

PRODUCTION DATA SHEET

DESCRIPTION

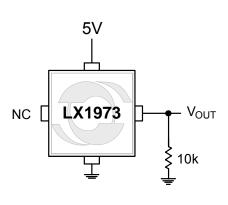
The LX1973 is a wide dynamic down to 0.001 lux or levels as high as external resistor. 500 lux.

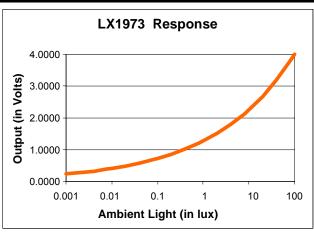
light such as infrared which emits full temperature range (-40 to +85C). energy but doesn't aid vision. This eliminates the need for an Infrared filter required with competitor's light sensors.

The LX1973 internal circuitry range light sensor with a very low consists of a diode array that provides a dark current that is optimized for nearly perfect photopic light wavesensing low level light signals that length response curve. The sensor typically occur under dark or output feeds into a wide dynamic range darkening outdoor ambient lighting, compression amplifier that provides The LX1973 has been optimized for accurate resolution over five decades of automotive systems such as headlamp ambient light. The integrated dark brightness control or rear view mirror current cancellation circuit facilitates contrast control. Its radical (fractional accurate sensing of light below 0.01 exponent) response when interfaced lux. The current source output of the with an 8 bit DAC can detect levels LX1973 can be gain scaled using one

The LX1973 is internally trimmed to The spectral response of the an initial accuracy of 5% at room light sensor closely temperature and a light level of 10lux. emulates the human eye so it ignores Accuracy of 10% is maintained over the

KEY FEATURES


- Human Eye Spectral Response
- 25C Dark Current < 0.005 lux
- 5 Decades Compressed Output
- 10% Accuracy Over Temperature
- Scalable Output Voltage
- No Optical Filters Needed


APPLICATIONS


- Auto Headlamp Control
- Auto Mirror Contrast Control

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com Protected by US Patent: 6,787,757; Patents Pending

PRODUCT HIGHLIGHT

Note: Available in Tape & Reel. Append the letters "TR" to the part number. (i.e. LX1973IDU-TR)

PRODUCTION DATA SHEET

ABSOLUTE MAXIMUM RATINGS

$\begin{array}{cccc} V_{DD} & -0.3 \text{ to } 6 \text{ V}_{DC} \\ SNK/SRC \text{ (Output Compliance Voltage)} & -0.3 \text{ to } V_{DD} + 0.3 \text{ V}_{DD} \\ SNK/SRC \text{ (Maximum Output Current)} & Internally Limited Maximum Operating Junction Temperature} & 150°C \\ Operating Temperature Range & -40 \text{ to } +85°C \\ Storage Temperature Range & -55 \text{ to } 125°C \\ \end{array}$	d C C
Storage Temperature Range55 to 125°C Peak Package Solder Reflow Temp. (40 seconds maximum exposure) 260° (+0, -5	

Notes: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

Solder reflow to follow: IPC/JEDEC J-STD-020B 7/02 Pb-SN Small Body Profile

THERMAL DATA

DU Plastic MSOP 8-Pin

THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	39°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	206°C/W

Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$.

The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

RoHS / Pb-free 100% matte Tin Lead Finish

	FUNCTIONAL PIN DESCRIPTION		
Name	Description		
VDD	Input Supply Voltage		
VSS	Ground Reference for Power and Signal Output		
OUT	Output Current		
VDD	Input Supply Voltage		

SIMPLIFIED BLOCK DIAGRAM

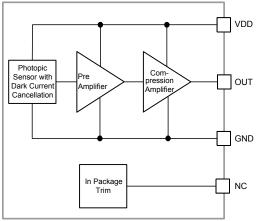


Figure 1 – Simplified Block Diagram

PACKAGE PHOTO

PRODUCTION DATA SHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature -40°C \leq T_A \leq 85°C except where otherwise noted and the following test conditions: See Note 1, V_{DD} =5V, R_{OUT} = 10k.

Parameter	Symbol	nbol Test Conditions	LX1973			Units
raiailletei	Syllibol	mbol lest Conditions		Тур	Max	Ullits
Operational Voltage	V_{DD}		4.5		5.5	V
Supply Current	I_{DD}	$E_V = 1 lux$		0.2	0.25	mΑ
Power Supply Rejection Ratio	PSRR	$V_{RIPPLE} = 100 \text{mV}_{P-P}$, f = 10kHz; Cout = 0.1 μ F	30	35		dB
Peak Spectral Response	λ_{PR}			550		nm
Infrared Response	$\frac{I_{DD}(\lambda)}{I_{DD}(\lambda_{PR})}$	$E_{V(550nm)} = E_{V(800nm)} = 146nW/cm^2$, Note 3	-5	1	5	%
Light to Current Gain	G_L	See application section for equation				
Output Current	I _{OUT(0.01)}	E _V = 0.01 lux @ 25°C	34	38	42	μΑ
Output Current	I _{OUT(1.0)}	E_V = 1 lux, Note 2	108	120	132	μΑ
Output Current	I _{OUT(100)}	E_V = 100 lux, Note 2	342	380	418	μΑ
Saturation Current	I _{SAT}		650			μΑ
Dark Current (Equivalent lux)		$E_V = 0 \text{ lux}, T_A = 20^{\circ}\text{C}, \text{ Note 4}$		450	900	
	IOUT (DARK)	E _V = 0 lux, T _A = 50°C, Note 4		2100	10000	μLux
Dynamic Response Time	T_{DR}	10% settling error (146 nW/cm² to 1.46 nW/cm² step response)		1.5	3	sec
Radiant Sensitive Area		·		0.20		mm ²

