
Application Note AC205
ProASICPLUS Timing Closure in Libero® IDE v5.2

Introduction
This application note discusses the new ProASICPLUS timing-driven place-and-route (TDPR) flow introduced
in Libero Integrated Design Environment (IDE) v5.2 and procedures for achieving timing closure. The
tighter integration between the timing engine and TDPR offers push-button results and reduces the
number of design iterations required to achieve timing closure.

Timing constraints guide synthesis and place-and-route tools toward achieving the required timing
performance for a design. In Libero IDE v5.1 and earlier releases, you are required to deliver ProASICPLUS

timing constraints to TDPR through GCF (ProASIC Constraints File) files.

In Libero IDE v5.2, all timing constraints for the ProASICPLUS family are processed and stored by the Design
Constraint System (DCS). You can enter timing constraints into DCS through the Timer GUI, by importing
SDC auxiliary files, or during the GCF to SDC (GCF2SDC) conversion. The Layout tools then rely on Timer to
provide the appropriate timing constraint information. During TDPR, if you do not specify any timing
constraints, Timer automatically generates clock constraints for all potential clocks. This allows layout to
exploit the benefits provided by the features introduced in Libero IDE v5.2. Physical constraints (Table 1 on
page 2) are still delivered to TDPR through GCF constraints.

To facilitate moving ProASICPLUS designs and GCF constraints to Libero IDE v5.2 from earlier releases, a
new, automatic GCF2SDC conversion program is available in Libero IDE v5.2. If you use Libero IDE v5.2 to
open a ProASICPLUS design with GCF timing constraints already applied, the tool automatically converts
the GCF timing constraints to SDC constraints. The new SDC constraints are saved in the DCS, and an SDC
file is automatically exported. The log of the GCF2SDC translation is appended at the end of the exported
file. The conversion completes by giving a summary in the log window of how many constraints have been
converted and the resulting status. It also indicates the path to the exported SDC file. You must review this
file. If any constraint changes are needed before running TDPR, you can manually change in the SDC file,
which can be re-imported. You can also make changes to the constraints using the Timer GUI. Figure 1
shows the new design flow in Libero IDE v5.2.

Figure 1 • Design Flow for ProASICPLUS in Libero IDE v5.2

gfimporter GCF2SDC
Converter

GCF Timing
Constraints

Designer
Compile

Internally
generated files

Timing constraints
information

SDC

Auto
Exporter
SDC

User's Files

Netlist

Timing +

Other GCF

SDC

Layout

Timer DCS
May 2004 1
© 2004 Actel Corporation

ProASICPLUS Timing Closure in Libero IDE v5.2
Setting Constraints for New ProASICPLUS Designs in
Libero IDE v5.2
Actel recommends using SDC or the Timer GUI for setting timing constraints.

In Libero IDE v5.2, you can explore more options in the timing constraints before adding in physical
placement constraints. Closer coupling of the Timer with Layout tools facilitates timing closure. This often
eliminates the need for additional physical constraints. Start with clock constraints and timing exception
constraints, and then add path specific delays, if needed. If performance requirements are still not met
after exploring the timing constraints, add spine constraints, then memory constraints, and, finally, region
constraints. See the "Timing Closure Procedures" section on page 3 for step-by-step instructions about
how to achieve timing closure.

Physical Constraints
Physical constraints for ProASICPLUS devices still use the GCF format. Actel recommends that you create a
GCF file specifically for physical constraints and an SDC file for timing constraints. You must import the
GCF file along with the netlist as a source file. Table 1 lists physical constraints (physical placement
constraints and global resource constraints) that are available. The SDC file is imported as an auxiliary file
anytime after the design has been compiled. Timing constraints imported in SDC or set in the Timer GUI
are stored in the DCS for use by Timer during TDPR. See the "Merging SDC constraints" section on page
10.

SDC Constraints
Libero IDE v5.2 supports the following SDC constraints for ProASICPLUS devices:

• create_clock -period period_value [-waveform edge_list] port_pin_list

– The create_clock constraint applies clock constraints to a clock pin or port in the design.

