JActel
c e Application Note AC218

Using Axcelerator RAM as Multipliers

Introduction

Multiplication is one of the more area-intensive functions in FPGAs. Traditional multiplication techniques
use the digital equivalent of longhand multiplication, which we learned in elementary school. These
techniques are basically shift and add procedures, which usually result in many levels of logic and limit
performance. Pipelining can help to improve the clock performance of the multipliers; in this case, at the
cost of more area.

Most humans multiply by individually multiplying digits and referring back to memorized multiplication
tables. A similar technique can be employed using the embedded memory on an FPGA. The result of using
the RAM as a look-up table multiplier incurs only the delay of the memory access, and has the advantage
of not consuming a large quantity of user gates on the FPGA.

This document will address three ways of using RAM blocks as multipliers. The basic single look-up table
multiplier, the partial product multiplier, and a RAM-based constant coefficient multiplier.

For the Axcelerator® devices, the single look-up table approach can create a very fast, but narrow, 4-bit
multiplier. The partial product multiplier approach uses logic to reduce the amount of memory required,
but is slower than a pure look-up table. A partial product multiplier can create a much faster multiplier at
the cost of higher area utilization and memory usage. By pipelining the partial product multiplier, the
performance can be increased further. The constant coefficient multiplier is the most efficient
implementation since it uses a minimum of additional logic gates and still maintains the performance of
the basic look-up table multiplier.

Basic Look-Up Table (LUT)-Based Multipliers

A basic LUT-based multiplier is simply a look-up table with the addresses arranged so that part of the
address is the multiplicand and the other part is the multiplier. The data width should be set to the sum of
the address width to accommodate the product.

Implementing a Basic LUT-Based Multiplier

In the case where a 4-bit value is multiplied by a 4-bit value, you will need a memory block that is 8 bits
wide and 256 words deep. The first 4 bits of the address can be configured as the multiplicand and the
second 4 bits can be configured as the multiplier. The memory will store the appropriate product values.
To multiply the upper 4 bits by the lower four bits, feed both values into the address and clock the
memory. The appropriate product value will appear on the RAM output. A diagram of this LUT-based
multiplier implementation is shown in Figure 1 on page 2.

January 2005 1
© 2005 Actel Corporation

| Using Axcelerator RAM as Multipliers

Multiplicand[3:0]

Multiplier[3:0]

Address[7:0]

Clock

Clock

DataOut[7:0]

Product[7:0]

RAM
8 Bits Wide
256 Words Deep

Figure 1 e Basic Single LUT-Based Multiplier

Since the memory block in the Axcelerator is synchronous, this configuration will result in a synchronous

multiplier. The multiplier’s clock frequency is only limited by the data access time of the memory.

This approach is more efficient than implementing multipliers in gates, but it can consume a large amount
of memory. The amount of memory required increases with the square of the bit width. The example in
Figure 1 requires 256 8-bit words of storage and demonstrates a 4x4 bit multiplier. For an 8x8 bit

multiplier, 65,536 16-bit words must be stored using this technique.

Partial Product Multipliers

One way to mitigate the amount of memory required is to use partial product multiplication. This
technique combines the look-up table approach with elements of longhand multiplication. For example,
to multiply 24 x 43 = 1032 using longhand, we simplify the problem into the sum of 4 multiplication

functions and three addition functions (4x3 + ((2x3) x10)) + ((4x4) + ((2x4) x10) x10) = 1032 (Figure 2).

. 24 < A
43 <B
12
60

160
800

1032

9 24 < A
43 <B

12

60 < shifted by
160 1 decimal place
800

1032

» 24 < A « 24 < A
43 <B 43 < B
12 12
60 60
160 < shifted by 160
800 1 decimal place 800 < shifted by
1032 1032 2 decimal places

Figure 2 o Partial Product Multiplier Techniques

YActel

Using Axcelerator RAM as Multipliers

Implementing a Partial Product Multiplier

In logic, this same technique can be used to reduce the amount of memory required to perform a
multiplication. Using a basic look-up table technique, an 8-bit by 8-bit multiplication would require 128
kbytes of storage. Using partical product multipliers, as shown in Figure 3, the same procedure can be
accomplished using 1 kbyte of storage.

In order to accomplish this in logic, using A as the multiplicand and B as the multiplier, take the lower 4
bits of A and multiply it by the lower four bits of B using the look-up table technique. Then take the upper
four bits of A and multiply it by the lower four bits of B and shift the partial product result to the left by
four. Then add the two results together for the first part of the product.

