
Application Note AC223
Designing a MIL-STD-1553 System Using
Core1553 and Core8051

Introduction
MIL-STD-1553 is a command/response, time-multiplexed, serial data bus with a 1 Mbit/sec data rate. The
bus contains a bus controller and up to 31 remote terminals. Actel Core1553 cores meet all requirements
for dual-redundant bus operation. Actel has developed flexible MIL-STD-1553 bus controller (BC), remote
terminal (RT), and monitor terminal (MT) cores for use with its devices in high reliability applications.
Table 1 shows variations of Actel MIL-STD-1553 solutions.

Bus interfaces such as MIL-STD-1553 (Core1553), ARINC 429 (Core429), and Ethernet MAC (Core10/100) are
used in systems in which there is a host processor or controller. MIL-STD-1553, with a 1 Mbit/sec data rate,
is not particularly a fast bus interface. Therefore, a simple 8-bit microcontroller fulfills the requirements of
the host processor. Both bus interfaces and the system host usually require backend memory for their
operation. A single backend memory space may belong to both host and bus interface.

When used together in a system, Core8051 and Core1553 may share the backend memory space. This
document describes different implementations of such applications. As discussed in other sections of this
document, the structure of these implementations may depend on the Core1553 variation (BBC, BRT, or
BRM) and other system requirements. Furthermore, Core1553 addresses a different memory space size/
configuration than Core8051, which addresses a 64Kx8 memory space. Hence, some implementations may
require additional considerations for proper functionality.

The memory access requirements are very low in a MIL-STD-1553B bus interface. The 1553B cores will
typically perform approximately six to eight accesses to start a message, then one access every 20 µs. In a
worst case scenario, this is eight accesses every 20 µs, or one access every 2.5 µs, and at 12 MHz this is one
access per 30 clock cycles. As a result, it is very convenient to share a single memory between the host
processor and Core1553 without affecting the overall system performance.

This document discusses multiple implementations that can be used when Core8051 and Core1553 share
the backend memory space. The sections are based on the Core1553 variations (BRT, BRM, and BBC). Each
section is also broken down based on different memory sharing implementations.

Core8051 and Core1553BRT
Core1553BRT, Remote Terminal (RT) variations of Core1553, can connect to the backend memory space
directly or through a memory request/grant protocol. Furthermore, this core does not include a CPU
interface. Therefore, if the core accesses the memory space directly, the CPU should have access to the
memory as well. This can be achieved by using dual-port memories.

Core1553 is equipped with memory request/grant I/Os which can be used when Core8051 and Core1553
share the same bus. In this case, a bus arbiter is required to turn over the control of the memory bus to
Core1553 and Core8051 accordingly. Figure 1 on page 2 depicts the overall architecture of the above
implementations.

Table 1 • Actel Core1553 Variations

Core1553 Variation Description

Core1553BRT Includes MIL-STD-1553B remote terminal functionality

Core1553BBC Includes MIL-STD-1553B bus controller functionality

Core1553BRM Includes MIL-STD-1553A/B bus controller, remote terminal, and monitor terminal functionality
April 2005 1
© 2005 Actel Corporation

http://www.actel.com/survey/rating/?f=Core1553_8051_AN.pdf

Designing a MIL-STD-1553 System Using Core1553 and Core8051
Figure 1 (A) shows a system in which a dual-port memory provides two separate connections for Core8051
and Core1553. In the Figure 1 (B) implementation, a single bus serves the system. The bus control is
overseen by the arbiter, which provides access to the bus for Core1553 and Core8051, respectively. In all
implementations, if the backend uses the embedded synchronous memories, the ASYNCIF input of
Core1553 should be tied low. The architectures, depicted in Figure 1, are discussed in the following
sections.

Dual-Port Memory Implementation
In this implementation, a dual-port memory is used to provide direct access to memory space for both
Core1553 and Core8051. Figure 2 depicts the usage of a dual-port memory in a system which utilizes both
Core8051 and Core1553BRT.

