TU0827
Tutorial
PolarFire FPGA Debugging Using Splash Kit

& Microsemi

Power Matters.

& Microsemi

Power Matters.”

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
www.microsemi.com

© 2018 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

50200827. 1.0 4/18

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

Contents

& Microsemi

Power Matters.”

1 Revision History 1
1.1 ReVISION 1.0 . . 1

2 PolarFire FPGA Debugging Using Splash Kit 2
21 Design RequiremMents 2

2.2 PrereqUISIEESo 3

2.3 Demo Design . ..o 3

2.4 Clocking StrUCIUrEo 5

2.5 Programming the Device 5

26 Launching SmartDebug from Libero 6

2.7 Debugging the Design 7
271 View Device Status 7

272 Debug FPGA Array 8

2.7.3 Debug HPROM e 12

2.7.4 SNVM DebUg . ..ot 12

275 Debug TRANSCEIVER 14

2.8 CONCIUSION . .o 19

3 Appendix: KnOWNn ISSUES 20
3.1 Probe Points Write ISSUE 20

3.2 Data Traffic Errors on XCVR Lanes in CDRMode it 21

4 Appendix: References 22
TU0827 Tutorial Revision 1.0 iii

Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30

& Microsemi

Power Matters.”

SmartDebug Top-Level BIOCKS e 3
XCVR_Debug Overall Design Blocks e e 4
Fabric_Debug Overall Design BIocks 4
Clocking StrUCtUreo 5
Board Setup . .. 6
Programming the Device 6
Launching SmartDebug Design e 6
SmartDebug Window Debug Options 7
Device Status Report Sample 7
Debug FPGA Array—Live Probes 8
Debug FPGA Array—Active Probes 9
Pseudo-static Signal Polling 9
Debug FPGA Array—Memory BIOCKS e 10
Memory Blocks—Read Block 10
Memory Blocks—Write BIOCK 11
Debug FPGA Array—Probe Insertion 11
HPROM DEbDUQGot e e e e e e e e 12
SNVM DebuUg e 12
SNVM Debug—Client View 13
Secured NVM Detailso 13
SNVM Debug—Page View 14
Configuration Report 14
Debug TRANSCEIVER—Smart BERT e 15
Smart BERT—EOr CoUNter e 15
Debug TRANSCEIVER—Loopback Modes i, 16
Static Pattern Transmit 17
Recommended Settings for Eye Monitor 17
Debug TRANSCEIVER—Eye Monitor e 18
Signal Integrity 18
Programming Connectivity and Interface 20

TU0827 Tutorial Revision 1.0 iv

& Microsemi

Power Matters.”

Tables

Table 1 Design Requirements 2
Table 2 JUMpeEr SettiNgs e 5

TU0827 Tutorial Revision 1.0 v

Revision History

1

1.1

& Microsemi

Power Matters.”

Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

Revision 1.0

The first publication of this document.

TU0827 Tutorial Revision 1.0

PolarFire FPGA Debugging Using Splash Kit —_~ . .
& Microsemi

2

2.1

Power Matters.”

PolarFire FPGA Debugging Using Splash Kit

Design debug is a critical phase of the FPGA design flow. Microsemi's SmartDebug enables debugging
of PolarFire devices in real time, and it does not require any other internal logic analyzer (ILA).

SmartDebug supports the following features:

+ Device Status View
+ FPGA Array Debug
*+ sNVM Debug

+ pPROM Debug

* Transceiver Debug

These features enable designers to check the state of inputs and outputs in real time, without any re-
layout of the design.

The built-in probe points of the PolarFire device and the probe capabilities of SmartDebug enable the
real-time debug features.

SmartDebug provides the following capabilities:

+ Live probes: Two dedicated probes can be configured to observe a probe point. The probe point
may be any output of a register. After selecting the probe points, the probe data can be sent to two
dedicated pins (PROBE_A and PROBE_B). You can connect an oscilloscope to the probe pins and
monitor the signal status.

+ Active probes: It allows dynamic asynchronous read and write to a flip-flop or probe point. This
enables user to quickly observe the output of the logic internally, or to quickly experiment on how the
logic is affected by writing to a probe point.

* Debug memory: SmartDebug provides the Memory Blocks tab to dynamically and asynchronously
read from and write to a selected FPGA fabric SRAM block.

* sNVM debug capabilities: It enables reading each page or multiple pages from sNVM.

+ Probe insertion: It is a post-layout process that enables you to insert probes into the design and
gets the signals out to the FPGA package pins to evaluate and debug the design.

+ TRANSCEIVER debug capabilities: It makes debugging of high-speed serial designs simple. The
SmartDebug JTAG interface extends access to configure, control, and observe XCVR operations
and is accessible in every TRANSCEIVER design. The designs are implemented using the Libero
System Builder to incorporate the TRANSCEIVER block enabling XCVR access from the
SmartDebug. The Debug TRANSCEIVER window displays real-time system and the lane status
information. XCVR configurations are supported with TCL scripting, allowing access to the entire
XCVR register map for real-time customized tuning.

This tutorial provides a demo design to demonstrate SmartDebug’s capabilities, which are used to
perform real-time signal integrity testing and debugging.

Design Requirements

The following table lists the hardware, software, and IP requirements for this demo design.

Table 1« Design Requirements

Requirement Version

Operating system 64-bit Windows 7 or 10
Hardware

PolarFire Splash Kit (MPF300TS-1FCG484EES) Rev 2 or later

— PolarFire Splash Board
— 12 V/5 A power adapter and cord
— USB 2.0 A to mini-B cable for UART and programming

TU0827 Tutorial Revision 1.0 2

PolarFire FPGA Debugging Using Splash Kit

2.2

2.3

Figure 1

& Microsemi

Power Matters.”

Table 1« Design Requirements (continued)

Requirement Version
Software

Libero® SoC PolarFire v2.1

IP

PF_INIT_MONITOR 2.0.101
CORERESET_PF 2.1.100
PF_XCVR_REF_CLK 1.0.103
PF_TX_PLL 1.0.109
PF_XCVR_REF_CLK 1.0.103
PF_CCC 1.0.112
CORESMARTBERT 2.0.106
PF_UPROM 1.0.108
PF_URAM 1.1.107
PF_DPSRAM 1.1.110
Prerequisites

Before you start:

1. Download the design files from the following link:

http://soc.microsemi.com/download/rsc/?f=mpf_tu0827_liberosocpolarfirev2p1_df
2. Download and install Libero SoC PolarFire v2.1 from the following location:
https.:.//www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-

polarfire#tdownloads

Demo Design
SmartDebug Top-Level Blocks

XCVR_Debug_0
rBa a1l

EF_CLK_PAD_P

_CLK_PAD_N PiDn

PF_CCC_0_0

S_RESET N
~ i LANED_TXD_N > LAMEO_TXO M

[Hreos —
- LAELTID_ PR > LANED_TXD_P

a0 RXD N

r P LANED_ RND_F
L—XCVR_Debug o

ExT_RaT N
L_LOCK

NT_pONE

reset_des_sync_0

FAFIC_RESET_N

Fabric_Debug_0

o aror

reset_des_sync

match_puf———————————— - mach_out

i e
e s - susy

_WEN
wprom s —————————————— > upmnl_eer

Fabric_Debug

The design consists of five main blocks: the XCVR debug block (XCVR_Debug), the fabric debug block
(Fabric_Debug), PF_INIT_MON block, PF_CCC, and Reset_des_sync_0 as shown in Figure 1, page 3.