For the second part of the product, multiply the lower 4 bits of A by the upper four bits of B. Then do the
same with the upper 4 bits of both A and B and shift this partial product value to the left by 4. Add the
two values of the previous calculation and shift the whole result to the left by four.

Then add the first part of the product to the second part of the product for the final result.

Although this technique is not as fast as implementing the entire multiplication as a single memory
element, it does greatly reduce the amount of memory required at the expense of using more core tiles.

4
A[3:0] 8
4x4 /
B[3:0] / .
A N

4
Al7:4] / Axd 8
X / << 4 /
/
B[3:0] Z 12
4

4
A[3:0] 8
4x4 /
B[7:4] /
12 16
4

-1 <<4 7

4
A[7:4] / axd 8
% / << 4 /
B[7:4] (12
4

Figure 3 o Partial Product Multiplier Logic Implementation

| Using Axcelerator RAM as Multipliers

Constant Coefficient Multiplier

A third approach to using memory blocks as multipliers is employing a constant coefficient multiplier. In
many cases, especially in Digital Signal Processing (DSP) applications, the multiplicand remains constant
and only the multiplier varies. Although ACTgen can create a constant coefficient multiplier using pure
logic, implementing this function in RAM creates a much faster multiplier and uses very few logic gates.

Implementing a Constant Coefficient Multiplier

In this approach, only the multiplier must be assigned to the address lines of the memory block. The
multiplicand is predetermined and the memory blocks are loaded with the appropriate product values.
For example, given that the multiplicand is always 4/h, if the multiplier is B/h, when that value is sent to
the address of the memory block, it will return the stored value 2C/h.

This type of multiplier scales linearly with the width of the values being multiplied. While a basic look-up
table 8x8 multiplier uses one block of 65536x16 bit words, 128 kbytes of storage, and the partial product
look-up table multiplier uses four blocks of 256x8 bit words, 1 kbyte, the constant coefficient multiplier
requires only one block of 256x16 bit words, 0.5 kbyte, and does not incur the cost of the additional logic
and delay incurred by using the partial product multiplier.

Multiplicand is Predetermined

256x16 RAM implemented
by concatenating two 256x8

T : RAM blocks
Multiplier[7:0] : | Address[7:0] | . 1 | DataOut[15:0] |:|Product[15:0]

RAM
8 Bits Wide
256 Words Deep

RAM
8 Bits Wide
256 Words Deep

Figure 4 o Constant Coefficient Multiplier Logic

YActel

Using Axcelerator RAM as Multipliers

Performance and Utilization

Because of architectural variations, the effectiveness of each approach varies between device families.
Table 1 on page 5 shows that for a 4x4 multiplier, the RAM-based multiplier is much faster than the
equivalent Booth multiplier provided by the ACTgen macro generator. The Booth multiplier is an
optimized multiplier that reduces the number of stages required to perform the multiplication function.
However, as we expand to an 8x8 multiplier, the amount of memory required to implement the 8x8
multiplier in RAM is too large to be practical. Although the Booth multiplier created in ACTgen produces
very good results, the partial product multiplier produces better results with fewer core tiles. However, it
does consume four RAM blocks in the process. The performance of the partial product multiplier can
further be improved by pipelining the add and shift stages. The constant coefficient multiplier
implemented in logic performs very well, but a constant coefficient multiplier implemented in RAM is
much faster and consumes less user logic.

Utilization is another consideration for choosing a multiplier. If your design leaves you with unused RAM
cells, implementing multipliers with the unused RAM cells can save core tiles. Table 1 on page 5 shows the
number of core tiles required to implement each type of multiplier. Not counting the logic required to
load the RAM cells, both the 4x4 RAM multiplier and the 8-bit constant coefficient RAM multiplier require
only a single RAM cell.

Table 1 o Performance and Utilization of Multiplier Variations in an AX250

Utilization
Multiplier Used C Cells R Cells RAM Blocks Performance (MHz)
4x4 bit RAM-based LUT 0 0 1 397
4x4 bit RAM-based LUT pipelined 0 0 1 488
4x4 Booth 32 0 0 179
4x4 Booth fast carry 46 0 0 168
4x4 Booth pipeline 33 12 0 284
8x8 Booth 148 0 0 96
8x8 Booth fast carry 168 0 0 119
8x8 Booth pipelined 151 64 0 207
8-bit partial product 59 27 4 168
8-bit partial product pipelined 43 80 4 320
8-bit logic-based constant coefficient 21 0 0 316
8-bit RAM-based constant coefficient 0 0 1 400

Constant Coefficient RAM Multiplier Example

The constant coefficient RAM multiplier is the most efficient implementation and will be the multiplier
used in this example. The RAM block must first be loaded with data in order to produce the correct
product values. The Axcelerator RAM makes preloading the memory block very simple. Since the memory
in the Axcelerator has two ports, the read port can be dedicated to reading the data for multiplication
and the write port can be dedicated to loading data.