In the Figure 2 implementation, port A of the memory is configured to address a 64Kx8 memory space,
and provides direct access to memory for Core8051. The dotted part of the implementation indicates
optional circuitry, which is used to connect the external CPU program memory to the core. Since the CPU
has direct access to the memory, memacki, and mempsacki inputs of Core8051 are tied to logic high.

Port B of the dual-port RAM in Figure 2 is configured as a 2Kx16 memory space and solely serves
Core1553BRT memory access ports. Since Core1553BRT has unlimited access to the memory space in this
configuration, MEMGNTn and MEMWAITn inputs are tied to logic low and high, respectively.

Figure 1 • System Level Architecture of the Core1553-Core8051 Backend Memory System

Figure 2 • Using Dual-Port Memory Space For Core8051 and Core1553BRT

Dual Port
Memory

Core1553 Core8051

Memory

Core8051 Core1553

Arbiter

System
 B

u
s
(A) (B)

memwr

WAddrA

WDataA

RENA

WENA

WAddrB

WDataB

RENB

WENB

RAddrA

RDataA

RAddrB

RDataB

MEMGNTn

MEMWRn

MEMRDn

MEMWAITn

MEMADDR

MEMDATAOUT

MEMDATAIN
memdatai

memdatao

memacki

mempsacki

memrd

Core8051

Core1553BRTDual-Port RAM

11

16

16

memaddr

8
8

16

8

From 8051
Program Memory
2

Designing a MIL-STD-1553 System Using Core1553 and Core8051
Table 2 lists Actel FPGAs that contain embedded SRAM memories.

For devices that do not support embedded dual-port RAM blocks, single-port RAM blocks can be used to
implement dual-port memory blocks1.

Core1553BRT and Core8051 Direct Access To Single-Port Memory
Core1553BRT addresses a 2Kx16 memory space while it only writes into the lower half (address 0x000 to
0x3FF) and reads from the upper half of the memory space (0x400 to 0x7FF). This allows for an
implementation in which both Core1553BRT and the host processor access the memory space directly if
single-port RAM blocks are used. In this implementation, the host processor has write access only to the
upper half, and it can only read from the lower half of the memory space. Since Core8051 performs byte-
size memory access and Core1553BRT supports 16-bit word-size memory access, the memory space should
be configured accordingly to provide direct access to both Core1553BRT and Core8051. A simple example
of such an implementation is depicted in Figure 3.

Table 2 • Actel FPGA Families with Embedded SRAM Blocks

FPGA Family Dual-Port RAM Single-Port RAM

ProASIC3E Yes Yes

ProASIC3 Yes Yes

ProASICPLUS No Yes

Axcelerator No Yes

RTAX-S No Yes

ProASIC No Yes

1. For more information, refer to the following documents:
Implementing Multi-Port Memories in ProASICPLUS Devices
Implementing Multi-Port Memories in Axcelerator Devices

Figure 3 • Design Example with Direct Access to Memory

WD[7:0]
Core8051 Core1553BRT

1Kx16

1Kx16

WA[9:0]

WD[15:8]

WENREN

RD[15:0]

RA[9:0] WA[9:0]

WD[15:0]

WEN[0]

RA[9:0]

RD[15:0]

RENWEN[1]

MEMWRn

MEMRDn

MEMADDR [9:0]

MEMDATAOUT[15:0]

MEMDATAIN [15:0]

memdatai[7:0]

memdatao[7:0]

memrd

memwr

memaddr[10:0]

RD[15:8]

RD[7:0]

8

0

1

memaddr[10:1]

m
em

ad
d

r[
0]
3

http://www.actel.com/documents/PAPLUS_MultiPort_AN.pdf
http://www.actel.com/documents/AX_Multi_Port_AN.pdf
http://www.actel.com/documents/APA_MultiPort_AN.pdf

Designing a MIL-STD-1553 System Using Core1553 and Core8051
In the Figure 3 on page 3 implementation, the 2Kx16 memory is configured as two blocks of 1Kx16, since
each core needs write and read access to half of the memory space. Core8051 can only perform byte-size
writes, so the upper half of the memory (address space 0x400 to 0x7FF) should support byte-size write
operations (depicted by the dotted line in Figure 3 on page 3 and two WEN ports for the upper half). In
Core8051 read operations, the memaddr[10:1] drives the address input of the lower half of the memory,
and memaddr[0] selects the upper or lower byte of the data word to be input to Core8051.