TU0827 Tutorial Revision 1.0

http://soc.microsemi.com/download/rsc/?f=mpf_tu0827_liberosocpolarfirev2p1_df
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

PolarFire FPGA Debugging Using Splash Kit —_~ . .
& Microsemi

Power Matters.”

Figure 2+ XCVR_Debug Overall Design Blocks

SYS_RESET_N

TX PLL XCVR 0 0
XCVR_REF_CLK 00 — e SMARTBERT XCVR_CHK

REF_CLK_PAD_P [>———REF_CLK_PAD_P
REF_CLK_PAD_N >——JReF oLk papn o=0K e S c—

- — i CLKS_TO_XCVR CLKS_FROM_TXPLL_O

XCVR REF CLK 0 PADs_IN PADs_OU'
- - - TX_PLL_XCVR_0 IElLAN EO_RXD_N LANEO_TXD_Np LANEO_TXD_N
LANEO_RXD_N > . P LANEO_RXD_P LANEO_TXD_Pp> LANEO_TXD_P
LANEO_RXD_P [[=lLanEo_xcvr
P LANEO_CDR_REF_CLK_0

XCVR_Debug: The XCVR_Debug block demonstrates SmartDebug's real-time signal integrity (SI)
testing and debugging capabilities to test and debug the PolarFire transceiver. The XCVR_Debug block
consists of a CoreSmartBERT core along with TX_PLL and XCVR_REF_CLK macros. It implements the
PolarFire transceiver in PMA mode.

Figure 3+ Fabric_Debug Overall Design Blocks

eror
DPSRAM 0 count_chk 0 J URAM_0
1SS] SR
AWEN o WEN A WEN error| LK
s ven
Ik L Jowk VL N
o £ 0 - pe —=tn mem_out[15: / DATA150] R_DATA(150)
count_ i y B.D0UT] 7o) i _ADDRF 0]
| T A ’ADD?W] 5 ADDR[7:0] waﬂdq?ﬂ]ji / ADDR-0]
ik mulAVDJ'— l6_Dingz0
[—— couB 9] _ ADDRF 0] count_chk match_data_0
count DPSRAM
L match_ouf———————— match_out
L b s
uprom_chk 0 match data _data
Lt uprom_err
B e
KEIZOL Micro ROM_0
—{ate_inien) — — susy
L
uprom_chk ’iEADDRHEU] ’7
H paoor)55)] DATAREE
PADDR[4D]
Micro_ROM

Fabric_Debug: The Fabric_Debug block demonstrates several FPGA fabric debug features of
SmartDebug. First, it demonstrates SmartDebug's FPGA array debugging capabilities using a counter
that loads a counting pattern into the LSRAM instance (DPSRAM). The data value of the LSRAM block is
the same as the address value of the block. On the read side of the LSRAM, a count checker (count_chk)
ensures that the count progresses as expected. If there is an error, the output (error) is latched high.
Second, the Fabric_Debug block demonstrates the debug yPROM feature of SmartDebug using a
MPROM instance. Third, the Fabric_Debug block demonstrates how to set live probes to monitor an
internal user-selected point on the device in real time, and how to set active probes for dynamic
asynchronous read and write to a flip-flop or probe point. These features help to quickly observe the
output of the logic internally or quickly experiment to determine how the logic is affected by writes to a
probe point. Lastly, the Fabric_Debug block demonstrates SmartDebug's capabilities to read and modify
fabric SRAM content in real-time.

The PF_CCC block generates 125 MHz clock. Fabric_Debug logic works on this clock.

The PF_INIT_MON block checks the status of device initialization. When the initialization of SRAM and
MPROM is completed, the IP asserts DEVICE_INIT_DONE signal. This signal is tied with an external
reset and PLL lock.

The reset_des_sync_0 block is an instantiation of CoreRESET_PF IP. It synchronizes the de-assertion of
asynchronous reset.

TU0827 Tutorial Revision 1.0 4

PolarFire FPGA Debugging Using Splash Kit —_~ . .
& Microsemi
Power Matters.”

24 Clocking Structure

The reference design has two clock domains. As shown in the following illustration, clock domain 1, used
for transceiver debug, runs at 125 MHz, and clock domain 2, used for fabric debug, runs at 125 MHz.

Figure 4+ Clocking Structure

|
L L Lo
|
e On-board 125 MHz Crystal } | On-board 50 MHz .
} } Oscillator } } Crystal Oscillator } }
P } \ Lo
Pl | I Il
P | I I
Pl | I (.
P | I I
Pl | I (.
B !]
L PF TX PLL o PF CCC Lo
Pl | I (.
Lo LT L
! 1
} Clock Domain 1 Clock Domain 2 }
! 125 MHz 125 MHz |
! 4 4 i
|

|
} Transceiver Debug Fabric Debug }
|
| |

|

2.5 Programming the Device

Before programming the device, SmartBERT probe related constraints need to be generated. The
SmartDebug reads and writes to probe points associated with the SmartBERT IP for debugging. JTAG
write to some probe points are not working as expected. This is a known issue. A software workaround is
provided to determine the working probe points. The constraints need to be updated by following the
steps mentioned in Appendix: Known Issues, page 20.

The following steps describe how to program the device on a PolarFire Splash Kit.

1. Ensure that the following jumper settings are followed.
Note: Power-down the board before making the jumper connections.

Table 2 » Jumper Settings

Jumper Description

J11 Close pin 1 and 2 for programming through FTDI chip

J5, J6, J7, J8, J9 Close pin 2 and 3 for programming the PolarFire FPGA through FTDI
J10 Open pin 1 and 2 for programming through the FTDI SPI

J4 Short pin 1 and 2 for manual power switching using SW1

J3 Open pin 1 and 2 for 1.0V

2. Connect the power supply cable to the J2 connector on the board.
3. Connect the USB cable from the Host PC to the J1 (FTDI port) on the board.
4. Power on the board using the SW1 slide switch.

TU0827 Tutorial Revision 1.0 5

PolarFire FPGA Debugging Using Splash Kit

& Microsemi

Power Matters.”