• set_max_delay [-from from_list] [-to to_list] delay_value

– The set_max_delay constraint sets the path delay from and to the specified pins or ports to a
restricted value.

• set_false_path -through through_list

– The set_false_path constraint identifies paths in the design that are to be marked as false, so
they are not considered during timing analysis. Libero IDE does not support –from and
–to options for the set_false_path constraint in Libero IDE v5.2.

• set_multicycle_path path_multiplier [–from from_list] [-to to_list]

– Use set_multicycle_path constraint when a path can take two clock periods or more. Libero
IDE v5.2 does not support -through option for the set_multicycle_path constraint.

Table 1 • List of Physical Constraints

Physical Placement Constraints Global Resources Constraints

set_io set_global

set_initial_io set_noglobal

set_empty_io use_global

set_io_region dont_fix_globals

set_location set_auto_global

set_initial_location set_auto_global_fanout

set_empty_location

set_net_region
2

ProASICPLUS Timing Closure in Libero IDE v5.2
Constraints to Avoid in the New ProASICPLUS TDPR Flow
Actel recommends that you avoid the following constraints in the new ProASICPLUS TDPR flow:

1. Avoid selective buffering and buffer prevention on nets during synthesis and/or TDPR.

For various reasons, such as reducing area utilization and controlling congestion, ProASICPLUS users
have been preventing buffering and replication of nets both in synthesis and layout. This results in
high fanout nets being passed to TDPR, which may negatively impact performance.

2. Avoid using physical placement or routing constraints such as set_location and set_critical.

In Libero IDE v5.2, performance goals may be achieved with timing constraints alone. Utilize
physical placement constraints (Table 1 on page 2) only when necessary. If not carefully used, the
physical placement constraints may adversely impact performance.

3. Do not use generate_paths and set_switch_threshold constraints. These constraints were used
in Libero IDE v5.1 and earlier releases but have no effect on TDPR in Libero IDE v5.2. Use timing
constraints to achieve similar results.

4. Do not run layout with the "Route Incrementally" option after modifying a global or clock
constraint.

If the placement changes considerably following the constraint modification, the router will have
difficulty and issue a series of repetitive warning messages. Perform a complete re-layout again
without using the "Route Incrementally" option after changing global or clock constraints.

Timing Closure Procedures
With the new ProASICPLUS TDPR flow introduced in Libero IDE v5.2, the place-and-route responds to the
timing constraints better than previous releases, typically resulting in better performance. This section
describes the steps in achieving timing closure for two different cases:

• "New Designs" section on page 3

• "Migrating Existing Designs with GCF Constraints to Libero IDE v5.2" section on page 7

New Designs
As mentioned in the previous section, Actel recommends that you explore more options with timing
constraints before adding in physical placement constraints. Follow the steps below for new designs or
designs with timing constraints created in Libero IDE v5.2 to achieve timing closure. After each layout,
determine if performance targets are achieved before proceeding to the next step. Generally, you can
achieve timing closure using step 1 to step 4 below.

1. Check timing exception constraints syntax

In the SDC file, verify that the set_false_path and set_multi_cycle_path constraints options
are in the Libero IDE v5.2 supported format (Table 2 on page 12).

2. Use timing constraints and check performance

Input the timing constraints via the Timer GUI or SDC timing constraint file. Use the "Multiple
Passes Layout" option and check whether performance can be achieved. If not, go to the next step.

3. Assign or adjust global and spine assignments

When there are global or spine assignments, check to verify if they are consistent with the general
design placement of memory blocks, core logic tiles, and pin assignments. If not, make the
necessary changes and use the Multiple Passes Layout option again. Check the performance and
proceed to the next step if performance is not yet achieved.

4. Consider following memory placement recommendations

Invoke the MultiView Navigator GUI and Timer to determine if the memory placement is the
bottleneck for the design performance (Figure 2 on page 4). To check whether the placement is
optimal or not:
3

ProASICPLUS Timing Closure in Libero IDE v5.2
– From the Timer GUI, verify if the memory blocks are in the critical path with nets that have high
timing delays (> 3 ns).