On the Core1553BRT side, since the core supports word-size data transactions, the connections are
straightforward, as shown Figure 3 on page 3. The most significant bit of MEMADDR output of the core
(MEMADDR[10]) is left unused. This is because the core has read (and write) access to half of the memory
space.

This application note contains a design example for the backend memory architecture, shown in Figure 3
on page 3, along with the peripheral glue logic. The design example is simply a 2Kx16 memory space that
can connect directly to Core8051 on one side and Core1553BRT on the other side.

The design example utilizes ProASICPLUS embedded SRAM blocks, generated by ACTgen. Users can easily
replace these building blocks with the memory blocks of other FPGAs or any other external SRAM blocks.

In the implementation shown in Figure 3 on page 3 or any other implementation that simply allows direct
access to both Core1553BRT and Core8051 to the same memory space, it is possible that Core1553BRT and
Core8051 (or any other host processor) read and write in the same location at the same time. This may be
especially troublesome when Core1553BRT is in the burst read or write operation. For example, if the host
processor updates a memory location in the space that is being read by Core1553BRT in the burst mode,
some memory locations read by Core1553BRT will contain old data while other locations contain newer
data. Such conflicts should be avoided by the system software. In other words, the system software should
prevent the Core1553BRT and host processor from accessing the same memory address range at the same
time. There are many different implementations to perform this; however, the best fitted solution
completely depends on each specific system application.

Arbitration
Core1553BRT has a memory request/grant port which can be used to communicate with a backend bus
arbiter. In this case, both Core8051 and Core1553 connect to the bus arbiter and the arbiter turns over the
control of memory ports respectively. Figure 4 on page 5 simply depicts the usage of a bus arbiter in a
Core8051-Core1553 system. The memory is configured as 32Kx16. However, the arbiter provides byte read/
write capability to Core8051.

As can be seen in Figure 4 on page 5, the memory is configured as 16 bits wide. Therefore, byte read/write
capability should be provided for Core8051. The byte write capability can be simply implemented by
connecting Core8051 memdatao[7:0] to the RAM wdata[15:8] and wdata[7:0]. When even addresses are
written, the arbiter pulses the write on memory wdata[D7:0], while odd addresses pulse the write on
memory wdata[15:8]. The following VHDL code implements this functionality:

RAMWRITELOW <= memwr and not memaddr[0];

RAMWRITEHIGH <= memwr and memaddr[0];

WAddr[14:0] <= memaddr(15 downto 1);

In the code above, memwr is the memwr output of Core8051, memaddr is the memaddr output of
Core8051, and WAddr is the write address input of system memory space.
4

Designing a MIL-STD-1553 System Using Core1553 and Core8051
The byte read capability is implemented by using a MUX architecture. Figure 5 shows a sample byte read
implementation.

Additional outputs of Core1553 that can be used are MEMFAIL, MEMDEN and MEMCEN.

MEMFAIL is an output of the Core1553, which is activated by the core if the memory transaction is
unsuccessful. MEMCEN and MEMDEN are also active high control signals that are activated during
memory transaction. They can be used in a bus system to activate/deactivate the tristated address buffers
and bidirectional data buffers if needed.

Figure 4 • Using a Bus Arbiter in the Core8051-Core1553 System

Figure 5 • Byte Read Implementation for Core8051

MEMGNTn

MEMWRn

MEMRDn

MEMWAITn

MEMADDR

MEMDATAOUT

MEMDATAIN

Core1553BRT

11

16

16

8

16

8

W
A

d
d

r

W
D

at
a

R
ENW

EN

R
A

d
d

r

R
D

at
a

Memory

MEMFAIL

ARBITER

MEMCEN

MEMDEN

memdatai

memdatao

memacki

memrd

memwr

Core8051

memaddr

cpudatao

cpudatai

cpuaddr

cpuren

cpuwen

cpuack

32kx16

memrdy

MEMREQn1553_req

1553_gnt

1553_datao

1553_datai

1553_addr

1553_wen

1553_ren

1553_fail

1553_addr_bus_en
1553_data_bus_en

MEMDATA[15:8]