Figure 5+ Board Setup

LARFIRE_SPLASH KIT_REV1
DVP-102-000496-001

In the Design Flow window, select Run PROGRAM Action, as shown in the following figure. This
programs the design into the device.
Figure 6 = Programming the Device

» Prog ram Design‘

0 stre

g P mage
Generate 5P| Flash Image
Run PROGRAM_SPI_IMAGE Action
» Debug Design

£y, Identify Debug Design

@ SmartDebug Design

2.6 Launching SmartDebug from Libero
On the Design Flow window, double-click SmartDebug Design, as shown in the following figure.
Figure 7+ Launching SmartDebug Design

- P Program Design
v Prog g
v ‘% Generate Bitstream
v 5 Run PROGRAM Action

3 Generate 5P| Flash Image
5 Run PROGRAM_SPI_IMAGE Action

€ SmartDebug Design

TU0827 Tutorial Revision 1.0 6

PolarFire FPGA Debugging Using Splash Kit

Figure 8 »

2.7

2.71

Figure 9 »

The SmartDebug window is displayed, as shown in the following figure.

SmartDebug Window Debug Options

& Microsemi

€ SmartDebug

File View Help

Device: |I~‘|P ES (MPF300T_ES) J Programmer: [E2001RUX6Y (E2001RUXEY)

ID code read from device: 2F8131CF

View Device Status... | Debug FPGA Array... |
Debug UPROM. .. | Debug SNVM... |
Debug TRANSCEIVER... |

Log

[%]Massages QErrors 4, Warnings olnfo

Debugging the Design

Debugging the device involves the following:

View Device Status, page 7
Debug FPGA Array, page 8
Debug yPROM, page 12

sNVM Debug, page 12

Debug TRANSCEIVER, page 14

View Device Status

The View Device Status option provides the device status report. It summarizes the device information,
programmer information, design information, factory serial number, and security information, if any are
set. To view the device status report, click View Device Status in the SmartDebug window. The

following figure shows a sample of the device status information.

Device Status Report Sample

2 - |

k=3 Device Status Report
Device: MPF300T_ES (MPF300T_ES) Programmer: E200 1RUX6Y (E2001RUXEY) & Print
Device Status:
IDCode (read from the device) (HEX): FB131CF
Device Certificate

Certificate is valid .

Design Information

Design Name: SmartDebug_Top
Design checksum (HEX): 1E72
Design Version: 0
Digest Information
Fabric Digest (HEX): 088bf736dd80435dfca 245668223474
bbfc71d71f9f0844a840cfe 512740781
SNVM Digest (HEX): 55b852781b9995a44c939b64e 4412827

24056 a5caf4tboa 141cfr9842c400e 3
Device Security Settings

Programming Information

Cyde count: 102

=Algorithm Version: 1

*Programmer: FlashPro 5

= Software Version: FlashPro version not available
*Programming Software: FlashPro Express
*Programming Interface Protocol: JTAG

*Programming File Type: STAPL

NOTE: * - The above Information is only relevant if the device was programmed through JTAG or SPI Slave mode,

Help

Close

TU0827 Tutorial Revision 1.0

Power Matters.”

PolarFire FPGA Debugging Using Splash Kit

& Microsemi

Power Matters.”

2.7.2 Debug FPGA Array
The Debug FPGA Array provides an interface to probe the user logic implemented in the logic elements
(LEs) of the FPGA using active and live probes, read-write access to the fabric flip-flops, and read-write
access to the memories implemented using LSRAMs/URAMs. Probe insertion allows assignment of the
internal signals to the assigned or unassigned pins. These signals can be monitored using the
oscilloscope in real-time.The Debug FPGA Array supports the following four features:
* Live Probes
* Active Probes
* Memory Blocks
+ Probe Insertion

2.7.21 Live Probes
Live Probes enables the monitoring of two internal signals at a time in the design without having to repeat
place and route. PolarFire devices have two dedicated live probe channels (for example, pin H6 and G6
of PolarFire MPF300TS device).
To use Live Probes, reserve pins using Reserve Pins for Probes under Constraints Manager in Libero
SoC PolarFire. If you do not reserve pins for live probes, the live probe I/O's function as GPIOs and are
used for routing nets in the design. The following figure shows the Live Probes tab.

Figure 10 « Debug FPGA Array—Live Probes

8" Debug FPGA Array - [m| X
Livev,.’Acﬁve Probes Selection [

Hierarchical view] Netlist View

FPGA Array debug data

Live Probes Active Probes] Memory Blocks] Probe Insertion]

Filter: |

Instance(s):

Search Delete | Delete Al

Add

Fabric_Debug_0count_0_coutA[7]:Fabric_Debug_0/count_0fcoutA[7]:Q

- I Fabric_Debug_0

+- I count_0 Fabric_Debug_0/count_0_coutA[s]:Fabric_Debug_0/count_0fcoutA[8]:Q DFF
+- I count_chk_0

+- I Serdes_Debug_0

Fabric_Debug_0 count_0_coutA[5]:Fabric_Debug_0/count_0/coutA[5]:Q DFF

Fabric_Debug_0/count_0_coutA[4]:Fabric_Debug_0/count_0/fcoutA[4]:Q DFF j
Aszsign to Channel A | - Fabric_Debug_0/count_0_coutA[7] :Fabric_Debug_Djcount_
Assign to ChannelB | - Unassign

Help

Close

2.7.2.2

Active Probes

Active Probes enables to read or change the values of probe points in a design through JTAG. Active
Probes dynamically and asynchronously read or write to any logic element register bit. The probe points
of a design are selected using active probes. Active probes are useful for a quick observation of an
internal signal. All of the probe points for the design are displayed in Hierarchical View and Netlist View
in the left pane of the Active Probes tab.

* Hierarchical View: Available probe points are listed in hierarchical order.
+ Netlist View: Available probe points are listed with the Name and Type, which are physical locations
of flip-flops.

To add probe points to a list:

1. Select the Active Probes tab in the right pane. The probe signals are displayed in the left pane.
2. Select the probe points that you want to add from the Hierarchical View or Netlist View in the left
pane.

TU0827 Tutorial Revision 1.0 8

PolarFire FPGA Debugging Using Splash Kit

& Microsemi

Power Matters.”

3. Right-click the selected points and click Add to add them to the Active Probes. You can also add
the selected probe points by clicking Add in the top-right corner of the left pane. The probes signals

can be filtered with the Filter option.