– From the MVN GUI, verify if the cascaded memory blocks are placed closely together. The
software will attempt to place the memory blocks intelligently for optimal performance.

– From the MVN GUI, verify if the memory blocks are placed closely to the fan-in/fan-out of the
core logic titles, spine, and I/O pins.

If you observe that any of the above are true, then perform Memory Placement in MVN GUI and
perform five multiple passes. Check the performance results. If the performance goals are not met,
proceed to the next step.

5. Apply path-specific timing constraints.

If there are less than 50 timing violations remaining at this point, add specific path delays using the
Timer GUI. A few iterations may be needed to eliminate all violations.

– In Timer, select the Paths tab and select the specific path sets such as "All Registers to All
Registers," "All Inputs to All Registers," or "All Registers to All Outputs" that violate timing
requirements. Select the path set and its corresponding path(s) that violate the timing.

– Set a path delay requirement on the violating paths in the corresponding MaxDelay column. For
Timer to accept and honor the new MaxDelay timing constraints, the new timing constraint
value must be tighter (smaller) than the existing global constraints. For example, the MaxDelay
for Path 1 must be less than 30 ns, and the MaxDelay for Path 5 must be less than 30 ns (Figure 3
on page 5). The new accepted constraints appear as the user-defined paths on the top portion
of the Timer -> Paths tab (Figure 4 on page 5).

– When there are only a few timing violations, perform incremental placement in the layout
stage. In this case, timing constraints can be met without affecting the performance of the rest
of the design.

Figure 2 • Validating Memory Placement in MVN
4

ProASICPLUS Timing Closure in Libero IDE v5.2
Figure 3 • Input to Register Paths That Violates Timing

Figure 4 • User-Specified Input to Register Paths
5

ProASICPLUS Timing Closure in Libero IDE v5.2
There are two types of incremental placement modes:

– Place Incremental ON Mode (Figure 5)

– Place Incremental FIX Mode (Figure 6)

For Incremental ON Mode, the placer runs partially with the new and tighter timing constraints as
defined by you. Choose this option when the number of violations is more than 25.

For Incremental FIX Mode, the existing placement is unchanged, and the performance
improvement comes from better routing. Choose this option when the number of violations is
minimal (approximately 10).

Please note that whenever timing constraints are modified, the router must be run in full mode
(the checkbox for "Route incrementally" must NOT be checked in the Layout Options).

Figure 5 • Place Incremental ON Mode

Figure 6 • Place Incremental Fix Mode
6

ProASICPLUS Timing Closure in Libero IDE v5.2
6. The final step in achieving timing closure is to perform floorplanning.

– Invoke the MVN GUI and look at the layout of the design

– Depending on the global utilization, memory placement, spine allocation, and pin placement,
either create an Inclusive Region(s) or an Empty Region(s)

– Make sure that the Region is 15-20% bigger than the required size to avoid congestion

Run Layout using the "Run Multiple Passes" option. If performance is still not achieved, this may be
the maximum that can be obtained for this netlist.

Migrating Existing Designs with GCF Constraints to Libero IDE v5.2
Follow this sequence of steps to ensure optimal performance of your design if you used GCF constraints in
a release earlier than Libero IDE v5.2. After each layout, evaluate if performance targets are achieved
before proceeding to the next step. Generally, you can achieve timing closure using step 1 to step 4.

1. Check timing exception constraints syntax

In the existing GCF file, verify that the format used is supported in Libero IDE v5.2. In particular,

set_multicycle_path and set_false_path (Table 2 on page 12). Then proceed with bringing
your design and GCF constraints into Libero IDE v5.2

2. Run TDPR and check performance

Use the Multiple Passes Layout option to obtain maximum performance. At this point, many
designs will meet performance goals.

3. Remove physical constraints and re-run Layout

Existing physical constraints may negatively impact performance. See the "Constraints to Avoid in
the New ProASICPLUS TDPR Flow" section on page 3.

