
Design Constraints User Guide
Libero SoC v11.8 SP1 and SP2

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this
PDF file may point to external files and generate an error when clicked. View the online help
included with software to enable all linked content.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 3

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does Microsemi
assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must
conduct and complete all performance and other testing of the products, alone and together with,
or installed in, any end-products. Buyer shall not rely on any data and performance specifications
or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party
any patent rights, licenses, or any other IP rights, whether with regard to such information itself or
anything described by such information. Information provided in this document is proprietary to
Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and
system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization
devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions;
security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet
ICs and midspans; as well as custom design capabilities and services. Microsemi is
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

5-02-00046-27/07.17

Microsemi Corporate
Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-
4113
Outside the USA: +1 (949) 380-
6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
www.microsemi.com

©2017 Microsemi Corporation. All
rights reserved. Microsemi and
the Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks
and service marks are the
property of their respective
owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

Design Constraints for Libero SoC v11.8 SP1 User Guide

4

Table of Contents

Design Constraints ... 9

Families Supported .. 11
Constraint Support by Family .. 11
Constraint Entry ... 13
Constraint File Format by Family .. 16

Basic Concepts.. 18
Naming Conventions.. 18
Clock .. 18
Region .. 19
Location ... 20
I/O Attributes ... 20

I/O Attributes ... 21
I/O Attributes by Family and Device ... 21
Bank Name... 22
Direction .. 23
Group ... 23
Hold State... 24
Hot Swappable ... 24
Input Delay... 25
I/O Available in Flash*Freeze Mode ... 25
I/O Standard ... 26
I/O State in Flash*Freeze Mode ... 30
Locked.. 31
Low Power Exit ... 31
Macro Cell ... 32
ODT Imp .. 32
ODT Static ... 33
Output Drive .. 33
Output Load ... 34
Pin Number .. 35
Port Name .. 35
Pre-Emphasis ... 36
Resistor Pull ... 36
Schmitt Trigger .. 37
Skew... 38
Slew ... 38
Use Register ... 39
User Reserved .. 40
Add New Port Dialog Box ... 41
Modify Port Dialog Box... 41

Design Constraints for Libero SoC v11.8 SP1 User Guide

 5

I/O Bank Settings Dialog Box (IGLOO and ProASIC3 only) ... 42
I/O Bank Settings Dialog Box.. 42
I/O Bank Settings for the SmartDesign Microcontroller Subsystem (MSS) .. 43
I/O Register Combining ... 43

Entering Constraints ... 46
Importing Constraint Files ... 46
About SmartTime Constraints Editor ... 47

Exporting Constraint Files ... 48

Constraints by Name: Timing ... 49
Create Clock... 49
Create Generated Clock ... 50
Remove Clock Uncertainty .. 50
Set Clock Latency .. 51
Set Clock Uncertainty Constraint ... 52
Set Disable Timing Constraint ... 53
Set False Path ... 54
Set Input Delay... 55
Set Load on Output Port... 56
Set Maximum Delay .. 57
Set Minimum Delay ... 58
Set Multicycle Path .. 58
Set Output Delay .. 59

Constraints by Name: Physical.. 61
Assign I/O to Pin .. 61
Assign I/O Macro to Location.. 62
Assign Macro to Region... 62
Assign Net to Global Clock ... 63
Assign Net to Local Clock ... 64
Assign Net to Quadrant Clock ... 65
Assign Net to Region ... 65
Configure I/O Bank .. 66
Create Region... 67
Delete Regions ... 68
Move Block .. 69
Move Region .. 70
Reserve Pins ... 70
Reset Attributes on an I/O to Default Settings ... 71
Reset an I/O Bank to Default Settings ... 72
Reset Net's Criticality to Default Level.. 73
Set Block Options .. 73
Set Net's Criticality .. 74
Set Port Block .. 75
Unassign Macro from Region .. 75

Design Constraints for Libero SoC v11.8 SP1 User Guide

6

Unassign Macro(s) Driven by Net from Region .. 76
Unreserve Pins ... 77

Constraints by Name: Netlist Optimization .. 79
Netlist Optimization Constraints .. 79
Delete Buffer Tree ... 79
Demote Global Net to Regular Net .. 80
Promote Regular Net to Global Net ... 80
Restore Buffer Tree .. 81
Set Preserve .. 82

Constraints by File Format - SDC Command Reference .. 83
About Synopsys Design Constraints (SDC) Files .. 83
SDC Syntax Conventions ... 84

Referenced Topics.. 86
create_clock ... 86
create_generated_clock .. 87
remove_clock_uncertainty ... 89
set_clock_latency ... 90
set_clock_to_output ... 91
set_clock_uncertainty... 92
set_disable_timing ... 94
set_external_check ... 95
set_false_path ... 96
set_input_delay .. 97
set_load .. 98
set_max_delay (SDC) .. 99
set_min_delay .. 100
set_multicycle_path ... 101
set_output_delay .. 102

Design Object Access Commands ... 104
all_inputs .. 104
all_outputs .. 105
all_registers .. 105
get_cells ... 106
get_clocks .. 107
get_pins .. 108
get_nets .. 108
get_ports ... 109
About Physical Design Constraint (PDC) Files ... 110
PDC Syntax Conventions ... 111
PDC Naming Conventions ... 113
assign_global_clock ... 115
assign_local_clock ... 115
assign_net_macros ... 117

Design Constraints for Libero SoC v11.8 SP1 User Guide

 7

assign_quadrant_clock ... 118
assign_region ... 119
define_region ... 120
delete_buffer_tree .. 123
dont_touch_buffer_tree .. 124
move_block .. 125
move_region .. 126
reserve .. 127
reset_floorplan ... 127
reset_io ... 128
reset_iobank ... 129
reset_net_critical .. 130
set_block_options... 130
set_io (SmartFusion2 and IGLOO2) .. 132
set_io (RTG4) .. 140
set_iobank (SmartFusion2, IGLOO2, and RTG4) ... 151
set_location .. 153
set_multitile_location ... 154
set_net_critical ... 157
set_port_block .. 158
set_preserve.. 159
unassign_global_clock ... 159
unassign_local_clock ... 160
unassign_macro_from_region .. 161
unassign_net_macros ... 161
unassign_quadrant_clock ... 162
undefine_region ... 163
unreserve .. 163

I/O Standards ... 165
I/O Standards Table ... 165

Product Support... 168

Design Constraints for Libero SoC v11.8 SP1 User Guide

 9

Design Constraints

Design constraints are usually either requirements or properties in your design. You use constraints to
ensure that your design meets its performance goals and pin assignment requirements.
The Libero SoC software supports both SDC timing and PDC physical constraints. In addition, it supports
netlist optimization constraints. You can set constraints by either using Microsemi's interactive tools (I/O
Editor, Chip Planner, and Constraint Editor) or by importing constraint files directly into your design session.
With Enhanced Constraints Flow , use the Constraint Manager to manage all your design constraints.

SDC Timing Constraints
Timing constraints represent the performance goals for your designs. Microsemi software uses timing
constraints to guide the timing-driven optimization tools in order to meet these goals.
You can set timing constraints either globally or to a specific set of paths in your design.
You can apply timing constraints to:

• Specify the required minimum speed of a clock domain
• Set the input and output port timing information
• Define the maximum delay for a specific path
• Identify paths that are considered false and excluded from the analysis
• Identify paths that require more than one clock cycle to propagate the data
• Provide the external load at a specific port

To get the most effective results from the Designer software, you need to set the timing constraints close to
your design goals. Sometimes slightly tightening the timing constraint helps the optimization process to meet
the original specifications.

PDC Physical Constraints
Designer software enables you to specify the physical constraints to define the size, shape, utilization, and
pin/pad placement of a design. You can specify these constraints based on the utilization, aspect ratio, and
dimensions of the die. The pin/pad placement depends on the external physical environment of the design,
such as the placement of the device on the board.
There are three types of physical constraints:

• I/O assignments
- Set location, attributes, and technologies for I/O ports
- Specify special assignments, such as VREF pins and I/O banks

• Location and region assignments
- Set the location of Core, RAM, and FIFO macros
- Create Regions for I/O and Core macros as well as modify those regions

• Clock assignments
- Assign nets to clocks
- Assign global clock constraints to global, quadrant, and local clock resources

Netlist Optimization Constraints
The software enables you to set some advanced design-specific netlist optimizing constraints.
You can apply netlist optimization constraints to:

• Delete or restore a buffer tree
• Manage the fan-outs of the nets

Design Constraints for Libero SoC v11.8 SP1 User Guide

10

• Manage macro combinations (for example, IO-REG combining)
• Optimize a netlist by removing buffers and/or inverters, propagating constants, and so on

See Also
Constraint Support by Family
Constraint Entry Table
Constraint File Format by Family
Naming Conventions

Design Constraints for Libero SoC v11.8 SP1 User Guide

 11

Families Supported

Constraint Support by Family
Use the Constraint Family Support table to see which constraints you can use for your device family. Click
the name of a constraint in the table for more information.
When we specify a family name, we refer to the device family and all its derivatives, unless otherwise
specified.

Table 1 · Constraint Support by Family

 IGLOO SmartFusion2,
IGLOO2, RTG4

SmartFusion
and Fusion

ProASIC3

Timing

Create a clock X X X X

Create a generated
clock

X X X X

Remove clock
uncertainty

X X X X

Set clock latency X X X X

Set clock uncertainty X X X X

Set disable timing X X X X

Set false path X X X X

Set input delay X X X X

Set load on output port X X X X

Set maximum delay X X X X

Set minimum delay X X X X

Set multicycle path X X X X

Set output delay X X X X

Physical Placement

-Clocks

Assign Net to Global
Clock

X X X

Assign Net to Local
Clock

X X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

12

 IGLOO SmartFusion2,
IGLOO2, RTG4

SmartFusion
and Fusion

ProASIC3

Timing

Assign Net to Quadrant
Clock

X X X

-Regions

Assign Macro to
Region

X X X X

Assign Net to Region X X X X

Create Region X X X X

Delete Regions X X X X

Move Region X X X X

Unassign macro(s)
driven by net

X X X X

Unassign Macro from
Region

X X X X

-I/Os

Assign I/O to pin X X X X

Assign I/O Macro to
Location

X X X X

Configure I/O Bank X X X X

Reset attributes on I/O
to default settings

X X X X

Reset I/O bank to
default settings

X X X X

Reserve pins X X X X

Unreserve pins X X X X

-Block

Move Block X X X X

Set Port Block X X X X

Set Block Options X X X X

-Nets

Assign Net to Global
Clock

X X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 13

 IGLOO SmartFusion2,
IGLOO2, RTG4

SmartFusion
and Fusion

ProASIC3

Timing

Assign Net to Local
Clock

X X X

Assign Net to Quadrant
Clock

X X X

Assign Net to Region X X X X

Reset net's criticality to
default level

Set Net's Criticality

Unassign macro(s)
driven by net

X X X X

Netlist Optimization

Delete buffer tree X X X

Demote Global Net to
Regular Net

X X X

Promote regular net to
global net

X X X

Restore buffer tree X X X

Set preserve X X X X

See Also
Constraint Entry Table
Constraint File Format by Family

Constraint Entry
Use the Constraint Entry table to see which tools and file formats you can use to enter constraints for your
device family.
Click the name of a constraint, a constraint entry tool, file format type, editor, or checkmark in the table for
more information about that item.

Design Constraints for Libero SoC v11.8 SP1 User Guide

14

Table 2 · Constraint Entry by Tool and File Format

Constraint

Timing

Create a clock X X

Create a generated clock X X

Remove clock uncertainty X X

Set clock latency X X

Set clock uncertainty X X

Set disable timing X X

Set false path X X

Set input delay X X

Set load on output port X X X X

Set maximum delay X X

Set minimum delay X X

Set multicycle path X X

Set output delay X X

Physical Placement

-Clocks

Assign Net to Global Clock X

Assign Net to Local Clock X X

Assign Net to Quadrant
Clock

 X X

-Regions

Assign Macro to Region X X

Assign Net to Region X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 15

Constraint

Timing

Create Region X X

Delete Regions X X

Move region X X

Unassign macro(s) driven by
net

 X X

Unassign macro from region X X

-I/Os

Assign I/O to pin X X X X X

Assign I/O Macro to Location X X

Configure I/O Bank X X X

Reset attributes on I/O to
default settings

 X X X

Reset I/O bank to default
settings

 X X X

Reserve pins X X X

Unreserve pins X X X

-Blocks

Move Block X

Set port block X X

Set Block Options X X

-Nets

Assign Net to Global Clock X

Assign Net to Local Clock X X

Assign Net to Quadrant
Clock

 X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

16

Constraint

Timing

Assign Net to Region X X

Reset net's criticality to
default level

 X

Set Net's Criticality X

Unassign macro(s) driven by
net

 X X

Netlist Optimization

Delete buffer tree X X

Demote Global Net to
Regular Net

 X X

Promote regular net to global
net

 X X

Restore buffer tree X

Set preserve X

See Also
Constraint Support by Family
Constraint File Format by Family

Constraint File Format by Family
Use the File Format by Family table to see which file formats apply to each type of constraint and each
device family.
When we specify a family name, we refer to the device family and all its derivatives, unless otherwise
specified.