The example in Figure 5 on page 6 uses logic within the device as a simple memory loader to preload the
RAM for use as an 8-bit constant coefficient multiplier with a 8-bit multiplicand value of OE/h." Appendix
1" on page 7 includes the design files and the ACTgen generation screens for this example. The memory
loader is simply a counter that cycles through the addresses available, with an adder that increments the
product values and feeds them into a register file that passes the correct data for each address. Once the
loader is finished, the load signal is de-asserted and the RAM block is ready to be used as a multiplier.
Since the memory in the Axcelerator is synchronous, the multiplier acts as a synchronous multiplier.

| Using Axcelerator RAM as Multipliers

Load Port
5 Loader f
i Load Address !
E RAM 5
! 16 Bits Wide i
! Load Data 256 Words Deep :
Multiply Port
Multiplier[7:0] Address[7:0]

DataOut[15:0] Product[15:0]

Figure 5 ¢ Example of a Constant Coefficient Multiplier

Additional Considerations

Although using RAM blocks as multipliers can save area in many cases, there is overhead required in using
this approach. The RAM block must be loaded with the correct values before they can be used as
multipliers. An interface for loading and incrementing the RAM block can then load the data on power-
up.

A second approach is using an adder to generate values for the RAM block which can be loaded without
having the values pre-stored. However, using an adder to generate the values requires additional logic
and time to create and store the proper values.

If a microprocessor is available in the system, it can be used to generate the proper values and load them
into the RAM blocks. This approach circumvents the additional storage required by the first approach and
the logic overhead of the additional multiplier or adder in the second approach.

Conclusion

Using the Axcelerator memory as look-up tables can greatly increase the speed of functions that require
multiplication. Several techniques can be used, depending upon the widths and types of the values to be
multiplied. For applications where one of the values being multiplied remains constant, often found in
DSP functions, the constant coefficient multiplier is the fastest and most efficient look-up table multiplier.

YActel

Using Axcelerator RAM as Multipliers

Appendix 1

Design Example: 8-Bit Constant Coefficient Multiplier

The design implemented here is a detailed example of the 8-bit constant coefficient multiplier described
in the "Constant Coefficient RAM Multiplier Example" section on page 5. This design includes a loading
module that loads the proper product values into the RAM and prepares it for use as a multiplier.

After briefly asserting the active low clear signal, bring clear and load signals high. Allow the clk to cycle
for 256 cycles in order to load the memory. When the memory is loaded, bring the load signal low in order
to allow the RAM to start functioning as a multiplier.

The mclk, used for multiplying, is independent of the clk signal, the loading clock. This allows the
multiplying clock to run at a different rate than the clock used to load the data.

Design Hierarchy

Multiply.vhd
Loader.vhd
Counter.vhd
Adder.vhd
Registerl6.vhd
RAM16x8.vhd

Multiply
The multiply module combines the loader module, which loads the proper values for multiplying by E/h,
with the RAM module, which will act as the actual multiplier.

-- multiply.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity multiply is

port(load, clr, clk, mclk : in std_logic;
multiplier: in std_logic_vector (7 downto 0);
product : out std_logic_vector (15 downto 0));
end multiply;

architecture structure of multiply is

component loader
port (enable, clr, clk : in std_logic;
datal : out std_logic_vector (15 downto 0);
addr : out std_logic_vector (7 downto 0));
end component;

component raml6x8
port (DATA : in std_logic_vector (15 downto 0); PROD : out
std_logic_vector (15 downto 0); LOAD_ADDR : in
std_logic_vector (7 downto 0); MULT : in std_logic_vector (
7 downto 0);LOAD_EN, MULT_EN, LOAD_CLK, MULT CLK :
in std_logic) ;
end component;

signal address : std_logic_vector (7 downto 0);
signal dat : std_logic_vector (15 downto 0);
signal mult_en : std_logic;

begin

MULT_EN <= load;

| Using Axcelerator RAM as Multipliers

loadl : loader
port map (enable => load, clr => clr, clk => clk, datal => dat,
addr => address) ;

ram : raml6x8
port map (DATA => dat, PROD => product, LOAD_ADDR => address,
MULT => multiplier,

LOAD_EN => load, MULT_EN => mult_en, LOAD_CLK =>
clk, MULT_CLK => mclk);

end structure;

Loader

The loader module accepts a clock, a clear, and an enable signal. It ties together the register, counter, and
adder, which performs the actual data loading for the RAM.