4. Evaluate spine assignments

If there are spine assignments, check to verify if they are consistent with the general design
placement. Pre-existing assignments may not be optimal for Libero IDE v5.2 TDPR. If changes are
made, run Layout again and evaluate the performance. If no changes are needed, proceed to the
next step.

5. Apply path-specific timing constraints

If there are less than 50 timing violations remaining at this point, add specific path delays using the
Timer GUI. A few iterations may be needed to eliminate all violations.

To apply the path-specific timing constraints:

– From the Timer under the Paths tab, identify the specific path sets such as "All Registers to All
Registers," "All Inputs to All Registers," or "All Registers to All Outputs" that violate timing
requirements. Select the path set and its corresponding path(s) that violates the timing.
7

ProASICPLUS Timing Closure in Libero IDE v5.2
– Set a path delay requirement on the violating paths in the corresponding MaxDelay column. For
the Timer to accept and honor the new MaxDelay timing constraints, the new timing constraint
value must be tighter (smaller) than the max delayed derived from the clock period. For
example, the MaxDelay for Path 1 must be less than 9.74 ns, and the MaxDelay for Path 5 must
be less than 9.75 ns (Figure 7). The new accepted constraints appear as the user-defined paths on
the top portion of the Timer -> Paths tab (Figure 8 on page 9).

– When there are only a few timing violations, perform incremental placement in the layout
stage. In this case, timing constraints could be met without affecting the performance of the rest
of the design.

There are two types of incremental placement modes:

– Place Incremental ON Mode (Figure 5 on page 6)

– Place Incremental FIX Mode (Figure 6 on page 6)

For Incremental ON Mode, there is partial replacement with the new and tighter timing constraints
as defined by you. This option should be chosen when the numbers of violations are 25+.

For Incremental FIX Mode, the existing placement remains the same and the performance
improvement comes from better routing. This option should be chosen when the numbers of
violations are minimal (approximately 10).

Please note that whenever timing constraints are modified, the router must be run in full mode
(the checkbox for "Route incrementally" must NOT be checked in the Layout Options).

6. Confine the design to a region

The final step to achieving timing closure is to perform floorplanning

– Invoke the MVN GUI and look at the layout of the design.

– Depending on the global utilization, memory placement, spine allocation, and pin placement,
either create an Inclusive Region(s) or an Empty Region(s).

Figure 7 • Register to Register Paths That Violate Timing
8

ProASICPLUS Timing Closure in Libero IDE v5.2
– Make sure that the Region is 15-20% bigger than the required size to avoid congestion.

Run Layout using the "Run Multiple Passes" option. If performance is still not achieved, this may be
the maximum that can be obtained for this netlist.

Performance Improvements in Libero IDE v5.2

Improved Slack Budgeting
The new TDPR flow provides better budgeting of slacks among different types of timing constraints (Input
to Register, Register to Register and Register to Output). In multi-clock designs, where timing constraints
are not met, the margin or negative slacks of the constrained clocks will be more uniform when the
software attempts to meet the timing constraint.

Overall System Improvement
Generally, the enhanced automatic memory placement algorithm and the new TDPR flow show improved
overall system performance without adversely affecting the routability of the designs.

Figure 8 • User-Defined Register to Register Paths
9

ProASICPLUS Timing Closure in Libero IDE v5.2
Known Issues

Designs with Single Clock Constraint
Whether designs have a single clock or multiple clocks with a single constrained clock, the design will
always achieve the optimal performance for the constrained clock. As a result, changing the value of the
single clock constraint does not change the placement or the performance.

High Delay Net in Critical Path
In some situations, nets with high delay may exist in the critical paths. These nets are given a lower priority
during the pre-layout delay estimation and do not have the priority to use faster routing resources. In the
majority of the cases, you can use the Multiple Passes Layout option (with five passes) to resolve this issue,
or you can manually achieve this with the following steps:

Open up the post-layout *.ADB file with Libero IDE.

1. Use MultiView Navigator and Timer to identify this high delay net and its driver

2. Invoke Timer and add a path set for this net

3. For this path set, specify a very tight register to register max delay value (suggested value is path
delay minus the net delay).