4. Click Read Active Probes to read the content of the registers added to the window.
Figure 11+ Debug FPGA Array—Active Probes

=l
LivefActive Probes Selection X FPGA Array debug data
Hierarchical View | Netlist View | Live Probes Active Probes | Memory Blocks | Probe Insertion
Filter: Search +| =| | ¥ Save... Load... Delete Delete Al
Name o e Read Value rite Value
Instance(s): ndd | 3 -
[=- I Fabric_Debug_0 = Fabric_Debug_0/count_chk_0/match_cnt[7:0] DFF 8h71 gh
1F URAM_0_0
I count_0
= I count_chk_0
= Primitives
awen_reg
awen_read
cin_chk
match_cnt
mem_out
raddr
H S 1B wen_out
[#- I match_data_0
& ; ?e,d“ei“i]";fu;“-é’ - Read Active Probes Save Active Probes' Data... Write Active Probes
Help

Close
|

5. To use pseudo static signal polling, on the Active Probes tab, right-click any probe point and select

Poll, as shown in the following figure.

Static signal polling is used to check whether the logical bit value is changed to expected polled value.

Figure 12 » Pseudo-static Signal Polling

- = fgral = vor_cbee Dby Blcourt_chk Qo)
ol S
& pollfor 3 o el o §

For mare iarmarnon st plmSo-4ans egrl poling, ok S el buTion.
Tiwas Blagmsnc i smcone: 0

_ e |

Piskn: The sebectiod sgnal i sofled arce per ocorl. B sheoukd e uaed For psenucko sl sl e da ol change sty

2.7.2.3 Memory Blocks

SmartDebug provides the Memory Blocks tab to dynamically and asynchronously read from and write to

a selected FPGA fabric SRAM block. Memory blocks are categorized into two views:
* Physical View—shows the actual memory view of the RAM in FPGA

* Logical View—shows a logical representation of RAM block

Using the Memory Blocks tab, you can select the required memory block to:

* Read

+ Capture a snapshot of the memory
* Modify memory values, and then write the values back to that block

To read and write memory blocks:

Select the Memory Blocks tab in the right pane of the SmartDebug window.
View the memory blocks in the left pane in the Hierarchical View.

PON~

Right-click the selected memory block and click Add.

Select the memory block in the left pane and click select in the top-right corner of the pane.

TU0827 Tutorial Revision 1.0

PolarFire FPGA Debugging Using Splash Kit @M. .
icrosemi

Power Matters.”

The following figure shows the Memory Blocks tab in Debug FPGA Array window.
Figure 13+ Debug FPGA Array—Memory Blocks

7 Debug FPGA Array - o x
Memory Blocks Selection & X FPGA Array debug data
e I [= Live Probes | ActiveProbes Memory Blocks | Probe Insertion |
Memory Blocks: = User Design Memory Block: Fabric_Debug_0/Fabric_Debug_DPSRAM_0_DPSRAM_0/Fabric_Debug_DPSRAM_0_DPSRAM_K_0/Fabric_Debug_DPSRAM_0_DPSRAM K_Febric_Debug_DPSRAM_0_DPSRAM_K_0_PF_DPSRAM_ROCO/INST_RAMIKI0_IP
Data Width: 10-bit

Instance Tree 0 1 2 3 4 5 [] 7 3 9 A 8 c D E F

=L Fabric Debug_0
= {F DPSRAM_1 0
=k DPSRAM_1_0
= 8 DPSRAM_{ DPS
=18 Primitives
P INSTR
= Fabric_Debug_DPSRAM_
= 1 Fabric_Debug DPSE.

= {2 Delg
= B pimtn Add

ReadBlock | Sa

Help Close

5. Click Read Block. The specified memory block is read as shown in the following figure.

Figure 14+ Memory Blocks—Read Block

7 Debug FPGA Array - O x
Memory Blocks Selection 8 X | on Aray debug deta
e [semch LiveProbes | ActveProbes MemoryBlocks | Probe Insertion |
Memory Blocks: select User Design Memory Block: Fabric_Debug_0/Fabric_Debug_DPSRAM_0_DPSRAM_0/Fabric_Debug_DPSRAM_0_DPSRAM_K_0/Fabric_Debug_DPSRAM_0_DPSRAM K_Fabric_Debug_DPSRAM_0_DPSRAM_K_0_PF_DPSRAM ROCO/INST RAMIK20_IP
Data Width: 10-bit
it 0 ‘ 1 2 | 3 ‘ 4 ‘ 5 6 7 8 9 A 8 C D E F H
= I Fobric_Debug 0
= T DPSRAM i 0 00 01 002 03 04 s 006 07 08 09 oA o8 o oD 0E oF
= DPSRAM_1_0
= oA P, 010 o011 012 o013 014 015 016 017 018 019 o014 018 o1c 01 01E otF
B INSTR
=1 Fabric_Debug DPSRAM._. 0 021 02 023 024 25 06 0z7] 29 02 0z ¢ oD 0E oF
B Fabric_Debug_DPSR.
=2 Fabric_Debug_D. 030 031 032 033 034 035 036 037 038 039 034 0B 03c 03 03E o0F
i B Primitives
040 041 042 043 044 045 046 047 048 049 044 0E 04C 04D 0E |
Read Block ‘ saveBlockData... | Witz Elock
Help Close

6. Enter a hexadecimal value in the memory block locations and click Write Block to write content into
memory.
Note: The counter writes to the SRAM constantly. To prevent the overwrite of the changes that are forced into
the SRAM, the writing is stopped by forcing A_WEN signal value to low through DIP1 (first switch of
SWB8). This drives a SELECT of a MUX that selects between high and low inputs. When DIP1 is
asserted, A_WEN becomes low, which prevents any write from the counter to the SRAM block.

TU0827 Tutorial Revision 1.0 10

PolarFire FPGA Debugging Using Splash Kit

7.

write the modified value to the SRAM, as shown in the following figure.

Figure 15«

Memory Blocks—Write Block

& Microsemi

Power Matters.”

Switch On DIP1, enter a hexadecimal value in the memory block location(s) and click Write Block to

1] Debug FPGA Array = =
Memory Blocks Selection & x FPGA Array debug data
Filter: ’7 Search Live Probes I Active Probes Memory Blocks I Prabe Insertion
Memory Blocks: & s:z I::lsﬂn Memory Block: ;a;rtlc7DehugiﬂfFahmc7DEhugiDPSRAMiﬂiDP5RAMj/FahnciDehugiDPSRAMjiDPSRAMiKiﬂ
e ‘ Port Used: PortB o
T D BT vesa s e " [2] s 4] s e 7] o [alelclolce]crl]
+ EtAﬁfﬂrfEDEbug_DPSRAM_U_DPSRA' 01 0z 03 04 05 H 07 08 09 0A 08 oc [is} 0E oF
11 12 13 14 15 16 17 18 19 1B ic pls 1E 1F
21 22 23 24 25 26 27 2 29 2 2C D x b
31 32 33 34 35 36 37 33 39 3A 3B 3c 3D 3E 3F
b | 42 43 4“4 45 46 47 48 49 A 4B 4c 4D 4E aF ﬂ
Read Block Save Block Data. .. Write Block
Help Close
8. The error LED(P8) light turns on, indicating an error in the counting pattern.
9. Go to Active Probes tab, read the value of error signal, it should show '1". To use static signal
polling, right-click error_c:Fabric_Debug_0/count_chk_0/error:Q and select Poll (Poll for 0), as
shown in Figure 12, page 9.
10. Move DIP1 to off state to resume the write operation from the counter to the SRAM. This overwrites
the error that was injected into the SRAM. Check the status of LED, it must turn off. Hit the Poll for
0, User value match message should appear on the polling window. Close the Pseudo-static
signal polling window.
11. The content of the SRAM can be rechecked by clicking Read Block in the Memory Blocks tab.
2.7.24 Probe Insertion

Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be

routed to unused or used I/Os. Nets are selected and assigned to probes using the Probe Insertion tab
in SmartDebug. The rerouted design is reprogrammed automatically by Libero into the FPGA, where an
external logic analyzer or oscilloscope can be used to view the activity of the probed signal. The following
figure shows the Probe Insertion tab in the Debug FPGA Array window.

Figure 16

Debug FPGA Array—Probe Insertion

B Debug FPGA Array O X
X
Probe Insertion Data Selection & FPGA Amray debug data
Hievarchical View] Netlist View | Live Probes | ActiveProbes | MemoryBlocks Probe Insertion
e | Search Delete ‘ Delete Al
et | Driver -
etk GiT B_DOUT_c[15] Fabric_Debug_0/DPSRAM_1_0/DPSRAM_1_0/DPSRAM_1 DPSRAM_1_0_PF_DPS
Instance Tre= | B_DOUT_c[14] Fabric_Debug_0/DPSRAM_1_0/DPSRAM_1_0/DPSRAM_1_DPSRAM_1_0_PF_DPS
= IF Primitives
= I A_wEN_ibuf
=+ 1 Fabric_Debug_0 8_DOUT _c[13] Fabric_Debug_0/DPSRAM_1_D/DPSRAM_1_0/DPSRAM_1 DPSRAM_1_0_PF_DPS
+- 4 DPSRAM_1 0
+ 1 Fabric_Debug_DPSRAM_0_DPSRAM_D B_DOUT _c[12] Fabric_Debug_0/DPSRAM_1_D/DPSRAM_1_0/DPSRAM_1 DPSRAM_1_0_PF_DPS
+- I count_0
+- I count_chk_0 B_DOUT_c[11] Fabric_Debug_0/DPSRAM_1_D/DPSRAM_1_0/DPSRAM_1 DPSRAM_1_0_PF_DPS
- i s¥s_RESET_N_ibuf =
= IF Serdes_Debug_0
< | 3
Insert probe(s) and program the device Run
Help Close

TU0827 Tutorial Revision 1.0

1"

PolarFire FPGA Debugging Using Splash Kit

2.7.3

& Microsemi

Power Matters.”

Debug yPROM

SmartDebug enables debugging yPROM and reading its yPROM contents. The clients added in the
design can be debugged using the SmartDebug Debug yPROM feature.

1. Click Debug yPROM in the SmartDebug window. The yPROM Debug window is displayed as
shown in the following figure.

2. Select Initialization in the User Design View tab and then click Read from Device to read the
MPROM content. Check whether the content provided in uprom.mem file (part of design stimulus
files) matches with the data read from yPROM.

Figure 17 »+ pPROM Debug

© UPROM Debug

Number of words

e

Note: PolarFire devices have a single user programmable read only memory (WPROM) row located at the

2.74

bottom of the fabric, providing up to 459 Kb of non-volatile, read-only memory. The address bus is 16 bits
wide, and the read data bus is 9-bit wide. yPROM is used to store the configuration data, which is used
by Fabric logic to process.

sNVM Debug

sNVM Debug feature enables reading from the sNVM during debug. Debug Pass Key is required to carry
out SNVM_DEBUG instruction. This feature supports debugging of non-authenticated plain text,
authenticated plain text, and clients cipher authenticated.

1. Click Debug SNVM in the SmartDebug window.

2. Click the Client View tab. The client view details are listed—Client Names, Start Page, Number of
Bytes, Write Cycles, Page Type, Used as ROM, and USK Status.

3. Select a client from the list in the Client View and click Read from Device as shown in the following
figure.

Figure 18 « sNVM Debug

sNVM Debug
[Client View \/"Page View \
Refresh Client Details
Client List " | Start Page End Page MNurnber of Bytes | Write cycles Page Type Used as ROM USK status =
(28 INIT_STAGE 2 3 SNVM_CLIENT 0 £
. 8 252 127 Plain Text No N/A
7 252 127 Plain Text Mo N/A
6 252 132 Plain Text No N/A
5 252 134 Plain Text No N/A
4 252 139 Plain Text Mo N/A
3 252 199 Plain Text No N/A
2 252 201 Plain Text No N/A
. 1 252 201 Plain Text Mo N/A
. Page 0 0 252 320 Plain Text Mo N/A
[INIT_STAGE_1_SNVM_CLIENT _|219 220 No
i-Ipane 290 270 383 235 Plain Tevt Na N7A j
Read from Dawoel

TU0827 Tutorial Revision 1.0 12

PolarFire FPGA Debugging Using Splash Kit

The following figure shows the Client View window.

Figure 19 » sNVM Debug—Client View

& Microsemi

Power Matters.”

sMYM Debug
[Client View \/"Page View \

Refresh Client Details

Client List " | Start Page End Page MNurnber of Bytes | Write cycles Page Type Used as ROM USK status
=8 INIT_STAGE_2_3_SNVM_CLIENT 0 3

Page 3 3 252 187 Plain Text No N/A

Page 2 2 252 188 Plain Text No N/A

Page 1 1 252 183 Plain Text Mo N/A

Dana= Nl n 352 an7 Diain Tavt [KA

Ad

Read from Device |

Latest Content Retrieved from Device:

Retrieved Content: Client "INIT_STAGE_2_3_SNVM_CLIENT".

Thu Nov 30 17:04:15 2017

View All Page Stamsl

4. Click View All Page Status to view the page status such as Write Cycle Count, Page Type, Use as
ROM, and Data Read Status as shown in the following figure.