0

1

MEMADDR[14:0]

MEMDATA[15:0] 8051_MEMDATAI[7:0]

8051_MEMADDR[15:0]

8051_MEMADDR[0]
8051MEMADDR[15:1]

MEMDATA[7:0]
5

Designing a MIL-STD-1553 System Using Core1553 and Core8051
Core8051 and Core1553BBC/BRM
The main difference in the backend memory interface between Core1553BBC/BRM2 and Core1553BRT is
the address space. Core1553BBC and Core1553BRM address a 64Kx16 memory space compared to 2Kx16 in
Core1553BRT. Furthermore, Core1553BBC and Core1553BRM provide a CPU interface that can be used to
connect Core8051 to the backend memory. This section of the application note discusses multiple
implementations that can be used if Core8051 and Core1553 use the same memory space in the system.
Similar to Core1553BRT, if the backend uses the embedded synchronous memory space (internal to the
FPGA), the ASYNCIF input of Core1553 should be tied low.

Dual-Port Memory Implementation
Similar to the RT or MT variation of Core1553BRM, a dual-port RAM can be used to provide direct access to
memory space for both Core8051 and Core1553. The only difference, as discussed above, is the address
space of Core1553. To fulfill this in the scheme shown in Figure 1 on page 2, the read and write address
bus width of port B of the memory should be 16-bit.

Arbitration
Similar to the RT variation of the core, Core1553 is equipped with memory request/grant ports. These
ports can be used by a bus arbiter to provide memory access to Core1553 when requested. A similar
scheme is described in the "Core8051 and Core1553BRT" section on page 1. The same implementation can
be used for Core1553BRM3. The only difference would be the larger memory address space in the bus
controller of Core1553, compared to the remote terminal of Core1553. Therefore, the system memory
should be configured as a 64Kx16 memory.

Core1553BBC/BRM CPU Interface
Core1553BBC and Core1553BRM feature a CPU interface. This interface allows designers to implement a
different configuration when both Core1553 and Core8051 access the same memory space in a system. In
this configuration, Core1553BRM or Core1553BBC act as bridges to connect Core8051 to memory. In other
words, the CPU should go through the bus interface core to access the memory space. Table 7 of the
Core1553BRM MIL-STD-1553 BC, RT, and MT datasheet describes the CPU interface ports of the core.
Figure 6 shows how the CPU interface of Core1553BRM should be connected to Core8051 to provide
access to memory space for the host microprocessor controller.

The CPUWRn[1:0] input of the core provides byte-size write capability to the CPU. If CPUWRn[0] is active
(low), the data will be written in the lower half of memory width (CPUDIN[7:0]). If CPUWRn[1] is active
(low), the data will be written in the upper half of memory width (CPUDIN[15:8]). In the Figure 6 on page
7 implementation, CPUWRn[1:0] is defined as the following:

CPUWRn[0] <= memaddr[0] and memwr;

CPUWRn[0] <= ! memaddr[0] and memwr;

CPUADDR[14:0] <= memaddr[15:1]

In this case, the CPUADDR[15] input of Core1553BRM can be grounded so that the CPU has access only to
the upper half of backend memory space.

As shown in Figure 6 on page 7, Core8051 byte-size read is supported using a MUX architecture. For even
memaddr values, the lower half of the data word (CPUDOUT[7:0]) is sent to memdatai input of the CPU.
Odd values of memaddr during read operation will cause the upper half of the data word
(CPUDOUT[15:8]) to propagate to the memdatai input of Core8051.

2. This section applies to Core1553BRM if it is not configured as a remote terminal only. In that case, Core1553BRM is
used as only a remote terminal, and it should be treated similarly to Core1553BRT.