Table 3 · Constraint File Format by Family

Family Timing Physical Placement Netlist Optimiization

SDC PDC PDC

IGLOO X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 17

Family Timing Physical Placement Netlist Optimiization

SDC PDC PDC

IGLOO2 X X X

SmartFusion2 X X X

SmartFusion and Fusion X X X

ProASIC3 X X

SDC – Synopsys Design Constraints
PDC – Physical Design Constraints

See Also
Constraint Support by Family
Constraint Entry Table

Design Constraints for Libero SoC v11.8 SP1 User Guide

18

Basic Concepts

Naming Conventions
The names of ports, instances, and nets in an imported netlist are sometimes referred to as their original
names. Port names appear exactly as they are defined in a netlist. For example, a port named A/B appears
as A/B in ChipPlanner, PinEditor, and I/O Attribute Editor in MultiView Navigator. Instances and nets display
the original names plus an escape character (\) before each backslash (/) and each slash (\) that is not a
hierarchy separator. For example, the instance named A/\B is displayed as A\/\\B.
The following components use the Tcl-compliant original names:

• PDC reader/writer
• SDC reader/writer
• Compile report
• SDF/Netlist writer for back annotation
• MultiView Navigator tools: NetlistViewer, PinEditor, ChipPlanner, and I/O Attribute Editor

• SmartTime
• SmartPower

See Also
PDC Naming Conventions

Clock
Specifying clock constraints is the most effective way of constraining and verifying the timing behavior of a
sequential design. You must use clock constraints to meet your performance goals and to quickly reach
timing closure.
Best practice is to specify and constrain all clocks used in the design.
To create a clock constraint, you must provide the following clock information:
Clock source: Specifies the pin or port where the clock signal is defined.
Clock period or frequency: Defines the smallest amount of time after which the signal repeats itself.
Duty cycle: Defines the percentage of time during which the clock period is high.
First edge: Indicates whether the first edge of the clock is rising or falling.
Offset: Indicates the shift of the first edge with respect to instant zero common to all clocks in the design.

Example 1:
create_clock -period 10 -waveform {2 7}
This example creates a clock with 10ns period, 2ns offset, and 50% duty cycle using the SDC command.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 19

Example 2:
This example shows how to create a clock with 25MHz frequency, 4ns offset for its first rising edge, and
60% duty cycle using the SmartTime Constraints Editor. Using the Create New Clock Constraint dialog box
is equivalent to using the SDC command: create_clock -period 40 -waveform {4, 28}.

See Also
Constraint support by family
Constraint entry table
create_clock (SDC)
global_clocks (DCF)
Specifying Clock Constraints

Region
A region is a user-defined area on a chip into which you can constrain the physical placement of one or
more macros. You can also constrain macros containing multiple tiles for cores, RAMs, and I/Os. The
floorplanning process usually requires you to create several regions and assign logic to them. Logic can
include core logic, memory, and I/O modules. When you run the place-and-route tool, it places the logic into
their assigned regions.

Design Constraints for Libero SoC v11.8 SP1 User Guide

20

Some regions are user-defined and others are automatically created by the tools to meet routing
requirements (for example, Local clock regions).
You can use region constraints to:

• Create user-defined regions such as Inclusive, Exclusive, Empty, LocalClock, and QuadrantClock
• Assign and unassign macros to user-defined regions
• Constrain all the macros connected to a net by assigning them to a specific net region
• Move regions from one set of co-ordinates to another

See Also
Assign Macro to Region
Create Region
Delete Region
Move Region
Unassign macro from region
About Floorplanning, Creating Regions, Editing Regions

Location
Each core, RAM, and I/O macro in the design is associated with a location on the device. When you run the
place-and-route tool, it places all of your logic into their assigned locations.
You can use location constraints to:

• Overwrite the existing placements of macros
• Tell the place-and-route tool where to initially place the macros
• Assign I/O macros to specific pins to meet your board's requirements

See Also
Assign I/O to pin
Assign macro to location
Assigning Logic to Locations, Moving Logic to Other Locations, Assigning Pins, Unassigning Pins

I/O Attributes
I/O attributes are the characteristics of logic macros or nets in your design. They indicate placement,
implementation, naming, directionality, and other characteristics. This information is used by the design
implementation software during the place-and-route of a design.
Input and output attributes are described in the documentation for the I/O Attribute Editor. Attributes
applicable to a specific tool are described in the help for that tool.
See the topics in I/O Attributes Reference for more detailed information about each attribute. See also , for a
table of attributes for each device family, and Welcome to I/O Attribute Editor.

See Also
I/O Attributes by Family
I/O Standards and I/O Attributes Applicability
I/O Standards Compatibility Matrix

Design Constraints for Libero SoC v11.8 SP1 User Guide

 21

I/O Attributes

I/O Attributes by Family and Device

Other than the four common attributes supported by all families, the following table includes the attributes
that each Microsemi SoC family supports. The following table displays the attributes supported for each
family.
Note: Not all attributes apply to all banks for a given I/O standard. Refer to the appropriate datasheet for

details.
Refer to the appropriate datasheet for information about I/O standards for different families.

Table 4 · I/O Attributes by Family and Device

Attribute Family

 IGLOO SmartFusion2,
IGLOO2, RTG4

SmartFusion
and Fusion

ProASIC3

Bank Name X X X X

Direction X X X X

Group X X X X

Hold State X, IGLOO PLUS
only

Hot Swappable X X X X

Input Delay X X X X, ProASIC3E
and
ProASIC3L
only

I/O Available in
Flash*Freeze
Mode

 X

I/O Standard X X X X

I/O State in
Flash*Freeze
Mode

 X

Locked X X X X

Low Power Exit X

Macro Cell X X X

ODT Imp* X

Design Constraints for Libero SoC v11.8 SP1 User Guide

22

Attribute Family

 IGLOO SmartFusion2,
IGLOO2, RTG4

SmartFusion
and Fusion

ProASIC3

ODT Static* X

Output Drive X X X X

Output Load X X X X

Pin Number X X X X

Port Name X X X X

Pre-Emphasis X

Resistor Pull X X X X

Schmitt Trigger X, IGLOOe and
IGLOO PLUS
only

X X X, ProASIC3e
and
ProASIC3L
only

Skew X X X

Slew X X X X

Use Register X X X X

User Reserved X X X X, ProASIC3e
and
ProASIC3L
only

*Note: ODT is not allowed for 2.5V or higher single-ended signals. It is allowed for differential signals.

Bank Name

Purpose
Displays the name of the bank to which the I/O macro has been assigned. You cannot change the bank
name.

Families Supported

RTG4 X

IGLOO Yes

IGLOO2 Yes

SmarFusion2 Yes

SmartFusion Yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

23

Families Supported

Fusion Yes

ProASIC3 Yes

Direction

Purpose
Indicates whether the pin is accepting a signal (input), sending a signal (output), or both sending and
receiving a signal (Inout).

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

Group

Purpose
Indicates whether the port currently belongs to a group.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

24

Use this attribute to assign a port to a group or unassign a port from a group.

Hold State

Purpose
Preserves the previous state of the I/O. By default, all the I/Os become tristated when the device goes into
Flash*Freeze mode. (A tristatable I/O is an I/O with three output states: high, low, and high impedance.) You
can override this default using the hold_state attribute. When you set the hold_state to True, the I/O remains
in the same state in which it was functioning before the device went into Flash*Freeze mode.

Families Supported

IGLOO IGLOO PLUS only

SmartFusion No

SmartFusion2 No

Fusion No

ProASIC3 No

Hot Swappable
The I/O standard specified and the selected voltage determine this read-only attribute.

Purpose
Indicates whether the I/O pin is hot swappable.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 A3P030 only

Values
If you see either a checkmark or ON (all standards except PCI and PCIX), it means that a clamp diode is
NOT included to allow proper hot-swap behavior. If you do not see a checkmark or you see "OFF" (PCI and

Design Constraints for Libero SoC v11.8 SP1 User Guide

 25

PCIX only), it means that a clamp diode is included as required by those specifications, but the I/O is NOT
hot swappable.

Example
set_io A -HOT_SWAPPABLE ON

Input Delay

Purpose
 Indicates whether the input path delay elements are to be programmed. If they will be programmed, this
option adds the specified input delay to the input path.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes, ProASIC3E and ProASIC3L only

Values
 Use this attribute to turn the input delay on or off, or to set the input delay value. See your device datasheet
for more information.
Note: The actual input delay is a function of the operating conditions and is automatically computed by

the delay extractor when a timing report is generated.

Example
The following command sets the input delay to 2:
set_io A -INPUT_DELAY 2

I/O Available in Flash*Freeze Mode

Purpose
Indicates the I/O is available in Flash*Freeze Mode.

Families Supported

SmartFusion2 Yes

IGLOO2 Yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

26

Families Supported

RTG4 Yes

Values
You can specify YES or NO (default) for FF_IO_AVAIL.

Example
set_io A -FF_IO_AVAIL YES

I/O Standard

Purpose
Use the I/O standard attribute to assign an I/O standard to an I/O macro.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

Note: Voltage referenced I/O inputs require an input referenced voltage (VREF). You must assign VREF

pins to IGLOOe and ProASIC3E devices before running Layout.
The devices support multiple I/O standards (with different I/O voltages) in a single die. You can use the I/O
Attribute Editor to set I/O standards and attributes, or alternatively you can export and import this information
using a PDC file.
Not all devices support all I/O standards. The following table shows you which I/O standards are supported
by each device.

I/O Standard IGLOO SmartFusion2
/IGLOO2

SmartFusion
/Fusion

ProASIC3

BUSLVDS X

CMOS

CUSTOM

GTL+ IGLOOe only X ProASIC3E
and

Design Constraints for Libero SoC v11.8 SP1 User Guide

 27

I/O Standard IGLOO SmartFusion2
/IGLOO2

SmartFusion
/Fusion

ProASIC3

ProASIC3L
only

GTL 3.3 V IGLOOe only X ProASIC3E
and
ProASIC3L
only

GTL 2.5 V IGLOOe only X ProASIC3E
and
ProASIC3L
only

HSTL Class I IGLOOe only X X ProASIC3E
and
ProASIC3L
only

HSTL Class II IGLOOe only X X ProASIC3E
and
ProASIC3L
only

LPDDR I and II X

LVCMOS 3.3 V IGLOOe only X X ProASIC3E
and
ProASIC3L
only

LVCMOS 2.5 V X X X X

LVCMOS 2.5 V/5.0V IGLOOe only X X

LVCMOS 1.8 V X X X X

LVCMOS 1.5 V X X X X

LVCMOS 1.2 V X X X ProASIC3
(A3PL),
IGLOOe V2
only, IGLOO
V2, and
IGLOO
PLUS only

LVDS IGLOO and
IGLOO PLUS
only

X X (A3P250
devices and
above)

LVPECL X X X X

LVTTL/TTL X X X X

MINILVDS X

Design Constraints for Libero SoC v11.8 SP1 User Guide

28

I/O Standard IGLOO SmartFusion2
/IGLOO2

SmartFusion
/Fusion

ProASIC3

MLVDS X

PCI X X X X

PCI-X 3.3 V X X X

RSDS X

SSTL15 Class I and
II

 X

SSTL18 Class I and
II

 X

SSTL2 Class I and II IGLOOe only X X ProASIC3E
and
ProASIC3L
only

SSTL3 Class I and II IGLOOe only X ProASIC3E
and
ProASIC3L
only

Note: For a list of I/O standards for all other families, refer to the datasheet for your specific device.

Descriptions
Following are brief descriptions of the I/O standard attributes in the table above.

BUSLVDS
Enables multipoint configuration of LVDS; useful when point-to-point communication in LVDS is inadequate.

CMOS (Complementary Metal-Oxide-Semiconductor)
An advanced integrated circuit (IC) manufacturing process technology for logic and memory, characterized
by high integration, low cost, low power, and high performance. CMOS logic uses a combination of p-type
and n-type metal-oxide-semiconductor field effect transistors (MOSFETs) to implement logic gates and other
digital circuits found in computers, telecommunications, and signal processing equipment.