- Notes:
 - 1. The input irradiance (E_V) is supplied from a white light-emitting diode (LED) optical source adjusted to impose the specified E_V at λ = 550nm.
 - 2. See Figure 1.
 - 3. See Figure 2.
 - 4. Dark Current equivalent lux at 0 lux: $EL = \left[\frac{I_{OUT}}{6163 \mu A} \right]^4 \div 146 \times 10^{-9}$

TEST CIRCUITS

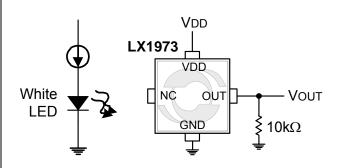


Figure 2 – Operational Voltage Measurement Circuit

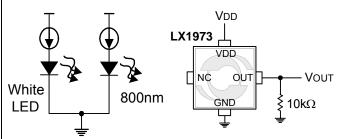


Figure 3 - IR Sensitivity Measurement Circuit

PRODUCTION DATA SHEET

APPLICATION CIRCUITS

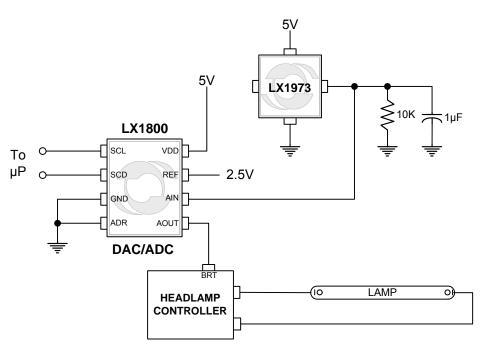
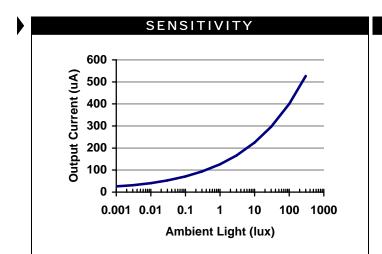


Figure 4 - Typical Application

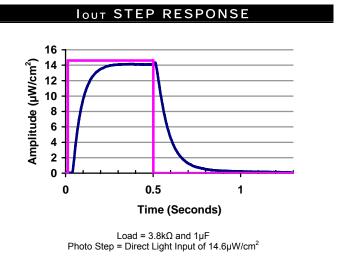
APPLICATION CIRCUITS

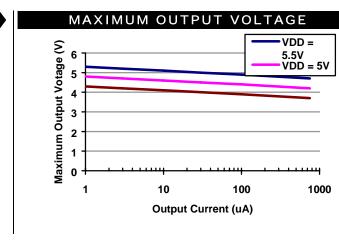
GENERAL DESCRIPTION

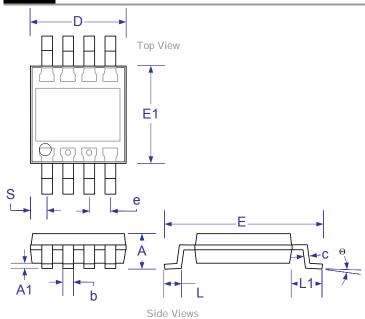

The LX1973 produces an output current that is sensitive to the level of ambient light that falls onto the photosensitive area of the IC package. The sensitivity is amplified and compressed to provide ratio metric accuracy across several decades. The sensitivity function is:

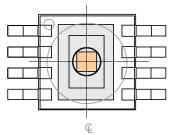
$$I_{OUT}(P) = \frac{6163\mu A}{\left(W_{cm}^{2}\right)^{0.25}} \times \left[P_{DARK} + P_{AMBIENT}\right]^{0.25}$$

where P_{DARK} is the dark current equivalent power and $P_{AMBIENT}$ is the ambient illumination both expressed in W/cm² at a 555nm wavelength. P_{DARK} is approximately 7pW/cm² at 25°C.




PRODUCTION DATA SHEET




PRODUCTION DATA SHEET

PACKAGE DIMENSIONS

8-Pin Miniature Shrink Outline Package (MSOP)

	MILLIMETERS		INC	HES
Dim	MIN	MAX	MIN	MAX
Α	_	1.10	_	0.043
A1	0.05	0.15	0.002	0.006
b	0.26	0.41	0.010	0.016
С	0.13	0.23	0.005	0.009
D	2.90	3.10	0.114	0.122
е	0.65 BSC		0.025 BSC	
E	4.75	5.05	0.187	0.198
E1	2.90	3.10	0.114	0.122
L	0.41	0.71	0.016	0.028
L1	0.95 BSC		0.037	BSC
S	0.525 BSC		0.021	BSC
Θ	3°		3	0

- Active AreaRequired Minimum Light footprintBonding / Wafer area
- Active Area

 B

 Examination of Active Area

	MILLIMETERS	INCHES
Dim		
Α	1.22	0.048
а	0.85	0.033
В	0.60	0.024
C	0.60	0.024

P1	2.5	0.98

Note:

P1 represents a possible light footprint and its dimensions are not subject to strict tolerances. Only the active area of the device is required to be covered with light. This larger footprint is designed to ensure coverage of the device's active area.

PRODUCTION DATA SHEET

NOTES

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.