3. MEMREQn and MEMGNTn work in a slightly different way on the Core1553BRM than on the Core1553BRT and
Core1553BBC cores. Refer to the core datasheets for details.
6

http://www.actel.com/ipdocs/Core1553BRM_HB.pdf

Designing a MIL-STD-1553 System Using Core1553 and Core8051
As shown in Figure 6, CPUDEN can be used as a tristate enable signal to memdatai input. This is extremely
useful if memdatai is also connected to the CPU program memory.

If the CPU only accesses the memory space, the CPUMEM input of Core1553 should be tied to logic high.
Otherwise it can be controlled through a MUX architecture. The select input of the MUX should transfer
logic '1' to CPUMEM input if memrd or memwr outputs of the CPU are active.

Using Core8051 SFR Space with the Core1553BBC/BRM CPU
Interface
Core1553BRM and Core1553BBC support up to 64 k words (128 kbytes) of memory space. The amount of
memory space that is needed is system-dependent. A very simple BC function that is required to send a
32-word message to an RT could be implemented with only 64 words (128 bytes) of memory. On the other
hand, a BC function that needs to transmit and receive from 31 RTs each, with multiple sub-addresses,
could easily require the complete 128 kbytes of memory supported by the BBC and BRM cores.

When using an 8-bit processor such as Core8051, directly mapping this 128 kbytes of address space into
the processor address space is not possible since Core8051 only supports 64 kbytes of data memory space.
Even if only a quarter (32 kbytes) of the available memory space is implemented, it still can create a
memory allocation problem. The complete 64 k of data memory cannot be allocated to Core1553, as some
memory space is required for system memory and other system functions. An alternative to directly
mapping the Core1553 address space to the processor address space is implementing a memory interface
block that uses 8-byte wide processor locations to access the complete 64 k words of Core1553 space.
These 8-byte processor locations can also be mapped to the Core8051 SFR memory space, totally removing
the requirement for the Core1553 memory to use the spare processor data memory resources.

This implementation requires eight SFR spaces, as described in Table 3.

Figure 6 • Using Core1553BRM CPU Interface with Core8051

Table 3 • Description of SFR Space Connecting to MIL-STD-1553 Bus Controller

SFR Space Description

SFR0 Upper half of memory address (A [15:8])

SFR1 Lower half of memory address (A [7:0])

SFR2 Upper byte of memory write data word (WD [15:8])

SFR3 Lower byte of memory write data word (WD [7:0])

SFR4 Control register

SFR5 Upper byte of memory read data word (RD [15:8])

SFR6 Lower byte of memory read data word (RD [7:0])

SFR7 Status register

MEMDATAIN
memdatai

memdatao

memacki

memrd

memwr

Core8051

memaddr
WAddr

WData

REN

WEN

RAddr

RData

64kx16
Memory Space

CPUDEN

MEMWRn

MEMRDn

MEMADDR

MEMDATAOUT

Core1553BRM

CPUWRn[0]

CPUWRn[1]

CPURDn

CPUWAITn

CPUADDR[14:0]

CPUDOUT[15:8]

CPIDIN[15:8]

CPIDIN[7:0]

CPUDOUT[7:0]

16

16

16
0
1

addr[0]

8

8

16 addr[15:1]
7

Designing a MIL-STD-1553 System Using Core1553 and Core8051
The control and status register bits are described in Table 4 and Table 5, respectively.

When performing a write into the memory, the CPU should load the address and data into SFR0 to SFR4.
Then it should load the control register with a memory write request and check the status register. When
the status register is cleared, the CPU can move to its next operation. The following C instruction set
depicts a simple memory write access from the CPU:

SFR0 <= ADDR_LH;

SFR1 <= ADDR_UH;

SFR2 <= WDATA_LH;

SFR3 <= WDATA_UH;

SFR4 <= 0x03;

While (SFR7 & 0x01) { }

SFR 4 <= 0x00;

In the above code, UH and LH indicate the upper half and lower half of the word, respectively.

Similarly, the following C instruction set resembles a simple CPU memory read operation:

SFR0 <= ADDR_LH;

SFR1 <= ADDR_UH;

SFR4 <= 0x05;

While (SFR7 & 0x01) { }

SFR 4 <= 0x00;

RDATA_LH <= SFR5;

RDATA_UH <= SFR6;

In the above read and write operation example, the CPU is stalled in the "while" loop for the time that
the busy signal is high. This can be implemented differently according to each application. For example,
the CPU can check the status frequently and if the status is busy, it can perform other functions and return
to check the status after some period of time.