CUSTOM
An option in the I/O Attribute Editor that enables you to customize individual I/O settings such as the I/O
threshold, output slew rates, and capacitive loadings on an individual I/O basis. For example, PCI mode
output can be set to low-slew rate. For more information, go to the Microsemi SoC web site and check the
datasheet for your device.

GTL 2.5 V (Gunning Transceiver Logic 2.5 Volts)
A low-power standard (JESD 8.3) for electrical signals used in CMOS circuits that allows for low
electromagnetic interference at high speeds of transfer. It has a voltage swing between 0.4 volts and 1.2
volts, and typically operates at speeds of between 20 and 40MHz. The VCCI must be connected to 2.5 volts.

GTL 3.3 V (Gunning Transceiver Logic 3.3 Volts)
Same as GTL 2.5 V above, except the VCCI must be connected to 3.3 volts.

http://www.microsemi.com/products/fpga-soc

Design Constraints for Libero SoC v11.8 SP1 User Guide

 29

GTL+ (Gunning Transceiver Logic Plus)
An enhanced version of GTL that has defined slew rates and higher voltage levels. It requires a differential
amplifier input buffer and an open-drain output buffer. Even though output is open-drain, the VCCI must be
connected to either 2.5 volts or 3.3 volts for SmartFusion, IGLOO, ProASIC3 and Fusion families.

HSTL Class I and II (High-Speed Transceiver Logic)
A general-purpose, high-speed 1.5 V bus standard (EIA/JESD 8-6) for signalling between integrated circuits.
The signalling range is 0 V to 1.5 V, and signals can be either single-ended or differential. HSTL requires a
differential amplifier input buffer and a push-pull output buffer. It has four classes, of which Microsemi SoC
supports Class I and II. These classes are defined by standard EIA/JESD 8-6 from the Electronic Industries
Alliance (EIA):

• Class I (unterminated or symmetrically parallel terminated)
• Class II (series terminated)
• Class III (asymmetrically parallel terminated)
• Class IV (asymmetrically double parallel terminated

LPDDR I and II
Low Power double data rate synchronous DRAM for mobile computers.

LVCMOS 3.3 V (Low-Voltage CMOS for 3.3 Volts)
An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 3.3 V applications.

LVCMOS 2.5 V (Low-Voltage CMOS for 2.5 Volts)
An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 2.5 V applications.

LVCMOS 2.5 V/5.5V (Low-Voltage CMOS for 2.5 and 5.0 Volts)
An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 2.5 V and 5.0V applications.

LVCMOS 1.8 V (Low-Voltage CMOS for 1.8 Volts)
An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 1.8 V applications. It uses a
3.3 V-tolerant CMOS input buffer and a push-pull output buffer.

LVCMOS 1.5 V (Low-Voltage CMOS for 1.5 volts)
An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 1.5 V applications. It uses a
3.3 V-tolerant CMOS input buffer and a push-pull output buffer.

LVCMOS 1.2 V (Low-Voltage CMOS for 1.2 volts)
Note: An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 1.2 V applications.
Note: 1.2 voltage is supported for ProASIC3 (A3PL), IGLOOe V2 only, IGLOO V2, and IGLOO PLUS.

LVDS (Low-Voltage Differential Signal)
A moderate-speed differential signalling system, in which the transmitter generates two different voltages
which are compared at the receiver. It requires that one data bit be carried through two signal lines;
therefore, you need two pins per input or output. It also requires an external resistor termination. The voltage
swing between these two signal lines is approximately 350mV (millivolts).

LVPECL (Low-Voltage Positive Emitter Coupled Logic)
PECL is another differential I/O standard. It requires that one data bit is carried through two signal lines;
therefore, two pins are needed per input or output. It also requires an external resistor termination. The
voltage swing between these two signal lines is approximately 850mV. When the power supply is +3.3 V, it
is commonly referred to as low-voltage PECL (LVPECL).

LVTTL/TTL (Low-Voltage Transitor-Transistor Level)
A general purpose standard (EIA/JESDSA) for 3.3 V applications. It uses an LVTTL input buffer and a push-
pull output buffer.

Design Constraints for Libero SoC v11.8 SP1 User Guide

30

MINILVDS
Signaling standard used for display applications with resolutions between video graphics arrays (VGAs) and
ultra extended graphic arrays (UXGAs).

MLVDS
MLVDS has two types of receivers. Type-1 is compatible with LVDS and uses a +/- 50 mV threshold. Type-2
receivers allow Wired-Or signaling with M-LVDS devices. For MLVDS:

PCI (Peripheral Component Interface)
A computer bus for attaching peripheral devices to a computer motherboard in a local bus. This standard
supports both 33 MHz and 66 MHz PCI bus applications. It uses an LVTTL input buffer and a push-pull
output buffer. With the aid of an external resistor, this I/O standard can be 5V-compliant for most families,
excluding ProASIC3 families.

PCI-X (Peripheral Component Interface Extended)
An enhanced version of the PCI specification that can support higher average bandwidth; it increases the
speed that data can move within a computer from 66 MHz to 133 MHz. PCI-X is backward-compatible,
which means that devices can operate at conventional PCI frequencies (33 MHz and 66 MHz). PCI-X is also
more fault-tolerant than PCI.

RSDS
Reduced Swing Differential Signaling , a electronic signaling standard and protocol for a chip-to-chip
interface. Signaling standard commonly used for display applications with resolutions between video
graphics arrays (VGAs) and ultra extended graphic arrays (UXGAs).

SSTL15 Class I and II
I/O standard with a voltage-referenced signal, input (VREF) of 0.75, and an output (VCCIO) voltage of 1.5 V.

SSTL18 Class I and II
SSTL is an electrical interface commonly used with DDR [Double Data Rate] DRAM memory ICs and
memory modules. SSTL_18 Series Stub Terminated, used with DDR II memory; requires Vddq = 1.8v, Vt =
0.5 x Vddq

SSTL2 Class I and II (Stub Series Terminated Logic 2.5 V)
A general-purpose 2.5 V memory bus standard (JESD 8-9) for driving transmission lines. This standard was
designed specifically for driving the DDR (double-data-rate) SDRAM modules used in computer memory. It
requires a differential amplifier input buffer and a push-pull output buffer. It has two classes; Microsemi SoC
supports both.

SSTL3 Class I and II (Stub Series Terminated Logic for 3.3 V)
A general-purpose 3.3 V memory bus standard (JESD 8-8) for driving transmission lines.

I/O State in Flash*Freeze Mode

Purpose
Preserves the previous state of the I/O. By default, all the I/Os become tristated when the device goes into
Flash*Freeze mode. (A tristatable I/O is an I/O with three output states: high, low, and high impedance.) You
can override this default using the FF_IO_STATE attribute. When you set this attribute to True, the I/O
remains in the same state in which it was functioning before the device went into Flash*Freeze mode.

Families Supported

SmartFusion2 Yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

 31

Families Supported

IGLOO2 Yes

Values
You can specify TRISTATE or LAST_VALUE for FF_IO_STATE.

Example
You can set your I/O to the last available value using FF_IO_STATE:
set_io A -FF_IO_STATE LAST_VALUE

Locked

Purpose
 Indicates whether you can change the current pin assignment during layout.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

Values
Use this attribute to lock or unlock the pin assignment. Selecting the check box locks the pin assignment.
Clearing the check box unlocks the pin assignment. If locked, you cannot change the pin assignment. PDC
values are YES or NO.

Example
set_io -fixed YES

Low Power Exit

Purpose
Sets the state at which your device exits from Low Power mode.

Design Constraints for Libero SoC v11.8 SP1 User Guide

32

Families Supported

RTG4 Yes

SmartFusion2 Yes

IGLOO2 Yes

Values
You can set Low Power Exit to OFF (default), Wake_on_Change, Wake_on_0, or Wake_on_1. For example:
set_io A -LPE Wake_on_1

Macro Cell

Purpose
 Indicates the type of I/O macro. This value is read only and is applicable only to the I/O Attribute Editor tool
(that is, you cannot use it in PDC files).

Families Supported

IGLOO Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

ODT Imp

Purpose
On-die termination (ODT) is the technology where the termination resistor for impedance matching in
transmission lines is located inside a semiconductor chip instead of on a printed circuit board.
 Note: ODT is not allowed for 2.5V or higher single-ended signals. It is allowed for differential signals.
Port Configuration (PC) bits are static configuration bits set during programming to configure the IO(s) as per
your choice.

Families Supported

RTG4 Yes

SmartFusion2 Yes

IGLOO2 Yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

 33

Values
See the device datasheet for available values.

Example
You can set your ODT Imp to 50 with the following command:
set_io Y -ODT_IMP 50

ODT Static

Purpose
On-die termination (ODT) is the technology where the termination resistor for impedance matching in
transmission lines is located inside a semiconductor chip instead of on a printed circuit board.
Note: ODT is not allowed for 2.5V or higher single-ended signals. It is allowed for differential signals.

Families Supported

RTG4 Yes

SmartFusion2 Yes

IGLOO2 Yes

Values
On or Off (default).

Example
Set your ODT Static to On with the following command:
set_io A -ODT_STATIC On

Output Drive

Purpose
 Every I/O standard has an output drive preset; however, for some I/O standards, you can choose which one
to use. The higher the drive, the faster the I/O. The faster the I/O, the more power consumed by the I/O.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

34

Families Supported

ProASIC3 Yes

Values
Drive strength is programmable for some I/O technologies. See the device silicon user's guide for specific
ranges.
 Some I/O technologies are not programmable. Using this attribute in conjunction with non-programmable
I/O technology will generate an error no matter what value the attribute is set to.

Example
set_io -out_drive 4

Output Load

Purpose
Indicates the output-capacitance value based on the I/O standard selected in the I/O Standard cell. This
option is not available in software.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

Values
You can enter a capacitative load as an integral number of picofarads. The default value varies by device
family. If necessary, you can change the output capacitance default setting to improve timing definition and
analysis. Both the capacitive loading on the board and the Vil/Vih trip points of driven devices affect output-
propagation delay.
SmartTime, Timing-Driven Layout and Back-Annotation automatically uses the modified delay model for
delay calculations.
The default value is 5, and the range of possible values is 0-9999.

 Example
-set_io Y -OUT_LOAD 5

Design Constraints for Libero SoC v11.8 SP1 User Guide

35

Pin Number

Purpose
 Use this attribute to change a pin assignment by choosing one of the legal values from the drop-down list. If
the pin has been assigned, the pin number appears in this column. If it has not been assigned then
Unassigned appears in this column.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

Example
set_io -pinname AC30

Port Name

Purpose
 Indicates the port name of the I/O macro. This value is read only.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

36

Pre-Emphasis
The pre-emphasis rate is the amount of rise or fall time an input signal takes to get from logic low to logic
high or vice versa. It is commonly defined to be the propagation delay between 10% and 90% of the signal's
voltage swing.

Purpose

Indicates the slew rate for output buffers. Generally, available slew rates are high and low.

Families Supported

RTG4 Yes

SmartFusion2 Yes

IGLOO2 Yes

Values

Example

You can set the slew rate for the output buffer to NONE (default), MIN, MEDIUM, or MAX. The output buffer
has a programmable slew rate for both high-to-low and low-to-high transitions. The low rate is incompatible
with 3.3 V PCI requirements. Not all I/O technologies support pre-emphasis; including the attribute in a
set_io statement that specified a non-supporting I/O technology will create an error.
For SmartFusion2 you can edit the pre-emphasis for designs using LVTTL, all LVCMOS, or PCIX I/O
standards.
One way to eliminate problems with low slew rate is with external .

set_io A -PRE_EMPHASIS NONE

Resistor Pull

Purpose Allows inclusion of a weak resistor for either pull-up or pull-down of the input buffer.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

37

Families Supported

Fusion Yes

ProASIC3 Yes

Values

Example

 Use this attribute to set the resistor pull. Your choices are None, Up (pull-up), or Down (pull-down). The
default value is None, except when an I/O exists in the netlist as a port, is not connected to the core, and is
configured as an output buffer. In that case, the default setting is for a weak pull-down.

-set_io A -RES_PULL NONE

Schmitt Trigger

Purpose
 A schmitt trigger is a buffer used to convert a slow or noisy input signal into a clean one before passing it to
the FPGA. This is a simple, low-cost solution for a user working with low slew-rate signals. Using schmitt-
trigger buffers guarantees a fast, noise-free, input signal to the FPGA.
Schmitt-trigger buffers are categorized in three configurations:
• Fixed threshold voltages with non-inverted outputs
• Fixed threshold voltages and inverted outputs
• Variable threshold voltages with non-inverted outputs

With the aid of schmitt-trigger buffers, low slew-rate applications can also be handled with ease.
Implementation of these buffers is simple, not expensive, and flexible in that different configurations are
possible depending on the application. The characteristics of schmitt-trigger buffers (e.g. threshold voltage)
can be fixed or user-adjustable if required.

