
HB0510
Hand book

CoreMMC v3.0
June 2018

CoreMMC v3.0

HB0510 Hand book Revision 4.0

Contents

1 Revision History ... 1
1.1 Revision 4.0 .. 1
1.2 Revision 3.0 .. 1
1.3 Revision 2.0 .. 1

2 Introduction ... 2
2.1 Supported Families ... 2
2.2 Key Features ... 2
2.3 Limitations .. 3
2.4 Core Version ... 3
2.5 Supported Interfaces .. 3
2.6 Device Utilization and Performance ... 4

3 Functional Description ... 5
3.1 System Overview .. 5

3.1.1 Functional Description of the MMC Controller ... 5

3.1.2 MMC Protocol ... 6

3.1.3 Operating Modes .. 6

3.1.4 Command Registers .. 7

3.1.5 Response Registers .. 7

3.1.6 Multiple Block Writes .. 8

3.1.7 Multiple Block Reads ... 8

3.1.8 Programming Example .. 9

4 Core Interfaces ... 11
4.1 Verilog or VHDL Parameters ... 11
4.2 I/O Signals ... 11

5 Timing Diagrams .. 13

6 Register Map and Descriptions .. 14
6.1 Register Summary .. 14

6.1.1 Status Register ... 16

6.2 CoreMMC Version Register .. 17
6.2.1 Major Version Register .. 18

6.2.2 Minor Version Register .. 18

6.2.3 Command Index Register .. 18

6.2.4 Command Argument1 Register ... 18

6.2.5 Command Argument2 Register ... 19

6.2.6 Command Argument3 Register ... 19

6.2.7 Command Argument4 Register ... 19

CoreMMC v3.0

HB0510 Hand book Revision 4.0

6.2.8 Response Register0 ... 19

6.2.9 Response Register1 ... 20

6.2.10 Response Register2 ... 20

6.2.11 Response Register3 ... 20

6.2.12 Response Register4 ... 20

6.2.13 Response Register5 ... 21

6.2.14 Response Register6 ... 21

6.2.15 Response Register7 ... 21

6.2.16 Response Register8 ... 21

6.2.17 Response Register9 ... 22

6.2.18 Response Register10 ... 22

6.2.19 Response Register11 ... 22

6.2.20 Response Register12 ... 22

6.2.21 Response Register13 ... 23

6.2.22 Response Register14 ... 23

6.2.23 Response Register15 ... 23

6.2.24 Write Data Register ... 23

6.2.25 Read Data Register .. 24

6.2.26 Interrupt Mask Register .. 24

6.2.27 Single Block Interrupt Mask Register .. 25

6.2.28 Multiple Block Interrupt Mask Register .. 25

6.2.29 Interrupt Status Register ... 27

6.2.30 Single Block Interrupt Status Register ... 27

6.2.31 Multiple Block Interrupt Status Register ... 28

6.2.32 Interrupt Clear Register ... 29

6.2.33 Single Block Interrupt Clear Register ... 29

6.2.34 Multiple Block Interrupt Clear Register ... 30

6.2.35 Control Register ... 30

6.2.36 Single Block Control and Status Register ... 31

6.2.37 Multiple Block Control and Status Register ... 31

6.2.38 Response Timeout Register ... 32

6.2.39 Data Timeout Register ... 33

6.2.40 Block Length Register .. 33

6.2.41 Data Control Register .. 33

6.2.42 Clock Register .. 34

6.2.43 Block Count Register ... 35

7 Tool Flows .. 36
7.1 Licensing ... 36
7.2 RTL .. 36
7.3 SmartDesign ... 36

CoreMMC v3.0

HB0510 Hand book Revision 4.0

7.4 Simulation Flows .. 37
7.4.1 User Testbench .. 37

7.5 Synthesis in Libero SoC ... 38
7.6 Place-and-Route in Libero SoC ... 38

8 System Integration ... 39

9 Design Constraints ... 42
9.1 Enhanced Constraint Flow .. 42
9.2 Classic Constraints Flow ... 42

10 Reference Documents .. 44

CoreMMC v3.0

HB0510 Hand book Revision 4.0 1

1 Revision History
The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 4.0
Revision 4.0 was published in June 2018. The following edits are done in this revision of the document.

Added a new chapter, .Design Constraints (see page 42)
CLK_OE and CLKI ports are removed from the figure, CoreMMC I/O Signal Diagram (see page 2)
and table, .CoreMMC I/O Signal Descriptions (see page 11)
Replaced the figures, , CoreMMC System Integration (see page 39) CoreMMC SmartDesign

, and .Configuration (see page 37) CoreMMC Full I/O View (see page 36)
Added two new figures, , and CoreMMC Configuration (see page 40) Place and Route Configuration

.(see page 41)

1.2 Revision 3.0
Revision 3.0 was published in May 2018. The following edits are done in this revision of the document.

Added details of additional Multiple Block support registers.
Updated user testbench information to reflect new BFM based testbench.
Modified prefixes of all interrupt related bits to prevent naming clashes with single & multiple block
prefix convention.
Additional information provided for Clock Register description.
Renamed DMA control signals.
Updated utilization data including information on achieving >104 MHz timing
Added VHDL support
Width of Write & Read Data FIFOs updated from 8- to 32-bits

1.3 Revision 2.0
Revision 2.0 was published in Oct 2013. It was the first publication of this document.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 2

2 Introduction
CoreMMC provides an embedded MultiMedia Card (eMMC) controller to interface with eMMC devices.
eMMC devices can be utilized to expand the on-board storage capacity for larger applications or to store
user data. The core is parameterized to allow user specifications of MMC data bus width and FIFO depth
and is conformant to the JEDEC eMMC 4.41 Standard Specification.

CoreMMC consists of an AMBA High-performance Bus-Lite (AHB-Lite) slave interface designed to
connect to an AHB-Lite bus. Block write and read data FIFOs can be accessed by an AHB-Lite master
along with the CoreMMC registers. eMMC is a version of the MMC standard which is intended to
provide a unified command or control interface for various memory types, mostly for high-capacity, high-
performance, low-cost multimedia storage purposes. Communication is achieved using a (up-to) 10-bit
bus and a control protocol that is defined as part of the JEDEC eMMC standard. For more information,
refer to [R1].

eMMC abstracts the increasingly complex and divergent Flash interface of various vendors and allows
for better design modularity and portability.

Figure 1 • CoreMMC I/O Signal Diagram

2.1 Supported Families
The following list of families support CoreMMC v3.0.

SmartFusion®2
IGLOO®2
PolarFire®

2.2 Key Features
The following list describes the key features of CoreMMC.

Up to 52 MHz MMC clock rate, making for a maximum of ~52 MBs throughput at 8-bit data width
(Theoretical throughput of CoreMMC. Actual throughput will be affected by eMMC device
throughput and AHB bandwidth)
Configurable data bus widths

–1, 4 or 8 bit

Supports Block mode transfer

CoreMMC v3.0

HB0510 Hand book Revision 4.0 3

Supports Block mode transfer

Single block write
Multiple block write
Single block read
Multiple block read

Cyclic Redundancy Check (CRC) protection for both commands and data transfers
AHB-Lite compliant

Command, Response, Write, and Read Data registers for indirect access to MMC part
8-/16-/32-bit AHB transfers

Write DATA FIFO

To decouple AHB from MMC bus for write data transfers
Depth configurable from 512 Bytes to 32 KBs
Overrun and Underrun error flags

Read DATA FIFO

To decouple AHB from MMC bus for read data transfers
Depth configurable from 512 Bytes to 32 KBs
Overrun and Underrun error flags

Interrupt generation

Command Sent and Response Received interrupts
Error flag interrupts
Single block write and read done interrupts
Multiple block write and read done interrupts

Automatic Sleep mode for eMMC when clock pulled Low

2.3 Limitations
The following list gives the limitations of CoreMMC in this version.

Sequential mode transfers
ECC error correction (handled on the device side instead)
Stream Read and Stream Write
Double Data Rate (DDR)

2.4 Core Version
This handbook supports CoreMMC version 3.0.

2.5 Supported Interfaces
CoreMMC is available with the following interfaces.

AHB-Lite slave interface
Interrupt request interface
MMC master interface
Peripheral Direct Memory Access (PDMA) interface

For more information on these interfaces, see .Table 7 (see page 11)

CoreMMC v3.0

HB0510 Hand book Revision 4.0 4

2.6 Device Utilization and Performance
CoreMMC has been implemented in several devices of Microsemi using standard speed grades. The
following tables list a summary of implementation data for different product families.

Table 1 • CoreMMC Device Utilization and Performance (Minimum Configuration)

Family Logic Elements Utilization Performance
(MHz) RAM

Sequential Combinatorial Total Device Total
%

SmartFusion2 1005 1721 2726 M2S050 4.83 140 8 Blocks of
RAM64X18

IGLOO2 1005 1725 2730 M2GL050 4.84 139 8 Blocks of
RAM64X18

PolarFire 776 1546 2322 MPF100T 2.13 157 2 Blocks of LSRAM

 Note: Top-level parameters or generics were set as – MMC_DWIDTH = 1-bit, FIFO_DEPTH = 512 bytes.

Table 2 • CoreMMC Device Utilization and Performance (Maximum Configuration)

Family Logic Elements Utilization Performance
(MHz)

RAM

Sequential Combinatorial Total Device Total
%

SmartFusion2 2028 2937 4965 M2S050 8.81 123 32 Blocks of
RAM1Kx18

IGLOO2 2031 2920 4951 M2GL050 8.78 125 32 Blocks of
RAM1Kx18

PolarFire 2022 3027 5049 MPF100T 4.65 146 32 Blocks of
LSRAM

Note: Top-level parameters or generics were set as – MMC_DWIDTH = 8-bit, FIFO_DEPTH = 32 KB.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 5

3 Functional Description
The CoreMMC soft IP provides a user interface to access MMC devices through AHB-Lite interface. The
following sections give functional description of CoreMMC.