4. Keep the rest of the constraints and run Place Incremental FIX mode (Figure 6 on page 6).

Merging SDC and GCF Timing Constraints into Libero IDE DCS

Merging SDC constraints
To merge SDC constraints, use a new check box "Keep existing timing constraints", in the Importing
Constraints dialog (Figure 9 on page 10). This option is "On" by default. When checked, timing constraints
in imported SDC files are additive to the constraints already existing in the DCS database. If "Keep existing
timing constraints" is not checked ("Off"), all the previous DCS timing constraints are removed and
replaced by those imported in the SDC files. The behavior of the "Off" option is new in Libero IDE v5.2
and is useful for ensuring a clean set of constraints is provided to TDPR.

Figure 9 • Importing Constraints Dialog
10

ProASICPLUS Timing Closure in Libero IDE v5.2
Merging GCF constraints
Importing a GCF file in Libero IDE v5.2 always results in appending the translated timing constraints to any
existing timing constraints in the DCS. Prior to Libero IDE v5.2, the default behavior with GCF was to
overwrite the previous constraints. With the automatic GCF2SDC conversion, there is no option to
completely replace existing DCS constraints with those newly imported. You should remove all undesired
constraints from the DCS before importing a GCF for conversion. To remove all timing constraints in the
DCS: Open Timer and select Edit > Remove All Constraints as shown in Figure 10 on page 11.

Using GCF for ProASICPLUS When Moving a Design to Libero
IDE v5.2 from a Previous Release
In Libero IDE v5.1 and earlier, TDPR for ProASICPLUS devices required that you apply timing constraints in
the GCF format.

In Libero IDE v5.1, the tool attempts to convert the constraints set in the Timer GUI or SDC to GCF format,
but the conversion did not always completely capture the user intent. This limited both TDPR and the
static timing analysis capability.

Beginning with Libero IDE v5.2, all GCF timing constraints are automatically converted to SDC. The
automatic GCF2SDC conversion happens in two situations:

• The first time a post-compile ADB created in Libero IDE v5.1 or earlier is opened in Libero IDE v5.2

• After compile, to convert any GCF timing constraints that were imported

After the GCF timing constraints are automatically converted and the equivalent SDC constraints are saved
into the DCS, an SDC file is exported that contains all constraints present in the DCS. A log appended in
the SDC file provides a detailed account of each translated constraint. See the "Merging GCF constraints"
section on page 11.

If the software is unable to read or write to the files used during conversion, the following error message
is provided in the Libero IDE log window:

Error: GCF2SDC Translation System: System error when generating the conversion file.
Unable to access disk.

Error: GCF2SDC conversion failed and a temporary log file will be created.

You should review the generated SDC and consider if it needs to be updated. Then import the SDC file
into Libero IDE.

Rules for GCF2SDC conversion:

Figure 10 • Removing Timing Constraints
11

ProASICPLUS Timing Closure in Libero IDE v5.2
• Verification rule: If a GCF constraint is not recognized by the conversion program, the translation of
that GCF constraint is skipped and a failure is reported in the log window (in the final status). This
information is included in the log in the exported SDC file.

• Matching rule: If an identical constraint already exists in the DCS, that GCF constraint translation is
skipped and the log will report the status as successful.

• Conflict rule: If a GCF constraint conflicts with a constraint already in the DCS, the new GCF
constraint gets priority over the existing constraint and the new constraint will be honored. The
previous constraint will appear as a comment in the exported SDC file.

• Ambiguity rule: If multiple options are possible during the conversion of a given constraint, one
option is selected. The others will appear as comments in the exported SDC file. This situation
happens when converting a GCF create_clock constraint set on a net.

For an existing design, when the ADB file is opened in Libero IDE v5.2, the tool automatically converts
timing constraints from the GCF format to SDC format. The new SDC constraints are then saved into DCS.
The GCF2SDC conversion will happen when the GCF file has the following timing constraints:

- create_clock

- set_multicycle_path

- set_false_path

- set_input_to_register_delay

- set_register_to_output_delay

- set_max_path_delay

Table 2 shows the mapping between GCF timing constraints and SDC constraints. Please note that the
Libero IDE v5.2 DCS does not support all options for set_false_path and set_multicycle_path. For this
reason, some GCF constraints will not have an equivalent effect when translated into SDC. However,
although they will not be used, these constraints with unsupported options are translated and saved, so as
not to lose the original user intent.

