
Application Note AC301
Adding Custom Peripherals to the AMBA Host and
Peripheral Buses

Introduction
The Actel CoreMP7 microprocessor is a soft-core implementation of the industry-standard ARM7TDMI-S™
and is optimized for maximum speed and minimum size in Actel flash-based FPGAs. The combination of
the ARM7TDMI-S microprocessor and FPGA enables designers to quickly implement ARM7-based systems
while also adding new features to existing systems, without the high cost of an ASIC.

Overview
CoreConsole, the Actel IP Deployment Platform, gives designers the ability to easily construct a system
around CoreMP7. CoreConsole is used in conjunction with the Actel IP vault to rapidly assemble a
processor-based system. The microprocessor's peripherals are selected from the IP vault and stitched to the
system bus within the CoreConsole environment. The resulting processor-based system is imported into
the Libero® Integrated Development Environment (IDE), where the designer can include additional
functionality. Additionally, CoreConsole provides the flexibility to add custom peripherals to either the
AMBA High-performance Bus (AHB) or the AMBA Peripheral Bus (APB). This application note focuses on
the procedures required to add custom APB peripherals.

Design Creation

Creating a CoreMP7 Design within CoreConsole
The CoreConsole IP Deployment Platform tool is a standalone microprocessor system builder that allows
the designer to choose from among CoreMP7 variants, along with the peripherals connected to the AHB
and APB interfaces. Once the CoreConsole design has been imported into Libero IDE, the remaining
unused logic can be utilized for implementing additional processor peripherals and other desired digital
functions.

Add Existing Components from CoreConsole
Start by launching the CoreConsole tool and using the existing library components available in the IP vault
to build your CoreMP7-based system (see the CoreConsole Users Guide for details on the tool's operation).
The system constructed in this example (Figure 1 on page 2), is comprised of the following components:

• CoreMP7/CoreMP7Bridge – ARM7TDMI-S/ARM native bus to AHB master

• CoreAHBLite – Single master AMBA High-performance bus interface

• CoreMemCtrl – Memory controller (AHB peripheral)

• CoreAHB2APB – AHB-to-APB bridge (AHB slave, APB master peripheral)

• CoreAPB – AMBA peripheral bus interface

• CoreGPIO – General purpose I/O interface (APB peripheral)

• CoreUARTapb – Universal Asynchronous Receiver Transmitter interface (APB peripheral)
June 2007 1
© 2007 Actel Corporation

http://www.actel.com/documents/CoreConsole_ug.pdf

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
CoreConsole automatically stitches the internal signals of the user-selected components to the AHB and
APB. Only signals that connect to (or from) the top-level to the processor-based subsystem and the desired
processor/peripheral interrupt must be manually stitched. Any custom peripherals that are not in the IP
vault must be manually added. CoreConsole allows connection of the APB to the top level of the
processor-based subsystem, where it can be manually connected to other APB peripherals.

Add a Custom Advanced Peripheral Bus (APB) Peripheral
For this example, a size-optimized UART is added to the APB. Figure 1 shows the completed block
diagram.

Provisions for Adding Custom Peripherals
The designer must first select an unused APB slave address for the custom peripheral and connect the APB
and slave select to the subsystem top level.

Figure 1 • Processor-Based Subsystem Block Diagram

Top-Level Design – ARM_UART_TOP

CoreAHB2APB

CoreAPB

APB_OUT

CoreUARTapb CoreGPIO

Custom Peripheral – UART TOP

CoreAHBLite

CoreMemCtrl
CorePM7

and Bridge

CoreConsole Subsystem – ARM UART
2

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
Using the Configuring Connection dialog box shown in Figure 2, the APB signals are connected to the
top level of the processor-based subsystem. In this example, APB slave address 7 is connected to the top
level and given the name is APB_OUT.

Figure 2 • CoreConsole – Connection Configuration Dialog Box
3

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
Figure 3 shows the completed subsystem. The APB signals interfacing with the custom APB peripheral are
included in the bussed signal named APB_OUT, which is found on the top level. The IP vault containing the
remaining components can be seen in the pane on the left hand side of the window, shown in Figure 3.