Families Supported

RTG4 Yes

IGLOO Yes, IGLOOe and IGLOO PLUS only

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes, with one exception: this attribute is not supported in ProASIC3L
except in A3PE3000L

Design Constraints for Libero SoC v11.8 SP1 User Guide

38

Values
 A schmitt trigger has two possible states: Off (default) or On. The trigger for this circuit to change states is
the input voltage level. That is, the output state depends on the input level, and will change only as the input
crosses a pre-defined threshold.
Not all I/O technologies support SCHMITT_TRIGGER. Including the attribute in a set_io statement that also
specifies a non-supporting I/O technology will create an error.
For more information, please see the Using Schmitt Triggers for Low Slew-Rate Input Application Note on
the Microsemi SoC web site.

Example
set_io A -SCHMITT_TRIGGER On

Skew

Purpose
 Indicates whether there is a fixed additional delay between the enable/disable time for a tristatable I/O. (A
tristatable I/O is an I/O with three output states: high, low, and high impedance.) 2 ns delay on rising edge, 0
ns delay on falling edge.

Families Supported

IGLOO Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

Values
You can set the skew for a clock to either Off (default) or On.
Note that a Tri State or "tristatable" logic gate has three output states: high, low, and high impedance. In a
high impedance state, the output acts like a resistor with infinite resistance, which means the output is
disconnected from the rest of the circuit.

Example
-set_io -skew On

Slew
The slew rate is the amount of rise or fall time an input signal takes to get from logic low to logic high or vice
versa. It is commonly defined to be the propagation delay between 10% and 90% of the signal's voltage
swing.

Purpose
Indicates the slew rate for output buffers. Generally, available slew rates are high and low.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 39

Families Supported

RTG4 Yes

SmartFusion2 Yes

IGLOO2 Yes

IGLOO Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

Values
 Values for slew for SF2 are: SLOW (default), MEDIUM, MEDIUM_FAST, and FAST. MSIO and MSIOD
banks only accept SLOW for SLEW values on the I/O technologies that support SLEW. DDRIO supports all
four values.
Not all I/O technologies support SLEW. Including the attribute in a set_io statement that also specifies a
non-supporting I/O technology will create an error.
The SLOW slew rate is incompatible with 3.3 V PCI requirements.
For ProASIC3 families, you can edit the slew for designs using LVTTL, all LVCMOS, or PCIX I/O standards.
The other I/O standards have a preset slew value. For those devices that support additional slew values,
Microsemi SoC recommends that you use the SLOW and FAST values and let the software map to the
appropriate absolute slew value. The default slew displayed in the I/O Attribute Editor is based on the
selected I/O standard. For example, PCI mode sets the default output slew rate to FAST.
Note: One way to eliminate problems with low slew rate is with external .
In some applications, you may require a very fast (i.e. high slew rate) signal, which approaches an ideal
switching transition. You can accomplish this by either reducing the track resistance and/or capacitance on
the board or increasing the drive capability of the input signal. Both of these options are generally time
consuming and costly. Furthermore, the closer the input signal approaches an ideal one, the greater the
likelihood of unwanted effects such as increased peak current, capacitive coupling, and ground bounce.
In many cases, you may want to incorporate a finite amount of slew rate into your signal to reduce these
effects. On the other hand, if an input signal becomes too slow (i.e. low slew rate), then noise around the
FPGA's input voltage threshold can cause multiple state changes. During the transition time, both input
buffer transistors could potentially turn on at the same time, which could result in the output of the buffer to
oscillate unpredictably. In this situation, the input buffer could still pass signals.
However, these short, unpredictable oscillations would likely cause the device to malfunction.

Example
-set_io slew MEDIUM

Use Register

Purpose
The input and output registers for each individual I/O can be activated by selecting the check box associated
with an I/O. The I/O registers are NOT selected by default.

Design Constraints for Libero SoC v11.8 SP1 User Guide

40

If this option is yes, the combiner combines the register into the I/O module if possible. This option overrides
the default setting in the Compile options. I/O registers are off by default. The following table shows the
acceptable values for the -register attribute:

Families Supported

IGLOO Yes

SmartFusion Yes

Fusion Yes

ProASIC3 Yes

SmartFusion2 Yes

IGLOO2 Yes

RTG4 Yes

Values
Possible values are yes or no.

Example
set_io -register no

See Also
I/O Register Combining Rules

User Reserved

Purpose
You can explicitly reserve a pin in one of the following ways:
• In the I/O Attribute Editor (Package Pins view), select the User Reserved checkbox associated with

the pin to reserve.
• Select a pin in PinEditor, right-click it, and choose Reserve Pin from the right-click menu.
• Use the reserve command in a PDC file.

Families Supported

RTG4 Yes

IGLOO Yes

IGLOO2 Yes

SmartFusion2 Yes

SmartFusion Yes

Fusion Yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

 41

Families Supported

ProASIC3 Yes

Values
The list of possible values for this attribute is the list of package pins.

Example
reserve -pinname "F2 B4 B3"

Add New Port Dialog Box
To access this dialog box, from the I/O Attribute Editor menu, choose Add Port. You can also right-click a
row in the Ports tab of the I/O Attribute Editor, and choose Add New Port to display this dialog box.
Use this dialog box to add a new port to your design.

Name
Enter a name for the new port.

Direction
Select one of the following options:

Input
Select this option if the port is to receive a signal.

Output
Select this option if the port is to send a signal.

Bi-directional (Inout)
Select this option if the port will both send and receive a signal.

Modify Port Dialog Box
To access this dialog box, from the I/O Attribute Editor menu, choose Modify Port. You can also right-click
a row in the Ports tab of the I/O Attribute Editor, and choose Modify Port to display this dialog box.
Use this dialog box to modify the name or direction of an existing port in your design.

Name
Enter a new name for the port.

Direction
Select one of the following options:

Input
Select this option if the port is to receive a signal.

Output
Select this option if the port is to send a signal.

Design Constraints for Libero SoC v11.8 SP1 User Guide

42

Bi-directional (Inout)
Select this option if the port will both send and receive a signal.

I/O Bank Settings Dialog Box (IGLOO and ProASIC3 only)
To access this dialog, from the Edit menu, choose I/O Bank Settings.
Use this dialog box to assign I/O technologies to I/O banks in IGLOO (excluding IGLOOe) and ProASIC3
(excluding ProASIC3L and ProASIC3E) devices.

Choose Bank
Choose a bank from the drop-down list.Any banks not assigned I/O standards use the default standard
selected in your Project Settings.

Locked
Select this option to lock all I/O banks, so the I/O Bank Assigner cannot unassign and re-assign the
technologies in your design.

Select All Technologies That the Bank Should Support
Selecting an I/O standard selects all compatible standards and grays out incompatible ones. For example,
selecting LVTTL also selects PCI, PCIX, and LVPECL, since they all have the same VCCI. Further,
selecting GTLP (3.3V) disables SSTL3 as an option because the VREFs of the two are not the same.

VCCI
Each I/O bank has a common supply voltage, VCCI, for the I/Os within that bank.
Click Apply to assign the selected I/O standards to the selected bank. Any previously assigned I/Os in the
bank that are no longer compatible with the standards applied are unassigned.

See Also
Manually Assigning Technologies to I/O Banks
Assigning VREF Pins

I/O Bank Settings Dialog Box
To access this dialog, from the Edit menu, choose I/O Bank Settings.
Use this dialog box to assign I/O technologies to I/O banks in IGLOOe, Fusion, ProASIC3L, and ProASIC3E
devices.

Choose Bank
Choose a bank from the drop-down list. If you do not assign I/O standards to a bank, that bank uses the
default standard selected in the Device Selection Wizard.

Locked
Select this option to lock all I/O banks, so the I/O Bank Assigner cannot unassign and re-assign the
technologies in your design.

Select All Technologies That the Bank Should Support
Selecting an I/O standard selects all compatible standards and grays out incompatible ones. For example,
selecting LVTTL also selects PCI, PCIX, and LVPECL, since they all have the same VCCI. Further,
selecting GTLP (3.3V) disables SSTL3 as an option because the VREFs of the two are not the same.

VCCI
Each I/O bank has a common supply voltage, VCCI, for the I/Os within that bank. (Technologies not allowed
for the selected VCCI appear grayed out.)

Design Constraints for Libero SoC v11.8 SP1 User Guide

 43

VREF
A voltage referenced I/O input (VREF) requires an input referenced voltage. You must assign VREF pins to
IGLOOe, Fusion, ProASIC3L (A3PE3000L only) and ProASIC3E devices before running Layout.
Note: You cannot assign VREF pins in IGLOO or ProASIC3 low-cost devices.

Use Default Pins for VREFs
Select this check box to set default VREF pins and unset non-default VREF pins. If you unselect this option
when setting a new VREF technology, no VREF pins are set. If you unselect this option when default VREF
pins are already set, it unsets them.
Click More Attributes to set the low-power mode and input delay. (These attributes are not supported in
IGLOOe, Fusion, or ProASIC3E devices.)
Click Apply to assign the selected I/O standards to the selected bank. Any previously assigned I/Os in the
bank that are no longer compatible with the standards applied are unassigned.

See Also
Manually Assigning Technologies to I/O Banks
Assigning Pins in IGLOOe, Fusion, and ProASIC3E
Assigning VREF Pins

I/O Bank Settings for the SmartDesign Microcontroller Subsystem
(MSS)

To access the I/O Bank settings in your MSS design you must click the I/O Editor tab in the MSS
configurator.
You can use the I/O Bank Settings dialog box to change the VCCI of the banks where the MSS I/Os are
placed.
You have four options:

• 1.50V
• 1.80V
• 2.50V
• 3.30V

East MSS I/Os refer to Bank2.
West MSS I/Os refer to Bank4.
When changing the VCCI the MSS I/Os placed on this bank will change the IoTech to match the new VCCI;
this is done automatically.
The IoTech is changed as follows:
• 3.30V: MSS I/Os placed on this bank are changed to LVTTL.
• 2.50V: MSS I/Os placed on this bank are changed to LVCMOS 2.5V.
• 1.80V: MSS I/Os placed on this bank are changed to LVCMOS 1.8V.
• 1.50V: MSS I/Os placed on this bank are changed to LVCMOS 1.5V.

I/O Register Combining
Every I/O has several embedded registers that you can use for faster clock-to-out timing, and external hold
and setup. When combining these registers at the I/O buffer, some design rules must be met.
This feature is supported by all I/O standards.

Design Constraints for Libero SoC v11.8 SP1 User Guide

44

Rules for Registered I/O Function
• Registers combined on the output and output enable must have the same configuration (for example, if

the output register is DFN1C0, then the Output Enable register must also be DFN1C0).
• All registers (Input, Output, and Output Enable) connected to an I/O must share the same clear (CLR)

or preset (PRE) function:
• If one of the registers has a CLR pin, all the other registers that are candidates for combining in the I/O

must have a CLR pin.
• If one of the registers has a PRE pin, all the other registers that are candidates for combining in the I/O

must have a PRE pin.
• If one of the registers has neither a CLR nor a PRE pin, all the other registers that are candidates for

combining must have neither a CLR nor a PRE pin.
• If the clear or preset pins are present, they must have the same polarity.
• If the clear or preset pins are present, they must be driven by the same signal (net).
• The fan-out between an I/O pin (D, Y, or E) and a register must be equal to 1.
• The register pin connected to the I/O must be the 'D' or 'Q' pin.

In addition to the rules above, which apply to all families, you must follow the rules for specific devices within
families.

Rules for IGLOO PLUS, IGLOO Nano, and ProASIC3 Nano Devices Only
The following table displays the devices within the IGLOO and ProASIC3 families to which the rules below
apply.

IGLOO PLUS IGLOO Nano ProASIC3 Nano

IGLOO PLUS (AGLP030V2,
AGLP030V5, AGLP060V2,
AGLP060V5, AGLP125V2,
AGLP125V5)

IGLOO Nano (AGLN010V2,
AGLN010V5, AGLN015V2,
AGLN015V5, AGLN020V2,
AGLN020V5)

ProASIC3 Nano
(A3PN010,
A3PN015, and
A3PN020)

• Registers connected to an I/O on the Output and Output Enable pins must have the same clock

function (both CLR and CLK are shared among all registers):
• Both the Output and Output Enable registers must not have an E pin (clock enable). That is, registers

with an Enable cannot be combined.
• All registers (Input, Output, and Output Enable) must be on the same clock network.
• You must reset your globals to enable register combining. The CLR/PRE pin is on a global network.