If the GCF constraint create_clock is applied to a net, it needs to be converted to the appropriate
potential clock port pin or pin driving that net. In some cases the automatic GCF to SDC conversion may
not be able to locate the appropriate driver. You should check your design and manually set a
create_clock for this clock.

Table 2 • Mapping GCF to SDC

GCF Command SDC Command

create_clock -period <period_value>
portname

create_clock -period period_value portname

create_clock -period <period_value>
netname

create_clock -period period_value
potential_clock_port_pin_name

set_false_path [-from from_port]
[-through any_port][-to to_port]

set_false_path -through through_list

set_input_to_register_delay <delay>
[-from inp_port]

set_max_delay delay_value
[-from from_list][-to to_list]

set_multicycle_path <num_cycles>
-from reg_port [-through_any_port]
[-to_port]

set_multicycle_path path_multiplier
[-from from_list][-to to_list]

set_resgister_to_output_delay <delay>
-to out_port

set_max_delay delay_value
[-from from_list][-to to_list]

set_max_delay -from first_pin_in_the_list
-to last_pin_in_the_list

set_max_delay delay_value [-from
from_list][-to to_list]
12

ProASICPLUS Timing Closure in Libero IDE v5.2
Important GCF to SDC Conversion Considerations
You may encounter the following situations during the GCF2SDC conversions:

1. Using multi-cycle constraints with a -from only or -to only.

Using -from only for multi-cycle constraints results in an excessive effort by Timer. This increases run
time and memory usage. Please use both -from and -to for multi-cycle constraints.

2. The -from and -to options for set_false_path and -through option for set_multi_cycle_path
are not recognized in Libero IDE v5.2.

Although these options can be imported, saved, and exported in Libero IDE v5.2, Timer does not
utilize these constraints for timing analysis and TDPR. These options are not seen in the Timer GUI.
Use only the supported constraint options listed in Table 2 on page 12.

3. For multi-cycle path constraints, Timer does only setup checking, no hold checking.

The hold check does not take the multi-cycle constraint into account, so you may see false hold
violations. As an alternative, use clock exceptions and manually check the minimum delay.
See Timer online help for information about clock exceptions.

4. GCF constraints set_register_to_output_delay and set_input_to_register_delay do not
have clock domain options.

Libero IDE does not support set_input_delay or set_output_delay SDC constraints. When
translating set_input_to_register_delay or set_register_to_output_delay GCF constraints
into SDC constraints, set_max_delay is used with all clock domains. However, this may result in the
design being over constrained in some cases. You must add the desired clock domain in the
translated SDC or in the Timer GUI.

5. GCF2SDC conversion will report successful completion even when there are errors or warnings
reported for some constraints.

Following GCF2SDC conversion, Libero IDE allows you to proceed to layout even if there are failures
reported during conversion. Therefore, it is important to review the log section in the SDC file
exported following conversion to ensure that all design constraints are set as expected before
proceeding with TDPR. Modifications can be made to the constraints in the SDC file or Timer GUI. If
the SDC file is modified, re-import the modified file. See the "Merging SDC constraints" section on
page 10.

6. If you use a wild card for set_input_to_register_delay or set_register_to_output_delay
constraints, GCF2SDC conversion will over-constrain the design. Consider the following example:

set_register_to_output_delay 12.000000 -to "*";

which is translated to the following SDC constraints:

set_max_delay 12.00 -from [all_registers] -to [get_ports {*}]

This applies to the constraint from all registers to all pins. You should modify the SDC to have the
constraint to output ports only.