3.1 System Overview
The CoreMMC provides a slave AHB-Lite interface and a master MMC interface. The AHB-Lite interface
provides the slave interface for a host to access the control and status registers in the core and to
initiate transactions to a MMC slave device connected on the MMC master interface. Additionally, FIFO
status signals are provided to the PDMA. The following figure shows the top-level block diagram.

Figure 2 • CoreMMC Block Diagram

3.1.1 Functional Description of the MMC Controller
This section describes the components of the CoreMMC controller and its operations. The primary
functional blocks are as follows:

AHB-Lite slave interface
Registers
Write FIFO
Read FIFO
MMC master

AHB-Lite Slave Interface

The AHB-Lite slave interface provides the functionality to interface to an AHB-Lite master as defined in
[R3]. This slave interface supports 8-/16-/32-bit access as defined by HSIZE. Sequential transfers are not
supported.

Registers

The Register block decodes the address of AHB-Lite slave and performs the requested read or write
operation. It also latches status and error flags from the MMC master as it executes and controls the
reading or writing of Read or Write FIFOs by the host.

Write FIFO

CoreMMC v3.0

HB0510 Hand book Revision 4.0 6

Write FIFO

The Write FIFO provides storage for block writes to the MMC slave device. The host, writes the data into
the FIFO and the MMC master block, reads the data out during write transactions on MMC DAT lines.
The Write FIFO can contain multiple blocks of data to write , depending on size of the core instantiated.
The Write FIFO detects overruns of excess data, writes into it from the host and underrun errors of
attempting to read an empty FIFO by the MMC master and sets associated bits in the register block.

Read FIFO

The Read FIFO provides storage for block reads from the MMC slave device. The MMC master block
writes the data into the FIFO and the AHB-Lite slave block reads the data out. The Read FIFO can contain
multiple blocks of data to read , depending on size of the core instantiated. The Read FIFO detects
overruns of excess data, writes into it from the MMC master block and underrun errors of attempting to
read an empty FIFO by the AHB-Lite slave block and sets associated bits in the register block.

MMC Master

The MMC master implements transactions on the MMC bus as defined by the JEDEC specification [R1]
under direction of the host. It is composed of the following primary blocks.

MMC master controller: Controls command-response transactions on the CMD pins. It drives out the
command based on CR0-CR5 and checks and stores the expected response in RR0-RR15.
MMC data controller: Controls the write block and read block transactions on DAT pins. Indicates to
the MMC master controller when slave is busy (that is, when DAT0 is held Low).
CRC7: Provides CRC7 computation for command-response on CMD.
CRC16: Provides CRC16 for data transactions on DAT pin(s). There can be multiple CRC16 blocks in
core depending on MMC_DWIDTH specified (one per pin).
Clock Generator: Generates the CLK signal from HCLK based on configuration.

The MMC master implements the MMC bus protocol as defined in [R1].

3.1.2 MMC Protocol
Each MMC bus operation consists of a command (host to device), response (device to host), and a
possible data transfer. Commands are well-defined 48-bit tokens. Responses are either 48 bits or 136
bits. Both commands and responses are protected by 7-bit CRC headers generated by CoreMMC. Data
packets are fixed and can be calculated as; block length * 8 (for single data bus width), block length * 2
(for 4-bit data bus width), or block length * 1 (for 8-bit data bus width). Data packets are protected by
16-bit CRC headers generated by CoreMMC.

The MMC protocol is based on command and data bit streams that are initiated by a start bit and
terminated by a stop bit. Additionally, the MMC controller provides a reference clock and is the only
master interface that can initiate a transaction.

Command: A token transmitted serially on the CMD pin that starts an operation.
Response: A token from the card transmitted serially on the CMD pin in response to certain
commands.
Data: Transferred serially using the data pins for data movement commands.

All transactions are controlled by the host. The host configures the CoreMMC and the attached slave
device such as configuring number of DAT bits to be used (1, 4, or 8) or setting the block length for read
and write transactions. All communications to the attached MMC slave device are performed using
commands and responses as defined in the JEDEC Specification [R1]. This communication uses the
command and response registers in the core.

3.1.3 Operating Modes
There are five operation modes defined in the MMC 4.41 standard [R1].

Boot mode: The MMC device is in the state immediately following either one of these three conditions:
power-cycle, hardware reset (using RST signals), or CMD0 transmission with argument 0xF0F0F0F0.
Refer to [R3] for a full list of eMMC commands and their usage. This mode is not currently supported.
Card Identification mode: After booting, the MMC device will be in Card Identification mode until the

CoreMMC v3.0

HB0510 Hand book Revision 4.0 7

Card Identification mode: After booting, the MMC device will be in Card Identification mode until the
SET_RELATIVE_ADDR command (CMD3) is received from the host (CoreMMC).

Interrupt mode: This mode allows the MMC device to interrupt the host (CoreMMC) and indicate that
data is ready to be transmitted; this is an optional feature and is not implemented in this version of
CoreMMC.

Data Transfer mode: This is the default mode for the MMC, once a Relative Card Address has been
assigned to it (after Card Identification Mode). Data transfer commands can be issued from this state.

Inactive mode: The MMC device enters into Inactive mode, if the operating voltage range or access
mode is not valid or CMD15 (GO_INACTIVE_STATE command) is received.

3.1.4 Command Registers
These registers store the command data to be transmitted from CoreMMC to the slave device and sent
on the CMD pin. The CMD data consists of 38 bits of data (48 bits, minus 1 start bit, 1 stop bit, 1
direction bit, and 7 CRC bits). The following figure shows the full MMC command.

Figure 3 • Figure 3 Command Register use in MMC Command Token

The Command registers send the most-significant bit first on the CMDO pin. CR0 is defined as the
Command Index register. This is the 6 bits that define the type of command for the slave. Registers
CMD1 to CMD4 define the arguments for the command. Writing to CR4 (Command Register 4) also
initiates a command from the host to the slave with whatever command data is currently present in CR0-
CR4, when possible (the slave may hold the bus by pulling CMD low). As such, the command registers
CR0-CR4 should be written in sequence. CR1-CR4 can be written together as a 32-bit word which causes
the command transaction to be initiated. Similarly a 16-bit half-word write to CR3-CR4 will also initiate
the command transaction as well as a byte write to CR4.

3.1.5 Response Registers
The CoreMMC response registers (RR0 – RR 15) are used to store and return a response to the host from
the MMC slave device. Usually this will be a 38-bit value unless the response is R2, which is the CID or
CSD register of the MMC device and is 128 bits long (that is, 138 minus 1 stop bit, 1 start bit, 1
transmission bit, and 7 CRC bits). Beyond the size difference for R2 responses, the formats of the
Response registers are the same as the Command registers. The response data is stripped of the 7 CRC
bits and stored in these read-only registers after each response.

For a 38-bit response (any response other than R2), only the first 6 registers (RR0-RR5) are updated. RR5
has the CRC and stop-bit from the received response stored to aid debugging (that is, RR5[7:0] = {CRC[6:
0], Stop-Bit}). The unused response registers will be zeroed out.

After each response, the stored data is overwritten. If this data is required, it can be read back after
each operation. The Response registers are cleared when a command is initiated and are set when srri is
set. The response registers maintain their values until another command is initiated.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 8

3.1.6 Multiple Block Writes
The host must specify the number of blocks in the multiple block write transfer to CoreMMC through
the Block Count register and to the eMMC slave device by issuing CMD23. If the block size differs from
that already defined in the Block Length register, then the register needs to be updated with the new
block length and the slave, notified of the new block length by issuing CMD16.

For interrupt driven operation, the host should then set the mask accordingly in the MBIMR and IMR
registers (generate interrupt off multiple block write related status and error bits) and issue CMD25
through the Command registers. After receiving successful response (without any error) from eMMC
device; the host should set the mbwstrt bit in the Multiple Block Control and Status register; then the
host starts filling the write FIFO with the transfer size amount of data, to avoid multiple block write FIFO
timeout error (stambwdatainfifoto).

The mbwdone bit is asserted in the MBISR when the transfer is complete or any multiple block write
related error occurs. If an error occurs, an interrupt will be generated off one of the multiple block write
related error bits in the MBISR or the ISR (Write FIFO underrun – This should never occur due to the
data in FIFO timeout logic as the start bit of the next block in a multi block transfer will only be loaded
out onto DAT when there is sufficient data to complete the transfer of this block in the Write FIFO).

Note: A suitable value needs to be specified to the DATATO register, to ensure that host is allowed
sufficient time to load data into the Write FIFO & also to allow for the slave device being slow to
respond with CRC status, or whilst the slave is performing background operations indicated by DAT0
being held low for extended periods (typically writing to Flash).

Figure 4 • Multiple Block Write Operation

Note: The clock is representative only and does not show exact number of clock cycles for the full
transaction.

3.1.7 Multiple Block Reads
The host must ensure that the number of bytes to be received from the slave device can be held in the
Read FIFO (to ensure no overrun on writes of data into FIFO from MMC bus). The host can clear the
content of the Read FIFO by setting the fiforeset bit in the Control register (clears the contents of the
Write FIFO also). This resets the FIFO flags and status bits.

The host must specify the number of blocks in the multiple block read transfer to CoreMMC via the
Block Count register and to the eMMC slave device by issuing CMD23. If the block size differs from that
already defined in the Block Length register, then the register needs to be updated with the new block
length and the slave notified of the new block length by issuing CMD16.

The host then needs to set the mbrstrt bit in the MBCSR, to inform CoreMMC to get ready to receive

CoreMMC v3.0

HB0510 Hand book Revision 4.0 9

The host then needs to set the mbrstrt bit in the MBCSR, to inform CoreMMC to get ready to receive
multiple blocks of data from the eMMC slave device. The host should then issue CMD18 to the slave
device, which starts the multi block transfer from the slave. After receiving successful response of
CMD18, host starts reading data from read FIFO.

The mbrdone bit is asserted in the MBISR, when the transfer is complete or any multiple block related
error occurs. If an error occurs, an interrupt will be generated off one of the multiple block read related
error bits in the MBISR or the ISR.

Note: A suitable value needs to be specified to the DATATO register to ensure that host allows for the
slave to respond with the start bit of the next block within the multiple block transfer (This can be a
significantly large delay – Refer the eMMC slave device manufacturer’s documentation. Denoted by N AC

cycles in the JEDEC Specification [R1]) .

Figure 5 • Multiple Block Read Operation

3.1.8 Programming Example
An example sequence on programming an eMMC device is shown in the following steps. Specifically it is
a basic sequence to program the SanDisk SDIN5C2-8G part on the Microsemi's SmartFusion®2
Development Kit to perform basic reads and writes. This is a general example of a sequence to program
a device with a block and to read this block back. This is not an exhaustive example with full error
checking. It gives a basic flow.

Note: By default, the reset_n is not operational and boot mode not available (by JEDEC spec). The
eMMC chip powers up into state.Idle

CMD0 0x0: // move to idle state.
CMD1 0xC0_FF_80_80: // read OCR
Check response has busy bit High (no Busy), that is, Response 0xC0_FF_80_80 (FF_80 voltage
ranges) – when ready not Busy, eMMC moves into Ready state.
CMD2 0x00_00_00_00: // read CID

Response R0-R15 - 45, 1, 0, 53, 45, 4d, 30, 38, 47. 90, 52, E7, 9B, 6, BF, 1

CMD3 0x0002_0000: // set RCA – Relative Card Address

Response CMD3, Card Status\[31:0\] - 0x00_00_05_00; // no errors, in Indent state

CMD9 0x0002_0000: // Send_CSD – get card specific data

Vers code in EXT_CSD, Version 4.1-4.2-4.3, 10ms,

CMD7 0x0002_0000: // Go to transfer state

Response R0-R4 - 7, 00, 00, 07, 00

CMD16 0x4: // Set_BlockLen- setting to 4 bytes

Response R0-R4 - 0x10, 00,00,09, 00

CMD17 0x0: // Read_Single_Block

CoreMMC v3.0

HB0510 Hand book Revision 4.0 10

CMD17 0x0: // Read_Single_Block

Response R0-R4 – 0x11, 20, 00, 09, 00 - block length error (just an example of an error when
block length is not supported by device)

CMD16 0x200: // Set_BlockLen – 512 bytes

Response R0-R4 - 0x10, 00,00,09, 00

CMD6 0x03B7_0200: // set EXT_CSD 8-bit width data

Response R0-R4 - 0x6, 00,00,08, 00 - note bit\[8\] in status indicates not ready

Note: Core must have MMC_DWIDTH parameter set to 2'b11 and register Data Control Register must
have dsize=2'b10 – that is, all most support 8-bit DAT bus.

CMD13 0x0002_0000: // Send_Status from card 1

Response R0-R4 - 0xD, 00,00,09, 00 - now bit\[8\] in status indicates ready

CMD24 0x0: // Write_Single_Block, sector 0x0

Response R0-R4 – 0x18, 00, 00, 09, 00 - no error – in Trans state

CMD17 0x0: // Read_Single_Block

Response R0-R4 – 0x11, 00, 00, 09, 00 - no error – in Trans state

To verify correct operation, Read Data from block read in RDR can be compared to data written in block
write.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 11

4 Core Interfaces
The following sections give the details of I/O signals and Verilog or VHDL parameters of CoreMMC.

4.1 Verilog or VHDL Parameters
The following table describes the CoreMMC parameters (Verilog) or generics (VHDL) for configuring the

generics are integer types.RTL code. All parameters and

Table 3 • CoreMMC Parameters or Generics Descriptions

Name Valid
Range

Default Description

MMC_DWIDTH 0, 2, 3 0 Data bus width, allowed to be 1, 4 or 8-bit as per the JEDEC eMMC 4.41
standard
0: 1- bit
2: 4-bit
3: 8-bit

FIFO_DEPTH 0-3 0 0: 512 B
1: 4 KB
2: 16 KB
3: 32 KB

4.2 I/O Signals
for the CoreMMC macro as shown in The following table describes the port signals Figure 1 (see page

.2)

Table 4 • CoreMMC I/O Signal Descriptions

Name Type Description

eMMC signals (to eMMC slave)

CLK Out Clock output to MMC device. Derived from the HCLK at frequency determined by
clock register.

RST_N Out Hard reset for eMMC device. Active Low signal. Only operational for slave device if
enabled within the slave device.

DATO[MMC_DSIZE-1:0] Out Data output for bi-directional bus in Push-pull mode.

DATI[MMC_DSIZE-1:0] In Data input from bi-directional bus in Push-pull mode.

DAT_OE[MMC_DSIZE-1:0] Out Output enable for data bus.

CMDO Out Command bus output

CMDI In Command bus input

CMD_OE Out Output enable for command bus

AHB slave signals

HCLK In AHB system clock.

HRESETN In AHB system reset. The signal is active Low. Asynchronous assertion and
synchronous de-assertion. This is used to reset AHB registers in the block.
Assertion of this signal causes RST_N to be asserted.

HSEL In AHB-Lite slave select. This signal indicates that the current transfer is intended for
the selected slave.

HADDR[6:0] In AHB-Lite address. 7-bit address on the AHB-Lite interface.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 12

Name Type Description

HWRITE In AHB-Lite write. When High, it indicates that the current transaction is a write.
When Low, it indicates that the current transaction is a read.

HREADYIN In When High, the HREADY signal indicates to the master and all slaves, that the
previous transfer is complete.

HREADYOUT Out When High, the HREADYOUT signal indicates that the transfer has finished on the
bus. This signal can be driven Low to extend a transfer.

HTRANS[1:0] In AHB-Lite transfer type. Indicates the transfer type of the current transaction.

b00: IDLE
b01: BUSY
b10: NONSEQUENTIAL
b11: SEQUENTIAL (not supported) The PDMA engine only performs single Note:
cycle accesses (no bursts), so sequential transfers are not supported.

HSIZE In AHB-Lite transfer size. Indicates the size of the current transfer (8-/16-/32-/64-bit
transactions only):
bx00: 8-bit (byte) transaction
bx01: 16-bit (half word) transaction
bx10 : 32-bit (word) transaction
bx11: 64-bit (double word) transaction (not supported)

HWDATA[31:0] In AHB-Lite write data. Write data from the AHB-Lite master to the AHB-Lite slave.

HRESP Out AHB-Lite response status. When driven High at the end of a transaction, it
indicates that the transaction has completed with errors. When driven Low at the
end of a transaction, it indicates that the transaction has completed successfully.

HRDATA[31:0] Out AHB-Lite read data. Read data from the AHB-Lite slave to the AHB-Lite master.

Interrupt or Status signals (to DMA engine)

WRFIFORFM Out Indicates that there is room to store another 32-bit word in the write FIFO.

RDFIFODAVAIL Out Indicates that there is a 32-bit word available to read from the read FIFO.

INTERRUPT Out Interrupt output, asserted if any of the masked interrupt bits in the ISR/SBISR
/MBISR are asserted.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 13

5 Timing Diagrams
AHB-Lite Master interface compliant host can access all the CoreMMC registers. The following figures
shows the AHB-Lite read and write transfer timing diagrams.

AHB-Lite Interface Timing

The following figures depict typical write cycle and read cycle timing relationships relative to the system
clock, HCLK.

Figure 6 • AHB-Lite Read Transfer

Figure 7 • AHB-Lite Write Transfer

CoreMMC v3.0

HB0510 Hand book Revision 4.0 14

6 Register Map and Descriptions
The external AHB master uses a 32-bit AHB slave interface for accessing eMMC registers. The following
tables describe various registers and their descriptions.

6.1 Register Summary
The following table lists the register names and descriptions for CoreMMC. Values shown in tables are in
hexadecimal format; type designations: R = read only; W = write only; R/W = read/write.

Table 5 • CoreMMC Internal Register Address Map

Address Register Name Mnemonic Type Width
(bits)

Reset
Value

Description (8-bit)

0x00 Status Register SR R/W 8 0x18 Indicates the status of transactions in
the core such as response received and
errors logged. This register does not
cause interrupts to be asserted.

0x01 Version register VR R 8 0x3 This register defines the version of core
along with the parameters used to
generate the core. Default values are
shown based on default parameters.

0x02 Major Version
Register

MJVR R 8 0x3 Indicates the major version of core
version number.

0x03 Minor Version
Register

MIVR R 8 0x0 Indicates the minor version of core
version number.

0x04 Command Index CMDX R/W 8 0x0 Command Index (command register 0)
defines the command number to be
sent to the slave device.

0x08 Command Arg1 Arg1 R/W 8 0x0 Command Argument1. Sets the first
byte of the argument for the Command
being issued to the slave. Argument1,
Argument2, Argument3, and Argument4
compose the full argument. All four
bytes can be written together.

0x09 Command Arg2 Arg2 R/W 8 0x0 Command Argument2. Sets the Second
byte of the argument for the Command
being issued to the slave.

0x0a Command Arg3 Arg3 R/W 8 0x0 Command Argument3. Sets the Third
byte of the argument for the Command
being issued to the slave.

0x0b Command Arg4 Arg4 R/W 8 0x0 Command Argument4. Sets the Fourth
byte of the argument for the Command
being issued to the slave. Writing this
register causes command to be sent to
slave device (whether written as
Argument4 or as word write to
Argument4, Argument3, Argument2,
and Argument1).

0x10 Response
Register0

RR0 R 8 0x0 Response Register 0

0x14 Response
Register1

RR1 R 8 0x0 Response Register 1

CoreMMC v3.0

HB0510 Hand book Revision 4.0 15

Address Register Name Mnemonic Type Width
(bits)

Reset
Value

Description (8-bit)

0x15 Response
Register2

RR2 R 8 0x0 Response Register 2

0x16 Response
Register3

RR3 R 8 0x0 Response Register 3

0x17 Response
Register4

RR4 R 8 0x0 Response Register 4

0x18 Response
Register5

RR5 R 8 0x0 Response Register 5

0x19 Response
Register6

RR6 R 8 0x0 Response Register 6

0x1a Response
Register7

RR7 R 8 0x0 Response Register 7

0x1b Response
Register8

RR8 R 8 0x0 Response Register 8

0x1c Response
Register9

RR9 R 8 0x0 Response Register 9

0x1d Response
Register10

RR10 R 8 0x0 Response Register 10

0x1e Response
Register11

RR11 R 8 0x0 Response Register 11

0x1f Response
Register12

RR12 R 8 0x0 Response Register 12

0x20 Response
Register13

RR13 R 8 0x0 Response Register 13

0x21 Response
Register14

RR14 R 8 0x0 Response Register 14

0x22 Response
Register15

RR15 R 8 0x0 Response Register 15

0x24 Write Data
Register

WDR W 32 0x0 Write Data register (32 bits)

0x28 Read Data
Register

RDR R 32 0x0 Read Data register (32 bits)

0x2C Interrupt Mask
Register

IMR R/W 8 0x0 Indicates the bits in the ISR that can
cause the interrupt to be asserted.
When a bit is set to 1 in this register, if
the corresponding bit in ISR is asserted,
then the Interrupt line is asserted.

0x2D Singe Block
Interrupt Mask
register

SBIMR R/W 8 0x0 Indicates the bits in the SBISR that can
cause the interrupt to be asserted.
When a bit is set to 1 in this register, if
the corresponding bit in SBISR is
asserted, then the Interrupt line is
asserted.

0x2E Multiple Block
Interrupt Mask
register

MBIMR R/W 8 0x0 Indicates the bits in the MBISR that can
cause the interrupt to be asserted.
When a bit is set to 1 in this register, if
the corresponding bit in MBISR is
asserted, then the Interrupt line is
asserted.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 16

Address Register Name Mnemonic Type Width
(bits)

Reset
Value

Description (8-bit)

0x30 Interrupt Status
register

ISR R 8 0x0 Interrupt Status register

0x31 Single Block
Interrupt Status
register

SBISR R 8 0x0 Single Block Interrupt Status register

0x32 Multiple Block
Interrupt Status
register

MBISR R 8 0x0 Multiple Block Interrupt Status register

0x34 Interrupt Clear
register

ICR W 8 0x0 Interrupt Clear register

0x35 Single Block
Interrupt Clear
register

SBICR W 8 0x0 Single Block Interrupt Clear register

0x36 Multiple Block
Interrupt Clear
register

MBICR W 8 0x0 Multiple Block Interrupt Clear register

0x38 Control Register CTRL R/W 8 0x0C Control register

0x39 Single Block
Control and
Status register

SBCSR R/W 8 0x0 Single Block Control and Status register

0x3A Multiple Block
Control and
Status register

MBCSR R/W 8 0x0 Multiple Block Control and Status
register

0x3C Response Time-
out register

RSPTO R/W 8 0x40 Response Timeout register

0x40 Data Time-out
register

DATATO R/W 32 0x400 Data Timeout register

0x44 Block Length
register

BLR R/W 16 0x200 Block Length

0x48 Data Control
Register

DCTRL R/W 8 0x00 Data size control

0x4C Clock Register CLKR R/W 8 0x3F Clock register

0x50 Block Count
Register

BCR R/W 16 0x00 Block Count register

6.1.1 Status Register
This register contains the status and error bits pertaining to the operation of CoreMMC.

Table 6 • Status Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x00 Status R/W 8 0x18 Status Register provides the information on the internal
status of the core and error flags.

Note: This register does not actually reflect the status of the slave MMC device. Information on the
MMC device can be extracted by checking the Response Registers. The following table shows the
CoreMMC Status Register.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 17

Table 7 • Status Register Bits

Bit(s) Type Name Description

7 R rdre Response data ready: Status bit indicates the response waiting to be read from RR0-
RR15. Reading any of those registers will clear this bit.

6 R swff Write FIFO full. Status bit indicates that the write FIFO is currently full.

5 R srff Read FIFO full. Status bit indicates that the read FIFO is currently full.

4 R swfe Write FIFO empty. Status bit indicates that the write FIFO is currently empty.

3 R srfe Read FIFO empty. Status bit indicates that the read FIFO is currently empty.

2 R/W ebod Buffer overflow detected. While receiving a block of data from the MMC device, a full
read FIFO was detected. This bit stays set until it is cleared by writing a 1 to it.

1 R/W ebud Buffer underrun detected. While writing a block of data, the write FIFO ran out of bytes.
This bit stays set until it is cleared by writing a 1 to it.

0 R/W ecrd CRC error detected. CRC mismatch on incoming response from MMC slave. This bit stays
set until it is cleared by writing a 1 to it.

6.2 CoreMMC Version Register
This register contains the version of the core and the parameters used to generate the instance of the
core. The following table shows the CoreMMC Version Register.

Table 8 • Version Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x01 Version R/W 8 0x03 This register provides the version of core along with the
parameters used to generate the core. Default values
depend on configuration values. Default values are shown
based on the default parameters.

Table 9 • Version Register Bit Definitions

Bit(s) Type Name Description

7:6 R - Reserved

5:4 R fifo_dep FIFO Depth. The value of parameter FIFO_DEPTH used to generate core.

3:2 R mmc_dw MMC Data Width. Based value of parameter MMC_DWIDTH used to generate core.
mmc_dw encoding is:
00: 1-bit
01: 4-bit
10: 8-bit

Note: This coding is different to MMC_DWIDTH codes.

1:0 R rev Revision of this instance of CoreMMC.
rev coding is:
0, 1, 2: Initial CoreMMC instance
3: Refer to the Major Version & Minor Version registers for information on this instances
version.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 18

6.2.1 Major Version Register
This register contains the major version of the core. The following table shows the CoreMMC Major
Version Register.

Table 10 • Major Version Register

HADDR[6:0] Register Name Type Width Reset Value Description

0x02 Major Version R 8 0x03 This register contains the major version number
of the core.

6.2.2 Minor Version Register
This register contains the minor version of the core. The following table shows the CoreMMC Minor
Version Register.

Table 11 • Minor Version Register

HADDR[6:0] Register Name Type Width Reset
Value

Description

0x03 Minor Version R 8 0x00 This register contains the minor version number of
the core.

6.2.3 Command Index Register
Command Index (or command register 0) defines the command number to be sent to the slave device.

Table 12 • Command Index Register

HADDR[6:0] Register Name Type Width Reset Value Description

0x04 CMDX R/W 8 0x0 Command Index (or command register 0)
defines the command number to be sent to
the slave device.

Table 13 • Command Index Register Bit Definitions

Bit(s) Type Name Description

7:0 RRR -- Reserved

5:0 R/WR CMDXCMD Command Index (or command register 0)

6.2.4 Command Argument1 Register
This register contains first byte (MSB) of command argument to be sent to the MMC slave.

Table 14 • Command Argument1 Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x08 Arg1 R/W 8 0x0 Command Argument1 sets the first byte (MSB) of
the argument for command to be sent to the slave.
Argument1, Argument2, Argument3, and
Argument4 compose the full argument. All four
bytes can be written together.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 19

6.2.5 Command Argument2 Register
This register contains the second byte of command argument to be sent to the MMC slave.

Table 15 • Command Argument2 Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x09 Arg2 R/W 8 0x0 Command Argument2 is the second byte of
argument for command to be sent to the slave.

6.2.6 Command Argument3 Register
This register contains the third byte of command argument to be sent to the MMC slave.

Table 16 • Command Argument3 Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x0a Arg3 R/W 8 0x0 Command Argument3 is the third byte of
argument for command to be sent to the slave.

6.2.7 Command Argument4 Register
This register contains the fourth byte (LSB) of command argument to be sent to the MMC slave.

Table 17 • Command Argument4 Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x0b Arg4 R/W 8 0x0 Command Argument4 is the fourth byte (LSB) of argument
for command to be sent to the slave. The writing of this byte
initiates the sending of a command (composed of CMDX,
Arg1, Arg2, Arg3, Arg4) to the slave MMC device. Once
Argument4 is written, these four registers (CMDX, Arg1,
Arg2, Arg3, Arg4) should not be written again until the
command is completed.

6.2.8 Response Register0
This register contains the first byte (MSB) of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 18 • Response Register0

HADDR[6:0] Register Name Type Width Reset
Value

Description

0x10 RR0 R 8 0x0 Response Register0 is the first byte (MSB) of
response from the MMC device.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 20

6.2.9 Response Register1
This register contains the second byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 19 • Response Register1

HADDR[6:0] Register Name Type Width Reset
Value

Description

0x14 RR1 R 8 0x0 Response Register1 is the second byte of response
from the MMC device.

6.2.10 Response Register2
This register contains the third byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 20 • Response Register2

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x15 RR2 R 8 0x0 Response Register2 is the third byte of response
from the MMC device.

6.2.11 Response Register3
This register contains the fourth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 21 • Response Register3

HADDR[6:0] Register
Name

Type Width Reset Value Description

0x16 RR3 R 8 0x0 Response Register3 is the fourth byte of response
from the MMC device.

6.2.12 Response Register4
This register contains the fifth byte of the response received from the slave MMC device. This is updated
by the core when starri is set and cleared, when Argument4 register is written.

Table 22 • Response Register4

HADDR[6:0] Register Name Type Width Reset
Value

Description

0x17 RR4 R 8 0x0 Response Register4 is the fifth byte of
response from the MMC device.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 21

6.2.13 Response Register5
This register contains the sixth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 23 • Response Register5

HADDR[6:0] Register
Name

Type Width Reset Value Description

0x18 RR5 R 8 0x0 Response Register5 is the sixth byte of
response from the MMC device.

6.2.14 Response Register6
This register contains the seventh byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 24 • Response Register6

HADDR[6:0] Register
Name

Type Width Reset Value Description

0x19 RR6 R 8 0x0 Response Register6 is the seventh byte of
response from the MMC device.

6.2.15 Response Register7
This register contains the eighth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 25 • Response Register7

HADDR[6:0] Register
Name

Type Width Reset Value Description

0x1A RR7 R 8 0x0 Response Register7 is the eighth byte of
response from the MMC device.

6.2.16 Response Register8
This register contains the ninth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 26 • Response Register8

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x1B RR8 R 8 0x0 Response Register8 is the ninth byte of
response from the MMC device.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 22

6.2.17 Response Register9
This register contains the tenth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 27 • Response Register9

HADDR[6:0] Register
Name

Type Width Reset Value Description

0x1C RR9 R 8 0x0 Response Register9 is the tenth byte of
response from the MMC device.

6.2.18 Response Register10
This register contains the eleventh byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 28 • Response Register10

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x1D RR10 R 8 0x0 Response Register10 is the eleventh byte of
response from the MMC device.

6.2.19 Response Register11
This register contains the twelfth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 29 • Response Register11

HADDR[6:0] Register Name Type Width Reset Value Description

0x1E RR11 R 8 0x0 Response Register11 is the twelfth byte of
response from the MMC device.

6.2.20 Response Register12
This register contains the thirteenth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 30 • Response Register12

HADDR[6:0] Register Name Type Width Reset
Value

Description

0x1F RR12 R 8 0x0 Response Register12 is the thirteenth byte of
response from the MMC device.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 23

6.2.21 Response Register13
This register contains the fourteenth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 31 • Response Register13

HADDR[6:0] Register
Name

Type Width Reset Value Description

0x20 RR13 R 8 0x0 Response Register13 is the fourteenth byte of
response from the MMC device.

6.2.22 Response Register14
This register contains the fifteenth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 32 • Response Register14

HADDR[6:0] Register Name Type Width Reset
Value

Description

0x21 RR14 R 8 0x0 Response Register14 is the fifteenth byte of
response from the MMC device.

6.2.23 Response Register15
This register contains the sixteenth byte of the response received from the slave MMC device. This is
updated by the core when starri is set and cleared, when Argument4 register is written.

Table 33 • Response Register15

HADDR[6:0] Register Name Type Width Reset
Value

Description

0x22 RR15 R 8 0x0 Response Register15 is the sixteenth byte of
response from the MMC device.

6.2.24 Write Data Register
This register provides access to the Write FIFO. Writing to this register pushes the write data into the
FIFO. The FIFO width is fixed at 32 bits. The FIFO depth is defined by the FIFO_DEPTH parameter at the
time of instantiation.

Table 34 • Write Data Registers

HADDR[6:0] Register Name Type Width Reset Value Description

0x24 WDR W 32 0x0 Write Data register. Data written to this register
gets pushed into Write Data FIFO and is sent to
the slave MMC device when a block write is
performed.

Note: Only 32-bit operations must be performed on this register. Writing an 8- or 16-bit value to this
register causes malfunction.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 24

6.2.25 Read Data Register
This register provides access to the Read FIFO. Reading from this register pops the read data from the
FIFO. The FIFO width is fixed at 32 bits. The FIFO depth is defined by the FIFO_DEPTH parameter at the
time of instantiation.

Table 35 • Read Data Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x28 RDR R 32 0x0 Read Data register. Data read from this register gets
popped from the Read Data FIFO. The Read Data FIFO is
written with the data from the slave MMC device when a
block read is performed.

Note: Only 32-bit operations must be performed on this register. Reading an 8- or 16-bit value from this
register will return invalid data.

6.2.26 Interrupt Mask Register
The Interrupt Mask register enables or masks Interrupt status register interrupts from being triggered
on the Interrupt port of the CoreMMC. the Interrupt Mask register.The following table shows

Table 36 • Interrupt Mask Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x2C IMR R/W 8 0x0 This register enables or masks Interrupt Status
Register interrupts from being generated on
Interrupt port of the CoreMMC.

Table 37 • Interrupt Mask Register Bit Definitions

Bit(s) Type Name Description

7 R/W mskuer When set to 1, it enables the user error (stauer) interrupt.

6 R/W msksbi When set to 1, it enables the response start bit error/response time out error (stasbi)
interrupt.

5 R/W msktbi When set to 1, it enables the stop bit error (statbi) interrupt.

4 R/W msktxi When set to 1, it enables the response transmit bit error (statxi) interrupt.

3 R/W mskrri When set to 1, it enables the command response receive (starri) interrupt.

2 R/W mskcsi When set to 1, it enables the command send (stacsi) interrupt.

1 R/W mskboi When set to 1, it enables the buffer overflow (staboi) interrupt.

0 R/W mskbui When set to 1, it enables the buffer under run (stabui) interrupt.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 25

6.2.27 Single Block Interrupt Mask Register
The Single Block Interrupt Mask register enables or masks Single Block Interrupt Status Register
interrupts from being triggered on the Interrupt port of the CoreMMC. The following table shows the
Single Block Interrupt Mask register.

Table 38 • Single Block Interrupt Mask Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x2D SBIMR R/W 8 0x0 This register enables or masks Single Block Interrupt
Status Register interrupts from being generated on
Interrupt port of the CoreMMC.

Table 39 • Single Block Interrupt Mask Register Bit Definitions

Bit(s) Type Name Description

7 R/W msksbwdatainfifoto When set to 1, it enables the single block write timeout error
(stasbwdatainfifoto) interrupt

6 R/W msksbwbusyto When set to 1, it enables the single block write busy timeout error
(stasbwbusyto) interrupt

5 R/W msksbwcrcstaerr When set to 1, it enables the single block write crc response timeout error
(stasbwcrcstaerr) interrupt

4 R/W msksbrstperr When set to 1, it enables single block read stop error (stasbrstperr)
interrupt

3 R/W msksbrstto When set to 1, it enables the single block read start timeout (stasbrstto)
interrupt

2 R/W msksbcrcerr When set to 1, it enables the single block read or write crc error
(stasbcrcerr) interrupt

1 R/W msksbrdone When set to 1, it enables the single block read done (stasbrdone) interrupt

0 R/W msksbwdone When set to 1, it enables the single block write done (stasbwdone)
interrupt

6.2.28 Multiple Block Interrupt Mask Register
The Multiple Block Interrupt Mask register enables or masks Multiple Block Interrupt Status Register
interrupts from being triggered on the Interrupt port of the CoreMMC. The following table shows the
Multiple Block Interrupt Mask register.

Table 40 • Multiple Block Interrupt Mask Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x2E MBIMR R/W 8 0x0 This register enables or masks Multiple Block
Interrupt Status Register interrupts from being
generated on Interrupt port of the CoreMMC.

Table 41 • Multiple Block Interrupt Mask Register Bit Definitions

Bit(s) Type Name Description

7 R/W mskmbwdatainfifoto When set to 1, it enables the multiple block write FIFO timeout
(stambwdatainfifoto) interrupt

CoreMMC v3.0

HB0510 Hand book Revision 4.0 26

Bit(s) Type Name Description

6 R/W mskmbwbusyto When set to 1, it enables the multiple block write busy timeout
(stambwbusyto) interrupt

5 R/W mskmbwcrcstaerr When set to 1, it enables the multiple block write crc response error
(stambwcrcstaerr) interrupt

4 R/W mskmbrstperr When set to 1, it enables the multiple block read stop error
(stambrstperr) interrupt

3 R/W mskmbrstto When set to 1, it enables the multiple block read start timeout
(stambrstto) interrupt

2 R/W mskmbcrcerr When set to 1, it enables the multiple block read or write crc error
(stambcrcerr) interrupt

1 R/W mskmbrdone When set to 1, it enables the multiple block read done (stambrdone)
interrupt

0 R/W mskmbwdone When set to 1, it enables the multiple block write done (stambwdone)
interrupt

CoreMMC v3.0

HB0510 Hand book Revision 4.0 27

6.2.29 Interrupt Status Register
The Interrupt Status Register stores the current status and errors bits for the transactions performed.
These bits are set regardless of the Interrupt Mask register. The following table describes the Interrupt
Status register.

Table 42 • Interrupt Status Register

HADDR[6:0] Register Name Type Width Reset Value Description

0x30 ISR R 8 0x0 This register provides status and error flags of
transactions.

Table 43 • Interrupt Status Register Bit Definitions

Bit(s) Type Name Description

7 R stauer User error is detected. Write FIFO overrun or Read FIFO underrun error.

6 R stasbi Response start bit error detected or time-out error while waiting for a
response.

5 R statbi Stop bit error is detected on response to command

4 R statxi Transmit bit error is detected on response to command

3 R starri Response to command received

2 R stacsi Command sent

1 R staboi Buffer overflow occurred. Read FIFO was full when more data attempted
to be written into it during Block Read.

0 R stabui Underrun occurred. Write FIFO was empty when more data attempted
to be sent during block write.

6.2.30 Single Block Interrupt Status Register
The Single Block Interrupt Status Register provides the current status and error bits for single block read
or write transactions performed. These bits are set regardless of the Single Block Interrupt Mask
register. The following table describes the Single Block Interrupt status register.

Table 44 • Single Block Interrupt Status Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x31 SBISR R 8 0x0 This register provides the status and error bits for
single block read or write transactions.

Table 45 • Single Block Interrupt Status Register Bit Definitions

Bit(s) Type Name Description

7 R stasbwdatainfifoto Single block Write FIFO timeout. Asserted when less than block length
amount of data in the Write FIFO after the period defined in the DATOTO
register at the start of a single block write transfer. Prevents Write FIFO
underruns during single block write transfers.

6 R stasbwbusyto Single block write busy timeout. Set when eMMC slave device holds DAT0 low
for longer than the period defined in DATATO register at the start of a single
block write transfer. Indicates that the slave device is not ready to receive
data.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 28

Bit(s) Type Name Description

5 R stasbwcrcstaerr Single block write CRC response error. Set when start bit of CRC Status frame
not received within period defined in DATATO register or when no valid stop
bit detected for CRC status frame.

4 R stasbrstperr Single Block Read Stop Error. Set when valid stop bit not detected on all active
DATI lines.

3 R stasbrstto Single Block Read start time-out. Set when no incoming start-bit found on
DATI for period defined in DATATO register.

2 R stasbcrcerr Single block read or write encountered CRC error.

1 R stasbrdone Single block read done

0 R stasbwdone Single block write done

6.2.31 Multiple Block Interrupt Status Register
The Multiple Block Interrupt Status Register provides the current status and error bits for multiple block
read or write transactions performed. These bits are set regardless of the Multiple Block Interrupt Mask
register. The following table describes the Multiple Block Interrupt status register.

Table 46 • Multiple Block Interrupt Status Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x32 MBISR R 8 0x0 This register provides the status and error bits for
multiple block read or write transactions.

Table 47 • Multiple Block Interrupt Status Register Bit Definitions

Bit(s) Type Name Description

7 R stambwdatainfifoto Multiple block Write FIFO timeout. Asserted when less than block length
amount of data in the Write FIFO after the period defined in the DATOTO
register at the start of a block within a multiple block write transfer. Prevents
Write FIFO underruns during Multiple block write transfers.

6 R stambwbusyto Multiple block write busy timeout. Set when eMMC slave device holds DAT0
low for longer than the period defined in DATATO register at the start of a
block within a multiple block write transfer. Indicates that the slave device is
not ready to receive data.

5 R stambwcrcstaerr Multiple block write CRC response error. Set when start bit of CRC Status frame
not received within period defined in DATATO register or when no valid stop
bit detected for CRC status frame for a block within a multiple block write
transfer.

4 R stambrstperr Multiple Block Read Stop Error. Set when valid stop bit not detected on all
active DATI lines for a block within a multiple block read transfer.

3 R stambrstto Multiple Block Read start time-out. Set when no incoming start-bit found on
DAT for period defined in DATATO register for a block within a multiple block
read transfer.

2 R stambcrcerr Multiple Block Read or Write encountered CRC Error.

1 R stambrdone Multiple Block Read Done

0 R stambwdone Multiple Block Write Done

CoreMMC v3.0

HB0510 Hand book Revision 4.0 29

6.2.32 Interrupt Clear Register
The Interrupt Clear Register is a write-only register used to clear (individually) the ISR bits described in

. This can clear an interrupt, if the associated bit is set in the Interrupt Mask Table 39 (see page 27)
register. The following table describes the Interrupt Clear register.

Table 48 • Interrupt Clear Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x34 ICR W 8 0x0 This register clears (individually) the corresponding bit in
the interrupt status register described in Table 39 (see

.page 27)

Table 49 • Interrupt Clear Register Bit Definitions

Bit(s) Type Name Description

7 W clruer Clear user error (stauer) bit.

6 W clrsbi Clear response start bit error/response time out error (stasbi) bit

5 W clrtbi Clear stop bit error (statbi) bit

4 W clrtxi Clear response transmit bit error (statxi) bit

3 W clrrri Clear command response receive (starri) bit

2 W clrcsi Clear command send (stacsi) bit

1 W clrboi Clear buffer overflow (staboi) bit

0 W clrbui Clear buffer under run (stabui) bit

6.2.33 Single Block Interrupt Clear Register
The Single Block Interrupt Clear Register is a write-only register used to clear (individually) the Single
Block Interrupt Status register bits described in This can clear an interrupt if Table 41 (see page 27) .
the associated bit is set in the Single Block Interrupt Mask register . The following table describes the
Single Block Interrupt Clear register.

Table 50 • Single Block Interrupt Clear Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x35 SBICR W 8 0x0 Single block interrupt clear register. This register
clears (individually) the corresponding bit in the
single block interrupt status register described in

.Table 41 (see page 27)

Table 51 • Single Block Interrupt Clear Register Bit Definitions

Bit(s) Type Name Description

7 W clrsbwdatainfifoto Clear single block write timeout error (stasbwdatainfifoto) bit

6 W clrsbwbusyto Clear single block write busy timeout error (stasbwbusyto) bit

5 W clrsbwcrcstaerr Clear single block write crc response timeout error (stasbwcrcstaerr) bit

4 W clrsbrstperr Clear single block read stop error (stasbrstperr) bit

3 W clrsbrstto Clear single block read start timeout error (stasbrstto) bit

2 W clrsbcrcerr Clear single block read or write crc error (stasbcrcerr) bit

CoreMMC v3.0

HB0510 Hand book Revision 4.0 30

Bit(s) Type Name Description

1 W clrsbrdone Clear single block read done (stasbrdone) bit

0 W clrsbwdone Clear single block write done (stasbwdone) bit

6.2.34 Multiple Block Interrupt Clear Register
The Multiple Block Interrupt Clear Register is a write-only register used to clear (individually) the
Multiple Block Interrupt Status register bits described in This can clear an Table 43 (see page 28) .
interrupt if the associated bit is set in the Multiple Block Interrupt Mask Register. The following table
describes the Multiple Block Interrupt Clear register.

Table 52 • Multiple Block Interrupt Clear Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x36 MBICR W 8 0x0 Multiple block interrupt clear register. This register
clears (individually) the corresponding bit in the
multiple block interrupt status register described in

.Table 43 (see page 28)

Table 53 • Multiple Block Interrupt Clear Register Bit Definitions

Bit(s) Type Name Description

7 W clrmbwdatainfifoto Clear multiple block write FIFO time out (stambwdatainfifoto) bit

6 W clrmbwbusyto Clear multiple block write busy timeout (stambwbusyto) bit

5 W clrmbwcrcstaerr Clear multiple block write crc response error (stambwcrcstaerr) bit

4 W clrmbrstperr Clear multiple block read stop error (stambrstperr) bit

3 W clrmbrstto Clear multiple block read start timeout (stambrstto) bit

2 W clrmbcrcerr Clear multiple block read or write crc error (stambcrcerr) bit

1 W clrmbrdone Clear multiple block read done (stambrdone) bit

0 W clrmbwdone Clear multiple block write done (stambwdone) bit

6.2.35 Control Register
The Control Register provides the control bits to define the operation of the core and to drive hardware
pins to the eMMC slave device. The following table describes the Control register.

Table 54 • Control Register

HADDR[6:0] Register
Name

Type Width Reset Value Description

0x38 CTRL R/W 8 0x0C This register provides the control bits for
the operation of the core.

Table 55 • Control Register Bit Definitions

Bit(s) Type Name Description

7 R Busy Slave device is indicating that it is busy by asserting DAT[0] low.

6 R - Reserved.

5 W fiforeset FIFO reset. Used to initialize the address pointers & flags in the Read and Write FIFOs
back to default values.

4 R/W cmdFrcLow Force CMD line to 0 (low). Used for boot operation.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 31

Bit(s) Type Name Description

3 R midle MMC Idle. When set to 1, it indicates that the core is in Idle state (not sending command,
or expecting response). This bit does not reflect when the core is transmitting/receiving
data.

2 R/W clkoe CLK Output Enable. Enables CLK or disables it to allow the slave device to enter Low-
power mode.

1 R/W slrst Slave Reset. When set, it applies a reset to the eMMC slave device through RST_N pin.

0 R/W swrst Software Reset. When set, it holds core in reset state and asserts RST_N pin Low.

6.2.36 Single Block Control and Status Register
The Single Block Control and Status Register provides control of single block read and write transactions
and associated status bits from these operations. The following table describes the Single Block Control
and Status register.

Table 56 • Single Block Control and Status Register

HADDR[6:0] Register Name Type Width Reset Value Description

0x39 SBCSR R/W 8 0x0 This register provides control and status
bits for single block reads and writes.

Table 57 • Single Block Control and Status Register Bit Definitions

Bit(s) Type Name Description

7 R - Reserved.

6:4 R sbwst Single Block Write Status – CRC Status bits. Updated when either stasbwdone,
stasbcrcerr or stasbwcrcstaerr set for single block write transfers. (Good CRC
Status results = 010)

3 R sbcrcerr Single Block CRC Error. Set when sbwdone or sbrdone asserted, if CRC error
detected. Cleared by writing 1 to clrsbcrcerr in Single Block Interrupt Clear
register.

2 R sbdone Single Block Done. Cleared when single block write or read start is set (sbwstrt
or sbrstrt). Set by hardware when Single Block Write or Read is completed.

1 R/W sbrstrt Single Block Read Start. Initiates the read of a block of the length defined in the
Block Length register from the eMMC slave device. Only held set for 1 HCLK
period.

0 R/W sbwstrt Single Block Write Start. Initiates the write of a block of the length defined in
Block Length register to the eMMC slave device. Only held set for 1 HCLK period.

6.2.37 Multiple Block Control and Status Register
The Multiple Block Control and Status Register provides control of multiple block read and write
transactions and associated status bits from these operations. The following table describes the Multiple
Block Control and Status register.

Table 58 • Multiple Block Control and Status Register

HADDR[6:0] Register
Name

Type Width Reset Value Description

0x3A MBCSR R/W 8 0x0 This register provides control and status
bits for multiple block reads and writes.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 32

Table 59 • Multiple Block Control and Status Register Bit Definitions

Bit(s) Type Name Description

7 R - Reserved.

6:4 R mbwst Multiple Block Write Status – CRC Status bits. Updated when either stambwdone,
stambcrcerr or stambwcrcstaerr set for multiple block write transfer. (Good CRC Status
results = 010)

3 R mbcrcerr Multiple Block CRC Error. Set when mbwdone or mbrdone asserted, if CRC error
detected. Cleared by writing 1 to clrmbcrcerr in the Multiple Block Interrupt Clear
register.

2 R mbdone Multiple Block Done. Cleared when multiple block write or read start is set (mbwstrt or
mbrstrt). Set by hardware when Multiple Block Write or Read is completed.

1 R/W mbrstrt Multiple Block Read Start. Initiates a multiple block read of number of blocks defined in
the Block Count register, with the number of bytes per block as per Block Length register.
Only held set for 1 HCLK period.

0 R/W mbwstrt Multiple Block Write Start. Initiates a multiple block write of number of blocks defined in
the Block Count register, with the number of bytes per block as per Block Length register.
Only held set for 1 HCLK period.

6.2.38 Response Timeout Register
This register defines the number of clock ticks of HCLK, that the core waits for a response from the slave
device after it has issued a command before timing out and setting the stasbi bit in the Interrupt Status
Register.

Table 60 • Response Timeout Register

HADDR[6:0] Register
Name

Type Width Reset Value Description

0x3C RSPTO R/W 8 0x40 Length of time (in HCLK ticks) that core
waits for a response from the slave device.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 33

6.2.39 Data Timeout Register
This register provides the number of clock ticks of HCLK, that the core waits for under the following
circumstances.

Single/Multiple block write:

Slave to indicate that it's idle by releasing DAT\[0\] (high), before timing out and setting either
the stasbwbusyto bit in the SBISR or the stambwbusyto bit in the MBISR.
User to load at least a block length amount of data into the Write FIFO before timing out and
setting either the stasbwdatainfifoto bit in the SBISR or the stambwdatainfifoto bit in the MBISR.
The timeout guards against the occurrence of write underruns during single/multiple block write
transfers.

Single/Multiple block read:

Slave to load a valid start bit onto to the data bus before timing out and setting either the
stasbrstto bit in the SBISR or the stambrstto bit in the MBISR.

Table 61 • Data Timeout Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x40 DATATO R/W 32 0x400 Length of time (in HCLK ticks) that core waits
for, for the cases mentioned in the Data
Timeout Register in the preceding description.

6.2.40 Block Length Register
This register specifies the length in bytes of data blocks to the core. This register must be written before
initiating single or multiple block write and read transfers.

Note: The block length must be specified to the eMMC slave device through a user initiated command
and response sequence. Writing to this register will not specify the block length to the eMMC slave.

Table 62 • Block Length Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x44 BlockLen R/W 16 0x200 Sets the length in bytes of data blocks used for single or
multiple block write and read transfers.

6.2.41 Data Control Register
The register defines the number of DAT bus bits that the core will actively drive/sample during data
transfers. This register must be defined by the user before initiating data transfers. This is a separate
action from setting the MMC_DWIDTH parameter at the time of instantiation but is dependent upon the
MMC_DWIDTH value set at the time of instantiation. For instance, the core may have been instantiated
with a 4-bit MMC DAT width but operationally may be set to drive/sample 1-bit of the DAT bus. In this
instance, the core can also be configured to drive/sample 4-bits (through dsize), but cannot be
configured to drive/sample 8-bits.

Table 63 • Data Control Register

HADDR[6:0] Register Name Type Width Reset
Value

Description

0x48 DCTRL R/W 8 0x00 Data Control – defines size of active bits of
DAT.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 34

Table 64 • Data Control Register Bit Definitions

Bit(s) Type Name Description

7:2 R - Reserved

1:0 R/W dsize DAT Size - Number of active DAT bits. User cannot select a size
instantiated in the core, specified via MMC_DWIDTH. dsize coding is as
follows:

00: 1-bit

01: 4-bit (Only available for MMC_DWIDTH = 4-bit or 8-bit)

10: 8-bit (Only available for MMC_DWIDTH = 8-bit)

11:Reserved

6.2.42 Clock Register
This register defines the period for the CLK pin (MMC interface clock). The value of CLKHP defines the
half clock period for the CLK.

A suitable value needs to be written to this register initially before any commands are sent to the eMMC
slave to generate a ~400 KHz MMC clock from the HCLK input (As per initialization clock frequency
defined in the JEDEC Specification).

Once the initialization command-response sequences have been completed with the eMMC slave
device, the user can initiate a SWITCH command to inform the eMMC slave device to change over to
high-speed mode. A new value can then be written to this register to derive the desired run-time MMC
interface clock frequency.

To achieve maximum overall system throughput, depending on the application, it may be beneficial to
ensure that the processor controlling CoreMMC is running at its maximum operating frequency (along
with HCLK) & then choose the CLKHP value based off this such that the MMC interface clock is running
at as close as possible to the 52 MHz maximum defined in the JEDEC specification [R1], as overall system
throughput is heavily impacted by AHB bandwidth.

Note: The default value set in this register is sufficient to derive a 400 KHz initialization MMC interface
clock from a 50 MHz HCLK input. If the HCLK input differs from 50 MHz, the user must write a suitable
value to this register prior to performing any command-response transactions with the eMMC slave
device.

Table 65 • Clock Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x4C CLKR RW 8 0x3f Clock Register – defines half period of CLK
signal.

Table 66 • Clock Register Bit Definitions

Bit(s) Type Name Description

CoreMMC v3.0

HB0510 Hand book Revision 4.0 35

Bit(s) Type Name Description

7:0 R/W CLKHP CLK Half Period - defines the half period of the MMC interface clock (CLK), where the
frequency of CLK is defined by the formula:

Example CLKHP values & the resultant CLK generated:
CLKHP CLK

00: HCLK/2

01: HCLK/4

02: HCLK/6

03: HCLK/8

04: HCLK/10

...

255: HCLK/512

Note: The maximum CLK operating frequency is HCLK/2 to support the 3 ns hold time of the MMC
interface defined in the JEDEC specification [R1] (Data is loaded onto the bus by CoreMMC 1 HCLK cycle
after the rising edge of CLK – Hold time is therefore equal to the period of HCLK).

6.2.43 Block Count Register
This register specifies the number of blocks in a multiple block transfer to the core. This register must be
written to before initiating multiple block write or read transfers.

Note: The block count must be specified to the eMMC slave device through a user initiated command
and response sequence. Writing to this register will not specify the block count to the eMMC slave.

Table 67 • Block Count Register

HADDR[6:0] Register
Name

Type Width Reset
Value

Description

0x50 BlockCnt R/W 16 0x00 Specifies the number of blocks in a multiple block
transfer.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 36

7 Tool Flows
The following sections describe installation and configuration of tools needed for CoreMMC.

7.1 Licensing
No license is required for the use of this core.

7.2 RTL
Complete RTL source code is provided for the core and testbenches.

7.3 SmartDesign
CoreMMC is pre-installed in the SmartDesign IP Deployment design environment. The following figure

the core using the configuration GUI within SmartDesign. For information on using shows configuring
SmartDesign to instantiate and generate cores, refer to the .Using DirectCore in Libero IDE User Guide

Figure 8 • CoreMMC Full I/O View

The following figure shows CoreMMC SmartDesign configuration with callouts to associated parameters.

http://www.microsemi.com/document-portal/doc_view/131531-using-directcore-in-libero-ide-v8-4

CoreMMC v3.0

HB0510 Hand book Revision 4.0 37

The following figure shows CoreMMC SmartDesign configuration with callouts to associated parameters.

Figure 9 • CoreMMC SmartDesign Configuration

7.4 Simulation Flows
The User Testbench for CoreMMC is included in all releases. To run simulations, select the User
Testbench flow within SmartDesign and click and generate on the . The User Save Generate pane
Testbench is selected through the Core Testbench Configuration GUI. When SmartDesign generates the
Libero SoC project, it installs the user testbench files.

To run the user testbench, set the design route to the CoreMMC instantiation in the Libero SoC design
hierarchy pane and click in the Libero SoC Design Flow window. This invokes ModelSim® and Simulation
automatically runs the simulation.

7.4.1 User Testbench
The following figure shows the hierarchal structure of the CoreMMC simulation testbench which
includes an instance of CoreMMC, an eMMC slave model and a BFM AHB Master.

User tests are defined in the user_tb.bfm script which is compiled into a vector file and passed via
parameter to the BFM AHB master. The BFM master emulates the operation of an AHB master
controlling CoreMMC to communicate with an eMMC slave. The user_tb.bfm script packaged along with
CoreMMC performs single and multiple block read and write transactions with the eMMC slave. An
extensive set of procedures are defined in the user_tb.bfm script which demonstrate the intended flow
for AHB master controlling CoreMMC. Users can modify the calls to these procedures in the user_tb.bfm
script to generate custom simulation cases if required.

The eMMC slave model is a primitive model of an eMMC slave device with basic functionality such as
support for a limited set of eMMC commands (Commands 0,1,2,3,9,7,8, 6, 16, 17, 18, 23, 24, 25), single
and multiple block data transfers with 16 addressable 512-byte sectors.

Note: Support for SWITCH command (CMD6) is only implemented for writing to the DATA_WIDTH

CoreMMC v3.0

HB0510 Hand book Revision 4.0 38

1.

2.
3.

Note: Support for SWITCH command (CMD6) is only implemented for writing to the DATA_WIDTH
segment \[183\] of the EXT_CSD for configuring the number of DAT bits that the eMMC slave model
actively drives/samples.

Figure 10 • CoreMMC User Testbench

7.5 Synthesis in Libero SoC
After setting the design root appropriately for your design, use the following steps to run the Synthesis:

Click in the Libero SoC software. The window appears, displaying the Synplicity® Synthesis Synthesis
project.
Set Synplicity to use the Verilog 2001 standard if Verilog is being used.
Click to run the Synthesis.Run

7.6 Place-and-Route in Libero SoC
After running Synthesis, run the Place and Route, by enabling the check box for , Timing Driven High

 and under in the Place and Route Effort Layout Repair Minimum Delay Violations Layout Options
configuration window.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 39

8 System Integration
This section provides information to ease the integration of CoreMMC.

Figure 11 • CoreMMC System Integration

The example design described in this section contains CoreMMC which is connected to SmartFusion2
Microcontroller Subsystem.

The configuration of COREMMC_0 parameters is shown in the following figure.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 40

The configuration of COREMMC_0 parameters is shown in the following figure.

Figure 12 • CoreMMC Configuration

The system integration happens as per the following steps in this example.

Output pin “MSS_HPMS_READY” of CoreResetP is used to drive COREMMC_0 reset pin “HRESETN”.

The COREMMC_0 has HCLK and CLK clocks. Here CLK is an output clock for eMMC device clock.
HCLK is a 104 MHz clock, driven from the output port “GL0” of CCC_0.
CLK is a 400 KHz clock during the device initialization stage and is changed to 52 MHz during data
transfer state.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 41

Run the Libero Place and Route, by enabling the check box for , and Timing Driven High Effort Layout
 under in the Place and Route configuration Repair Minimum Delay Violations Layout Options

window as shown in the following figure.

Figure 13 • Place and Route Configuration

Note: The example design can be obtained from the Microsemi Technical Support.

mailto: soc_tech@microsemi.com

CoreMMC v3.0

HB0510 Hand book Revision 4.0 42

1.

2.

3.

4.
5.

1.

2.

9 Design Constraints
Designs with CoreMMC require the following constraints to be applied in the design flow to prevent the
occurrence of timing violations in the design.

Note: Timing constraints explained in the following sections are for example design described in System
. PLL instance name and port names are used from the example design, to Integration (see page 39)

provide the generated clock and output delay clock constraints. The constraints must be changed
accordingly for the user who uses a different PLL instance name or port names,.

9.1 Enhanced Constraint Flow
The procedure for adding the constraints is as follows for the enhanced constraint flow.

Double-click in the window and click the tab. Constraints > Manage Constraints Design Flow timing
Click on to automatically create a constraints file containing the PLL constraints.derive constraints
Select , when prompted to automatically associate the derived constraint SDC file to the ‘Yes

, ‘ ’ and ‘ ’.Synthesis’ Place and Route Timing Verification
In the Constraints manager, click on and create a sdc file. Right-click on the newly created sdc new
file and set as target.
Select checkbox under “ ” and “ ”Place and Route Timing Verification
Add the generated clock constraints as shown below. There are two generated clock constraints that
are used in this example. First generated clock is used to divide the source clock by 2 and second
generated clock is used to route the generated clock in first step to the output CLK pad.

create_generated_clock -name {EMMC_CLK_DIV} -divide_by 2 -source [
get_pins { MSS_MMC_sb_0/CCC_0/CCC_INST/GL0 }] -phase 0 [get_pins {
*u_MMCMaster/u_MMCClkGen/CLK/Q }]

create_generated_clock -name {EMMC_CLK} -divide_by 1 -source [
get_pins { *u_MMCMaster/u_MMCClkGen/CLK/Q }] -phase 0 [get_ports {
CLK }]

Where,

MSS_MMC_sb_0/CCC_0/CCC_INST/GL0 is the source clock for the generated clock. In the
example design, PLL output 0 clock is used as a source clock for CoreMMC. If user uses different
source clock and different instance names, the design constraint must be changed accordingly.
u_MMCMaster/u_MMCClkGen/CLK/Q is the pin name of the derived clock.
CLK is the output pad for EMMC clock. If user uses different pad name, the design constraint must
be changed accordingly.

6. Add the output delay constraint for CMD and DAT pads as shown below.

set_output_delay 3 -clock {EMMC_CLK} [get_ports {CMD DAT* }]

Where,

CMD is the inout pad for EMMC command. If user uses different pad name, the design constraint
must be changed accordingly.
DAT is the inout pad for EMMC data. It can be 1-bit, 4-bits or 8-bits wide. Wildcard(*) is used, as DAT
width depends on configuration of MMC_DWIDTH parameter. If user uses different pad name, the
design constraint must be changed accordingly.

9.2 Classic Constraints Flow
The procedure for adding the constraints is as follows for the classic constraints flow.

Right-click on in the window and click Create Constraints > Timing constraints Design Flow create
. This creates a new SDC file. The design constraints including the clock source new constraint

constraints can be entered in this blank SDC file.
As the example design uses PLL output 0 clock as a source clock, constraints need to be applied to

CoreMMC v3.0

HB0510 Hand book Revision 4.0 43

2.

3.

4.

As the example design uses PLL output 0 clock as a source clock, constraints need to be applied to
specify the frequency of the clock source to the PLL. The output of the PLL is determined by the PLL
configuration.
Add the following constraints to specify the frequency of the clock input to the PLL and generated
clock from PLL.
In the example design, on-chip oscillator of 50 MHz clock is used as a PLL input clock and 104 MHz
clock is generated from PLL.

create_clock -name { MSS_MMC_sb_0/FABOSC_0/I_RCOSC_25_50MHZ/CLKOUT } -
period 20.000 -waveform { 0.000 10.000 } [get_pins { MSS_MMC_sb_0
/FABOSC_0/I_RCOSC_25_50MHZ:CLKOUT }]

create_generated_clock -name { MSS_MMC_sb_0/CCC_0/CCC_INST/INST_CCC_IP:
GL0 } -divide_by 25 -multiply_by 52 -source{ MSS_MMC_sb_0/CCC_0
/CCC_INST/INST_CCC_IP:RCOSC_25_50MHZ } \

{ MSS_MMC_sb_0/CCC_0/CCC_INST/INST_CCC_IP:GL0 }

Where,

MSS_MMC_sb_0/FABOSC_0/I_RCOSC_25_50MHZ: CLKOUT is the 50 MHz on-chip oscillator
clock used as an input clock of PLL. If user uses different clock source, the design constraint must be
change accordingly.
MSS_MMC_sb_0/CCC_0/CCC_INST/INST_CCC_IP:GL0 is the 104 MHz clock generated
from PLL. If user uses different source clock and different instance name, the design constraint must
be changed accordingly.

5. Add the generated clock constraints as shown below. Two generated clock constraints are used in this
example. First generated clock is used to divide the source clock by 2 and second generated clock is used
to route the generated clock in first step to the output CLK pad.

create_generated_clock -name {EMMC_CLK_DIV} -divide_by 2 -source [
get_pins {MSS_MMC_sb_0/CCC_0/CCC_INST/INST_CCC_IP:GL0}] [get_pins {
*u_MMCMaster/u_MMCClkGen/CLK:Q }]

create_generated_clock -name {EMMC_CLK} -divide_by 1 -source [
get_pins { *u_MMCMaster/u_MMCClkGen/CLK:Q }] -phase 0 [get_ports {
CLK }]

Where,

MSS_MMC_sb_0/CCC_0/CCC_INST/INST_CCC_IP:GL0 is the source clock for the generated
clock. In the example design, PLL output 0 clock is used as a source clock for CoreMMC. If user uses
different source clock and different instance name, the design constraint must be changed
accordingly.
u_MMCMaster/u_MMCClkGen/CLK:Q is the pin name of the derived clock.
CLK is the output pad for EMMC clock. If user uses different pad name, the design constraint must
be changed accordingly.

6. Add the output delay constraint for CMD and DAT pads as shown below.

set_output_delay 3 -clock {EMMC_CLK} [get_ports {CMD DAT* }]

Where,

CMD is the inout pad for EMMC command. If user uses different pad name, the design constraint
must be changed accordingly.
DAT is the inout pad for EMMC data. It can be 1-bit, 4-bits or 8-bits wide. Wildcard(*) is used, as DAT
width depends on configuration of MMC_DWIDTH parameter.

CoreMMC v3.0

HB0510 Hand book Revision 4.0 44

10 Reference Documents
The following table gives the list of documents referred in this document.

Table 68 • Reference Documents

Document ID Document Name

[R1] JEDEC eMMC 4.41 Standard Specification

[R2] SanDisk eMMC 4.41 I/F Preliminary Datasheet

[R3] AMBA®3 AHB-Lite Protocol

CoreMMC v3.0

HB0510 Hand book Revision 4.0 45

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2018 Microsemi. All rights reserved. Microsemi and the Microsemi logo
are trademarks of Microsemi Corporation. All other trademarks and service
marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services
for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with
mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and
complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data
and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any
products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the
entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights,
licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products
and services at any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system
solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened
analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time
solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.
microsemi.com.

50200510

	Revision History
	Revision 4.0
	Revision 3.0
	Revision 2.0

	Introduction
	Supported Families
	Key Features
	Limitations
	Core Version
	Supported Interfaces
	Device Utilization and Performance

	Functional Description
	System Overview
	Functional Description of the MMC Controller
	MMC Protocol
	Operating Modes
	Command Registers
	Response Registers
	Multiple Block Writes
	Multiple Block Reads
	Programming Example

	Core Interfaces
	Verilog or VHDL Parameters
	I/O Signals

	Timing Diagrams
	Register Map and Descriptions
	Register Summary
	Status Register

	CoreMMC Version Register
	Major Version Register
	Minor Version Register
	Command Index Register
	Command Argument1 Register
	Command Argument2 Register
	Command Argument3 Register
	Command Argument4 Register
	Response Register0
	Response Register1
	Response Register2
	Response Register3
	Response Register4
	Response Register5
	Response Register6
	Response Register7
	Response Register8
	Response Register9
	Response Register10
	Response Register11
	Response Register12
	Response Register13
	Response Register14
	Response Register15
	Write Data Register
	Read Data Register
	Interrupt Mask Register
	Single Block Interrupt Mask Register
	Multiple Block Interrupt Mask Register
	Interrupt Status Register
	Single Block Interrupt Status Register
	Multiple Block Interrupt Status Register
	Interrupt Clear Register
	Single Block Interrupt Clear Register
	Multiple Block Interrupt Clear Register
	Control Register
	Single Block Control and Status Register
	Multiple Block Control and Status Register
	Response Timeout Register
	Data Timeout Register
	Block Length Register
	Data Control Register
	Clock Register
	Block Count Register

	Tool Flows
	Licensing
	RTL
	SmartDesign
	Simulation Flows
	User Testbench

	Synthesis in Libero SoC
	Place-and-Route in Libero SoC

	System Integration
	Design Constraints
	Enhanced Constraint Flow
	Classic Constraints Flow

	Reference Documents