Rules for All Devices Other Than IGLOO PLUS, IGLOO Nano, and ProASIC3 Nano
Devices

The following rules apply to all devices except the IGLOO PLUS, IGLOO Nano,and ProASIC3 Nano devices
shown in the table above.

• Registers connected to an I/O on the Output and Output Enable pins must have the same clock and
enable function:

• Both the Output and Output Enable registers must have an E pin (clock enable) or none at all.
• If the E pins are present, they must have the same polarity. The CLK pins must also have the same

polarity. In some cases, you may want registers to be combined with the input of a bibuf while
maintaining the output as-is. This can be achieved by using PDC commands as follows:

set_io <signal name> -REGISTER yes ------register will combine

set_preserve <signal name> ----register will not combine

Design Constraints for Libero SoC v11.8 SP1 User Guide

 45

Rules for SmartFusion2 and IGLOO2 Devices
Input Registers – The I/O must drive the D pin of a register with a fanout of 1.
Output Registers – The Q pin of the register must drive the D pin of the I/O with a fanout of 1.
Enable Registers – The Q pin of the register must drive the E pin of the I/O with a fanout of 1.
Output and Enable Register CLK pins must be driven by the same net with the same polarity to be combined
in the same I/O.
Input, Output and Enable register ALn and SLn must be driven by the same net and the same polarity to
combine them into the same I/O.

Design Constraints for Libero SoC v11.8 SP1 User Guide

46

Entering Constraints

You can enter design constraints in the following ways:
• Importing constraint files: You can import - PDC or SDC constraint files for SmartFusion2, IGLOO2,

RTG4, SmartFusion, IGLOO, ProASIC3, Fusion families
• Using constraint editor tools: The constraint editor is a graphical user interface (GUI) tools for

creating and modifying physical, logical, and timing constraints. Using these tools enables you to enter
constraints without having to understand PDC or other file syntax. The constraints you enter in the
interactive tools are saved in a PDC or SDC file inside the Libero SoC project.

For SmartFusion, IGLOO, ProASIC3, Fusion, use the tools within the MultiView Navigator:
- ChipPlanner - Sets location and region assignments
- PinEditor in MVN - Sets the pin location constraints
- I/O Attribute Editor - Sets I/O attributes
- SmartTime Constraints Editor - Enables you to view and edit timing constraints

For SmartFusion2, IGLOO2, RTG4 constraints in Classic Constraint Flow, see the SmartFusion2-specific
content.
For SmartFusion2, IGLOO2, RTG4 constraints in Enhanced Constraint Flow, see Constraint Manager.

See Also
Constraint Support by Family
Constraint Entry
Constraint File Format by Family
Designer Naming Conventions

Importing Constraint Files
For details about how to import Constraint Files into a Libero SoC Enhanced Constraint Flow project, see
Constraint Manager.
For all other Libero SoC projects, you can import a constraint file as either a source file or an auxiliary file.
For details on how to import constraints files, refer to .

Source File
Import constraints file as source files if they were created with external tools that will be tracked (audited).
This helps to coordinate the design changes better. For details on how to import source files, refer to .
The following table shows different constraints format files that can be imported as source files for specific
families.

Table 5 · File Types You Can Imported as Source Files

Source Files File Type Extension Family

Physical Design
Constraint File

*.pdc SmartFusion2, IGLOO2, RTG4,
SmartFusion, IGLOO, ProASIC3, Fusion

Synopsys
Constraint File

*.sdc SmartFusion2, IGLOO2, RTG4,
SmartFusion, IGLOO, ProASIC3, Fusion

Design Constraints for Libero SoC v11.8 SP1 User Guide

 47

Auxiliary File
When you import a constraint file as an auxiliary file, it is not audited and is treated more as one-time data-
entry or data-change events, similar to entering data using one of the interactive editors. For details on how
to import auxiliary files, refer to .
The following table shows different constraints format files that can be imported as auxiliary files for specific
families.

Table 6 · File Types You Can Import as Auxiliary Files

Auxiliary Files File Type
Extension

Family

SDC *.sdc SmartFusion, IGLOO, ProASIC3,
Fusion

Physical Design
Constraint**

*.pdc IGLOO, Fusion, ProASIC3

Switching Activity
Intermediate File/Format

*.saif IGLOO, Fusion, ProASIC3

Value Change Dump file *.vcd IGLOO, Fusion, ProASIC3

(*) When you import SDC as an auxiliary file, you can specify only one file in the File > Import Auxiliary
Files dialog box.
(**) Not all PDC commands are supported when a PDC file is imported as an auxiliary file; some must be
imported as source files. When importing a PDC file as an auxiliary file, the new or modified PDC constraints
are merged with the existing constraints. The software resolves any conflicts between new and existing
physical constraints and displays the appropriate message. Most PDC commands can be imported as
auxiliary files. PDC commands that are not supported when the PDC file is imported as an auxiliary file are
noted in their respective help topics.
You can either overwrite or retain your existing timing and physical constraints. For details on how to
preserve the existing timing constraints, refer to . For details on how to preserve the existing physical
constraints, refer to .

See Also
Importing source files
Importing auxiliary files
Keep Existing Timing Constraints
Keep Existing Physical Constraints

About SmartTime Constraints Editor
SmartTime Constraints Editor is an interface that enables you to view and edit timing constraints. Use this
editor to view, edit, and create timing constraints used by the SmartTime timing analysis and timing-driven
optimization tools. The editor includes powerful visual dialogs that guide you toward capturing your timing
requirements and timing exceptions quickly and correctly. The editor is also closely connected to the
analysis view of SmartTime (SmartTime Timing Analyzer) that enables you to quickly analyze the impact of
constraint changes.

Design Constraints for Libero SoC v11.8 SP1 User Guide

48

Exporting Constraint Files

The following table shows a complete list of constraint files that you can export along with the supported
family.

File File
Extension

Families

SDC *.sdc SmartFusion2, IGLOO2, SmartFusion, RTG4, , IGLOO,
ProASIC3, Fusion

Physical Design
Constraint

*.pdc SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO,
ProASIC3, Fusion

Design Constraints for Libero SoC v11.8 SP1 User Guide

 49

Constraints by Name: Timing

Create Clock

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime

RTG4 X X

IGLOO2 X X

IGLOO X X

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint to create a clock constraint at a specific source and define its waveform. The static timing
analysis tool uses this information to propagate the waveform across the clock network to the clock pins of
all sequential elements driven by the defined clock source. The clock information is also used to compute
the slacks in the specified clock domain, display setup and hold violations, and drive optimization tools such
as place-and-route.

Tools /How to Enter
You can use one or more of the following methods to enter clock constraints:

• SDC - create_clock
• SmartTime - Specifying Clock Constraint

See Also
Constraint Entry

create_clock (SDC)

Clock Definition
Specifying Clock Constraint

Design Constraints for Libero SoC v11.8 SP1 User Guide

50

Create Generated Clock

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraint
Editor

IGLOO2 X X 1 X2

SmartFusion2 X X 1 X2

RTG4 X X 1 X2

IGLOO X X

SmartFusion X X

Fusion X X

ProASIC
3

X X

1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) -
SmartFusion2, IGLOO2, RTG4

Purpose
Use this constraint to create an internally generated clock constraint, such as clock dividers and PLL. The
generated clock is defined in terms of multiplication and/or division factors with respect to a reference clock
pin. When the reference clock pin changes, the generated clock is updated automatically.

Tools /How to Enter
You can use one or more of the following methods to enter clock constraints:

• SDC – create_generated_clock
• SmartTime - Specifying Generated Clock Constraint

See Also
Constraint Entry

create_generated_clock (SDC)

Specifying Generated Clock Constraint

Remove Clock Uncertainty

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Design Constraints for Libero SoC v11.8 SP1 User Guide

 51

Families SDC Constraints Tcl command passed to
SmartTime

RTG4 No Yes1

IGLOO No Yes1

IGLOO2 No Yes1

SmartFusion2 No Yes1

SmartFusion No Yes1

Fusion No Yes1

ProASIC3 No Yes1

 Yes1 = For Libero SoC Design Flow (Classic Constraint Flow)

Purpose
Use this constraint to remove the timing uncertainty between two clock waveforms within SmartTime.
You can remove clock uncertainty constraints in an SDC file, which you can either create yourself or
generate with Synthesis tools, at the same time you import the netlist. Alternatively, you can remove clock
uncertainty using the GUI tools in the Designer software.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to remove clock uncertainty:
• SDC – remove_clock_uncertainty

• SmartTime - Specifying Clock-to-Clock Uncertainty Constraint

See Also
Constraint Entry
set_clock_uncertainty(SDC)
SmartTime User's Guide: Specifying Clock-to-Clock Uncertainty Constraint

Set Clock Latency

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraint Editor

IGLOO2 X X 1 X2

SmartFusion2 X X 1 X2

RTG4 X X 1 X2

IGLOO X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

52

Families SDC SmartTime Constraint Editor

SmartFusion X X

Fusion X X

ProASIC3 X X

1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) -
SmartFusion2, IGLOO2, RTG4

Purpose
Use this constraint to define the delay between an external clock source and the definition pin of a clock
within SmartTime.
You can set clock latency constraints in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can set clock latency using the
GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set clock latency:
• SDC – set_clock_latency
• SmartTime - Specifying Clock Source Latency

See Also
Constraint Entry
set_clock_latency (SDC)
Specifying Clock Source Latency

Set Clock Uncertainty Constraint

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints
Editor

RTG4 X X 1 X2

IGLOO2 X X 1 X2

SmartFusion2 X X 1 X2

IGLOO X X

SmartFusion X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 53

Families SDC SmartTime Constraints
Editor

Fusion X X

ProASIC3 X X

1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) - SmartFusion2,
IGLOO2, RTG4

Purpose
Use this constraint to define the timing uncertainty between two clock waveforms or maximum skew within
SmartTime.
You can set clock uncertainty constraints in an SDC file, which you can either create yourself or generate
with Synthesis tools, at the same time you import the netlist. Alternatively, you can set clock uncertainty
using the GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set clock uncertainty:
• SDC – set_clock_uncertainty

• SmartTime - Specifying Clock-to-Clock Uncertainty Constraint

See Also
Constraint Entry
set_clock_uncertainty(SDC)

Set Disable Timing Constraint

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints Editor

RTG4 X X 1 X2

IGLOO2 X X 1 X2

SmartFusion2 X X 1 X2

IGLOO X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

54

Families SDC SmartTime Constraints Editor

 1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) -
SmartFusion2, IGLOO2, RTG4

Purpose
Use this constraint disable the timing arc in the specified ports on a path.
You can disable the timing arc in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can disable the timing arc using
the GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set maximum delay exception
constraints:

• SDC – set_disable_timing

See Also
Constraint Entry

set_disable_timing(SDC)

Set False Path

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints Editor

RTG4 X X 1 X2

IGLOO2 X X 1 X2

SmartFusion
2

X X 1 X2

IGLOO X X

SmartFusion X X

Fusion X X

ProASIC3 X X

1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) -
SmartFusion2, IGLOO2, RTG4

Design Constraints for Libero SoC v11.8 SP1 User Guide

 55

Purpose
Use this constraint to identify paths in the design that should be disregarded during timing analysis and
timing optimization.
By definition, false paths are paths that cannot be sensitized under any input vector pair. Therefore,
including false paths in timing calculation may lead to unrealistic results. For accurate static timing analysis,
it is important to identify the false paths.
You can set false paths constraints in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can set false paths using the GUI
tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set false paths:

• SDC – set_false_path
• SmartTime - Specifying False Path Constraint

See Also
Constraint Entry

set_false_path (SDC)

Breaks Tab
Specifying False Path Constraint

Set Input Delay

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints
Editor

SmartFusion2 X X 1 X2

IGLOO2 X X 1 X2

RTG4 X X 1 X2

SmartFusion X X

Fusion X X

ProASIC3 (except ProASIC3 nano and
ProASIC3L)

 X X

IGLOOe (not supported by other IGLOO devices) X X

1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) - SmartFusion2,
IGLOO2, RTG4

Design Constraints for Libero SoC v11.8 SP1 User Guide

56

Purpose
Use this constraint to define the arrival time relative to a clock.