Conclusion
In Libero IDE v5.2, Timer directly provides layout with the required information based on the user-
specified constraints. In cases where no user-specified constraints (clock or max-delays), Timer auto-
generates clock constraints for all potential clocks. With this flow, layout benefits from all features
implemented in the Libero IDE v5.2 Timer. This makes the software and timing for ProASICPLUS family
devices more predictable and user friendly and generally improves performance.
13

ProASICPLUS Timing Closure in Libero IDE v5.2
Related Documents

Application Notes
Static Timing Analysis Using Libero IDE's Timer
http://www.actel.com/documents/Static_Timing_Analysis_AN.pdf

Optimal Usage of Global Network Spines in ProASICPLUS Devices
http://www.actel.com/documents/APA_Spines_AN.pdf

Floorplanning ProASIC/ProASICPLUS Devices for Increased Performance
http://www.actel.com/documents/Flash_Floorplanning_AN.pdf

User’s Guides
Libero IDE User's Guide
http://www.actel.com/documents/libero_UG.pdf

Timer User's Guide
http://www.actel.com/documents/timer_UG.pdf

ChipEditor User's Guide
http://www.actel.com/documents/chipeditor_UG.pdf

List of Changes
Previous version Changes in current version 51900045-1 Page

51900045-0* Renamed application notes title from ProASICPLUS Timing-Driven Flow in
LiberoTM to ProASICPLUS Timing Closure in LiberoTM

Added Timing Closure Procedures page 3

Added Performance Improvement in Libero IDE v5.2 page 9

Added Known Issues page 10

Reorganized previous application notes

Revised Mapping GCF to SDC page 10

Note: *This is the part number located on the last page of the document.
14

http://www.actel.com/documents/Static_Timing_Analysis_AN.pdf
http://www.actel.com/documents/Flash_Floorplanning_AN.pdf
http://www.actel.com/documents/libero_UG.pdf
http://www.actel.com/documents/timer_UG.pdf
http://www.actel.com/documents/chipeditor_UG.pdf
http://www.actel.com/documents/Static_Timing_Analysis_AN.pdf
http://www.actel.com/documents/APA_Spines_AN.pdf
http://www.actel.com/documents/APA_Spines_AN.pdf
http://www.actel.com/documents/Flash_Floorplanning_AN.pdf
http://www.actel.com/documents/libero_UG.pdf
http://www.actel.com/documents/timer_UG.pdf
http://www.actel.com/documents/chipeditor_UG.pdf

51900045-1/05.04

http://www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong

39th Floor, One Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852.227.35712
Fax +852.227.35999

	ProASICPLUS Timing Closure in Libero® IDE v5.2
	Introduction
	Figure 1 . Design Flow for ProASICPLUS in Libero IDE v5.2

	Setting Constraints for New ProASICPLUS Designs in Libero IDE v5.2
	Physical Constraints
	Table 1 . List of Physical Constraints

	SDC Constraints

	Constraints to Avoid in the New ProASICPLUS TDPR Flow
	Timing Closure Procedures
	New Designs
	Figure 2 . Validating Memory Placement in MVN
	Figure 3 . Input to Register Paths That Violates Timing
	Figure 4 . User-Specified Input to Register Paths
	Figure 5 . Place Incremental ON Mode
	Figure 6 . Place Incremental Fix Mode

	Migrating Existing Designs with GCF Constraints to Libero IDE v5.2
	Figure 7 . Register to Register Paths That Violate Timing
	Figure 8 . User-Defined Register to Register Paths

	Performance Improvements in Libero IDE v5.2
	Improved Slack Budgeting
	Overall System Improvement

	Known Issues
	Designs with Single Clock Constraint
	High Delay Net in Critical Path

	Merging SDC and GCF Timing Constraints into Libero IDE DCS
	Figure 9 . Importing Constraints Dialog
	Merging SDC constraints
	Merging GCF constraints
	Figure 10 . Removing Timing Constraints

	Using GCF for ProASICPLUS When Moving a Design to Libero IDE v5.2 from a Previous Release
	Table 2 . Mapping GCF to SDC

	Important GCF to SDC Conversion Considerations
	Conclusion
	Related Documents
	Application Notes
	User’s Guides

	List of Changes