Figure 20 + Secured

NVM Details

Secured Flash Memory Content [SNVM Pages]

sMNYM Page #0:
Fage Status:
Write Cycle Count:
Page Type:
Use as ROM:
Data Read Status:
sMVM Page #1:
Page Status:
Write Cyde Count:
Page Type:
Use as ROM:
Data Read Status:
sNYM Page #2:
Page Status:
Write Cycle Count:
Page Type:
Use as ROM:
Data Read Status:
sMNVM Page #3:
Page Status:
Write Cycle Count:
Page Type:
Use as ROM:
Data Read Status:
sMNVM Page #4:
Page Status:
Write Cyde Count:
Page Type:
Use as ROM:
Data Read Status:
sMVM Page #5:
Page Status:
Write Cyde Count:
Page Type:
Use as ROM:
Data Read Status:
sMNVM Page #6:
Page Status:
Write Cycle Count:
Page Type:
Use as ROM:
Nata Read Stahe:

_ e |

TU0827 Tutorial Revision 1.0

13

PolarFire FPGA Debugging Using Splash Kit

& Microsemi

Power Matters.”

5. Click the Page View tab in the sNVM Debug window, Page view displays the client details of the
required pages. You can read pages from 0-220 in the page view.
6. Enter the page number that you want to read in the Start Page and Number of Bytes in the
respective boxes.
7. Click Check Page Status. The page status information is displayed as shown in the following figure.
Figure 21+ sNVM Debug—Page View
@ sNVM Debug - =
sMVM Debug
Start page: 0 Check Page Status
End Page: ,1027 { 103 Pages)
Page List MNumber of Bytes | Page Type Write Cycles Used as ROM USK Status i‘
[Page 0 52 Plain Text 307 No /A
[Page 1 Plain Text 188 Mo N/A ~|
Read from Device
Latest Content Retrieved from Device: Thu Now 30 17:04:15 2017
Retrieved Content:
2.7.5 Debug TRANSCEIVER

SmartDebug enables transceiver debugging, which includes checking lane functionality and health for
different settings of lane parameters. To access the debug transceiver feature, select Debug
TRANSCEIVER in the SmartDebug window. Debug Transceiver supports the following features:

Configuration Report
SmartBERT

Loopback Modes
Static Pattern Transmit
Eye Monitor

2.7.51 Configuration Report

The

Configuration Report feature creates a report that shows the physical location, Tx and Rx PLL lock

status, and data width of all enabled transceiver lanes. This report includes the following lane

para

The

meters:

Physical Location: Physical location of the transceiver lanes in the system.

Tx PMA Ready: Tx lane of the transceiver is powered up and ready for transactions.
Rx PMA Ready: Rx lane is powered up and ready for transactions.

TX PLL: TX PLL of the transceiver is locked.

RX PLL: RX PLL of the transceiver is locked.

Data Width: Configured data width of the corresponding lanes in the transceiver.

following figure shows Configuration Report tab.

Figure 22 + Configuration Report

® ' Debug TRAMSCEIVER - m] X
Configuration Report | SmartBERT | Loopback Modes | Static Pattern Transmit | Eye Monitor
Lanes ‘ Serdes_Debug_0/bert_xvier_chk_0(SmartBERT IF)
Physical Location Q2_L ANED
T PMA Ready
Rx PMA Ready []
TXPLL []
RXPLL []
Data Width 40 bit
Refresh
Help Close

TU0827 Tutorial Revision 1.0 14

PolarFire FPGA Debugging Using Splash Kit

2.75.2

Figure 23 «

& Microsemi

Power Matters.”

SmartBERT

SmartBERT enables you to run diagnostic tests on the transceiver lanes. SmartBERT uses the PRBS
generator and checker functionality available in each transceiver lane to determine the bit error rate
(BER) of a lane. The various PRBS patterns supported are PRBS7, PRBS9, PRBS15, PRBS23, and
PRBS31. Near-end loopback can be performed using one of these PRBS patterns.

To run SmartBERT in Debug TRANSCEIVER, follow these steps:

1. Select the SmartBERT tab in the Debug TRANSCEIVER window.

2. Select the Pattern from the drop-down list.

3. Select the EQ-NearEnd check box to enable internal loop back, (this step can be ignored if external
loop back is enabled).

4. Click Start. It enables both transmitter and the receiver for a particular lane and for a particular
PRBS pattern. The following figure shows the status of the TXPLL, RXPLL, Lock to Data, Data rate,
and the BER.

Debug TRANSCEIVER—Smart BERT

1]

ConfigwatonReport SmartBERT | LoophackModes | StaicPatter Transmt | Eye Moriter |

Debug TRANSCEIVER - olEN

= [Serdes Debug 0

Phy Reset

Tanscones Heradhy_|Physcllocaton | u‘ [Patem [Ea-Newrtrd [mvp [muA [iocktoDate [cumiltve Eor Gount_[Dotate (ope) |ﬂ S N
n

= t_ier_. Serdes Debug O/bert xvier_chk 0(SmartBERT IP)/LANED |PRES23(SmartBERTTF) v En 0 5 Tx Emchasts Ampltude: RX Inserton Loss.
" E‘ NED Q2 LANED = : : = d s
LA LAN

o J|F= |
X Impedance (ohms)
T Transmit Comman Mode Adustment (% of VODA) | RXCTLE
2 el
Polaiy (7 revesssl) R Termination {ohms)
o =] | [
RPN Board Cornecton

e o

"R Loss of Signal Detector - Low

RX Loss of Signal Detector - Hgh

FR55 3(STartHERT 1P
PRES31(SmartBERT)

i | | Exner J ptimze DF | ‘ P ‘

s | s | Export Al Lanes| inport Al Lanes

Cose.

Figure 24 «

When a SmartBERT IP lane is added, the Error Injection column is displayed in the in the right pane.
The error injection feature is provided to inject an error while running a PRBS pattern. This feature is
unavailable if regular lanes are added. Also, this feature is disabled for a SmartBERT IP lane that has a
non-configured PRBS pattern selected.

5. Click Reset to clear the error count under Error Counter. Error Count is displayed when the lane is
added.

The following figure shows the Smart BERT tab in the Debug TRANSCEIVER window.
Smart BERT—Error Counter

7 Debug TRANSCEIVER

ConfigurationReport ~ Smart BERT | Loopback Modes | Static Pattern Transmit | Eye Monitor

Start Stop

TU0827 Tutorial Revision 1.0 15

PolarFire FPGA Debugging Using Splash Kit

& Microsemi

Power Matters.”

2.7.5.3 Loopback Modes

Loopback modes perform the following types of loopback tests:

+ EQ-Near End Loopback: Serialized data from PMA is looped from Tx to Rx internally before the
transmit buffer. This is called near-end serial loopback. EQ-Near End loopback supports data
transmission rates of up to 10.315 Gbps.

+ EQ-Far End Loopback: Serialized data from Rx is looped back to Tx in PMA. This is called far-end
serial loopback. EQ-Far End loopback supports data transmission rates of up to 1.25 Gbps.

* CDR-Far End Loopback: De-serialized data from PCS Rx channel is looped back to Tx.

* No Loopback: Data is not looped internally.