Tools /How to Enter
You can use one or more of the following methods to set input delay constraint:

• SDC – set_input_delay
• SmartTime - Specifying Input Delay Constraint

See Also
Constraint Entry

set_input_delay (SDC)

Specifying Input Delay Constraint

Set Load on Output Port

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC I/O Attribute Editor

RTG4 X X

IGLOO X X

IGLOO2 X X

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint to set the capacitance to a specified value on a specified port.
Delay on a given path depends on the load at the output pin of the device. For an accurate static timing
analysis of a given design, it is important to set the load on the port which can be taken into account for
delay calculations.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set the load on a port:

• SDC – set_load
• I/O Attribute Editor – Editing I/O Attributes

• SmartTime Constraints Editor GUI – Changing Output Port Capacitance
Note: You can also set the output load using the pin_assign command in a Tcl script.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 57

See Also
Constraint Entry

set_load (SDC)

pin_assign

Editing I/O Attributes

Set Maximum Delay

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints Editor

RTG4 X X 1 X2

IGLOO2 X X 1 X2

SmartFusion2 X X 1 X2

IGLOO X X

SmartFusion X X

Fusion X X

ProASIC3 X X

1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) -
SmartFusion2, IGLOO2, RTG4

Purpose
Use this constraint to set the maximum delay exception between the specified ports on a path.
You can set maximum delay exception in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can set maximum delay
exceptions using the GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set maximum delay exception
constraints:
• SDC – set_max_delay

• SmartTime – Specifying Maximum Delay Constraint

See Also
Constraint Entry

set_max_delay (SDC)

Design Constraints for Libero SoC v11.8 SP1 User Guide

58

Set Minimum Delay

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints
Editor

RTG4 X X 1 X2

IGLOO2 X X 1 X2

SmartFusion2 X X 1 X2

IGLOO X X

SmartFusion X X

Fusion X X

ProASIC3 X X

1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) - SmartFusion2,
IGLOO2, RTG4

Purpose
Use this constraint to set the minimum delay exception between the specified ports on a path.
You can set minimum delay exception in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can set minimum delay exceptions
using the GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set maximum delay exception
constraints:

• SDC – set_min_delay

• SmartTime – Specifying minimum delay constraint

See Also
Constraint Entry

set_min_delay (SDC)

Set Multicycle Path

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Design Constraints for Libero SoC v11.8 SP1 User Guide

 59

Families SDC SmartTime Constraints
Editor

RTG4 X X 1 X2

IGLOO2 X X 1 X2

SmartFusion2 X X 1 X2

IGLOO X X

SmartFusion X X

Fusion X X

ProASIC3 X X

1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) - SmartFusion2, IGLOO2, RTG4

Purpose
Use this constraint to identify paths in the design that take multiple clock cycles.
You can set multicycle path constraints in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can set multicycle paths using the
GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set multicycle paths constraints:

• SDC – set_multicycle_path

• SmartTime – Specifying Input Delay Constraint

See Also
Constraint Entry

set_multicycle_paths (SDC)

Specifying Input Delay Constraint

Set Output Delay

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints Editor

RTG4 X X 1 X2

IGLOO2 X X 1 X2

SmartFusion2 X X 1 X2

Design Constraints for Libero SoC v11.8 SP1 User Guide

60

Families SDC SmartTime Constraints Editor

SmartFusion X X

IGLOO X X

Fusion X X

ProASIC3 X X

1 For Libero SoC Design Flow (Classic Constraint Flow)
2 For Libero SoC Design Flow (Enhanced Constraint Flow) - SmartFusion2, IGLOO2, RTG4

Purpose
Use this constraint to set the output delay of an output relative to a clock.

Tools /How to Enter
You can use one or more of the following methods to set output delay constraints:

• SDC – set_output_delay
• SmartTime – Specifying Output Delay Constraint

See Also
Constraint Entry

set_output_delay (SDC)

Design Constraints for Libero SoC v11.8 SP1 User Guide

 61

Constraints by Name: Physical

Assign I/O to Pin

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC PinEditor

RTG4 X X

IGLOO X X

IGLOO2 X X

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint to set the location of a pin.
You can use the set_io command in a PDC file to assign I/Os to pins as well as set the attributes of an I/O.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign an I/O to a pin:

• PDC - set_io
• PinEditor (MVN) - Assigning pins

Note: You can also set the location of a pin using the pin_assign command in a Tcl script.

See Also
Constraint Entry

set_io (PDC)

pin_assign

Assigning Pins

Design Constraints for Libero SoC v11.8 SP1 User Guide

62

Assign I/O Macro to Location

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

RTG4 X X

IGLOO X X

IGLOO2 X X

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint to assign one or more I/O macros to a specific location. You can define the location using
array co-ordinates.
By confining macros to one area, you can keep the nets connected to that area, resulting in better timing
and better floorplanning. Sometimes placing some macros at specific locations can also result in meeting
timing closures.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign a macro to a location:

• PDC - set_location
• ChipPlanner -

See Also
Constraint Entry

set_location (PDC)

MultiView Navigator User's Guide: Assigning Logic to Locations
ChipEditor User's Guide: Assigning Logic

Assign Macro to Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

RTG4 X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 63

Families PDC ChipPlanner

IGLOO X X

IGLOO2 X X

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint to assign one or more macros to a specific region.
By confining macros to one area, you can keep the nets connected to that area, resulting in better timing
and better floorplanning.
You can use the define_region PDC command to create a region, and then use the assign_region PDC
command to constrain a set of existing macros to that region.
You can also use the MultiView Navigator tool to create regions for any of the supported families.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign a macro to a region:

• PDC - assign_region
• ChipPlanner - Assigning a macro to a region

See Also
Constraint Entry

assign_region (PDC)

Assigning a Macro to a Region

Assign Net to Global Clock

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC

IGLOO X

SmartFusion X

Fusion X

ProASIC3 X

Design Constraints for Libero SoC v11.8 SP1 User Guide

64

Purpose
Use this constraint to assign high fan-out nets to global clock networks by promoting the net using an
internal global macro.
If there are enough global clock routing resources available in a device, you can promote regular nets that
have high fan-out to the dedicated fast global clock routing resources which can lead to better performance
for your design. This is achieved by automatically inserting an internal global macro on a net which guides
the place-and-route tool to promote that particular net to a global clock resource. This internal global macro
is CLKINT for IGLOO, ProASIC3, SmartFusion and Fusion families.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign a net to a global clock:

• PDC - assign_global_clock

See Also
Constraint Entry

assign_global_clock (PDC)

Assign Net to Local Clock

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC

IGLOO X

SmartFusion X

Fusion X

ProASIC3 X

Purpose
Use this constraint to assign regular nets to local clock routing or to LocalClock regions. This results in the
creation of a LocalClock region that spans the area of the local clock net.
If there are enough local clock resources but not enough global clock routing resources available in a
device, you can assign regular nets that have high fan-out to the dedicated local clock routing resources
which can lead to better performance for your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign a net to a local clock:

• PDC -assign_local_clock

See Also
Constraint Entry

assign_local_clock (PDC)

MultiView Navigator User's Guide: Creating LocalClock Regions

Design Constraints for Libero SoC v11.8 SP1 User Guide

 65

Assign Net to Quadrant Clock

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

IGLOO X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint to assign regular nets to quadrant clock routing. This results in the creation of a
QuadrantClock region that spans the area of the quadrant clock net.
If there are enough quadrant clock resources but not enough global clock routing resources available in a
device, you can promote regular nets that have high fan-out to the dedicated quadrant clock routing
resources which can lead to better performance for your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign a net to a local clock:

• PDC - assign_quadrant_clock

• ChipPlanner - Creating QuadrantClock Regions

See Also
Constraint Entry

assign_quadrant_clock (PDC)

MultiView Navigator User's Guide: Creating Quadrant Clock Regions

Assign Net to Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

RTG4 X X

 IGLOO X X

IGLOO2 X X

SmartFusion2 X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

66

Families PDC ChipPlanner

SmartFusion X X

 Fusion X X

ProASIC3 X X

Purpose
Use this constraint to place all the loads of a net into a given region. This constraint is useful for high fan-out
or critical path nets or bus control logic.
Constraining nets to a region helps to control the connection delays from the net's driver to the logic
instances it fans out to. You can adjust the size of the region to pack logic more closely together, hence,
improving its net delays.
Suppose you have a global net with loads that span across the whole chip. When you constrain this net to a
specific region, you force the loads of this global net into the given region. Forcing loads into a region frees
up some areas that were previously used. You can then use these free areas for high-speed local
clocks/spines.
Macros connected to a specific net can be assigned to a region in the device. The region can be defined
using the define_region PDC command.
When assigning a net to a region, all of the logic driven by that net will be assigned to that region.
Using Regions for Critical Path and High Fan-out Nets
You should assign high fan-out or critical path nets to a region only after you have used up your global
routing and clock spine networks. If you have determined, through timing analysis, that certain long delay
nets are creating timing violations, assign them to regions to reduce their delays.
Before creating your region, determine if any logic connected to instances spanned by these nets have any
timing requirements. Your region could alter the placement of all logic assigned to it. This may have an
undesired side effect of altering the timing delays of some logic paths that cross through the region but are
not assigned to it. These paths could fail your timing constraints depending on which net delays have been
altered.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign a net to a region:

• PDC -
• ChipPlanner -

See Also
Constraint Entry

assign_net_macros (PDC)

Assigning a Net to a Region

Configure I/O Bank

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Design Constraints for Libero SoC v11.8 SP1 User Guide

 67

Families PDC ChipPlanner

RTG4 X X

 IGLOO X X

IGLOO2 X X

SmartFusion2 X X

SmartFusion X X

 Fusion X X

 ProASIC3 X X

Purpose
Use this constraint to set the I/O supply voltage (VCCI) for I/O banks.
I/Os are organized into banks. The configuration of these banks determines the I/O standards supported.
Since each I/O bank has its own user-assigned input reference voltage (VREF) and an input/output supply
voltage, only I/Os with compatible standards can be assigned to the same bank.
For IGLOO, SmartFusion and Fusion devices you can use the set_iobank PDC command to set the
input/output supply voltage and the input reference voltage for an I/O bank.
However, for ProASIC3 devices, you can use this command to set only the input/output supply voltage for
an I/O bank.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to configure I/O banks:

• PDC - set_iobank
• ChipPlanner - Manually Assigning Technologies to I/O Banks

See Also
Constraint Entry

set_iobank

MultiView Navigator User's Guide: Manually Assigning Technologies to I/O Banks

Create Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

RTG4 X X

IGLOO X X

IGLOO2 X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

68

Families PDC ChipPlanner

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint to create either a rectangular or rectilinear region on a device.
You can create a region within a device for setting specific physical constraints or for achieving better
floorplanning. You can define regions with the array coordinates for that particular device.
You can use the define_region PDC command to create a rectangular or rectilinear region, and then
use the assign_region PDC command to constrain a set of macros to that region.
You can also use the MultiView Navigator tool to create regions for any of the supported families.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to create a region constraint:

• PDC -define_regiondefine_region
• ChipPlanner - Creating RegionsCreating_regions

See Also
Constraint Entry

define_region (PDC)

Creating Regions

Delete Regions

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

RTG4 X X

IGLOO X X

IGLOO2 X X

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 69

Purpose
Use this constraint to remove the region(s) that you specify. You can use wildcards in the undefine_region
PDC command to delete all user regions.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to delete all regions:

• PDC - undefine_region or reset_floorplan
• ChipPlanner - Editing Regions

See Also
Constraint Entry

undefine_region

MultiView Navigator User's Guide: Editing Regions

Move Block

Families Supported
The following table shows which families support this constraint and which tools you can use to enter or
modify it:

Families PDC

RTG4 X

IGLOO2 X

SmartFusion2 X

IGLOO X

SmartFusion X

Fusion X

ProASIC3 X

Purpose
Use this constraint to move a Designer block from its original, locked placement by preserving the relative
placement between the instances. You can move the block to the left, right, up, or down.

