

MicroNote 108

Determining Clamping Voltage Levels for a Range of Pulse Currents

🕓 By Mel Clark and Kent Walters

Clamping voltage (V_c) is specified only at the maximum limit on most silicon transient voltage suppressor (TVS) datasheets. Often the designer needs to determine the V_c at some intermediate level between breakdown voltage ($V_{(BR)}$) and maximum V_c.

The value can be calculated with the datasheet parameters using the following formula:

 $V_{C} = (I_{P}/I_{PP})(V_{C} \max - V_{(BR)} \max) + V_{(BR)} \max$

Where:

 I_P = actual test pulse current I_{PP} = maximum rated peak pulse current V_c = clamping voltage at I_P V_c max = maximum specified clamping voltage $V_{(BR)}$ max = upper limit of breakdown voltage

Based on previous data, a linear increase in Vc can be assumed between $V_{(BR)}$ and Vc max for this formula. The Vc versus IP relationship of the SMCJ15A for a 1.5 kW TVS between $V_{(BR)}$ and Vc as calculated by this method is shown in Figure 1 (see page 2). Results are as expected. This calculation assumes the TVS to be at the upper limit ($V_{(BR)}$ max), hence it would be conservative for most of the distribution. Note that when IP equals IPP, Vc equals Vc max.

If only $V_{(BR)}$ min is listed on the datasheet, $V_{(BR)}$ max can be approximated. For "A" suffix parts, multiply $V_{(BR)}$ min by 1.2 and for non-suffix parts, multiply by 1.25 to obtain $V_{(BR)}$ max.

An example of a calculated curve compared to one derived from test measurements (Figure 1 (see page 2)) illustrates the feasibility and conservative aspects of this method. Surge tests were performed on a 20 piece sample at 25 °C with a 10/1000 μ s waveform.

The curve based on surge test data has a more-shallow slope than the curve interpolated through calculation. This indicates that the devices are conservatively rated, and that the formula given is adequate for interpolating intermediate values of V_c for a fractional part of I_{PP} .

The linear relationship between I_P and V_c can be applied in determining greater I_{PP} ratings for applications requiring lower than normal values of V_c. In the equation above, insert the desired value for V_c and solve for the higher I_{PP} value. This often requires upgrading to a higher peak pulse power (P_{PP}) rated device.

Figure 1: SMCJ 15A Clamping Voltage vs. % Peak Current

Support

For additional technical information, please contact Design Support at: http://www.microsemi.com/designsupport

or

Kent Walters (kwalters@microsemi.com) at 480-302-1144 (see page 1)

Microsemi Headquarters One Enterprise, Aliso Viejo,

CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2018 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and service for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct an complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any dat: and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of an products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in thi document is proprietary to Microsemi and Microsemi reserves the right to make any changes to the information in this document or to any product and services at any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and systen solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardener analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions; setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom desigi capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.