Figure 25+ Debug TRANSCEIVER—Loopback Modes
(s] Debug TRANSCEIVER = =
t | snartmeRT L | staticpatier Tansmic | evemonior |
ﬂ Serdes_Debug_0/bert_xvier_chk O(SmartBERT IP)/LANED (¢ EQ-NEAREND (" EQFAREND (" CDRFAREND (" NoLoopback ﬂ
¥ Loopback Modes Referen: age |

Phy Reset Apply

Help Close.
2.7.5.4 Static Pattern Transmit

Static Pattern Transmit enables the selection of pattern to be transmitted on a specific transceiver (Tx)
lane. The following patterns are supported:

+ Fixed pattern

* Max run length pattern

* User pattern

The user pattern is defined in the value column. It must be hex numbers and not greater than the
configured data width.

TX-PLL indicates lane lock onto TX PLL when a static pattern is transmitted. RX-PLL indicates RX PLL
lock when a static pattern is transmitted. Data Width displays the data width configured for a transceiver
lane.

TU0827 Tutorial Revision 1.0 16

PolarFire FPGA Debugging Using Splash Kit CM. .
: icrosemi

Power Matters.”

To view static pattern transmit:

1. Select the Static Pattern Transmit tab.

2. Select the Transceiver Hierarchy in the left pane of the window. The selected lane data is displayed
in the right pane. Select a pattern from the Pattern drop-down list.

3. Click Start. The static pattern for the selected lanes is transmitted.

4. Click Stop. The static pattern transmission is stopped for the selected lanes.

The following figure shows the Static Pattern Transmit tab.

Figure 26 « Static Pattern Transmit

B Debug TRANSCEIVER - o X

Configuration Report | SmartBERT | LoopbackModes StaticPattern Transmit | Eye Monitor |

Transceiver Hierarchy |F\\',S\EE|| Location ‘ 1 Pattern ‘ value |Mnde ‘TX PLL ‘ RXPLL ‘ DataWidth ‘ 41
S [Serdes_Debug 0
B 7] bert cvier iSerdes_Debug_0/bert_swvier_chk_0(SmartBERT IP)/LANEQ | | Fixed Pattern j |1w:-u:-u:-..‘ HEX ® @ 40bit

LANED Q2 LANED

Fhy Reset Start Stop
Hep Close

2.7.5.5 Eye Monitor

Eye Monitor enables visualizing the eye diagram present within the receiver. This feature plots the
receive eye after the CTLE and DFE functions. The diagram representation provides vertical and
horizontal measurements of the eye and BER performance measurements. Whenever PRBS/static
pattern transmission is in progress, click the Eye Monitor tab in the Debug TRANSCEIVER window to
see the eye monitor representation within the receiver.

The following figure shows the recommended Sl settings for the demo design. These settings are for
short reach and less lossy cables.

Figure 27 + Recommended Settings for Eye Monitor

LANEO_TXD_P/N LANEO_RXD_P/N

TX Emphasis Amplitude RX Insertion Loss

[400mv_with_odB ~| ||6.5d8 ~|

TX Impedance (ohms) The transceiver data rate is set to 5000Mbps for this port

[100 LI The current settings will configure this port in COR mode

TX Transmit Common Mode Adjustment (% of VDDA) | RX CTLE

[s0 | | [No_Peak_-0.48 ~|

Polarity (P/N reversal) RX Termination (ohms)

[Normal _ﬂ | 100 LI
RX P/N Board Connection
|AC_COUPLED_WITH_EXT_CAP |

RX Loss of Signal Detector - Low
[PcE

L

RX Loss of Signal Detector - High
pcIE

L«

TU0827 Tutorial Revision 1.0 17

PolarFire FPGA Debugging Using Splash Kit

Figure 28 »

& Microsemi

Power Matters.”

The following figure shows the Eye Monitor tab.
Debug TRANSCEIVER—Eye Monitor

e x
Cor Report | SmartBERT | LoopbackModes | StaticPatiem Tinsmit Eye Moritor |
" chy__|Physial Locatin “ » | S teority: erdes Debug 0fbert ver_chk O(SmartBERT) LANED
i LANED 0PN LANED RXD PN
LANED Q2LANED TX Emphass Ampltude RX Insertion Loss
Jroomv _wih o =] |[e5® =

X Impedance (ohms) The
[R

- data rate i set to S000Mbps for tis port
ttings wil configure tis portin COR mode:

TX Trans “ommon Mode Adjustment (% of VDDA) | Rx

IE] =1 | [ores o K|

Polarity (P/N revers sal) RX Termination (ohms)

[Normal = | [0 5|
LaneName: Serdes_Debug_0/bert_xvier_chk_0(SmartBERT IP)/LANEQ RX P/N Board Connection

[accome wmea e]
RXLoss of Sgnal Detector -Low
| |
RXLoss of Sgnal Detector -High
| |

DC-Offset
|
El

dew iojon e1ep aka

One Unit Interval

= == | e ||

Plot Eye Export Export AllLanes | Import Al Lanes

cose

Signal Integrity

The Signal Integrity feature in SmartDebug works with Signal Integrity in the I/O Editor, allowing the
import and export of .pdc files. The Signal Integrity pane appears in the following SmartDebug pages:

* SmartBERT

* Loopback Modes

« Static Pattern Transmit
+ Eye Monitor

When a lane is selected in the SmartBERT, Loopback Modes, Static Pattern Transmit, or Eye Monitor
pages, the corresponding Signal Integrity parameters (configured in the 1/O Editor or changed in
SmartDebug) are enabled, as shown in the following figure.

Figure 29 » Signal Integrity

Confpratinesrt StateERT | Losbockodes | stacpatem Tansmt | veentor |

T

e Aewan] i = Teg-vewen [e o ooms | Jomereemn | o | Bt e S S onwEerT NG|

T St D o e

= [bert over ‘Serdes_Debug O/bert xvier_chk O(SmanBERT IPJ/LANED [PRESZ3(SmartseRT) v| [Enable @ L] [] NA 5 T Emphasis Amplitude. RX Inserton Loss.
S ik e e |

<50 it o8 ENED =
[——— [—
[] | e et i i e s e O e
X Torsnt Canmonaie Adpsimen 0431 V008) |
= =l | ferca® =
ety (PN —
[Nomar =

I ol et Ireart optinzevF IDﬂgnM:‘t:I dosly

ey Reset sart sop Export Al Lans | ingort Al Lanes.
reb

e

TU0827 Tutorial Revision 1.0

18

PolarFire FPGA Debugging Using Splash Kit —_~ . .
& Microsemi

2.7.5.6.1

2.7.5.6.2

2.8

Power Matters.”

Design Defaults

Click Design Defaults to load the signal integrity parameter options for the selected lane instance.
These are the signal integrity settings selected in the Libero design flow and reside in the STAPL file.
Design default parameter options are applied to the device and updated in Modified Constraints.