Tools /How to Enter
You can use the following command to move a Designer block:

• PDC - move_block

See Also
Set Block Options

Design Constraints for Libero SoC v11.8 SP1 User Guide

70

Constraint Entry

Move Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

RTG4 X X

IGLOO X X

IGLOO2 X X

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint to move the location of a previously defined region.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to move a region:

• PDC - move_region
• ChipPlanner - Editing Regions

See Also
Constraint Entry

move_region (PDC)

MultiView Navigator User's Guide: Editing Regions

Reserve Pins

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC I/O Attribute Editor PinEditor

RTG4 X X X

IGLOO X X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 71

Families PDC I/O Attribute Editor PinEditor

IGLOO2 X X X

SmartFusion2 X X X

SmartFusion X X X

Fusion X X X

ProASIC3 X X X

Purpose
Use this constraint to reserve pins for use in a later design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to reserve one or more pins in your
design:

• PDC - reservereserve
• PinEditor (MVN) - Reserving pins
• I/O Attribute Editor (MVN)- Assigning pins in Package Pins ViewAssigning pins in Package Pins view

See Also
unreserve

Constraint Entry
Assigning Pins

Reset Attributes on an I/O to Default Settings

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC I/O Attribute Editor ChipPlanner

RTG4 X X X

IGLOO X X X

IGLOO2 X X X

SmartFusion2 X X X

SmartFusion X X X

Fusion X X X

ProASIC3 X X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

72

Purpose
Use this constraint to either reset an I/O to its default settings or to unassign an I/O.
Attributes for an I/O, such as I/O standard, I/O threshold, Output drive, and so on, can be restored to their
default values.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to restore I/O attributes:

• PDC -reset_io
• I/O Attribute Editor - Editing I/O Attributes
• ChipPlanner - Unassigning Pins

See Also
Constraint Entry

reset_io

Reset an I/O Bank to Default Settings

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner I/O Attribute Editor

RTG4 X X X

IGLOO X X X

IGLOO2 X X X

SmartFusion2 X X X

SmartFusion X X X

Fusion X X X

ProASIC3 X X X

Purpose
Use this constraint to reset an I/O bank's technology to the default setting. The default is specified in Project
> Project Settings.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to reset an I/O bank to its default
technology:

• PDC - reset_iobank
• I/O Attribute Editor - Editing I/O Attributes
• ChipPlanner - Assigning technologies to I/O banks

Design Constraints for Libero SoC v11.8 SP1 User Guide

 73

See Also
Constraint Entry

reset_iobank

Assigning Technologies to I/O Banks, Editing I/O Attributes

Reset Net's Criticality to Default Level

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC

 IGLOO X

SmartFusion X

Fusion X

ProASIC3 X

Purpose
Use this constraint to reset a net's criticality to its default value, which is 5.
Net criticality is a guide for the place-and-route tool to keep instances connected to a net as close as
possible, at the cost of other (less critical) nets. Net criticality can vary from 1 to 10 with 1 being the least
critical and 10 being the most.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to reset net criticality:

• PDC - reset_net_critical

See Also
Constraint Entry

reset_net_critical

set_net_critical

Set Block Options

Families Supported
The following table shows which families support this constraint and which tools you can use to enter or
modify it:

Families PDC

RTG4 X

IGLOO2 X

Design Constraints for Libero SoC v11.8 SP1 User Guide

74

Families PDC

SmartFusion2 X

IGLOO X

SmartFusion X

Fusion X

ProASIC3 X

Purpose
Use this constraint to override the compile option for placement or routing conflicts for an instance of a
Designer block.

Tools /How to Enter
You can use the following command to preserve instances:

• PDC - set_block_options

See Also
Move Block
Constraint Entry

Set Net's Criticality

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC

IGLOO X

SmartFusion X

Fusion X

ProASIC3 X

Purpose
Use this constraint to set the level at which the place-and-route tool must keep instances connected to a net.
Net criticality is a guide for the place-and-route tool to keep instances connected to a net as close as
possible at the cost of other (less critical) nets. Net criticality can vary from 1 to 10 with 1 being the least
critical and 10 being the most. You can set a net's criticality to any number between 1 and 10 to help place-
and-route tool prioritize its timing driven placement.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 75

Tools /How to Enter
set_net_critical

See Also
Constraint Entry

set_net_critical

Set Port Block

Families Supported
The following table shows which families support this constraint and which tools you can use to enter or
modify it:

Families PDC

RTG4 X

IGLOO2 X

SmartFusion2 X

IGLOO X

SmartFusion X

Fusion X

ProASIC3 X

Purpose
Use this constraint to set properties on a port in the block flow.

Tools /How to Enter
You can use the following command to preserve instances:

• PDC - set_port_block

See Also
Constraint Entry

Unassign Macro from Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

RTG4 X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

76

Families PDC ChipPlanner

IGLOO X X

IGLOO2 X X

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint to unassign one or more macros from a specific region in the device.
Macros assigned to a specific region using the assign_region command can be unassigned from that region
using the unassign_macro_from_region command

Tools /How to Enter
You can use one or more of the following commands or GUI tools to unassign a macro from a region:

• PDC - unassign_macro_from_region
• ChipPlanner - Unassigning a Macro from a Region

See Also
Constraint Entry

unassign_macro_from_region

MultiView Navigator User's Guide: Unassigning a Macro from a Region

Unassign Macro(s) Driven by Net from Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

RTG4 X X

IGLOO X X

IGLOO2 X X

SmartFusion2 X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 77

Purpose
Use this constraint to unassign macros that are connected to a specific net from an assigned region.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to unassign macros on a net from a
region:

• PDC - unassign_net_macros
• ChipPlanner - Unassigning a macro from a region

See Also
Constraint Entry

unassign_net_macros

Unassigning a Macro from a Region

Unreserve Pins

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC I/O Attribute Editor PinEditor

RTG4 X X X

IGLOO X X X

IGLOO2 X X X

SmartFusion2 X X X

SmartFusion X X X

Fusion X X X

ProASIC3 X X X

Purpose
Use this constraint to unreserve pins that were previously reserved. Once pins are unreserved, you can use
them again in a design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to unreserve one or more pins in your
design:

• PDC - unreserve
• PinEditor (MVN) - Reserving pins
• I/O Attribute Editor (MVN)- Assigning pins in Package Pins ViewAssigning pins in Package Pins view

Design Constraints for Libero SoC v11.8 SP1 User Guide

78

See Also
reserve

Constraint Entry
Assigning Pins

Design Constraints for Libero SoC v11.8 SP1 User Guide

 79

Constraints by Name: Netlist Optimization

Netlist Optimization Constraints
Netlist optimization attempts to remove all cells from a netlist that have no effect on the functional behavior
of the circuit. This reduces the overall size of a design and produces faster place-and-route times. This
optimization is based on the propagation of constants and inverter pushing and takes advantage of inverted
inputs of the basic logic elements.
Netlist optimization can be controlled by including netlist optimization constraints in constraint files submitted
to Designer.
By default, all optimizations will be performed on the netlist. To control the amount of optimization that takes
place, netlist optimization constraints can be used. Netlist optimization constraints can turn off all
optimizations or disable the default action that allows all optimizations to limit the type of optimizations
performed. The constraints can also define a maximum fanout to be allowed after optimizations are
performed and isolate particular instances and hierarchical blocks from the effect of optimization.
After completion of netlist optimization, the design is a functionally identical representation of the design
produced internally for use by Designer. View the design’s layout after successful placement and routing.
After optimization, a number of instances that do not contribute to the functionality of the design may have
been removed.
To keep the SDF file consistent with the original input netlist, deleted cells are written with zero delay so that
back-annotation is performed transparently.

Delete Buffer Tree

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC

IGLOO X

SmartFusion X

Fusion X

ProASIC3 X

Purpose
Use this constraint to remove all buffers and inverters from a given net. In the IGLOO and ProASIC3
architectures, inverters are considered buffers because all tile inputs can be inverted. This rule is also true
for all Flash architectures but not for Antifuse architectures.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to delete a buffer tree:

• PDC - delete_buffer_tree

Design Constraints for Libero SoC v11.8 SP1 User Guide

80

See Also
Constraint Entry

dont_touch_buffer_tree (PDC)

Demote Global Net to Regular Net

Families Supported
The following table shows which families support this constraint and which tools you can use to enter or
modify it:

Families PDC Compile Options

IGLOO X X

SmartFusion X X

Fusion X X

ProASIC3 X X

Purpose
Use this constraint either to free up a dedicated clock routing resource by demoting a global net to a regular
net or to prevent a clock net from automatically being promoted to a global net.
If there are multiple clocks in a design and not enough clock routing resources, you can demote a global net
to a regular net for a clock that does not drive logic through the critical path in a design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to demote a clock net to a regular net:

• PDC - unassign_global_clockunassign_global_clock
• Compile Options - -demote_globals <value>-demote_globals <value>

See Also
Constraint Entry

unassign_global_clock (PDC)

Promote Regular Net to Global Net

Families Supported
The following table shows which families support this constraint and which tools you can use to enter or
modify it:

Families PDC Compile Options

IGLOO X X

SmartFusion X X

Fusion X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 81

Families PDC Compile Options

ProASIC3 X X

Purpose
Use this constraint to increase the performance of your design.
If there are enough clock routing resources available in a device, you can promote regular nets that have
high fan-out to the dedicated fast clock routing resources which can lead to better performance for your
design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to promote a regular net to a global clock
net:
• PDC - assign_global_clock
• Compile Options - -promote_globals <value>

See Also
Constraint Entry

assign_global_clock (PDC)

Setting Compile Options, -promote_globals <value>

Restore Buffer Tree

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC

IGLOO X

SmartFusion X

Fusion X

ProASIC3 X

Purpose
Use this constraint to undo the operation of a previously specified delete_buffer_tree command. This
constraint is useful in the import and merge flow when users want to keep the previous database constraint
but want to overwrite just one delete_buffer_tree command.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to restore a buffer tree:

• PDC - dont_touch_buffer_tree

Design Constraints for Libero SoC v11.8 SP1 User Guide

82

See Also
Constraint Entry

delete_buffer_tree (PDC)

Set Preserve

Families Supported
The following table shows which families support this constraint and which tools you can use to enter or
modify it:

Families PDC

RTG4 X

IGLOO X

IGLOO2 X

SmartFusion2 X

SmartFusion X

Fusion X

ProASIC3 X

Purpose
Use this constraint to preserve instances before compiling them so they will not be combined during
compile.

Tools /How to Enter
You can use the following command to preserve instances:

• PDC - set_preserve

See Also
Constraint Entry
set_preserve (PDC)

Design Constraints for Libero SoC v11.8 SP1 User Guide

 83

Constraints by File Format - SDC Command
Reference

About Synopsys Design Constraints (SDC) Files
Synopsys Design Constraints (SDC) is a Tcl-based format used by Synopsys tools to specify the design
intent, including the timing and area constraints for a design. Microsemi tools use a subset of the SDC
format to capture supported timing constraints. Any timing constraint that you can enter using Designer tools
can also be specified in an SDC file.
Use the SDC-based flow to share timing constraint information between Microsemi tools and third-party EDA
tools.

Command Action

create_clock Creates a clock and defines its characteristics

create_generated_clock Creates an internally generated clock and defines its
characteristics

remove_clock_uncertainty Removes a clock-to-clock uncertainty from the current
timing scenario.

set_clock_latency Defines the delay between an external clock source and
the definition pin of a clock within SmartTime

set_clock_uncertainty Defines the timing uncertainty between two clock
waveforms or maximum skew

set_false_path Identifies paths that are to be considered false and
excluded from the timing analysis

set_input_delay Defines the arrival time of an input relative to a clock

set_load Sets the load to a specified value on a specified port

set_max_delay Specifies the maximum delay for the timing paths

set_min_delay Specifies the minimum delay for the timing paths

set_multicycle_path Defines a path that takes multiple clock cycles

set_output_delay Defines the output delay of an output relative to a clock

See Also
Constraint Entry
SDC Syntax Conventions
Importing Constraint Files

Design Constraints for Libero SoC v11.8 SP1 User Guide

84

SDC Syntax Conventions
The following table shows the typographical conventions that are used for the SDC command syntax.

Syntax
Notation

Description

command -
argument

Commands and arguments appear in Courier New typeface.

variable Variables appear in blue, italic Courier New typeface. You must
substitute an appropriate value for the variable.

[-argument
value]

Optional arguments begin and end with a square bracket.

Note: SDC commands and arguments are case sensitive.

Example
The following example shows syntax for the create_clock command and a sample command:

create_clock -period period_value [-waveform edge_list] source

create_clock –period 7 –waveform {2 4}{CLK1}

Wildcard Characters
You can use the following wildcard characters in names used in the SDC commands:

Wildcard What it does

\ Interprets the next character literally

* Matches any string

Note: The matching function requires that you add a backslash (\) before each slash in the pin names in

case the slash does not denote the hierarchy in your design.

Special Characters ([], { }, and \)
Square brackets ([]) are part of the command syntax to access ports, pins and clocks. In cases where
these netlist objects names themselves contain square brackets (for example, buses), you must either
enclose the names with curly brackets ({}) or precede the open and closed square brackets ([]) characters
with a backslash (\). If you do not do this, the tool displays an error message.
For example:

create_clock -period 3 clk\[0\]

set_max_delay 1.5 -from [get_pins ff1\[5\]:CLK] -to [get_clocks {clk[0]}]

Although not necessary, Microsemi recommends the use of curly brackets around the names, as shown in
the following example:

set_false_path –from {data1} –to [get_pins {reg1:D}]

In any case, the use of the curly bracket is mandatory when you have to provide more than one name.
For example:

set_false_path –from {data3 data4} –to [get_pins {reg2:D reg5:D}]

Design Constraints for Libero SoC v11.8 SP1 User Guide

 85

Entering Arguments on Separate Lines
If a command needs to be split on multiple lines, each line except the last must end with a backslash (\)
character as shown in the following example:

set_multicycle_path 2 –from \

[get_pins {reg1*}] \

-to {reg2:D}

See Also
About SDC Files

Design Constraints for Libero SoC v11.8 SP1 User Guide

86

Referenced Topics

create_clock
SDC command; creates a clock and defines its characteristics.

create_clock -name name -period period_value [-waveform edge_list] source

Arguments
-name name

Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.