An external glue logic is necessary to connect the SFR control and status registers to the Core1553 CPU
interface. Figure 7 on page 9 shows the interconnect of this implementation.

The glue logic block in Figure 7 on page 9 is simply a state machine. This state machine reads the read and
write command from the control register (SFR4) and transfers the memory access request of the CPU to
the Core1553 CPURDn and CPUWRn inputs. It also updates the status register (SFR7), based on the
operation stage and state of the CPUWAITn output of Core1553.

Glue logic is simply a state machine. Figure 8 on page 9 shows a simple flow chart of the glue logic state
machine operation.

Table 4 • Bit Description of Control SFR

Bits Signal Description

0 CPUMEM CPU sets this signal when requiring memory access

1 WEN CPU sets this signal when writing into memory

2 REN CPU sets this signal when reading from memory

7:3 Unused N/A

Table 5 • Bit Description of Status SFR

Bits Signal Description

0 Busy Input to CPU. High when memory is not available

7:1 Unused N/A
8

Designing a MIL-STD-1553 System Using Core1553 and Core8051
Figure 7 • System-Level Interconnect of SFR Space Usage

Figure 8 • Flow Chart of The SFR Glue Logic State Machine

WAddr

WData

REN

WEN

RAddr

RData

64Kx16
Memory Space

MEMWRn

MEMRDn

MEMADDR

MEMDATAOUT

MEMDATAIN

Core1553BRM

CPUWRn[0]

CPUWRn[1]

CPURDn

CPUWAITn

CPUADDR[15:0]

CPUDOUT[15:8]

CPIDIN[15:8]

CPIDIN[7:0]

CPUDOUT[7:0]

16

16

16
sfrdatai

sfrdatao

sfroe

sfraddr

sfrwe

Core8051

0

1

3

2

4

5

6

7

SFR SPACE

SFR4

SFR7
CPUWAITn

CPURDn

CPUWRn

Glue Logic

8

8

2

16

CPUMEMCPUMEM

IDLE

READ WRITE

DONE

SFR4[0] = '0'

SFR4[2:0] = '011'SFR4[2:0] = '101'

CPUMEM = '1'
SPUWRn = '00'

SFR7 = 0x01

CPUMEM = '1'
CPURDn = '0'
SFR7 = 0x01

CPUWAITn = '0' CPUWAITn = '0'

CPUWAITn = '1'

SFR7 = 0x00

SFR4[0] = '0'

SFR4[2:0] = '101' SFR4[2:0] = '011'
9

Designing a MIL-STD-1553 System Using Core1553 and Core8051
During the memory read operation, the glue logic can latch the read data into the SFR read data space
(SFR5 and SFR6 in this case) to ensure that the CPU receives the valid read data. The rising edge of
CPURDn, which flags the end of read operation, can be used to latch the data. This has not been
illustrated in Figure 7 or Figure 8 on page 9 for simplicity, but has been included in the glue logic design
example located on the Actel website at
http://www.actel.com/techdocs/appnotes/products.aspx.

Legacy Support
In order to support legacy MIL-STD-1553B devices, Actel Core1553BRM provides the flexibility to be
configured compatibly with these devices. In this case, a wrapper is placed around the core and the CPU
interface ports are not accessible anymore. Therefore, if Core1553BRM is selected to support legacy
MIL-STD-1553B devices and it shares the backend memory space with the host controller, the arbitration
or dual-port memory implementation should be used, since CPU interface ports of the Core1553BRM are
disabled.

Conclusion
Actel MIL-STD-1553A/B bus interface IP core (Core1553) can share the backend memory space with the
host processor of the system. Core8051 is an Actel 8-bit IP core which can be used as the system host
processor. If used together in a system, Core8051 and Core1553 can share the backend memory space
without affecting the MIL-STD-1553B overall system performance. The Actel Core1553 provides more
flexibility to perform this than legacy MIL-STD-1553 devices. The implementation of this application,
discussed in this document, varies based on Core1553 variations (BRT, BBC, and BRM). Some
implementations require external logic such as glue logic or a bus arbiter. These external blocks may be
fitted inside the FPGA alongside Core1553 or Core8051, which reduces the cost and space of the board.

