rd/144/ibmrd1404I.pdf
Lin, Shu and Daniel J. Costello, Jr. 1983. Error Control Coding: Fundamentals and Applications.(New
Jersey Prentice Hall).

Revision 0
July 2003

The title was updated to include the subtitle. N/A

ACTgen was changed to SmartGen N/A

Previous Version Changes in Current Version (51900041-2) Page

http://www.research.ibm.com/journal/rd/144/ibmrd1404I.pdf

Appendix A

17

Appendix A
The I/O Definitions for EDAC RAM: (Single Read/Write Clock)

If the users select “Independent Read and Write Clocks,” there will be an additional port W2R. Set W2R
to the ratio of the frequency for the write clock (WCLK) over the frequency of the read clock (RCLK).
Also, the port name for write clock is WCLK and for the read clock it is RCLK.

Table 9 • I/O Definitions for EDAC RAM

Signal Type Active Size Description

Regular Ports CLK In rising 1 Same clock for read/write

WE In high 1 Write enable

RE In high 1 Read enable

WADDR out na 12 Write address bus

RADDR in na 12 Read address bus

WDATA In na 12,29,47 Write data bus

RDATA In na 12,29,47 Read data bus

RSTN In low 1 Asynchronous reset

SCRUB_STOP In na 1 High to stop scrubbing

Test Ports BYPASS In na 1 Bypass mode

WP In na 6,7,7 Write ports for parity bits in bypass mode

RP out na 6,7,7 Read ports for parity bits in bypass mode

Error Ports SLOWDOWN out high 1 Optional flag when scrubbing cannot finish within
designated period

ERROR out high 1 High when two or more errors occurred during one
read. Sample with read data

CORRECTABLE out high 1 Low when two or more errors occurred during one
read. High when one correctable error occurred.
sample with read data.

SCRUB_CORREC
TED

out high 1 High indicated scrubbing logic has corrected one
error sample with the write clk

CADDR out na 12 The address being corrected, sample with write
clock

SCRUB_DONE out high 1 High indicates scrub is done, wait for timer timeout
or user can turn off scrubbing. Sample with read clk

TMOUTFLG out high 1 High indicates timer is timed out

Optional
Ports

Rds In na 4 Depth setting, ram depth=(rds+1)x256

tmout In na 42 Refresh period=tmout*clk period extra

18

Appendix B
Parity check matrix for shortened Hamming code (18,12):

Parity check matrix for shortened Hamming code (36,29):

Parity check matrix for shortened Hamming code (54,47):

1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1
0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1

1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0
0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1
0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1

1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1
0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1
0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1

51900041-2/05.20

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2020 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

	Introduction
	Coding Theory Background
	EDAC
	Regular Hamming Codes and Shortened Hamming Codes
	User Word, EDAC RAM Word, and RTAX-S or Axcelerator RAM Word
	Implementation of Shortened Hamming Encoding and Decoding
	Functional Overview of EDAC RAM
	Features of EDAC RAM from SmartGen
	Scrubbing Control Block
	Refresh Rate
	Test Ports
	Error Flags
	Design Flow with SmartGen
	Limitations of the SmartGen GUI
	Core Utilization of EDAC RAM
	Modifying the EDAC RAM Generated in SmartGen
	Adding More User Ports

	Adding Optional Ports
	Compiling a VITAL VHDL Library for Full Version ModelSim®
	Simulating the EDAC RAM Using ModelSim
	Radiation Performance Calculations for RTAX-S/SL/DSP FPGAs
	Example of Upset Rate Calculation
	EDAC Mitigated SRAM

	Conclusion
	List of Changes
	References
	Appendix A
	Appendix B