-- loader.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity loader is
port (enable, clr, clk : in std_logic;
datal : out std_logic_vector (15 downto O0);
addr : out std_logic_vector (7 downto 0));
end loader;

architecture struct of loader is

component counter
port (Enable, Aclr, Clock : in std_logic; Q : out
std_logic_vector (7 downto 0)) ;
end component;

component registerl6
port(Data : in std_logic_vector (15 downto 0);Enable, Aclr,
Clock : in std_logic; Q : out std_logic_vector (15 downto 0
))

end component;

component adder
port(DataA : in std_logic_vector (15 downto 0); DataB : in
std_logic_vector (15 downto 0); Sum : out std_logic_vector (
15 downto 0)) ;
end component;

constant multiplicand : std_logic_vector := "0000000000001110";
signal data, data2 : std_logic_vector (15 downto 0);

begin

count : counter
port map (Enable => enable, Aclr => clr, Clock => clk, Q => addr);
values : adder

port map (DataA => data2, DataB => multiplicand, sum => data) ;
reg : registerl6

port map (Data => data, Enable => enable, Aclr => clr, Clock => clk,
Q => data2);

datal <= data2;

end struct;

YActel

Using Axcelerator RAM as Multipliers

Register16

The register16 file is generated using ACTgen. The register file is a 16-bit parallel storage register and is
used to gate the values from the counter and allows the values to be initially cleared. The register file is
generated using the parameters shown in Figure 6:

<l Shifter |

i Mone

”:l::!llll:l

Figure 6 Register File Parameters

| Using Axcelerator RAM as Multipliers

Counter

The counter is a 8-bit counter that cycles through all the address values for the RAM. This counter is also
generated using ACTgen with the parameters shown in Figure 7.

Counters

gl |_|!L|:|

[Doy

Figure 7 o Counter Parameters

10

YActel

Using Axcelerator RAM as Multipliers

Adder

The Adder component is a 16-bit adder used to create the content of the RAM. Since speed is not a major
concern for this component, a ripple adder was chosen to minimize utilization (Figure 8).

Arithmetic

Subtr:

{+ Mone

Figure 8 ¢ Adder Parameters

1

| Using Axcelerator RAM as Multipliers

RAM16x8

The RAM16x8 is the memory block configuration used as the multiplier in this design. The 16-bit width is
required to store the product information, and the 256-bit depth will provide the 8-bit address line used
for the multiplier (Figure 9).

gl Mo

Cancel

Figure 9 « RAM Parameters

12

YActel

Using Axcelerator RAM as Multipliers

Since ACTgen has the ability to rename ports for the Axcelerator RAM, the port mapping shown in

Figure 10 is used to make the signal names of the RAM more meaningful as a multiplier.

X

PortMapping Dislog =
Port Port Hame
Diata In Data
Diata Ot PROD
Wikite Address LOAD ADDR
Read Address MLLT
Wikite Enakle LOAD B
Read Enable MLLT_BM
Wit Clock LOAD CLK
Read Clock MULT_CLK
Cancel Help

Figure 10 * PortMapping Dialog

13

Actel and the Actel logo are registered trademarks of Actel Corporation.

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA

Phone 650.318.4200
Fax 650.318.4600

All other trademarks are the property of their owners.

VActel

www.actel.com

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom

Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan

Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong

Phone +852 2185 6460
Fax +852 2185 6488

51900089-0/1.05

http://www.actel.com
http://www.jp.actel.com
http://www.actel.com.cn

	Using Axcelerator RAM as Multipliers
	Introduction
	Basic Look-Up Table (LUT)-Based Multipliers
	Implementing a Basic LUT-Based Multiplier
	Figure 1 . Basic Single LUT-Based Multiplier

	Partial Product Multipliers
	Figure 2 . Partial Product Multiplier Techniques

	Implementing a Partial Product Multiplier
	Figure 3 . Partial Product Multiplier Logic Implementation

	Constant Coefficient Multiplier
	Implementing a Constant Coefficient Multiplier
	Figure 4 . Constant Coefficient Multiplier Logic

	Performance and Utilization
	Table 1 . Performance and Utilization of Multiplier Variations in an AX250

	Constant Coefficient RAM Multiplier Example
	Figure 5 . Example of a Constant Coefficient Multiplier

	Additional Considerations
	Conclusion
	Appendix 1
	Design Example: 8-Bit Constant Coefficient Multiplier
	Figure 6 . Register File Parameters
	Figure 7 . Counter Parameters
	Figure 8 . Adder Parameters
	Figure 9 . RAM Parameters
	Figure 10 . PortMapping Dialog

