
UG0773
User Guide

PolarFire FPGA SmartDebug
NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

 PolarFire SmartDebug User Guide

 3

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does Microsemi
assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must
conduct and complete all performance and other testing of the products, alone and together with,
or installed in, any end-products. Buyer shall not rely on any data and performance specifications
or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party
any patent rights, licenses, or any other IP rights, whether with regard to such information itself or
anything described by such information. Information provided in this document is proprietary to
Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor and
system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization
devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions;
security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet
ICs and midspans; as well as custom design capabilities and services. Microsemi is
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

5-02-00773-1/05.17

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
www.microsemi.com

©2017 Microsemi Corporation. All
rights reserved. Microsemi and
the Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks
and service marks are the
property of their respective
owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

 PolarFire SmartDebug User Guide

 4

Table of Contents

Table of Contents .. 4

Welcome to SmartDebug ... 6
Introduction to SmartDebug .. 6
Getting Started with SmartDebug.. 7
Using SmartDebug ... 7
Create Standalone SmartDebug Project ... 7

SmartDebug User Interface ... 10
Standalone SmartDebug User Interface .. 10
Programming Connectivity and Interface... 11
View Device Status ... 14

Debugging .. 17
Debug FPGA Array ... 17
Hierarchical View .. 17
Netlist View .. 19
Live Probes .. 20
Active Probes ... 20
Probe Grouping (Active Probes Only) ... 21
Memory Blocks ... 24
Probe Insertion (Post-Layout) ... 29
Debug uPROM ... 39

SmartDebug Tcl Commands.. 44
SmartDebug Tcl Support .. 44
add_probe_insertion_point ... 45
add_to_probe_group .. 45
create_probe_group ... 46
delete_active_probe ... 46
get_programmer_info ... 46
load_active_probe_list .. 47
loopback_mode .. 47
move_to_probe_group .. 47
program_probe_insertion .. 48
read_active_probe .. 48
read_lsram ... 49
read_usram .. 49
remove_from_probe_group .. 50
remove_probe_insertion_point .. 51
save_active_probe_list ... 51

 PolarFire SmartDebug User Guide

 5

select_active_probe .. 51
set_live_probe .. 52
smartbert_test .. 52
static_pattern_transmit ... 54
ungroup .. 55
unset_live_probe .. 55
uprom_read_memory ... 55
write_active_probe ... 56
write_lsram ... 56
write_usram .. 57

Frequently Asked Questions ... 59
How do I monitor a static or pseudo-static signal? ... 59
How do I force a signal to a new value? .. 59
How do I perform simple Smart BERT tests? .. 60
How do I read LSRAM or USRAM content? .. 61
How do I change the content of LSRAM or USRAM? .. 62
How do I read the health check of the Transceiver? .. 63
How do I read the health check of the Transceiver? .. 64

 PolarFire SmartDebug User Guide

 6

Welcome to SmartDebug

Introduction to SmartDebug
Design debug is a critical phase of FPGA design flow. Microsemi’s SmartDebug tool complements design
simulation by allowing verification and troubleshooting at the hardware level. SmartDebug provides access
to SRAM, transceiver, uPROM, and probe capabilities. Microsemi PolarFire FPGA devices have built-in
probe logic that greatly enhance the ability to debug logic elements within the device. SmartDebug accesses
the built-in probe points through the Active Probe and Live Probe features, which enables designers to
check the state of inputs and outputs in real-time without re-layout of the design.

Use Models
SmartDebug can be run in two modes:

• Integrated mode from the Libero Design Flow
• Standalone mode

Integrated Mode

When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug
FPGA Array.
To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click
SmartDebug Design.

Standalone Mode

SmartDebug can be installed separately in the setup containing FlashPro, FlashPro Express, and Job
Manager. This provides a lean installation that includes all the programming and debug tools to be installed
in a lab environment for debug. In this mode, SmartDebug is launched outside of the Libero Design Flow.
When launched in standalone mode, you must to go through SmartDebug project creation and import a
Design Debug Data Container (DDC) file, exported from Libero, to access all debug features in the
supported devices.
Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified I/O.

Standalone Mode Use Model Overview

The main use model for standalone SmartDebug requires users to generate the DDC file from Libero and
import it into a SmartDebug project to obtain full access to the device debug features. Alternatively,
SmartDebug can be used without a DDC file with a limited feature set.

Supported Families, Programmers, and Operating Systems
Programming and Debug: PolarFire
Programmers: FlashPRO3, FlashPRO4, and FlashPRO5
Operating Systems: Windows XP, Windows 7, Windows 10, and RHEL 6.x

 PolarFire SmartDebug User Guide

 7

Getting Started with SmartDebug
This topic introduces the basic elements and features of SmartDebug. If you are already familiar with the
user interface, proceed to the Solutions to Common Issues Using SmartDebug or Frequently Asked
Questions sections.
SmartDebug enables you to use JTAG to interrogate and view embedded silicon features and device status
). SmartDebug is available as a part of the FlashPro programming tool.
See Using SmartDebug for an overview of the use flow.
You can use the debugger to:

• Get device status and view diagnostics
• Use the Embedded Flash Memory Debug GUI to read out and compare your content with your original

files

Using SmartDebug
The most common flow for SmartDebug is:

1. Create your design. You must have a FlashPro programmer connected to use SmartDebug.
2. Expand Debug Design and double-click Smart Debug Design in the Design Flow window.

SmartDebug opens for your target device.
3. Click View Device Status to view the device status report and check for issues.
4. Examine individual silicon features, such as FPGA debug.

Create Standalone SmartDebug Project
A standalone SmartDebug project can be configured in two ways:
• Import DDC files exported from Libero
• Construct Automatically

From the SmartDebug main window, click Project and choose New Project. The Create SmartDebug
Project dialog box opens.

 PolarFire SmartDebug User Guide

 8

Figure 1 · Create SmartDebug Project Dialog Box

Import from DDC File (created from Libero)
When you select the Import from DDC File option in the Create SmartDebug Project dialog box, the Design
Debug Data of the target device and all hardware and JTAG chain information present in the DDC file
exported in Libero are automatically inherited by the SmartDebug project. The programming file information
loaded onto other Microsemi devices in the chain is also transferred to the SmartDebug project.
Debug data is imported from the DDC file (created through Export SmartDebug Data in Libero) into the
debug project, and the devices are configured using data from the DDC file.

Construct Automatically
When you select the Construct Automatically option, a debug project is created with all the devices
connected in the chain for the selected programmer. This is equivalent to Construct Chain Automatically in
FlashPRO.

Configuring a Generic Device
For Microsemi devices having the same JTAG IDCODE (i.e., multiple derivatives of the same Die), the
device type must be configured for SmartDebug to enable relevant features for debug. The device can be
configured by loading the programming file, by manually selecting the device using Configure Device, or by
importing DDC files through Programming Connectivity and Interface. When the device is configured, all
debug options are shown.
For debug projects created using Construct Automatically, you can use the following options to debug the
devices:

• Load the programming file – Right-click the device in Programming Connectivity and Interface.
• Import Debug Data from DDC file – Right-click the device in Programming Connectivity and Interface.

The appropriate debug features of the targeted devices are enabled after the programming file or DDC file is
imported.

 PolarFire SmartDebug User Guide

 9

Connected FlashPRO Programmers
The drop-down lists all FlashPro programmers connected to the device. Select the programmer connected
to the chain with the debug device. At least one programmer must be connected to create a standalone
SmartDebug project.
Before a debugging session or after a design change, program the device through Programming
Connectivity and Interface.

See Also
Programming Connectivity and Interface
View Device Status

 PolarFire SmartDebug User Guide

 10

SmartDebug User Interface

Standalone SmartDebug User Interface
You can start standalone SmartDebug from the Libero installation folder or from the FlashPRO installation
folder.

Windows:
<Libero Installation folder>/Designer/bin/sdebug.exe
<FlashPRO Installation folder>/bin/sdebug.exe

Linux:
<Libero Installation folder>/ bin/sdebug
<FlashPRO Installation folder>/bin/sdebug

Figure 2 · Standalone SmartDebug Main Window

Project Menu
The Project menu allows you do the following:
• Create new SmartDebug projects (Project > New Project)
• Open existing debug projects (Project > Open Project)

 PolarFire SmartDebug User Guide

 11

• Execute SmartDebug-specific Tcl scripts (Project > Execute Script)
• Export SmartDebug-specific commands to a script file (Project > Export Script File)
• See a list of recent SmartDebug projects (Project > Recent Projects).

Log Window
SmartDebug displays the Log window by default when it is invoked. To suppress the Log window display,
click the View menu and toggle View Log.
The Log window has four tabs:

Messages – displays standard output messages
Errors – displays error messages
Warnings – displays warning messages
Info – displays general information

Tools Menu
The Tools menu includes Programming Connectivity and Interface and Programmer Settings options, which
are enabled after creating or opening a SmartDebug project.