Once stitching has been completed, generation of the processor-based subsystem can begin for
importation into Libero IDE. Selecting the Generate tab in the CoreConsole window and clicking the
Save & Generate button starts this process. CoreConsole can also generate a memory map of the system.
To generate the memory map, select View on the menu bar and then choose Memory Map. The memory
map includes the base address and individual register information for each peripheral that was added
from the component IP vault. Figure 4 on page 5 shows the memory map for the example subsystem. The
base addresses of the CoreUARTapb and CoreGPIO components are shown, as well as the specific register
information for CoreUARTapb. Note custom peripherals that will be outside of CoreConsole are not
reported in the memory map, as CoreConsole is not aware of the components specifics. This information
must be managed by the designer.

Figure 3 • Completed Subsystem
4

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
Import the Processor-Based Subsystem into Libero IDE
Next, import the generated CoreConsole design containing the files for synthesis and simulation into
Libero IDE. Import the CoreConsole_DesignName.ccp file located in <CoreConsole Installation
Directory>\LiberoExport\DesignName. Figure 5 on page 6 shows the design files that are imported into
Libero IDE. The top level of the imported design is ARM_UART, with the CoreConsole components
instantiated as sub-blocks of the top level. Also visible in this view is the overall top level of the design,
ARM_UART_TOP, which instantiates the CoreMP7-based subsystem from CoreConsole and the custom
peripheral, UART_TOP.

Figure 4 • Memory Map
5

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
After the CoreConsole design is imported into Libero IDE, the top-level ports of the CoreConsole
subsystem are accessible at the top level of the imported CoreConsole design. The entity and port
definitions for this example system are shown below. The signals containing the APB_OUT prefix are the
APB signals connected to the top level for connection to the custom peripheral.

entity ARM_UART is

 -- Port list

 port(

 APB_OUT_PADDR : out std_logic_vector(23 downto 0);

 APB_OUT_PENABLE : out std_logic;

 APB_OUT_PRDATA : in std_logic_vector(31 downto 0);

 APB_OUT_PSELx : out std_logic;

 APB_OUT_PWDATA : out std_logic_vector(31 downto 0);

 APB_OUT_PWRITE : out std_logic;

 MEMIntf_FlashCSN : out std_logic;

 MEMIntf_FlashOEnN : out std_logic;

 MEMIntf_FlashWEnN : out std_logic;

 MEMIntf_MemAddr : out std_logic_vector(27 downto 0);

 MEMIntf_MemDataIn : in std_logic_vector(31 downto 0);

 MEMIntf_MemDataOEnN : out std_logic;

 MEMIntf_MemDataOut : out std_logic_vector(31 downto 0);

Figure 5 • Design Hierarchy in Libero IDE

CoreConsole
Subsystem

Custom
Peripheral
6

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
 MEMIntf_MemReadN : out std_logic;

 MEMIntf_MemWriteN : out std_logic;

 MEMIntf_SramByte0N : out std_logic;

 MEMIntf_SramByte1N : out std_logic;

 MEMIntf_SramByte2N : out std_logic;

 MEMIntf_SramByte3N : out std_logic;

 MEMIntf_SramCSN : out std_logic;

 MEMIntf_SramOEnN : out std_logic;

 MEMIntf_SramWEnN : out std_logic;

 NSYSRESET : in std_logic;

 SYSCLK : out std_logic;

 gpio_in : in std_logic_vector(31 downto 0);

 gpio_out : out std_logic_vector(31 downto 0);

 nFIQ : in std_logic;

 nIRQ : in std_logic;

 uart_rcv_full : out std_logic;

 uart_rx : in std_logic;

 uart_tx : out std_logic;

 uart_txrdy : out std_logic

);

end ARM_UART;
7

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
Attach the Custom Peripheral to the CoreConsole Subsystem
Connections to Peripheral

The block diagram showing the connections (marked with an asterisk) between the custom peripheral and
the CoreMP7-based subsystem is shown in Figure 6. Table 1 lists the descriptions of the signals.

Figure 6 • Signal Connections Between the CoreMP7-Based Subsystem and the Custom Peripheral

Table 1 • Signal Descriptions in CoreMP7-Based Subsystem

Signal Name Description

APB_OUT_PWRITE Active high write / active low read signal for APB slaves. Connect this signal to the enable
input of all APB peripheral slaves.

APB_OUT_PENABLE Active high data valid strobe for all slaves. Connect this signal to the enable input of all
APB peripheral slaves.

APB_OUT_PSELx Individual active high select signal for each slave to indicate host access. In this example,
the internal select signal is labeled APB_OUT_PSELx and is connected to the APB slave
peripheral in slot 7.

APB_OUT_PADDR[23:0] APB Slave address. Connect to all APB slave peripheral address inputs.

APB_OUT_PWDATA[31:0] Write data output of the APB fabric; becomes write input to peripheral. Connect this signal
to the data input of all APB peripheral slaves.

APB_OUT_PRDATA[31:0] Peripheral data output, which becomes the input to the APB Bus block. Connect this signal
to the read output of all APB peripheral slaves.

HCLK Internal subsystem clock. Connect this to the clock input of all APB peripheral slaves.
8

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
Design Verification
Simulation

After the top-level design is created and all custom peripherals have been added to the processor-based
subsystem, the next step is simulation. Simulating a design containing a CoreConsole subsystem consists of
verifying the register interface between the processor core and attached peripherals. This is accomplished
by using the CoreConsole-generated testbench along with the following modifications.

If the CoreMP7-based subsystem is instantiated as a hierarchical block in a larger design, the CoreConsole-
generated testbench, located in the Libero IDE project CoreConsole directory, must be copied to the
stimulus directory of the top-level project. Figure 7 on page 12 highlights the original testbench location
and the copied location in the project's hierarchy.

The file, testbench.vhd, is located in the following directory:

<Libero Project>\coreconsole\coreconsole_project_name.

The following changes need to be made to the original testbench so the simulation will run correctly:

1. The CoreMP7 top-level entity description in the testbench must be replaced by the new top-level
entity description. The "Original Testbench" section and the "Modified Testbench" section on page
11 show the entity descriptions from the original and modified testbenches. The differences are as
follows:

– Component name change from processor subsystem to the top-level design name

– Removal of APB bus signals from the top-level interface

– Addition of the clock and serial transmit and receive data for the custom peripheral

2. The component port mapping must also be modified to reflect the changes to the top level.

Original Testbench
-- Component to test

 component ARM_UART

 -- Port list

 port(

 -- Inputs

 APB_OUT_PRDATA: in std_logic_vector(31 downto 0);

 NSYSRESET : in std_logic;

 SYSCLK : in std_logic;

 uart_rx : in std_logic;

 -- Outputs

 APB_OUT_PADDR : out std_logic_vector(23 downto 0);

 APB_OUT_PENABLE : out std_logic;

 APB_OUT_PSELx : out std_logic;

 APB_OUT_PWDATA: out std_logic_vector(31 downto 0);

 APB_OUT_PWRITE : out std_logic;

 HCLK : out std_logic;

 -- Memory signals

 MEMIntf_FlashCSN : out std_logic;

 MEMIntf_FlashOEnN : out std_logic;

 MEMIntf_FlashWEnN: out std_logic;

 MEMIntf_MemAddr : out std_logic_vector(27 downto 0);

 MEMIntf_MemDataIn : in std_logic_vector(31 downto 0);
9

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
 MEMIntf_MemDataOEnN : out std_logic;

 MEMIntf_MemDataOut : out std_logic_vector(31 downto 0);

 MEMIntf_MemReadN : out std_logic;

 MEMIntf_MemWriteN: out std_logic;

 MEMIntf_SramByte0N : out std_logic;

 MEMIntf_SramByte1N : out std_logic;

 MEMIntf_SramByte2N : out std_logic;

 MEMIntf_SramByte3N : out std_logic;

 MEMIntf_SramCSN : out std_logic;

 MEMIntf_SramOEnN : out std_logic;

 MEMIntf_SramWEnN : out std_logic;

--GPIO signals

 gpio_in : in std_logic_vector(31 downto 0);

 gpio_out : out std_logic_vector(31 downto 0);

 -- Interrupts

 Nfiq: in std_logic;

 nIRQ : in std_logic;

 -- UART signals

 uart_rcv_full : out std_logic;

 uart_tx : out std_logic;

 uart_txrdy : out std_logic

);

 end component;
10

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
Modified Testbench
-- Component to test

 component ARM_UART_TOP

 -- Port list

 port(

 NSYSRESET : in std_logic;

 SYSCLK : in std_logic;

 HCLK : out std_logic;

 -- memory signals

 MEMIntf_FlashCSN: out std_logic;

 MEMIntf_FlashOEnN : out std_logic;

 MEMIntf_FlashWEnN : out std_logic;

 MEMIntf_MemAddr : out std_logic_vector(27 downto 0);

 MEMIntf_MemDataIn : in std_logic_vector(31 downto 0);

 MEMIntf_MemDataOEnN : out std_logic;

 MEMIntf_MemDataOut: out std_logic_vector(31 downto 0);

 MEMIntf_MemReadN : out std_logic;

 MEMIntf_MemWriteN : out std_logic;

 MEMIntf_SramByte0N : out std_logic;

 MEMIntf_SramByte1N : out std_logic;

 MEMIntf_SramByte2N : out std_logic;

 MEMIntf_SramByte3N : out std_logic;

 MEMIntf_SramCSN : out std_logic;

 MEMIntf_SramOEnN : out std_logic;

 MEMIntf_SramWEnN : out std_logic;

 -- GPIO signals

 gpio_in : in std_logic_vector(31 downto 0);

 gpio_out : out std_logic_vector(31 downto 0);

 -- Interrupts

 nFIQ : in std_logic;

 nIRQ : in std_logic;

 -- UART signals

 uart_rcv_full : out std_logic;

 uart_rx : in std_logic;

 uart_tx : out std_logic;

 uart_txrdy : out std_logic;

 -- tiny UART signals

 MASTER_CLK : in std_logic; -- global clock signal

 RX_DATA_IN : in std_logic; -- serial receive input

 TX_OUT : out std_logic -- serial data out

);

 end component;
11

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
In the default testbench, the only signals displayed in the wave window by default are NSYSRESET and
SYSCLK. To add additional signals, the testbench could be modified further to accommodate additional
signals or the designer could navigate through the hierarchy within ModelSim® and add the desired
signals.

Bus Functional Simulation Model

The Bus Functional Model (BFM) is a cycle-accurate simulation model of the CoreMP7 ARM7TDMI-S
processor core being implemented. A BFM is generated from the CoreConsole tool, which also generates
generic test scriptlets to correctly model and test the peripheral components selected within CoreConsole
(excluding the manually added custom peripherals). The Bus Functional simulation file structure is
composed of the BFM, subsystem.bfm, and individual test scriptlets that are associated with each
peripheral component. The naming convention for the test scriptlets is peripheral_name_scriptlet.bfm.
Each time ModelSim is invoked for a new simulation, the subsystem_i.bfm file is automatically created
from the peripheral scriptlets. For this reason, edits should not be made to the subsystem_i.bfm file, as
they will be overwritten. The subsystem_i.bfm file acts as the top-level script file, managing the memory
map of the peripherals and including each of the peripheral scriptlets to be executed. Each of the scriptlet

Figure 7 • Libero IDE File Manager View

Scriptlet Files

subsystem.bfm
Original Testbench

Modified Testbench

Scriptlet Files

subsystem_i.bfm
12

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
files contain read and write commands to be performed on the peripheral under test. When the generic
scriptlets are created, they consist of sample register accesses and are not exhaustive. Editing the
peripheral scriptlet files is necessary to exhaustively test the CoreMP7-based subsystem and to mimic
external events that may drive the embedded microprocessor. To include a custom peripheral, the
following changes are required:

1. The subsystem.bfm file must be modified to include the memory map of the custom peripheral and
its corresponding scriptlet file.

2. The custom peripheral's scriptlet file must be created to include commands to verify the CoreMP7
peripheral interface and any other tests that may be required.

The easiest way to create a scriptlet for the custom peripheral is to navigate to the <Libero
Project>\simulation directory, copy and rename one of the existing scriptlet files, and then modify its
contents. The code below represents a portion of the subsystem.bfm file that was generated by
CoreConsole. The bold italic lines represent the modifications required to add the custom peripheral into
the simulation. The specific instance of a peripheral is mapped to a base address and then linked to its
component. This format allows for multiple instantiations of the same component to be memory mapped.