Export

Click Export to export the selected parameter options and other physical information to an external PDC
file. A popup box prompts to choose the location where you want the .pdc file to be exported.

The exported content is in two set_io commands form—TXP and RXP ports of the selected lane
instance.

Conclusion

This tutorial demonstrated capabilities of SmartDebug to observe and analyze many embedded device
features. Live probes give a real-time access to device test points, and internal logic states can be
accessed using active probes. The SmartDebug TRANSCEIVER utility assists FPGA and board
designers to validate signal integrity of high-speed serial links in a system and improve board bring-up
time. This can be done in real-time without any design modifications. The PMA analog settings can be
tuned to optimize link performance and to match the design to the system.

TU0827 Tutorial Revision 1.0 19

Appendix: Known Issues

& Microsemi

Power Matters.”

3 Appendix: Known Issues

This chapter lists known issues related to SmartDebug hardware design debug and provides
workarounds for each of the issues.

3.1 Probe Points Write Issue

The SmartDebug reads and writes to the probe points associated with the SmartBERT IP for debugging.
There is a known issue where JTAG writes to some probe points do not work. The following procedure
provides a workaround to ensure that this issue does not impact the functionality of the SmartBERT IP.
The workaround involves generating a constraint file that ensures the design is placed only in probe
points that work.

Note: This procedure be followed before running Place and Route in the Libero design flow.

The following files are provided in a Active_Probes_Constraints_SB_|P folder.

aorowb =

DDC file (Full_Fabric_FF.ddc — a test design)

TCL script (Execute_probes.tcl — execute from SmartDebug)

Input file (Input_File.txt — edit before executing TCL)

Reference_Files folder (internal use), which contains the following files:

» sd.reference.pdc

* SmartBERT_IP_Quad0.fp.pdc

* SmartBERT_IP_Quad1.fp.pdc

* SmartBERT_IP_Quad2.fp.pdc

* SmartBERT_IP_Quad3.fp.pdc

Go to Active_Probes_Constraints_SB_IP. folder

Open the Standalone SmartDebug.

Click Project > New Project to create a new project.

Import DDC Full_Fabric_FF.ddc file. Click OK.

Program the design using the Programming Connectivity and Interface window as shown in the
following figure. Close the window when the design has been programmed.

Figure 30 + Programming Connectivity and Interface

4 SmarDebug - C\SmanDebug utoraAcive Probes Consns 58 1P0C_Gen_coepoc .. - © I I Programeing Connecity 1 ot -
Project View Iuicls Help n.\m
\ A 2
o Y |
- o3 IMF300TS S <
Programming Connectivity and Interface] 'WWSL_E
Device: VEFSOITS_ES VPF30IT) v erogranmen UGy 06 v E S 00 [t
®
l———— M ir 2
P

D code read from device: 8131CF

Log

View Device Status... | Debug FPGA Array... ‘ E]Messages Qo 4 Wamngs @ Info
Debug ROM... | Debg .. ‘ o =
programmer 'E200LRUX6Y' : device 'MPF300TS_ES' : EXPORT DSN[128] =
437 b"cicif-.lc_u::.‘m-l 113! e e oor
6. Open Input Files.txt in text editor. Enter Quad and number of lanes that are configured for
CoreSmartBERT IP in the design.
7. Go back to the SmartDebug window and click Project > Execute script and enter the TCL script file
path (Execute_probes.tcl).
8. Click Run to execute. This may take approximately three minutes to complete.
9. Close the Standalone SmartDebug.
The output of the TCL execution is a PDC (*.pdc) file/files that can be used in the Libero flow.
10. Go to the current directory and locate the Output_PDC_Files folder.
Generated PDC file contains a list of registers used in CoreSmartBERT IP.
11. Import the PDC files into the design.

TU0827 Tutorial Revision 1.0 20

Appendix: Known Issues ‘@M. .
icrosemi

3.2

Note:

Power Matters.”

12. Replace the top-level name for each constraint mentioned in the PDC file with the hierarchy name of
the IP in the design.

13. If multiple hierarchy levels are present, include all levels in the space specified in the PDC file.

For example, if design has CoreSmartBERT IP with component name SmartBERT_IP_0, replace

“<Enter_module_path_here>" with “SmartBERT _IP_0” for each location constraint in the PDC file.

14. Run the Libero flow till Run PROGRAM Action.

For this demo design, replace <Enter_module_path_here> with
XCVR_Debug_0/SmartBert_xcvr_chk_0. Use the updated pdc file instead of the file provided in the
design (place_pll.pdc).

Data Traffic Errors on XCVR Lanes in CDR Mode

While plotting the eye using eye monitor, errors are introduced in data traffic on transceiver lanes
configured to use the CDR receiver path. The errors are introduced when DFE and EM blocks are turned
off during normal operation to save power. This issue does not impact the functionality. The cumulative
error count and BER values can be ignored when plotting the eye. A software update will be provided in
future Libero releases to fix the issue.

TU0827 Tutorial Revision 1.0 21

Appendix: References @ M. .
icrosemi

Power Matters.”

4 Appendix: References

This section lists documents that provide more information about the SmartDebug and IP cores used in
the reference design.

» For more information about SmartDebug, see UG0743: PolarFire FPGA Debugging User Guide and
UGO0773: PolarFire SmartDebug User Guide.

. For more information about PolarFire transceiver blocks, see UG0677: PolarFire FPGA Transceiver
User Guide.

» Fore more information about PF_CCC, see UG0684: PolarFire FPGA Clocking Resources User
Guide.

+ For more information about Libero, see the Microsemi Libero SoC PolarFire web page.

» For more information about PolarFire FPGA Splash Kit, see UG0786: PolarFire FPGA Splash Kit
User Guide.

. For more information about PF_UPROM, PF_URAM, and PF_DPSRAM, see Libero catalog.

TU0827 Tutorial Revision 1.0 22

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137616
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137616
https://coredocs.s3.amazonaws.com/Libero/pf_sp1/Tool/pf_smartdebug_ug.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136529
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136531
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136531
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents

	Contents
	Figures
	Tables
	1 Revision History
	1.1 Revision 1.0

	2 PolarFire FPGA Debugging Using Splash Kit
	2.1 Design Requirements
	2.2 Prerequisites
	2.3 Demo Design
	2.4 Clocking Structure
	2.5 Programming the Device
	2.6 Launching SmartDebug from Libero
	2.7 Debugging the Design
	2.7.1 View Device Status
	2.7.2 Debug FPGA Array
	2.7.3 Debug µPROM
	2.7.4 sNVM Debug
	2.7.5 Debug TRANSCEIVER

	2.8 Conclusion

	3 Appendix: Known Issues
	3.1 Probe Points Write Issue
	3.2 Data Traffic Errors on XCVR Lanes in CDR Mode

	4 Appendix: References