Programming Connectivity and Interface
To open the Programming Connectivity and Interface dialog box, from the standalone SmartDebug Tools
menu, choose Programming Connectivity and Interface. The Programming Connectivity and Interface
dialog box displays the physical chain from TDI to TDO.

Figure 3 · Programming Connectivity and Interface Dialog Box – Project created using Import from DDC File

All devices in the chain are disabled by default when a standalone SmartDebug project is created using the
Construct Automatically option in the Create SmartDebug Project dialog box.

Figure 4 · Programming Connectivity and Interface window – Project created using Construct Automatically

 PolarFire SmartDebug User Guide

 12

The Programming Connectivity and Interface dialog box includes the following actions:
• Construct Chain Automatically - Automatically construct the physical chain.
Running Construct Chain Automatically in the Programming Connectivity and Interface removes all
existing debug/programming data included using DDC/programming files. The project is the same as a
new project created using the Construct Chain Automatically option.

• Scan and Check Chain – Scan the physical chain connected to the programmer and check if it
matches the chain constructed in the scan chain block diagram.

• Run Programming Action – Option to program the device with the selected programming procedure.
When two devices are connected in the chain, the programming actions are independent of the device.

• Zoom In – Zoom into the scan chain block diagram.
• Zoom Out – Zoom out of the scan chain block diagram.

Hover Information
The device tooltip displays the following information if you hover your cursor over a device in the scan chain
block diagram:
• Name: User-specified device name. This field indicates the unique name specified by the user in the

Device Name field in Configure Device (right-click Properties).
• Device: Microsemi device name.
• Programming File: Programming file name.
• Programming action: The programming action selected for the device in the chain when a

programming file is loaded.
• IR: Device instruction length.
• TCK: Maximum clock frequency in MHz to program a specific device; standalone SmartDebug uses

this information to ensure that the programmer operates at a frequency lower than the slowest device
in the chain.

Device Chain Details
The device within the chain has the following details:

• User-specified device name

 PolarFire SmartDebug User Guide

 13

• Device name
• Programming file name
• Programming action – Select Enable Device for Programming to enable the device for programming.

Enabled devices are green, and disabled devices are grayed out.

Right-click Properties
The following options are available when you right-click a device in the Programming Connectivity and
Interface dialog box.

Configure Device - Ability to reconfigure the device.

• Family and Die: The device can be explicitly configured from the Family, Die drop-down.
• Device Name: Editable field for providing user-specified name for the device.

Enable Device for Programming - Select to enable the device for programming. Enabled devices are
shown in green, and disabled devices are grayed out.
Load Programming File - Load the programming file for the selected device.
Select Programming Procedure/Actions- Option to select programming action/procedures for the devices
connected in the chain.
• Actions: List of programming actions for your device.
• Procedures: Advanced option; enables you to customize the list of recommended and optional

procedures for the selected action.
Import Debug Data from DDC File - Option to import debug data information from the DDC file.
The DDC file selected for import into device must be created for a compatible device. When the DDC file is
imported successfully, all current device debug data is removed and replaced with debug data from the
imported DDC file.
The JTAG Chain configuration from the imported DDC file is ignored in this option.
If a programming file is already loaded into the device prior to importing debug data from the DDC file, the
programming file content is replaced with the content of the DDC file (if programming file information is
included in the DDC file).

Debug Context Save
Debug context refers to the user selections in debug options such as Debug FPGA Array, Debug
Transceiver, and View Flash Memory Content. In standalone SmartDebug, the debug context of the current
session is saved or reset depending on the user actions in Programming Connectivity and Interface.
The debug context of the current session is retained for the following actions in Programming Connectivity
and Interface:

• Enable Device for Programming
• Select Programming Procedure/Actions

 PolarFire SmartDebug User Guide

 14

• Scan and Check Chain
• Run Programming Action

The debug context of the current session is reset for the following actions in Programming Connectivity and
Interface:

• Auto Construct – Clears all the existing debug data. You need to reimport the debug data from DDC
file.

• Import Debug Data from DDC file
• Configure Device – Renaming the device in the chain
• Configure Device – Family/Die change
• Load Programming File

Selecting Devices for Debug
Standalone SmartDebug provides an option to select the devices connected in the JTAG chain for debug.
The device debug context is not saved when another debug device is selected.

View Device Status
Click View Device Status in the standalone SmartDebug main window to display the Device Status Report.
The Device Status Report is a complete summary of IDCode, device certificate, design information,
programming information, digest, and device security information. Use this dialog box to save or print your
information for future reference.

 PolarFire SmartDebug User Guide

 15

Figure 5 · Device Status Report

IdCode
IDCode read from the device under debug.

Device Certificate
Device certificate displays Family and Die information if device certificate is installed on the device.
If the device certificate is not installed on the device, a message indicating that the device certificate may not
have been installed is shown.

Design Information
Design Information displays the following:

• Design Name

 PolarFire SmartDebug User Guide

 16

• Design Checksum
• Design Version

Digest Information
Digest Information displays Fabric Digest, sNVM Digest (if applicable) computed from the device during
programming. sNVM Digest is shown when sNVM is used in the design.

Device Security Settings
Device Security Settings displays information about your security settings, including live probes, JTAG
boundary scan, global key modes, and user keys.

Programming Information
Programming Information displays the following:

• Cycle Count
• Algorithm Version
• Programmer
• Software Version
• Programming Software
• Programming Interface Protocol
• Programming File Type

 PolarFire SmartDebug User Guide

 17

Debugging

Debug FPGA Array
In the Debug FPGA Array dialog box, you can view your Live Probes, Active Probes, Memory Blocks, and
Insert Probes (Probe Insertion).
The Debug FPGA Array dialog box includes the following four tabs:
• Live Probes
• Active Probes
• Memory Blocks
• Probe Insertion

Hierarchical View
The Hierarchical View lets you view the instance level hierarchy of the design programmed on the device
and select the signals to add to the Live Probes, Active Probes, and Probe Insertion tabs in the Debug
FPGA Array dialog box. Logical and physical Memory Blocks can also be selected.
• Instance – Displays the probe points available at the instance level.
• Primitives – Displays the lowest level of probeable points in the hierarchy for the corresponding

component —i.e., leaf cells (hard macros on the device).

You can expand the hierarchy tree to see lower level logic.
Signals with the same name are grouped automatically into a bus that is presented at instance level in the
instance tree.
The probe points can be added by selecting any instance or the leaf level instance in the Hierarchical View.
Adding an instance adds all the probe able points available in the instance to Live Probes, Active Probes,
and Probe Insertion.

 PolarFire SmartDebug User Guide

 18

Figure 6 · Hierarchical View

Search
In Live Probes, Active Probes, Memory Blocks, and the Probe Insertion UI, a search option is available in
the Hierarchical View. You can use wildcard characters such as * or ? in the search column for wildcard
matching.

 PolarFire SmartDebug User Guide

 19

Probe points of leaf level instances resulting from a search pattern can only be added to Live Probes, Active
Probes, and the Probe Insertion UI. You cannot add instances of search results in the Hierarchical View.

Netlist View
The Netlist View displays a flattened net view of all the probe-able points present in the design, along with
the associated cell type.

Figure 7 · Netlist View

 PolarFire SmartDebug User Guide

 20

Search
A search option is available in the Netlist View for Live Probes, Active Probes, and Probe Insertion. You can
use wildcard characters such as * or ? in the search column for wildcard matching.

Live Probes
Live Probes is a design debug option that uses non-intrusive real time scoping of up to two probe points with
no design changes.
The Live Probes tab in the Debug FPGA Array dialog box displays a table with the probe names and pin
types.
There are two channels, and Live Probe can be assigned/unassigned independently.

Figure 8 · Live Probes Tab in SmartDebug FPGA Array Dialog Box

Two probe channels (ChannelA and ChannelB) are available. When a probe name is selected, it can be
assigned to either ChannelA or ChannelB.
You can assign a probe to a channel by doing either of the following:
• Right-click a probe in the table and choose Assign to Channel A or Assign to Channel B.
• Click the Assign to Channel A or Assign to Channel B button to assign the probe selected in the

table to the channel. The buttons are located below the table.

When the assignment is complete, the probe name appears to the right of the button for that channel, and
SmartDebug configures the ChannelA and ChannelB I/Os to monitor the desired probe points. Because
there are only two channels, a maximum of two internal signals can be probed simultaneously.
Click the Unassign Channels button to clear the live probe names to the right of the channel buttons and
discontinue the live probe function during debug.
Note: Both probes can be assigned/unassigned independently.

Active Probes
Active Probes is a design debug option to read and write to one or many probe points in the design through
JTAG.
In the left pane of the Active Probes tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are listed with the Name and Type (which is the physical location of
the flip-flop) in the Netlist View.

 PolarFire SmartDebug User Guide

 21

Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them to the
Active Probes UI. You can also add the selected probe points by clicking the Add button. The probes list
can be filtered with the Filter box.

Figure 9 · Active Probes Tab in SmartDebug FPGA Array Dialog Box

When you have selected the desired probe, points appear in the Active Probe Data chart and you can read
and write multiple probes (as shown in the figure below).
You can use the following options in the Write Value column to modify the probe signal added to the UI:

• Drop-down menu with values ‘0’ and ‘1’ for individual probe signals
• Editable field to enter data in hex or binary for a probe group or a bus

Figure 10 · Active Probes Tab - Write Value Column Options

Probe Grouping (Active Probes Only)
During the debug cycle of the design, designers often want to examine the different signals. In large
designs, there can be many signals to manage. The Probe Grouping feature assists in comprehending
multiple signals as a single entity. This feature is applicable to Active Probes only. Probe nets with the same
name are automatically grouped in a bus when they are added to the Active Probes tab. Custom probe
groups can also be created by manually selecting probe nets of a different name and adding them into the
group.
The Active Probes tab provides the following options for probe points that are added from the Hierarchical
View/Netlist View:

• Display bus name. An automatically generated bus name cannot be modified. Only custom bus names
can be modified.

• Expand/collapse bus or probe group
• Move Up/Down the signal, bus, or probe group
• Save (Active Probes list)
• Load (already saved Active Probes list)
• Delete (applicable to a single probe point added to the Active Probes tab
• Delete All (deletes all probe points added to the Active Probes tab)
• In addition, the context (right-click) menu provides the following operations:

 PolarFire SmartDebug User Guide

 22

o Create Group, Add/Move signals to Group, Remove signals from Group,
o Ungroup
o Reverse bit order, Change Radix for a bus or probe group
o Read, Write, or Delete the signal or bus or probe group

Figure 11 · Active Probes Tab

• Green entries in the “Write Value” column indicate that the operation was successful.
• Blue entries in the “Read Value” column indicate values that have changed since the last read.

Context Menu of Probe Points Added to the Active Probes UI
When you right-click a signal or bus, you will see the following menu options:
For individual signals that are not part of a probe group or bus:

• Read
• Delete
• Poll
• Create Group

For individual signals in a probe group:

 PolarFire SmartDebug User Guide

 23

• Read
• Delete
• Poll
• Create Group
• Add to Group
• Move to Group
• Remove from Group

For individual signals in a bus:

• Read
• Delete
• Poll
• Create Group
• Add to Group

For a bus:

• Delete
• Reverse Bit Order
• Change Radix to Binary
• Poll
• Create Group

 PolarFire SmartDebug User Guide

 24

For a probe group:

• Delete
• Reverse Bit Order
• Change Radix to Binary
• Poll
• Create Group
• Ungroup

Differences Between a Bus and a Probe Group
A bus is created automatically by grouping selected probe nets with the same name into a bus. A bus
cannot be ungrouped.
A Probe Group is a custom group created by adding a group of signals in the Active Probes tab into the
group. The members of a Probe Group are not associated by their names. A Probe Group can be
ungrouped.
In addition, certain operations are also restricted to the member of a bus, whereas they are allowed in a
probe group.
The following operations are not allowed in a bus:
• Move to Group: Moving a signal to a probe group
• Remove from Group: Removing a signal from a probe group

Memory Blocks
The Memory Blocks tab in the Debug FPGA Array dialog box shows the hierarchical view of all memory
blocks in the design. The depth and width of blocks shown in the logical view are determined by the user in
SmartDesign, RTL, or IP cores using memory blocks.

 PolarFire SmartDebug User Guide

 25

The example figure that follows shows the hierarchical view of the Memory Blocks tab. You can view logical

blocks and physical blocks. Logical blocks are shown with an L (), and physical blocks are shown with

a P ().

Figure 12 · Memory Blocks Tab - Hierarchical View

You can only select one block at a time. You can select and add blocks in the following ways:
• Right-click the name of a memory block and click Add as shown in the following figure.

• Click on a name in the list and then click Select .
• Select a name, drag it to the right, and drop it into the Memory Blocks tab.
• Enter a memory block name in the Filter box and click Search or press Enter . Wildcard search is

supported.
Note: Only memory blocks with an L or P icon can be selected in the hierarchical view.

Memory Block Fields
The following memory block fields appear in the Memory Blocks tab.

 PolarFire SmartDebug User Guide

 26

User Design Memory Block

The selected block name appears on the right side. If the block selected is logical, the name from top of the
block is shown.

Data Width

If a block is logical, the width from each physical block is retrieved from each physical block, consolidated,
and displayed. If the block is physical, the width depends on the standard that is chosen to best meet the
requirement. The list of widths that can be seen for LSRAM blocks is 1-bit, 2-bits, 5-bits, 10-bits, 20-bits, and
40-bits. For uRAM blocks, a fixed width of 12-bits is the only configuration supported for a physical block.

Port Used

This field is displayed only in the logical block view. Because configurators can have asymmetric ports,
memory location can have different widths. The port shown can either be Port A or Port B. For TPSRAM,
where both ports are used for reading, Port A is used. This field is hidden for physical blocks, as the values
shown will be irrespective of read ports.
The following figure shows the Memory Blocks tab fields for a logical block view.

Figure 13 · Memory Blocks Tab Fields for Logical Block View

The following figure shows the Memory Blocks tab fields for a physical block view.

 PolarFire SmartDebug User Guide

 27

Figure 14 · Memory Blocks Tab Fields for Physical Block View

Read Block
Memory blocks can be read once they are selected. If the block name appears on the right-hand side, the
Read Block button is enabled. Click Read Block to read the memory block.

Logical Block Read

A logical block shows three fields. User Design Memory Block and Data Width are read only fields, and the
Port Used field has options. If the design uses both ports, Port A and Port B are shown under options. If only
one port is used, only that port is shown.

Figure 15 · Logical Block Read

The data shown is in Hexadecimal format. In the example figure above, data width is 18. Because each
hexadecimal character has 4 bits of information, you can see 5 characters corresponding to 18 bits. Each
row has 16 locations (shown in the column headers) which are numbered in hexadecimal from 0 to F.
Note: For all logical blocks that cannot be inferred from physical blocks, the corresponding icon does not
contain a letter.

 PolarFire SmartDebug User Guide

 28

Physical Block Read

When a Physical block is selected, only the User Design Memory Block and Data Width fields are shown.

Figure 16 · Physical Block Read

Write Block

Logical Block write

A memory block write can be done on each location individually. A logical block has each location of width
that is displayed. The written format is hexadecimal numbers from 0 to F. Width is shown in bits, and values
are shown in hexadecimal format. If an entered value exceeds the maximum value, SmartDebug displays a
popup message showing the range of allowed values.

Figure 17 · Logical Block Write

Physical Block Write

 Physical blocks have variable widths based on the standard configuration. The maximum value that can be
written in hexadecimal format depends on the width shown. If an entered value exceeds the limit,
SmartDebug displays a popup message showing the range of values that can be entered.

 PolarFire SmartDebug User Guide

 29

Figure 18 · Physical Block Write

Unsupported Memory Blocks
If RTL is used to configure memory blocks, it is recommended that you follow RAM block inference
guidelines provided by Microsemi.
SmartDebug may or may not be able to support logical view for memory blocks that are inferred using RTL
coding not specified in the above document.

Probe Insertion (Post-Layout)
Introduction
Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be routed to
unused I/Os. Nets are selected and assigned to probes using the Probe Insertion window in SmartDebug.
The rerouted design can then be programmed into the FPGA, where an external logic analyzer or
oscilloscope can be used to view the activity of the probed signal.
Note: This feature is not available in standalone mode because of the need to run incremental routing.

 PolarFire SmartDebug User Guide

 30

Figure 19 · Probe Insertion in the Design Process

The Probe Insertion debug feature is complementary to Live Probes and Active Probes. Live Probes and
Active Probes use a special dedicated probe circuitry.

Probe Insertion
1. Double-click SmartDebug Design in the Design Flow window to open the SmartDebug main window.
Note: FlashPro Programmer must be connected for SmartDebug.

2. Select Debug FPGA Array and then select the Probe Insertion tab.

Figure 20 · Probe Insertion Tab

In the left pane of the Probe Insertion tab, all available Probe Points are listed in instance level
hierarchy in the Hierarchical View. All Probe Names are shown with the Name and Type in the Netlist
View.

3. Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them
to the Active Probes UI. You can also add the selected probe points by clicking the Add button. The
probes list can be filtered with the Filter box.
Each entry has a Net and Driver name which identifies that probe point.

 PolarFire SmartDebug User Guide

 31

The selected net(s) appear in the Probes table in the Probe Insertion tab, as shown in the figure
below. SmartDebug automatically generates the Port Name for the probe. You can change the Port
Name from the default if desired.

4. Assign a package pin to the probe using the drop-down list in the Package Pin column. You can assign
the probe to any unused package pin (spare I/O).

Figure 21 · Debug FPGA Array > Probe Insertion > Add Probe

5. Click Run.
This triggers Place and Route in incremental mode, and the selected probe nets are routed to the
selected package pin. After incremental Place and Route, Libero automatically reprograms the device
with the added probes.
The log window shows the status of the Probe Insertion run.

Probe Deletion
To delete a probe, select the probe and click Delete. To delete all probes, click Delete All.
Note: Deleting probes from the probes list without clicking Run does not automatically remove the probes
from the design.

Reverting to the Original Design
To revert to the original design after you have finished debugging:

1. In SmartDebug, click Delete All to delete all probes.
2. Click Run.
3. Wait until the action has completed by monitoring the activity indicator (spinning blue circle). Action is

completed when the activity indicator disappears.
4. Close SmartDebug.

 PolarFire SmartDebug User Guide

 32

Debug Transceiver
Debug Transceiver
The Debug Transceiver feature in SmartDebug checks the lane functionality and health for different settings
of the lane parameters.
To access the Debug Transceiver feature in SmartDebug, click Debug Transceiver in the main
SmartDebug window.

This opens the Debug TRANSCEIVER dialog box, which is shown in the following example.

Figure 22 · Debug Transceiver Dialog Box

Debug Transceiver has five distinct debug features, which are represented by tabs in the Debug
TRANSCEIVER dialog box:
• Configuration Report (shown by default when the dialog box opens)

 PolarFire SmartDebug User Guide

 33

• Smart BERT
• Loopback Modes
• Static Pattern Transmit
• Eye Monitor

Note: The Eye Monitor feature is not supported in this release.

Configuration Report
The Configuration Report is the first tab in the Debug TRANSCEIVER dialog box, and is shown by default
when the dialog box opens. The Configuration Report shows the lane status/health properties of all lanes of
Quads in the design.
Click the Refresh button to refresh the information.
Note: The report refreshes automatically when you navigate from another tab.

Figure 23 · Debug TRANSCEIVER Dialog Box - Configuration Report

The Configuration Report shows the physical location, status/health, and data width for all lanes of all the
quads enabled in the system controller.
Parameter information is shown in table format, with lane numbers as rows and transceiver instance names
as columns.
The lane parameters are as follows:
Physical Location - Physical block and lane location in the system controller.
Tx PMA Ready - Indicates if the Tx of the lane is powered up and ready for transactions.
Rx PMA Ready - Indicates if the Rx of the lane is powered up and ready for transactions.
TX PLL - Indicates if the lane is locked onto TX PLL.
RX PLL - Indicates if the lane is locked onto RX PLL.
Data Width - Data Width of the Lane.
For the parameters above, green indicates true and red indicates false.
Notes:
Click the Refresh button to update the lane status.
The report refreshes automatically when you navigate from another tab.

Transceiver Hierarchy
Transceiver Hierarchy is a lane hierarchy with all the lanes instantiated in the design shown with respect to
top level instance.

 PolarFire SmartDebug User Guide

 34

Transceiver Hierarchy is shown in the following tabs: "Smart BERT" on page 35, "Loopback Modes" on
page 37, "Static Pattern Transmit" on page 38, and "Eye Monitor" on page 39.
In the Smart BERT, Loopback Modes, and Static Pattern Transmit pages, check boxes allow multiple lanes
to be selected for debug, as shown in the following example.

Figure 24 · Transceiver Hierarchy Lane Selection Example - Smart BERT, Loopback Modes, and

Static Pattern Transmit Pages
 In the Eye Monitor page, eye monitoring is done one lane at a time, as shown in the following example.

 PolarFire SmartDebug User Guide

 35

Figure 25 · Transceiver Hierarchy Lane Selection Example - Eye Monitor Page

Smart BERT
In the Smart BERT page of the Debug TRANSCEIVER dialog box, you can select lanes in the Transceiver
Hierarchy and use debug options to run Smart BERT tests.
Click the Smart BERT tab in the Debug TRANSCEIVER dialog box to open the Smart BERT page.

 PolarFire SmartDebug User Guide

 36

Figure 26 · Debug TRANSCEIVER Dialog Box - Smart BERT Page

The following input options and outputs are represented as columns:
Pattern – Input option. Select a PRBS pattern type from the drop-down list: PRBS7, PRBS9, PRBS15,
PRBS23, or PRBS31. The default is PRBS7.
EQ-NearEnd – Input option. When checked, enables EQ-NearEnd loopback from Lane Tx to Lane Rx.
TX PLL – Indicates if lane is locked onto TX PLL when the Smart BERT test is in progress.
Gray – Indicates test is not in progress
Green – Indicates lane is locked onto TX PLL
Red – Indicates lane is not locked onto TX PLL
RX PLL – Indicates if lane is locked onto RX PLL when the Smart BERT test is in progress.
Gray – Indicates test is not in progress
Green – Indicates lane is locked onto TX PLL
Red – Indicates lane is not locked onto TX PLL
Lock to Data – Indicates if lane is locked onto incoming data / RX CDR PLL when the Smart BERT test is
in progress.
Gray – Indicates test is not in progress
Green – Indicates lane is locked onto TX PLL
Red – Indicates lane is not locked onto TX PLL
.Cumulative Error Count – Displays the error count when the Smart BERT test is in progress.
Data Rate – Indicates the data rate (in Gbps) configured in the lane.
BER – Calculates the Bit Error Rate (BER) from the cumulative error count and data rate and displays it in
the column.
Error Counter Reset – Resets the error counter and BER of the lane. A reset can be done at any time.

 All output parameters are updated approximately once per second, with their values retrieved from the
device.
 To add lanes, in the Transceiver Hierarchy, check the boxes next to the lanes to be added. To remove
lanes, uncheck the boxes next to the lanes to be removed.
Select the desired options and click Start to start the Smart BERT test on all selected lanes.
Note: A popup message appears if a test cannot be started on one lane, multiple lanes, or all lanes. Tests
will start normally on all unaffected lanes.
Click the Phy Reset button to do a Phy reset on all checked lanes in the Transceiver Hierarchy. This button
is disabled when a PRBS test is in progress.

 PolarFire SmartDebug User Guide

 37

Note: You can navigate to other tabs when a Smart BERT test is in progress, but you cannot perform any
debug activity except to use Plot Eye for any lane on the Eye Monitor page.
Note: You cannot close the Smart BERT window when a test is in progress. Attempting to do so will result in
the following message:

Click the Stop button to stop the Smart BERT test on all lanes simultaneously.

Loopback Modes
The Loopback Modes page in the Debug TRANSCEIVER dialog box allows you to select lanes from the
Transceiver Hierarchy and use Loopback Mode debug options.
Click the Loopback Modes tab in the Debug TRANSCEIVER dialog box.

Figure 27 · Debug TRANSCEIVER Dialog Box - Loopback Modes Page

You can select the desired loopback type (EQ-NEAREND, EQ-FAREND, CDRFAREND, or No Loopback)
for each lane.
EQ-NEAR END – Set EQ-Near End loopback from Lane Tx to Lane Rx.
EQ-FAR END – Set EQ-Far End loopback from Lane Tx to Lane Rx.
CDR FAR END – Set CDR Far End loopback from Lane Rx to Lane Tx.
No Loopback – Set this option to have no loopback between Lane Tx and Lane Rx. (For external loopback
using PCB backplane or High Speed Loopback cables.)
When you have selected the desired options, click Apply to enable the selected loopback mode on the
lane(s).
Note: If you proceed to another tab without applying your changes to loopback modes, the following popup
message appears:

 PolarFire SmartDebug User Guide

 38

Click Yes to ignore the changed selections and move to another selected page.
Click No to remain on the current page.

Static Pattern Transmit
In the Static Pattern Transmit page of the Debug TRANSCEIVER dialog box, you can select lanes from the
Transceiver Hierarchy and use Static Pattern Transmit debug options.
Click the Static Pattern Transmit tab in the Debug TRANSCEIVER dialog box to open the Static Pattern
Transmit page.

Figure 28 · Debug TRANSCEIVER Dialog Box – Static Pattern Transmit Page

When a lane is added from the Transceiver Hierarchy, the following debugging options can be selected:
Pattern – Fixed Pattern, Max Run Length Pattern, and User Pattern can be selected from the drop-down
list.

• Fixed Pattern is a 10101010... pattern. Length is equal to the data width of the Tx Lane.
• Max Run Length Pattern is a 1111000... pattern. Length is equal to the data width of the Tx Lane, with

half 1s and half 0s.
• User Pattern is a user defined pattern in the value column. Length is equal to the data width.

Value – Editor available only with the User Pattern pattern type. For other pattern type selections, it is
disabled.

• Takes the input pattern to transmit from the Lane Tx of selected lanes.
• Pattern type should be Hex numbers, and not larger than the data width selected.
• Internal validators dynamically check the pattern and indicate when an incorrect pattern is given as

input.
Mode – Currently, HEX mode is supported for pattern type.
TX PLL – Indicates Lane lock onto TX PLL when Static Pattern Transmit is in progress

 PolarFire SmartDebug User Guide

 39

• Gray – Test is not in progress
• Green – Lane is locked onto TXPLL
• Red – Lane is not locked onto TXPLL

RX PLL – Indicates Lane lock onto RX PLL when Static Pattern Transmit is in progress

• Gray – Test is not in progress
• Green – Lane is locked onto RXPLL
• Red – Lane is not locked onto RXPLL

Data Width – Displays the data width of the configured lane. Can be used as reference when giving the
user pattern.
Click Start to start Static Pattern Transmit on selected lanes.
Click Stop to stop Static Pattern Transmit test on selected lanes.

Eye Monitor
Note: The Eye Monitor feature is not supported in this release.
You can determine signal integrity with the Eye Monitor feature. It allows you to create an eye diagram to
measure signal quality. Eye Monitoring estimates the horizontal eye-opening at the receiver serial data
sampling point and helps you select an optimum data sampling point at the receiver.
To use the Eye Monitor feature, do the following:

1. Invoke SmartDebug from Libero.
2. Click the Eye Monitor tab in the Debug TRANSCEIVER dialog box.

In the Eye Monitor page, you can select a lane and click Plot Eye to start eye monitoring for that lane. The
eye diagram displays, as shown in the following example.
Note: Ensure data transmission on Lane Rx for successful monitoring.

Figure 29 · Eye Monitor Page Example

You can move to the Smart BERT or Static Pattern Transmit page, start a Smart BERT test or Static Pattern
Transmit (with loopback enabled internally or using external high speed board cables), respectively, which
sends traffic in Lane Rx. You can then return to the Eye Monitor page and click Plot Eye.

Debug uPROM
You can debug clients configured in a design and debug µPROM memory address information in the
µPROM Debug dialog box.
In the main SmartDebug window, click uPROM Debug.

 PolarFire SmartDebug User Guide

 40

Figure 30 · SmartDebug Window - Debug uPROM

 If a µPROM memory block is used in the Libero design, the µPROM Debug dialog box appears.

Figure 31 · µPROM Debug Dialog Box

User Design View
The User Design View tab in the µPROM Debug dialog box lists all clients configured in the design.
Selecting a client in the list enables the Read from Device button.
Clicking the Read from Device button displays a table showing the data in the location at the selected client
address. See the following example.

 PolarFire SmartDebug User Guide

 41

The Client address is associated with Start Address and Number of 9-bit words. Therefore, the table will
contain as many locations as the number of 9-bit words.
In the example above, Number of 9-bit words is 52224, so 52224 words will be shown in the table.
Column headers are numbered 0 to F in hexadecimal format, representing 16 words in a row.
Row addresses begin with a word address associated with Start Address. For example, if the Start Address
is 0x15 hex), the starting row has an address of 0x0010.

You can hover over a cell to see its address and value, as shown in the following example.

 PolarFire SmartDebug User Guide

 42

Direct Address View
The Direct Address View tab in the µPROM Debug provides access to µPROM memory. You can read a
part of a client or more than one client by specifying the Start Address and Number of 9-bit words.
Start Address - hexadecimal value (0 -9, A-F, upper/lower case)

Values are validated and errors are indicated by a red "STOP" icon (). The error message displays
when you hover over the icon.
Number of 9-bit words - positive integer value

Values are validated and errors are indicated by a red "STOP" icon (). The error message displays
when you hover over the icon.
Read from Device - Disabled until valid values are entered in the fields.

Invalid or blank values are indicated by a red "STOP" icon (). The error message displays when you
hover over the icon.
Note: If the word falls within the 16 words that are placed in a row, the start location and the end location are
highlighted in the row to show the starting point of the data. All preceding locations show ‘NR’ (Not Read).
See the following example.

 PolarFire SmartDebug User Guide

 43

Notes:
When one field is entered, both fields are validated to enable the Read from Device button.
If fields change after enabling Read from Device, values are validated again and Read from Device may be
disabled if invalid values are entered.
If the µPROM Debug dialog box is closed and reopened, the session is retained. The µPROM Debug
session is lost only if the main SmartDebug window is closed.

 PolarFire SmartDebug User Guide

 44

SmartDebug Tcl Commands

SmartDebug Tcl Support
The following table lists the Tcl commands related to SmartDebug forPolarFire. Click the command to view
more information.

Table 1 · SmartDebug Tcl Commands

Command Action

Probe

add_probe_insertion_point Adds probe points to be connected to user-specified I/Os for probe
insertion flow.

add_to_probe_group Adds the specified probe points to the specified probe group

create_probe_group Creates a new probe group.

delete_active_probe Deletes either all or the selected active probes.

load_active_probe_list Loads the list of probes from the file.

move_to_probe_group Moves the specified probe points to the specified probe group.

program_probe_insertion Runs the probe insertion flow on the selected nets.

remove_probe_insertion_point Deletes an added probe from the probe insertion UI.

set_live_probe Set Live probe channels A and/or B to the specified probe point (or
points).

select_active_probe Manages the current selection of active probe points to be used by
active probe READ operations.

read_active_probe Reads active probe values from the device.

remove_from_probe_group Move out the specified probe points from the group.

save_active_probe_list Saves the list of active probes to a file.

select_active_probe Manages the current selection of active probe points to be used by
active probe READ operations.

ungroup Disassociates the probes as group.

unset_live_probe Discontinues the debug function and clears live probe channels.

write_active_probe Sets the target probe point on the device to the specified value.

LSRAM

read_lsram Reads a specified block of large SRAM from the device.

 PolarFire SmartDebug User Guide

 45

Command Action

Probe

write_lsram Writes a seven bit word into the specified large SRAM location.

uSRAM

read_usram Reads a uSRAM block from the device.

write_usram Writes a seven bit word into the specified uSRAM location.

Transceiver

loopback_mode Applies loopback to a specified lane.

smartbert_test Starts and stops a Smart BERT test and resets error counter.

static_pattern_transmit Starts and stops a Static Pattern Transmit.

Additional Commands

get_programmer_info Lists the IDs of all FlashPRO programmers connected to the machine.

uprom_read_memory Reads uPROM memory block from the device.

add_probe_insertion_point
This Tcl command adds probe points to be connected to user-specified I/Os for probe insertion flow.

add_probe_insertion_point –net net_name -driver driver -pin package_pin_name -port port name

Arguments
-net net_name

Name of the net used for probe insertion.
-driver driver

Driver of the net.
-pin package_pin_name

Package pin name (i.e. I/O to which the net will be routed during probe insertion).
-port port_name

User-specified name for the probe insertion point.

Example
add_probe_insertion_point -net {count_out_c[0]} -driver {Counter_8bit_0_count_out[0]:Q} -
pin {H5} -port {Probe_Insert0}

add_to_probe_group
Tcl command; adds the specified probe points to the specified probe group.

add_to_probe_group -name probe_name -group group_name

 PolarFire SmartDebug User Guide

 46

Arguments
-name probe_name

Specifies one or more probes to add.
-group group_name

Specifies name of the probe group.

Example
add_to_probe_group -name out[5]:out[5]:Q \

 -name grp1.out[3]:out[3]:Q \

 -name out.out[1].out[1]:Q \

 -group my_new_grp

create_probe_group
Tcl command; creates a new probe group.

create_probe_group -name group_name

Arguments
-name group_name

Specifies the name of the new probe group.

Example
create_probe_group -name my_new_grp

delete_active_probe
Tcl command; deletes either all or the selected active probes.
 Note: You cannot delete an individual probe from the Probe Bus.

delete_active_probe -all | -name probe_name

Arguments
-all

Deletes all active probe names.
-name probe_name

Deletes the selected probe names.

Example
delete –all <- deletes all active probe names

delete -name out[5]:out[5]:Q \

 -name my_grp1.out[1]:out[1]:Q #deletes the selected probe names

delete -name my_grp1 \

 -name my_bus #deletes the group, bus and their members.

get_programmer_info
This Tcl command lists the IDs of all FlashPRO programmers connected to the machine.

get_programmer_info

This command takes no arguments.

 PolarFire SmartDebug User Guide

 47

Example
set a [get_programmer_info]

load_active_probe_list
Tcl command; loads the list of probes from the file.

load_active_probe_list –file file_path

Arguments
-file file_path

The input file location.

Example
load_active_probe_list -file “./my_probes.txt”

loopback_mode
This Tcl command applies loopback to a specified lane.

loopback_mode -lane {Physical_Location} -apply -type {loopback_type}

Arguments
-lane {Physical_Location}

Specify the physical location of the lane.
-apply

Apply specified loopback to specified lane.
-type {loopback_type}

Specify the loopback type to apply.

Examples
loopback_mode -lane {Q3_LANE2} -apply -type {EQ-NearEnd}

loopback_mode -lane {Q3_LANE0} -apply -type {EQ-FarEnd}

loopback_mode -lane {Q0_LANE0} -apply -type {CDRFarEnd}

loopback_mode -lane {Q0_LANE1} -apply -type {NoLpbk}

loopback_mode -lane {Q1_LANE2} -apply -type {EQ-FarEnd}

loopback_mode -lane {Q1_LANE0} -apply -type {NoLpbk}

loopback_mode -lane {Q2_LANE2} -apply -type {EQ-NearEnd}

loopback_mode -lane {Q2_LANE3} -apply -type {CDRFarEnd}

move_to_probe_group
Tcl command; moves the specified probe points to the specified probe group.
 Note: Probe points related to a bus cannot be moved to another group.

move_to_probe_group -name probe_name -group group_name

Arguments
-name probe_name

Specifies one or more probes to move.
-group group_name

Specifies name of the probe group.

 PolarFire SmartDebug User Guide

 48

Example
move_to_probe_group -name out[5]:out[5]:Q \

 -name grp1.out[3]:out[3]:Q \

 -group my_grp2

program_probe_insertion
This Tcl command runs the probe insertion flow on the selected nets.

program_probe_insertion

read_active_probe
Tcl command; reads active probe values from the device. The target probe points are selected by the
select_active_probe command.

read_active_probe [-deviceName device_name] [-name probe_name] [-group_name bus_name|group_name] [-
value_type b|h][-file file_path]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration.
-name probe_name

Instead of all probes, read only the probes specified. The probe name should be prefixed with bus or
group name if the probe is in the bus or group.
-group_name bus_name | group_name

Instead of all probes, reads only the specified buses or groups specified here.
-value_type b | h

Optional parameter, used when the read value is stored into a variable as a string.
b = binary
h = hex
-file file_path

Optional. If specified, redirects output with probe point values read from the device to the specified file.
Note: When the user tries to read at least one signal from the bus/group, the complete bus or group is read.
The user is presented with the latest value for all the signals in the bus/group.

Example
read_active_probe -group_name {bus1}
read_active_probe -group_name {group1}
To save into variable:
set a [read_active_probe -group_name {bus_name} -value_type h] #saves read data
in hex string
If read values are stored into a variable without specifying value_type parameter, it saves values as a binary
string by default.

Example
set a [read_active_probe] #sets variable a as binary string of read values after
read_active_probe command.

 PolarFire SmartDebug User Guide

 49

read_lsram
Tcl command; reads a specified block of large SRAM from the device.

Physical block

read_lsram -name block_name -fileName file_name

Arguments

-name block_name

Specifies the name for the target block.
-fileName file_name

Optional; specifies the output file name for the data read from the device.

Exceptions

• Array must be programmed and active
• Security locks may disable this function

Example

Reads the LSRAM Block Fabric_Logic_0/U2/F_0_F0_U1/ramtmp_ramtmp_0_0/INST_RAM1K20_IP from
the PolarFire device and writes it to the file output.txt.
read_lsram -name {Fabric_Logic_0/U2/F_0_F0_U1/ramtmp_ramtmp_0_0/INST_RAM1K20_IP} –
fileName {output.txt}

Logical block

read_lsram -logicalBlockName block_name -port port_name

Arguments

-logicalBlockName block_name

Specifies the name for the user defined memory block.
-port port_name

Specifies the port for the memory block selected. Can be either Port A or Port B.

Example

read_lsram -logicalBlockName {Fabric_Logic_0/U2/F_0_F0_U1} -port {Port A}

read_usram
Tcl command; reads a uSRAM block from the device.

Physical block

read_usram [-name block_name] -fileName file_name

 PolarFire SmartDebug User Guide

 50

Arguments

-name block_name

Specifies the name for the target block.
-fileName file_name

Optional; specifies the output file name for the data read from the device.

Exceptions

• Array must be programmed and active
• Security locks may disable this function

Example

Reads the uSRAM Block Fabric_Logic_0/U3/F_0_F0_U1/ramtmp_ramtmp_0_0/INST_RAM64x12_IP from
the PolarFire device and writes it to the file sram_block_output.txt.
read_usram -name {Fabric_Logic_0/U3/F_0_F0_U1/ramtmp_ramtmp_0_0/INST_RAM64x12_IP} –
fileName {output.txt}

Logical block

read_usram -logicalBlockName block_name -port port_name

Arguments

-logicalBlockName block_name

Specifies the name of the user defined memory block.
-port port_name

Specifies the port of the memory block selected. Can be either Port A or Port B.

Example

read_usram -logicalBlockName {Fabric_Logic_0/U3/F_0_F0_U1} -port {Port A}

remove_from_probe_group
Tcl command; removes the specified probe points from the group. That is, the removed probe points won’t
be associated with any probe group.
Note: Probes cannot be removed from the bus.

remove_from_probe_group -name probe_name

Arguments
-name probe_name

Specifies one or more probe points to remove from the probe group.

Example
The following command removes two probes from my_grp2.
Move_out_of_probe_group -name my_grp2.out[3]:out[3]:Q \

 -name my_grp2.out[3]:out[3]:Q

 PolarFire SmartDebug User Guide

 51

remove_probe_insertion_point
This Tcl command deletes an added probe from the probe insertion UI.

remove_probe_insertion_point –net net_name -driver driver

Arguments
-net net_name

Name of the existing net which is added using the add_probe_insertion_point command.
-driver driver

Driver of the net.

Example
remove_probe_insertion_point -net {count_out_c[0]} -driver
{Counter_8bit_0_count_out[0]:Q}

save_active_probe_list
Tcl command; saves the list of active probes to a file.

save_active_probe_list -file file_path

Arguments
-file file_path

The output file location.

Example
save_active_probe_list -file “./my_probes.txt”

select_active_probe
Tcl command; manages the current selection of active probe points to be used by active probe READ
operations. This command extends or replaces your current selection with the probe points found using the
search pattern.

select_active_probe [-deviceName device_name] [–name probe_name_pattern] [-reset true|false]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration..
-name probe_name_pattern

Specifies the name of the probe. Optionally, search pattern string can specify one or multiple probe
points. The pattern search characters “*” and “?” also can be specified to filter out the probe names.

-reset true | false
 Optional parameter; resets all previously selected probe points. If name is not specified, empties out
current selection.

Example
The following command selects three probes. In the below example, “grp1” is a group and “out” is a bus..
Select_active_probe -name out[5]:out[5]:Q

Select_active_probe -name out.out[1]:out[1]:Q \

 -name out.out[3]:out[3]:Q \

 -name out.out[5]:out[5]:Q

 PolarFire SmartDebug User Guide

 52

set_live_probe
Tcl command; set_live_probe channels A and/or B to the specified probe point(s). At least one probe point
must be specified. Only exact probe name is allowed (i.e. no search pattern that may return multiple points).

set_live_probe [-deviceName device_name] [–probeA probe_name] [–probeB probe_name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug
-probeA probe_ name

Specifies target probe point for the probe channel A.
-probeB probe_ name

 Specifies target probe point for the probe channel B.

Exceptions
• The array must be programmed and active
• Active probe read or write operation will affect current settings of Live probe since they use same

probe circuitry inside the device
• Setting only one Live probe channel affects the other one, so if both channels need to be set, they

must be set from the same call to set_live_probe
• Security locks may disable this function
• In order to be available for Live probe, ProbeA and ProbeB I/O's must be reserved for Live probe

respectively

Example
Sets the Live probe channel A to the probe point A12 on device MPF300TS_ES.
set_live_probe [-deviceName MPF300TS_ES] [–probeA A12]

smartbert_test
This Tcl command is used for the following:
• Start a Smart BERT test
• Stop a Smart BERT test
• Reset error count

smartbert_test -start
This Tcl command starts a Smart BERT test with a specified pattern on a specified lane.

smartbert_test -start -pattern {pattern_type} -lane {Physical_Location}

Arguments

-start

Start the Smart BERT test.
pattern {pattern_type}

Specify the pattern type of the Smart BERT test.
-lane{Physical_Location}

Specify the physical location of the lane.
-EQ-NearEndLoopback

Enable EQ-Near End Loopback on specified lane.

 PolarFire SmartDebug User Guide

 53

Examples

smartbert_test -start -pattern {prbs9} -lane {Q0_LANE3}

smartbert_test -start -pattern {prbs23} -lane {Q3_LANE2}

smartbert_test -start -pattern {prbs7} -lane {Q3_LANE1}

smartbert_test -start -pattern {prbs31} -lane {Q1_LANE2} -EQ-NearEndLoopback

smartbert_test -start -pattern {prbs9} -lane {Q2_LANE2} -EQ-NearEndLoopback

smartbert_test -start -pattern {prbs15} -lane {Q2_LANE3} -EQ-NearEndLoopback

smartbert_test -stop
This Tcl command stops a Smart BERT test on a specified lane.

smartbert_test -stop -lane {Physical_Location}

Arguments

-stop

Stop the smart BERT test.
-lane {Physical_Location}

Specify the physical location of the lane.

Examples

smartbert_test -stop -lane {Q0_LANE0}

smartbert_test -stop -lane {Q0_LANE3}

smartbert_test -stop -lane {Q3_LANE2}

smartbert_test -stop -lane {Q3_LANE1}

smartbert_test -stop -lane {Q1_LANE2}

smartbert_test -stop -lane {Q2_LANE2}

smartbert_test -stop -lane {Q2_LANE3}

smartbert_test -reset_counter
This Tcl command resets a lane error counter.

smartbert_test -reset_counter -lane {Physical_Location}

Arguments

-reset_counter

Reset lane error counter on hardware and cumulative error count on the UI.
-lane {Physical_Location}

Specify the physical location of the lane.

Examples

smartbert_test -reset_counter -lane {Q0_LANE0}

smartbert_test -reset_counter -lane {Q3_LANE2}

smartbert_test -reset_counter -lane {Q2_LANE3}

smartbert_test -reset_counter -lane {Q2_LANE2}

smartbert_test -reset_counter -lane {Q1_LANE2}

smartbert_test -reset_counter -lane {Q3_LANE1}

 PolarFire SmartDebug User Guide

 54

static_pattern_transmit
This Tcl command starts and stops a Static Pattern Transmit.

static_pattern_transmit -start

static_pattern_transmit -start -lane {Physical_Location} -pattern {pattern_type} -value
{user_pattern_value}

Parameters

-start

Start the Static Pattern Transmit.
-lane {Physical_Location}

Specify physical location of lane.
-pattern {pattern_type}

Specify pattern_type of Static Pattern Transmit.
-value {user_pattern_value

Specify user_pattern_value in hex if pattern_type selected is custom.

Examples

static_pattern_transmit -start -lane {Q0_LANE0} -pattern {fixed}

static_pattern_transmit -start -lane {Q0_LANE2} -pattern {maxrunlength} -value {}

static_pattern_transmit -start -lane {Q3_LANE2} -pattern {custom} -value {df}

static_pattern_transmit -start -lane {Q3_LANE0} -pattern {fixed} -value {}

static_pattern_transmit -start -lane {Q1_LANE1} -pattern {custom} -value {4578}

static_pattern_transmit -start -lane {Q1_LANE2} -pattern {fixed} -value {}

static_pattern_transmit -start -lane {Q2_LANE2} -pattern {maxrunlength} -value {}

static_pattern_transmit -start -lane {Q2_LANE1} -pattern {custom} -value {abcdef56}

static_pattern_transmit -stop

 static_pattern_transmit -stop -lane {Physical_Location}

Parameters

-stop

Stop the Static Pattern Transmit.
-lane {Physical_Location}

Specify physical location of lane.

Examples

static_pattern_transmit -stop -lane {Q0_LANE0}

static_pattern_transmit -stop -lane {Q0_LANE2}

static_pattern_transmit -stop -lane {Q3_LANE2}

static_pattern_transmit -stop -lane {Q3_LANE0}

static_pattern_transmit -stop -lane {Q1_LANE1}

static_pattern_transmit -stop -lane {Q1_LANE2}

static_pattern_transmit -stop -lane {Q2_LANE2}

static_pattern_transmit -stop -lane {Q2_LANE1}

 PolarFire SmartDebug User Guide

 55

ungroup
Tcl command; disassociates the probes as a group.

nngroup -name group_name

Arguments
-name group_name

Name of the group.

Example
ungroup –name my_grp4

unset_live_probe
Tcl command; discontinues the debug function and clears live probe A, live probe B, or both probes
(Channel A/Channel B). An all zeros value is shown in the oscilloscope.

unset_live_probe -probeA 1 -probeB 1 [-deviceName device_name]

Arguments
-probeA

Live probe Channel A.
-probeB

Live probe Channel B.
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User's Guide for details).

Exceptions
• The array must be programmed and active.
• Active probe read or write operation affects current of Live Probe settings, because they use the same

probe circuitry inside the device.
• Security locks may disable this function.

Example
The following example unsets live probe Channel A from the device MPF300TS_ES.
unset_live_probe -probeA 1[-deviceName MPF300TS_ES]

uprom_read_memory
This Tcl command reads a uPROM memory block from the device.

read_uprom_memory –startAddress {hex_value} –words {integer_value}

Arguments
-startAddress hex_value

Specifies the start address of the uPROM memory block.
-words integer_value

Specifies the number of 9-bit words.

Example
read_uprom_memory –startAddress {0xA} –words {100}

 PolarFire SmartDebug User Guide

 56

write_active_probe
Tcl command; sets the target probe point on the device to the specified value. The target probe point name
must be specified.

write_active_probe [-deviceName device_name] –name probe_name -value true|false
-group_name group_bus_name -group_value “hex-value” | “binary-value”

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration.
-name probe_name

Specifies the name for the target probe point. Cannot be a search pattern.
-value true | false hex-value | binary-value

Specifies values to be written.
True = High
False = Low
-group_name group_bus_name

Specify the group or bus name to write to complete group or bus.
-group_value ”hex-value” | “binary-value”

Specify the value for the complete group or bus.
Hex-value format : “ <size>’h<value>”

Binary-value format: “ <size>’b<value>”

Example
write_active_probe –name out[5]:out[5]:Q –value true <-- write to a single probe
write_active_probe -name grp1.out[3]:out[3]:Q -value low <-- write to a probe in the group
write_active_probe -group_name grp1 –group_value “8’hF0” <-- write the value to complete
group
write_active_probe –group_name out –group_value “8’b11110000” \
 -name out[2]:out[2]:Q –value true <-- write multiple probes at the same
time.

write_lsram
Tcl command; writes a word into the specified large SRAM location.

Physical block

write_lsram –name block_name] –offset offset_value –value integer_value

Arguments

-name block_name

Specifies the name for the target block.
-offset offset_value

Offset (address) of the target word within the memory block.
-value integer_value

Word to be written to the target location. Depending on the configuration of memory blocks, the width can
be 1, 2, 5, 10, or 20 bits.

 PolarFire SmartDebug User Guide

 57

Exceptions

• Array must be programmed and active
• The maximum value that can be written depends on the configuration of memory blocks
• Security locks may disable this function

Example

write_lsram -name {Fabric_Logic_0/U2/F_0_F0_U1/ramtmp_ramtmp_0_0/INST_RAM1K20_IP} -offset
0 -value 291

Logical block

write_lsram -logicalBlockName block_name -port port_name -offset 1 offset_value -logicalValue
hexadecimal_value

Arguments

-logicalBlockName block_name

Specifies the name of the user defined memory block.
-port port_name

Specifies the port of the memory block selected. Can be either Port A or Port B.
-offset offset_value

Offset (address) of the target word within the memory block.
-logicalValue hexadecimal_value

Specifies the hexadecimal value to be written to the memory block. Size of the value is equal to the width
of the output port selected.

Example

write_lsram -logicalBlockName {Fabric_Logic_0/U2/F_0_F0_U1} -port {Port A} -offset 1 -
logicalValue {00FFF}

write_usram
Tcl command; writes a 12-bit word into the specified uSRAM location.

Physical block

write_usram –name block_name] –offset offset_value –value integer_value

Arguments

-name block_name

Specifies the name for the target block.
-offset offset_value

Offset (address) of the target word within the memory block.
-value integer_value

12-bit value to be written.

 PolarFire SmartDebug User Guide

 58

Exceptions

• Array must be programmed and active
• The maximum value that can be written is 0x1FF
• Security locks may disable this function

Example

Writes a value of 0x291 to the device PolarFire in the
Fabric_Logic_0/U3/F_0_F0_U1/ramtmp_ramtmp_0_0/INST_RAM64x12_IP with an offset of 0.
write_lsram -name {Fabric_Logic_0/U3/F_0_F0_U1/ramtmp_ramtmp_0_0/INST_RAM64x12_IP} -
offset 0 -value 291

Logical block
write_usram -logicalBlockName block_name -port port_name -offset offset_value -logicalValue
hexadecimal_value

Arguments

-logicalBlockName block_name

Specifies the name of the user defined memory block.
-port port_name

Specifies the port of the memory block selected. Can be either Port A or Port B.
-offset offset_value

Offset (address) of the target word within the memory block.
-logicalValue hexadecimal_value

Specifies the hexadecimal value to be written to the memory block. Size of the value is equal to the width
of the output port selected.

Example

write_usram -logicalBlockName {Fabric_Logic_0/U3/F_0_F0_U1} -port {Port A} -offset 1 -
logicalValue {00FFF}

 PolarFire SmartDebug User Guide

 59

Frequently Asked Questions

How do I monitor a static or pseudo-static signal?
To monitor a static or pseudo-static signal:

1. Add the signal to the Active Probes tab.
2. Select the signal in the Active Probes tab, right-click, and choose Poll....

3. In the Pseudo-static Signal Polling dialog box, choose a value in Polling Setup and click Start Polling.

How do I force a signal to a new value?
To force a signal to a new value:

1. In the SmartDebug window, click Debug FPGA Array.
2. Click the Active Probes tab.
3. Select the signal from the selection panel and add it to Active Probes tab.

 PolarFire SmartDebug User Guide

 60

1. Click Read Active Probe to read the value.
2. In the Write Value column, enter the value to write to the signal and then click Write Active Probes.

How do I perform simple Smart BERT tests?
You can perform Smart BERT tests using the Debug Transceiver option in SmartDebug.
To perform a Smart BERT test, in the Smart BERT page of the Debug Transceiver dialog box, select to run
a PRBS test on-die or off-die with EQ-NEAREND checked or unchecked. For more information, see "Smart
BERT" on page 35 .
To perform a Smart BERT test, in the Smart BERT page of the Debug Transceiver dialog box, select your
options and click Start to run a Smart BERT test on-die or off-die with EQ-NEAREND checked or
unchecked. For more information, see "Smart BERT" on page 35.

 PolarFire SmartDebug User Guide

 61

How do I read LSRAM or USRAM content?
To read RAM content:

1. In the Debug FPGA Array dialog box, click the Memory Blocks tab.
2. Select the memory block to be read from the selection panel on the left of the window.

An "L" in the icon next to the block name indicates that it is a logical block, and a "P" in the icon indicates
that it is a physical block. A logical block displays three fields in the Memory Blocks tab: User Design
Memory Blocks, Data Width, and Port Used. A physical block displays two fields in the Memory Blocks tab:
User Design Memory Block and Data Width.

3. Add the block in one of the following ways:
a. Click Select.
b. Right-click and choose Add.
c. Drag the block to the Memory Blocks tab.

4. Click Read Block to read the content of the block.

See Also
"Memory Blocks " on page 24

 PolarFire SmartDebug User Guide

 62

How do I change the content of LSRAM or USRAM?
To change the content of LSRAM or USRAM:

1. In the SmartDebug window, click Debug FPGA Array.
2. Click the Memory Blocks tab.
3. Select the memory block from the selection panel on the left of the window.

An "L" in the icon next to the block name indicates that it is a logical block, and a "P" in the icon indicates
that it is a physical block. A logical block displays three fields in the Memory Blocks tab: User Design
Memory Blocks, Data Width, and Port Used. A physical block displays two fields in the Memory Blocks tab:
User Design Memory Block and Data Width.

4. Add the memory block in one of the following ways:
a. Click Select.
b. Right-click and choose Add.
c. Drag the block to the Memory Blocks tab.

5. Click Read Block. The memory content matrix is displayed.
6. Select the memory cell value that you want to change and update the value.
7. Click Write Block to write to the device.

 PolarFire SmartDebug User Guide

 63

See Also
"Memory Blocks " on page 24

How do I read the health check of the Transceiver?
You can read the transceiver health check using the following Debug Transceiver options:

1. Review the Configuration Report, which returns Tx PMA Ready, Rx PMA Ready, TxPLL status, and
RxPLL status. For the transceiver to function correctly, all four should be green The Configuration
Report can be found in the Debug TRANSCEIVER dialog box under Configuration Report. See
"Debug Transceiver" on page 32.

2. Run the Smart BERT Test, with EQ-NEAR END checked or with external loopback connection from Tx

to Rx on selected lanes. This should result in 0 errors in the Cumulative Error Count column. See
"Smart BERT" on page 35.

See Also
"Memory Blocks " on page 24

 PolarFire SmartDebug User Guide

 64

How do I read the health check of the Transceiver?
You can read the transceiver health check using the following Debug Transceiver options:

1. Review the Configuration Report, which returns Tx PMA Ready, Rx PMA Ready, TxPLL status, and
RxPLL status. For the transceiver to function correctly, all four should be green The Configuration
Report can be found in the Debug TRANSCEIVER dialog box under Configuration Report. See
"Debug Transceiver" on page 32.

2. Run the Smart BERT Test, with EQ-NEAR END checked or with external loopback connection from Tx

to Rx on selected lanes. This should result in 0 errors in the Cumulative Error Count column. See
"Smart BERT" on page 35.

	Table of Contents
	Introduction to SmartDebug 6
	Getting Started with SmartDebug 7
	Using SmartDebug 7
	Create Standalone SmartDebug Project 7
	Standalone SmartDebug User Interface 10
	Programming Connectivity and Interface 11
	View Device Status 14
	Debug FPGA Array 17
	Hierarchical View 17
	Netlist View 19
	Live Probes 20
	Active Probes 20
	Probe Grouping (Active Probes Only) 21
	Memory Blocks 24
	Probe Insertion (Post-Layout) 29
	Debug uPROM 39
	SmartDebug Tcl Support 44
	add_probe_insertion_point 45
	add_to_probe_group 45
	create_probe_group 46
	delete_active_probe 46
	get_programmer_info 46
	load_active_probe_list 47
	loopback_mode 47
	move_to_probe_group 47
	program_probe_insertion 48
	read_active_probe 48
	read_lsram 49
	read_usram 49
	remove_from_probe_group 50
	remove_probe_insertion_point 51
	save_active_probe_list 51
	select_active_probe 51
	set_live_probe 52
	smartbert_test 52
	static_pattern_transmit 54
	ungroup 55
	unset_live_probe 55
	uprom_read_memory 55
	write_active_probe 56
	write_lsram 56
	write_usram 57
	How do I monitor a static or pseudo-static signal? 59
	How do I force a signal to a new value? 59
	How do I perform simple Smart BERT tests? 60
	How do I read LSRAM or USRAM content? 61
	How do I change the content of LSRAM or USRAM? 62
	How do I read the health check of the Transceiver? 63
	How do I read the health check of the Transceiver? 64

	Welcome to SmartDebug
	Introduction to SmartDebug
	Use Models
	Integrated Mode
	Standalone Mode
	Standalone Mode Use Model Overview

	Supported Families, Programmers, and Operating Systems

	Getting Started with SmartDebug
	Using SmartDebug
	Create Standalone SmartDebug Project
	Import from DDC File (created from Libero)
	Construct Automatically
	Configuring a Generic Device
	Connected FlashPRO Programmers
	See Also

	SmartDebug User Interface
	Standalone SmartDebug User Interface
	Programming Connectivity and Interface
	Hover Information
	Device Chain Details
	Right-click Properties
	Debug Context Save
	Selecting Devices for Debug

	View Device Status
	IdCode
	Device Certificate
	Design Information
	Digest Information
	Device Security Settings
	Programming Information

	Debugging
	Debug FPGA Array
	Hierarchical View
	Netlist View
	Live Probes
	Active Probes
	Probe Grouping (Active Probes Only)
	Context Menu of Probe Points Added to the Active Probes UI
	Differences Between a Bus and a Probe Group

	Memory Blocks
	Memory Block Fields
	User Design Memory Block
	Data Width
	Port Used

	Read Block
	Logical Block Read
	Physical Block Read

	Write Block
	Logical Block write
	Physical Block Write

	Unsupported Memory Blocks

	Probe Insertion (Post-Layout)
	Introduction
	Probe Insertion
	Probe Deletion
	Reverting to the Original Design
	Debug Transceiver
	Configuration Report
	Transceiver Hierarchy
	Smart BERT
	Loopback Modes
	Static Pattern Transmit
	Eye Monitor

	Debug uPROM
	User Design View
	Direct Address View

	SmartDebug Tcl Commands
	SmartDebug Tcl Support
	add_probe_insertion_point
	Arguments
	Example

	add_to_probe_group
	Arguments
	Example

	create_probe_group
	Arguments
	Example

	delete_active_probe
	Arguments
	Example

	get_programmer_info
	Example

	load_active_probe_list
	Arguments
	Example

	loopback_mode
	Arguments
	Examples

	move_to_probe_group
	Arguments
	Example

	program_probe_insertion
	read_active_probe
	Arguments
	Example

	read_lsram
	Physical block
	Arguments
	Exceptions
	Example

	Logical block
	Arguments
	Example

	read_usram
	Physical block
	Arguments
	Exceptions
	Example

	Logical block
	Arguments
	Example

	remove_from_probe_group
	Arguments
	Example

	remove_probe_insertion_point
	Arguments
	Example

	save_active_probe_list
	Arguments
	Example

	select_active_probe
	Arguments
	Example

	set_live_probe
	Arguments
	Exceptions
	Example

	smartbert_test
	smartbert_test -start
	Arguments
	Examples

	smartbert_test -stop
	Arguments
	Examples

	smartbert_test -reset_counter
	Arguments
	Examples

	static_pattern_transmit
	static_pattern_transmit -start
	Parameters
	Examples

	static_pattern_transmit -stop
	Parameters
	Examples

	ungroup
	Arguments
	Example

	unset_live_probe
	Arguments
	Exceptions
	Example

	uprom_read_memory
	Arguments
	Example

	write_active_probe
	Arguments
	Example

	write_lsram
	Physical block
	Arguments
	Exceptions
	Example

	Logical block
	Arguments
	Example

	write_usram
	Physical block
	Arguments
	Exceptions
	Example

	Logical block
	Arguments
	Example

	Frequently Asked Questions
	How do I monitor a static or pseudo-static signal?
	How do I force a signal to a new value?
	How do I perform simple Smart BERT tests?
	How do I read LSRAM or USRAM content?
	See Also

	How do I change the content of LSRAM or USRAM?
	See Also

	How do I read the health check of the Transceiver?
	See Also

	How do I read the health check of the Transceiver?