Related Documents

Application Notes
Implementing Multi-Port Memories in ProASICPLUS Devices

http://www.actel.com/documents/APA_MultiPort_AN.pdf

Implementing Multi-Port Memories in Axcelerator Devices

http://www.actel.com/documents/AX_Multi_Port_AN.pdf

Datasheets
Core1553BRM MIL-STD-1553 BC, RT, and MT

http://www.actel.com/ipdocs/Core1553BRM_DS.pdf

MIL-STD-1553B Bus Controller Core1553BBC

http://www.actel.com/ipdocs/Core1553BBC_DS.pdf

MIL-STD-1553B Remote Terminal Core1553BRT

http://www.actel.com/ipdocs/Core1553BRT_DS.pdf

Core8051

http://www.actel.com/ipdocs/Core8051_DS.pdf
10

http://www.actel.com/techdocs/appnotes/products.aspx
http://www.actel.com/documents/AX_Multi_Port_AN.pdf
http://www.actel.com/documents/AX_Multi_Port_AN.pdf
http://www.actel.com/documents/APA_MultiPort_AN.pdf
http://www.actel.com/documents/APA_MultiPort_AN.pdf
http://www.actel.com/ipdocs/Core1553BRM_HB.pdf
http://www.actel.com/ipdocs/Core1553BRM_HB.pdf
http://www.actel.com/ipdocs/Core1553BBC_DS.pdf
http://www.actel.com/ipdocs/Core1553BBC_DS.pdf
http://www.actel.com/ipdocs/Core1553BRT_DS.pdf
http://www.actel.com/ipdocs/Core1553BRT_DS.pdf
http://www.actel.com/ipdocs/Core8051_DS.pdf
http://www.actel.com/ipdocs/Core8051_DS.pdf

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

List of Changes

Previous Version Changes in Current Version (51900085-1/1.05*) Page

51900085-0/1.05* The "Core1553BBC/BRM CPU Interface" section was updated. 6

Design examples are posted below this app note:

VHDL:

• SFR Design Files

• Backend MEM Design Files

Verilog:

• SFR Design Files

• Backend MEM Design Files

Note: *This is the part number located on the last page of the document.
51900085-1/4.05

http://www.actel.com.cn
http://www.actel.com
http://www.jp.actel.com

	Designing a MIL-STD-1553 System Using Core1553 and Core8051
	Introduction
	Table 1 . Actel Core1553 Variations

	Core8051 and Core1553BRT
	Figure 1 . System Level Architecture of the Core1553-Core8051 Backend Memory System
	Dual-Port Memory Implementation
	Figure 2 . Using Dual-Port Memory Space For Core8051 and Core1553BRT
	Table 2 . Actel FPGA Families with Embedded SRAM Blocks

	Core1553BRT and Core8051 Direct Access To Single-Port Memory
	Figure 3 . Design Example with Direct Access to Memory

	Arbitration
	Figure 4 . Using a Bus Arbiter in the Core8051-Core1553 System
	Figure 5 . Byte Read Implementation for Core8051

	Core8051 and Core1553BBC/BRM
	Dual-Port Memory Implementation
	Arbitration
	Core1553BBC/BRM CPU Interface
	Figure 6 . Using Core1553BRM CPU Interface with Core8051

	Using Core8051 SFR Space with the Core1553BBC/BRM CPU Interface
	Table 3 . Description of SFR Space Connecting to MIL-STD-1553 Bus Controller
	Table 4 . Bit Description of Control SFR
	Table 5 . Bit Description of Status SFR
	Figure 7 . System-Level Interconnect of SFR Space Usage
	Figure 8 . Flow Chart of The SFR Glue Logic State Machine

	Legacy Support
	Conclusion
	Related Documents
	Application Notes
	Datasheets

	List of Changes

	RateThisDoc:

