PolarFire[®] FPGAs and SoC FPGAs

microchip.com/FPGA

PolarFire FPGAs and SoC FPGAs Consume the Lowest Total Power

PolarFire FPGAs and SoC FPGAs deliver up to two times the performance per watt compared to competitive devices.

The thermal images below show the power and heat dissipation when identical designs are run on competitive products.

Superior Power and Thermal Performance

Microchip PolarFire FPGA 3.5W, 59.8°C, 24.2 FIT, 28 nm

Competitor X FPGA, 6.0W, 81.3°C, 96.3 FIT, 16 nm

PolarFire FPGAs and SoC FPGAs demonstrate a far superior thermal performance over the operating temperature range. The following charts show a stable power and thermal performance of PolarFire SoC FPGAs while a competing SoC FPGA demonstrates a thermal runaway at a 60°C ambient temperature. Failure In Time (FIT) rate grows exponentially over temperature; the low power consumption of PolarFire SoCs and FPGAs deliver superior FIT rates.

PolarFire SoC FPGAs deliver significant power savings while outperforming SRAM-based SoC FPGAs over the operating temperature range. While consuming 1.3W, PolarFire SoC FPGAs deliver a CoreMark® score of 6000 while competing SRAM-based SoC FPGAs deliver a CoreMark score of 0.

At worst case process and temperature

Source: Published power estimations of FPGA static and processor subsystem power.

Low Power Advantages

- Save up to \$1.5/W (fan-less and heatsink-less designs)
- Enable power- and thermal-constrained applications
- Create smaller industrial designs
- Achieve lower FIT rates with lower thermals

Defense Grade Security

Cybersecurity is the #1 Concern for Connected Devices on the Network Edge

It is not enough for today's demanding applications to meet the functional requirements of their design—they must do so in a secured way. Security starts during silicon manufacturing and continues through system deployment and operations. Our PolarFire SoC FPGAs represent the industry's most advanced secure programmable FPGAs.

Security Features	PolarFire [®] SoC	Competitor 1	Competitor 2	Competitor 3
TRNG	Hard-IP (SP800-90A CTR_DRBG-256; SP800-90B (draft) NRBG)	X	X	Soft-IP
AES	AES-128/192/256 (ECB, CBC, CTR, OFB, CFB, GCM, KeyWrap)	AES-256 (CBC)	AES-256 (CBC)	AES-256 (ECB, GCM)
SHA	SHA-1/224/256/384/512, Key Tree	SHA-256	SHA-256	SHA-384
НМАС	HMAC-SHA-1/224/256/384/512; GMAC- AES; CMAC-AES	HMAC-SHA2-256	HMAC-SHA2-256	X
RSA	SigGen (ANSI X9.31, PKCS v1.5), SigVer (ANSI X9.31, PKCS v1.5)- 1024/1536/2048/3072/4096	Soft-RSA –(2048) SigGen(PKCS v1.5), SigVer (PKCS v1.5)	Soft-RSA –(2048) SigGen(PKCS v1.5), SigVer (PKCS v1.5)	Software library - RSA primitive (2048)
ECDSA	KeyGen, KeyVer, SigGen & SigVer - NIST & Brainpool (P256/384/521) KAS - ECC CDH, PKG, PKV	X	X	X
FFC	KAS - DH, DSA SigGen & SigVer (1024/1536/2048/3072/4096)	\boxtimes	\overline{X}	X
Tamper Sense	Voltage, Temperature, Clock Frequency, Clock Glitch, Active Mesh	X	X	Only Voltage & Temperature
PUF	PUF protection for Secure Key storage (Secure Boot and Data communication)	[X]	X	For secure boot key
Bitstream Protection	DPA resistant Encrypted bit-stream programming	X	X	\checkmark
DPA Resistance	DPA resistant hard crypto co-processor supporting all above Crypto algorithms	X	X	X

Exceptional Reliability

Microchip is a proven leader of reliable FPGAs and SoCs for aerospace and defense applications. We extend such reliability to commercial, industrial and automotive applications by implementing Single-Event Upset (SEU) immunity across all our products.

Features of Error-Free, SEU-Immune Fabric Configuration

- ZeroFIT SEU neutron-immune FPGA configuration
- No need to detect configuration errors
- No scrubbing or TMR required
- Block RAM with ECC

- Lower cost
- Built-in SECDED on 33-bit word
- System controller suspend mode for safety-critical applications
- SECDED protection in all MSS memories on PolarFire SoC FPGAs

Antifuse FPGAs

Antifuses have a permanentlyprogrammed metallic link, which cannont be altered by energetic partricles or other radiation.

Nonvolatile FPGAs

High energy particles (atmospheric neutrons, heavy ions in space) are unable to generate sufficient charge to cause the floating gate to erroneously change state.

SRAM FPGAs

Incoming neutron causes firm error in logic modules leading to

Exceptional Reliability

The SEU immunity and low power consumption of PolarFire SoCs and FPGAs offer lower Failure In Time (FIT) rates, enhancing system reliability. The chart below of FIT versus device temperature illustrates how junction temperature affects failures over time and that the low power consumption of PolarFire SoC FPGAs compared to the power consumption of the competition results in significantly lower failures. When considering the Mean Time Between Failures (MTBF) in a product in mass production, a PolarFire SoC FPGA-based product would have a superior MTBF, reducing costs and elevating your reputation.

Software and Tools

reference designs.

Libero® SoC Design Suite is a comprehensive development

provides an integrated hardware tool suite incorporating RTL entry through programming, a rich IP library, and complete

suite for designing with Microchip's SoCs and FPGAs. It

SoftConsole IDE is a free, Eclipse-based development environment for rapid development and debug of bare-metal and RTOS based embedded firmware for all Microchip FPGAs (with soft CPUs) and SoC FPGAs.

SmartHLS High-level synthesis tool enables development on Microchip's SoCs and FPGAs using C++ coding. With SmartHLS one can,

- Design in C++ and verify the functionality with software tests
- Compile the C++ program into a functionality-equivalent Verilog hardware module
- Run co-simulation with ModelSim to verify cycle-accurate hardware behavior and confirm that the hardware functionality matches the software

The VectorBlox[™] Accelerator SDK is a Software Development Kit that offers the most power-efficient Convolutional Neural Network (CNN)-based Artificial Intelligence/Machine Learning (AI/ML) inference with PolarFire SoC and FPGAs. VectorBlox enables:

- OpenVINO[™] toolkit-based front-end tools
- Support for most common frameworks like TensorFlow, Caffe, MxNet, PyTorch and DarkNet
- Quick evaluation without prior FPGA knowledge
- Software-overlay-based implementation; there's no need to reprogram the FPGA while updating CNNs

Generic C++

PolarFire FPGAs: Low-Power, Secure and Reliable Mid-Range FPGA Platforms

Take advantage of the following features:

- Logic density of 48k to 481 kLE
- Four-input Look-Up Table (LUT) with a fractureable D-type flip-flop
- Up to 24 12.7-Gbps SerDes ports
- Integrated dual PCIe® for up to four Gen 2 Endpoint (EP) and Root Port (RP) designs
- High-speed I/O (HSIO) up to 1600 Mbps DDR4, 1333 Mbps DDR3L and 1333 Mbps LPDDR3/DDR3 memories
- LVDS with I/O gearing
- General purpose I/O (GPIO) supporting 3.3V built-in CDR for SGMII, 1067 Mbps DDR3 and 1600 Mbps

Features for Increased Reliability

- SEU-immune FPGA configuration cells
- Built-in SECDED and memory interleaving on LSRAMs
- System controller suspend mode for safety-critical designs

Security Features

- Cryptography Research Incorporated (CRI)-patented, Differential Power Analysis (DPA)-safe bitstream protection.
- Integrated Physically Unclonable Function (PUF)
- 56 Kbytes of secure eNVM (sNVM)
- Built-in tamper detectors and countermeasures
- Integrated Athena TeraFire EXP5200B crypto co-processor
- Digest integrity check for FPGA, µPROM and sNVM
- True random number generator CRI DPA countermeasure pass-through license

PolarFire FPGA Product Table

	Features	MPF050	MPF100	MPF200	MPF300	MPF500
FPGA Fabric	Logic Elements (4LUT + DFF)	48	109K	192K	300K	481K
	Math Blocks (18×18 MACC)	150	336	588	924	1480
	LSRAM Blocks (20 kbit)	160	352	616	952	1520
	uSRAM Blocks (64×12)	460	1008	1764	2772	4440
	Total RAM (Mbits)	3.6 Mbits	7.6 Mbits	13.3 Mbits	20.6 Mbits	33 Mbits
	uPROM (kbits)	216 Kbits	297 Kbits	297 Kbits	459 Kbits	513 Kbits
	User DLLs/PLLs	8 each	8 each	8 each	8 each	8 each
High-Speed I/O	12.7 Gbps Transceiver Lanes	4	8	16	16	24
	PCle [®] Gen2 Endpoints/Root Ports	2	2	2	2	2
Total I/O	Total User I/O	176	296	364	512	584
Packaging	Type/Size/Pitch		Total User I/C	(HSIO/GPIO) GPIC	O CDRs/XCVRs	
Extended Commercial/ Industrial Grade	FCSG325 (11x11, 11×14.5*, 0.5 mm)	164 (84/80) 6/4	170 (84/86) 7/4	170 (84/86) 7/4*		
	FCSG536 (16×16, 0.5 mm)			300 (120/180) 15/4	300 (120/180) 15/4	
	FCVG484 (19×19, 0.8 mm)	176 (96/92) 7/4	284 (120/164) 13/4	284 (120/164)13/4	284 (120/164) 13/4	
	FCG484 (23×23, 1.0 mm)		244 (96/148) 12/8	244 (96/148) 12/8	244 (96/148) 12/8	
	FCG784 (29×29, 1.0 mm)			364 (132/232) 18/16	388 (156/232) 18/16	388 (156/232) 18/16
	FCG1152 (35×35, 1.0 mm)				512 (276/236) 19/16	584 (324/260) 19/24
	FCS325 (11×14.5, 0.5 mm)			170 (84/86) 7/4*		
	FCS536 (16×16, 0.5 mm)				300 (120/180) 15/4	
Military Grade	FCV484 (19×19, 0.8 mm)				284 (120/164) 13/4	
("S" Devices only)	FC484 (23×23, 1.0 mm)				244 (96/148) 12/8	
	FC784 (29×29, 1.0 mm)				388 (156/232) 18/16	388 (156/232) 18/16
	FC1152 (35×35, 1.0 mm)					584 (324/260) 19/24
Automotive T2 Grade	FCSG325 (11×11, 11×14.5*, 0.5 mm)	164 (84/80) 6/4	170 (84/86) 7/4	170 (84/86) 7/4*		
	FCSG536 (16×16, 0.5 mm)			300 (120/180) 15/4	300 (120/180) 15/4	
	FCVG484 (19×19, 0.8 mm)	176 (96/92) 7/4	284 (120/164) 13/4	284 (120/164)13/4	284 (120/164) 13/4	
	FCG484 (23×23, 1.0 mm)		244 (96/148) 12/8	244 (96/148) 12/8		
	FCG784 (29×29, 1.0 mm)					
	FCG1152 (35×35, 1.0 mm)					

Devices in the same package and family type are pin compatible

*FCSG325 package has dimensions of 11 \times 11 for MPF050 and MPF100 devices and 11 \times 14.5 for MPF200 devices.

PolarFire SoC FPGAs: Low-Power, Secure and Reliable Mid-Range SoC FPGA Platforms

Take advantage of the following features:

- Logic density of 23k to 480 kLEs
- Memory support: hard DDR controller and PHY for DDR4/LPDDR4, DDR3L and DDR3/LPDDR3
- Up to 20 12.7-Gbps SerDes ports
- Integrated dual PCIe for up to four Gen 2 Endpoint (EP) and Root Port (RP) designs
- Physically Unclonable Function (PUF)
- High-Speed I/O (HSIO) and LVDS up to 1600 Mbps
- Instant on, nonvolatile technology that offers 50% lower power compared to equivalent SRAM FPGAs
- All the security and reliability features of PolarFire FPGAs

PolarFire FPGA Development Hardware

PolarFire SoC FPGA Adds a Versatile, Low-Power Multi-Core RISC-V CPU Sub-System

- 64-bit multi-core CPU cluster coherent with the memory subsystem that enables Linux[®] and real-time operating systems in a deterministic AMP system
- Caches that are configurable as addressable memory
- Integrated DDR3/4, LPDDR3/4 controller and PHY
- Defense-grade secure boot
- Spectre and meltdown immune
- Physical memory protection
- SECDED on all memories
- Smallest form factors (11 × 11, 16 × 16 and 19 × 19)

PolarFire SoC FPGA Product Table

	Features	MPFS025T	MPFS095T	MPFS160T	MPFS250T	MPFS460T
	k Logic Elements (4LUT + DFF)	23	93	161	254	461
	Math Blocks (18×18 MACC)	68	292	498	784	1420
	LSRAM Blocks (20k bit)	84	308	520	812	1460
FPGA Fabric	uSRAM Blocks (64×12)	204	876	1494	2352	4260
	Total RAM Mbits	1.8	6.7	11.3	17.6	31.6
	uPROM Kbits	194	387	415	470	553
	User DLLs/PLLs	8 each	8 each	8 each	8 each	8 each
	12.5 Gbps SerDes Lanes	4	4	8	16	20
High-Speed I/O	PCle® Gen2 End Points/Root Ports	2	2	2	2	2
Total FPGA I/O	HSIO+GPIO	108	276	312	372	468
Total MSS I/O	MSS IO	136	136	136	136	136
MSS DDR DB	MSS DDR Data Bus	16*/32	16*/32	32	32	32
Packaging	Type/Size/Pitch	MSS IO/HSIO/GPIO/XCVRs				
	FCSG325 (11×11,11×14.5⁺, 0.5 mm)	102/32/48/2	102/32/48/2			
Extended	FCSG536 (16 × 16, 0.5 mm)		136/60/84/4	136/60/108/4	136/60/108/4	
Commercial/ Industrial Grade	FCVG484 (19 × 19, 0.8 mm)	136/60/48/4	136/60/84/4	136/60/84/4	136/60/84/4	
	FCVG784 (23 × 23, 0.8 mm)		136/144/132/4	136/144/168/8	136/144/180/8	
	FCG1152 (35 × 35, 1.0 mm)				136/144/228/16	136/180/288/20
	FCS25 (11 × 14.5 ⁺ , 0.5 mm)		102/32/48/2			
Addition of the des	FCS36 (16 × 16, 0.5 mm)				136/60/108/4	
("S" devices only)	FCV84 (19 × 19, 0.8 mm)				136/60/84/4	
	FCV84 (23 × 23, 0.8 mm)				136/144/180/8	
	FC152 (35 × 35, 1.0 mm)				136/144/228/16	136/180/288/20
	FCSG325 (11 × 11,11 × 14.5⁺, 0.5 mm)	102/32/48/2	102/32/48/2			
Automotive T2	FCSG536 (16 × 16, 0.5 mm)		136/60/84/4	136/60/108/4	136/60/108/4	
Grade	FCVG484 (19 × 19, 0.8 mm)	136/60/48/4	136/60/84/4	136/60/84/4	136/60/84/4	
				1001111000	100110000	
	FCVG784 (23 × 23, 0.8 mm)		136/144/132/4	136/144/168/8	136/144/180/8	

Devices in the same package and family type are pin compatible.

+ FCSG325 package has dimensions of 11×11 for MPFS025 and 11×14.5 for MPFS095 devices.

* The MSS DDR bus is 16-bit wide in the FCSG325 package.

PolarFire FPGA Development Hardware

PolarFire Evaluation Kit

MPF300-EVAL-KIT

PolarFire Video Kit

MPF300-VIDEO-KIT-NS

Future

Avalanche Board

Aldec

HES-MPF500-M2S150

PolarFire Splash Kit

MPF300-SPLASH-KIT

Arrow

Everest Board

Aries Embedded

M100PF SoM

Sundance DSP SoM Modules

PolarFire SoC FPGA Development Hardware

PolarFire SoC Icicle Kit

MPFS-ICICLE-KIT-ES

Aldec TySoM-M

PolarFire SoC Video Kit

MPFS250-VIDEO-KIT

Aries Embedded

M100PFS

Conclusive Engineering

RCHD-PF

Digitalcore Technologies

CMSV_A1_PF254_AX

Enclustra Mercury+ MP1

Sundance DSP

Polarberry

Mi-V, pronounced "my five," is our continuously expanding, comprehensive suite of tools and design resources that we developed with numerous third parties to support RISC-V designs. The Mi-V ecosystem aims to increase adoption of the RISC-V Instruction Set Architecture (ISA) and our SoC FPGA and RISC-V soft CPU portfolio.

Operating Systems and RTOS

Development Tools

LAUTERBACH DEVELOPMENT TOOLS

ZASHLING **MPS SIEMENS**

microchip.com/FPGA

Hardware and Design Services

Online Reference and Support Online reference

RISC-V Innovation Unleashed Trainings

Mi-V Virtual Summit Session Archive

Renode Webinars

Support

GitHub Discussions

How-To YouTube Videos

Mi-V Ecosystem Unleashed Webinars

Tech Support Portal

Microchip Technology Inc. | 2355 W. Chandler Blvd. | Chandler AZ, 85224-6199 | microchip.com/FPGA

The Microchip name and logo, the Microchip logo, Libero and PolarFire are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. All other trademarks mentioned herein are property of their respective companies. © 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved. 8/23 DS0004954A