#---

Memory Map

Define name and base address of each resource.

memmapresource_namebase address

#---

memmap CoreUARTapb_000xc3000000;

memmap CoreGPIO_00 0xc5000000;

memmap UART_TOP_0 0xc7000000;

#---

Include resource scriptlets

includecomponent_nameinstance_name

#---

include CoreUARTapb CoreUARTapb_00;

include CoreGPIO CoreGPIO_00;

include UART_TOP uart_top_0;

Scriptlet Files

For this example, a test scriptlet was created to test the register interface to the custom UART peripheral.
The register definition of the UART is given in Table 2:

Table 2 • Register Definition of the UART

Register Offset

Control 0

Transmit 4

Receive 8

Status C
13

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
The scriptlet consists of read and write operations to the peripheral's control register to test connectivity.
The UART is then configured for loopback mode, data is written to the transmit register, the status
register is polled for a received data indication, after which the receive register is read and compared
against the expected transmitted value. The script is as follows:

Simulation

Once all modifications to the testbench and subsystem.bfm are completed and the scriptlet created, the
design can be simulated. Invoking ModelSim from within Libero IDE compiles and executes all the
necessary files. The waveform in Figure 8 on page 15 shows the activity on the APB that corresponds to
the custom scriptlet created in the previous section, up to and including the polling activity. The UART is
being accessed when the apb_out_psel7 signal is high. Figure 9 on page 15 shows the end of the polling
activity and completion with a successful read of the UART receive register. These UART accesses, along
with the accesses to the other peripheral components in the design, are also displayed in the ModelSim
transcript window, shown in Figure 10 on page 16.

Function width resource offset data

readcheck b VAR_resource 0x00 0x00; # Expect value 00

write b VAR_resource 0x00 0x05;

readcheck b VAR_resource 0x00 0x05; # Expect value 05

write b VAR_resource 0x00 0x01;

readcheck b VAR_resource 0x00 0x01; # Expect value 01

write b VAR_resource 0x00 0x02;

readcheck b VAR_resource 0x00 0x02; # Expect value 02

write b VAR_resource 0x00 0x04;

readcheck b VAR_resource 0x00 0x04; # Expect value 04

write b VAR_resource 0x04 0x05; # Write 0x05 to transmit data
register

write b VAR_resource 0x00 0x05; # Write 0x05 to control
register, enable UART and loop
back mode write

write b VAR_resource 0x00 0x0D; # Write 0x0d to control
register, initial settings,
enable write

wait 10; # Wait 10 clock cycles

write b VAR_resource 0x00 0x05; # Write 0x0d to control
register, initial settings,
disable write indication

poll b VAR_resource 0x0c 0x01; # Poll status register

readcheck b VAR_resource 0x08 0x05; # Read receive register, expect
05 to match transmit data
14

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
Figure 8 • UART Register Initialization

Figure 9 • UART Receive Register Read
15

Adding Custom Peripherals to the AMBA Host and Peripheral Buses
Conclusion
Using CoreConsole in conjunction with Libero IDE, a CoreMP7-based design can be constructed quickly
and easily. The techniques described in this document allow peripherals currently not present in the
CoreConsole IP Vault to quickly and easily be added to an existing CoreMP7 system and their verification
through simulation.

Related Documents

User’s Guide
CoreConsole Users Guide

http://www.actel.com/documents/CoreConsole_ug.pdf

Figure 10 • ModelSim Transcript Display
16

http://www.actel.com/documents/CoreConsole_ug.pdf
http://www.actel.com/documents/CoreConsole_ug.pdf

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

River Court, Meadows Business Park
Station Approach, Blackwater
Camberley, Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
www.jp.actel.com

Actel Hong Kong

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn
51900162-0/6.07

http://www.jp.actel.com
http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com.cn
http://www.actel.com

	Adding Custom Peripherals to the AMBA Host and Peripheral Buses
	Introduction
	Overview
	Design Creation
	Creating a CoreMP7 Design within CoreConsole
	Figure 1 . Processor-Based Subsystem Block Diagram
	Figure 2 . CoreConsole - Connection Configuration Dialog Box
	Figure 3 . Completed Subsystem
	Figure 4 . Memory Map
	Figure 5 . Design Hierarchy in Libero IDE
	Figure 6 . Signal Connections Between the CoreMP7-Based Subsystem and the Custom Peripheral
	Table 1 . Signal Descriptions in CoreMP7-Based Subsystem
	Figure 7 . Libero IDE File Manager View
	Table 2 . Register Definition of the UART
	Figure 8 . UART Register Initialization
	Figure 9 . UART Receive Register Read
	Figure 10 . ModelSim Transcript Display

	Conclusion
	Related Documents
	User’s Guide