-period period_value

Specifies the clock period in nanoseconds. The value you specify is the minimum time over which the
clock waveform repeats. The period_value must be greater than zero.

-waveform edge_list

Specifies the rise and fall times of the clock waveform in ns over a complete clock period. There must be
exactly two transitions in the list, a rising transition followed by a falling transition. You can define a clock
starting with a falling edge by providing an edge list where fall time is less than rise time. If you do not
specify -waveform option, the tool creates a default waveform, with a rising edge at instant 0.0 ns and ©a
falling edge at instant (period_value/2)ns.

source

Specifies the source of the clock constraint. The source can be ports or pins in the design. If you specify a
clock constraint on a pin that already has a clock, the new clock replaces the existing one. Only one
source is accepted. Wildcards are accepted as long as the resolution shows one port or pin.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Creates a clock in the current design at the declared source and defines its period and waveform. The
static timing analysis tool uses this information to propagate the waveform across the clock network to the
clock pins of all sequential elements driven by this clock source.
The clock information is also used to compute the slacks in the specified clock domain that drive
optimization tools such as place-and-route.

Exceptions
• None

Examples
The following example creates two clocks on ports CK1 and CK2 with a period of 6, a rising edge at 0,
and a falling edge at 3:

create_clock -name {my_user_clock} -period 6 CK1

create_clock -name {my_other_user_clock} –period 6 –waveform {0 3} {CK2}

The following example creates a clock on port CK3 with a period of 7, a rising edge at 2, and a falling
edge at 4:

Design Constraints for Libero SoC v11.8 SP1 User Guide

 87

create_clock –period 7 –waveform {2 4} [get_ports {CK3}]

Microsemi Implementation Specifics
• The -waveform in SDC accepts waveforms with multiple edges within a period. In Microsemi design

implementation, only two waveforms are accepted.
• SDC accepts defining a clock on many sources using a single command. In Microsemi design

implementation, only one source is accepted.
• The source argument in SDC create_clock command is optional. This is in conjunction with the -name

argument in SDC to support the concept of virtual clocks. In Microsemi implementation, source is a
mandatory argument as -name and virtual clocks concept is not supported.

• The -domain argument in the SDC create_clock command is not supported.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Clock Definition
Create Clock
Create a New Clock Constraint

create_generated_clock
SDC command; creates an internally generated clock and defines its characteristics.

create_generated_clock -name {name -source reference_pin [-divide_by divide_factor] [-
multiply_by multiply_factor] [-invert] source -pll_output pll_feedback_clock -pll_feedback
pll_feedback_input

Arguments
-name name

Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.

-source reference_pin

Specifies the reference pin in the design from which the clock waveform is to be derived.
-divide_bydivide_factor

Specifies the frequency division factor. For instance if the divide_factor is equal to 2, the generated clock
period is twice the reference clock period.

-multiply_by multiply_factor

Specifies the frequency multiplication factor. For instance if the multiply_factor is equal to 2, the generated
clock period is half the reference clock period.

-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.
source

Specifies the source of the clock constraint on internal pins of the design. If you specify a clock constraint
on a pin that already has a clock, the new clock replaces the existing clock. Only one source is accepted.
Wildcards are accepted as long as the resolution shows one pin.

-pll_output pll_feedback_clock

Specifies the output pin of the PLL which is used as the external feedback clock. This pin must drive the
feedback input pin of the PLL specified using the –pll_feedback option. The PLL will align the rising edge

Design Constraints for Libero SoC v11.8 SP1 User Guide

88

of the reference input clock to the feedback clock. This is a mandatory argument if the PLL is operating in
external feedback mode.

-pll_feedback pll_feedback_input

Specifies the feedback input pin of the PLL. This pin must be driven by the output pin of the PLL specified
using the –pll_output option. The PLL will align the rising edge of the reference input clock to the external
feedback clock. This is a mandatory argument if the PLL is operating in external feedback mode.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Creates a generated clock in the current design at a declared source by defining its frequency with
respect to the frequency at the reference pin. The static timing analysis tool uses this information to
compute and propagate its waveform across the clock network to the clock pins of all sequential elements
driven by this source.
The generated clock information is also used to compute the slacks in the specified clock domain that
drive optimization tools such as place-and-route.

Examples
The following example creates a generated clock on pin U1/reg1:Q with a period twice as long as the period
at the reference port CLK.

create_generated_clock -name {my_user_clock} –divide_by 2 –source
[get_ports {CLK}] U1/reg1/Q

The following example creates a generated clock at the primary output of myPLL with a period ¾ of the
period at the reference pin clk.

create_generated_clock –divide_by 3 –multiply_by 4 -source clk [get_pins
{myPLL/CLK1}]

The following example creates a generated clock named system_clk on the GL2 output pin of FCCC_0 with
a period equal to half the period of the source clock. The constraint also identifies GL2 output pin as the
external feedback clock source and CLK2 as the feedback input pin for FCCC_0.

create_generated_clock -name { system_clk } \

-multiply_by 2 \

-source { FCCC_0/CCC_INST/CLK3_PAD } \

-pll_output { FCCC_0/CCC_INST/GL2 } \

-pll_feedback { FCCC_0/CCC_INST/CLK2 } \

{ FCCC_0/CCC_INST/GL2 }

Microsemi Implementation Specifics
• SDC accepts either –multiply_by or –divide_by option. In Microsemi design implementation, both are

accepted to accurately model the PLL behavior.
• SDC accepts defining a generated clock on many sources using a single command. In Microsemi

design implementation, only one source is accepted.
• The -duty_cycle ,-edges and –edge_shift options in the SDC create_generated_clock command are

not supported in Microsemi design implementation.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

Design Constraints for Libero SoC v11.8 SP1 User Guide

 89

Create Generated Clock Constraint (SDC)

remove_clock_uncertainty
 SDC command; Removes a clock-to-clock uncertainty from the current timing scenario.

remove_clock_uncertainty -from | -rise_from | -fall_from from_clock_list -to | -rise_to| -
fall_to to_clock_list -setup {value} -hold {value}

remove_clock_uncertainty -id constraint_ID

Arguments
-from

 Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. You can specify only one of the -from, -rise_from, or -fall_from arguments for the constraint
to be valid.

-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

from_clock_list

Specifies the list of clock names as the uncertainty source.
-to

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination clock
list. You can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be
valid.

-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

to_clock_list

Specifies the list of clock names as the uncertainty destination.
-setup

Specifies that the uncertainty applies only to setup checks. If none or both -setup and -hold are
present, the uncertainty applies to both setup and hold checks.

-hold

Specifies that the uncertainty applies only to hold checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.

-id constraint_ID

Specifies the ID of the clock constraint to remove from the current scenario. You must specify either the
exact parameters to set the constraint or its constraint ID.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Design Constraints for Libero SoC v11.8 SP1 User Guide

90

Description
Removes a clock-to-clock uncertainty from the specified clock in the current scenario. If the specified
arguments do not match clocks with an uncertainty constraint in the current scenario, or if the specified ID
does not refer to a clock-to-clock uncertainty constraint, this command fails.
Do not specify both the exact arguments and the ID.

Exceptions
None

Examples
remove_clock_uncertainty -from Clk1 -to Clk2

remove_clock_uncertainty -from Clk1 -fall_to { Clk2 Clk3 } -setup

remove_clock_uncertainty 4.3 -fall_from { Clk1 Clk2 } -rise_to *

remove_clock_uncertainty 0.1 -rise_from [get_clocks { Clk1 Clk2 }] -
fall_to { Clk3 Clk4 } -setup

remove_clock_uncertainty 5 -rise_from Clk1 -to [get_clocks {*}]

remove_clock_uncertainty -id $clockId

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
set_clock_uncertainty

set_clock_latency
SDC command; defines the delay between an external clock source and the definition pin of a clock
within SmartTime.

set_clock_latency -source [-rise][-fall][-early][-late] delay clock

Arguments
-source

Specifies a clock source latency on a clock pin.
-rise

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.

-fall

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.

-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.
-late

Optional. Specifies that the latency is late bound on the latency. The appropriate bound is used to provide
the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-early",
optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and "-late"
are provided, the same latency is used for both bounds, which results in the latency having no effect for
single clock domain setup and hold checks.

-early

Design Constraints for Libero SoC v11.8 SP1 User Guide

 91

Optional. Specifies that the latency is early bound on the latency. The appropriate bound is used to
provide the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-
early", optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and
"-late" are provided, the same latency is used for both bounds, which results in the latency having no
effect for single clock domain setup and hold checks.

delay

Specifies the latency value for the constraint.
clock

Specifies the clock to which the constraint is applied. This clock must be constrained.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Clock source latency defines the delay between an external clock source and the definition pin of a clock
within SmartTime. It behaves much like an input delay constraint. You can specify both an "early" delay
and a"late" delay for this latency, providing an uncertainty which SmartTime propagates through its
calculations. Rising and falling edges of the same clock can have different latencies. If only one value is
provided for the clock source latency, it is taken as the exact latency value, for both rising and falling
edges.

Exceptions
None

Examples
The following example sets an early clock source latency of 0.4 on the rising edge of main_clock. It also
sets a clock source latency of 1.2, for both the early and late values of the falling edge of main_clock. The
late value for the clock source latency for the falling edge of main_clock remains undefined.

set_clock_latency –source –rise –early 0.4 { main_clock }

set_clock_latency –source –fall 1.2 { main_clock }

Microsemi Implementation Specifics
SDC accepts a list of clocks to -set_clock_latency. In Microsemi design implementation, only one clock pin
can have its source latency specified per command.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

set_clock_to_output
SDC command; defines the timing budget available inside the FPGA for an output relative to a clock.

set_clock_to_output delay_value -clock clock_ref [–max] [–min] output_list

Arguments
delay_value

Design Constraints for Libero SoC v11.8 SP1 User Guide

92

Specifies the clock to output delay in nanoseconds. This time represents the amount of time available
inside the FPGA between the active clock edge and the data change at the output port.

-clock clock_ref

Specifies the reference clock to which the specified clock to output is related. This is a mandatory
argument.

-max

Specifies that delay_value refers to the maximum clock to output at the specified output. If you do not
specify –max or –min options, the tool assumes maximum and minimum clock to output delays to be
equal.

-min

Specifies that delay_value refers to the minimum clock to output at the specified output. If you do not
specify –max or –min options, the tool assumes maximum and minimum clock to output delays to be
equal.

output_list

Provides a list of output ports in the current design to which delay_value is assigned. If you need to
specify more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
The set_clock_to_output command specifies the clock to output maximum and minimum delays on output
ports relative to a clock edge. This usually represents a combinational path delay from a register internal to
the current design to the output port. For in/out (bidirectional) ports, you can specify the path delays for both
input and output modes. The tool uses clock to output delays for paths ending at primary outputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be an object accessor
that will refer to one clock. For example:

[get_clocks {system_clk}]

[get_clocks {sys*_clk}]

Examples
The following example sets a maximum clock to output delay of 12 ns and a minimum clock to output delay
of 6 ns for port data_out relative to the rising edge of CLK1:

set_clock_to_output 12 -clock [get_clocks CLK1] -max [get_ports data_out]

set_clock_to_output 6 -clock [get_clocks CLK1] -min [get_ports data_out]

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

set_clock_uncertainty
SDC command; defines the timing uncertainty between two clock waveforms or maximum skew.

set_clock_uncertainty uncertainty (-from | -rise_from | -fall_from) from_clock_list (-to | -
rise_to | -fall_to) to_clock_list [-setup | -hold]

Design Constraints for Libero SoC v11.8 SP1 User Guide

93

Arguments
uncertainty

Specifies the time in nanoseconds that represents the amount of variation between two clock edges. The
value must be a positive floating point number.

-from

 Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. You can specify only one of the -from, -rise_from, or -fall_from arguments for the constraint
to be valid. This option is the default.

-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

from_clock_list

Specifies the list of clock names as the uncertainty source.
-to

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination clock
list. You can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be
valid.

-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

to_clock_list

Specifies the list of clock names as the uncertainty destination.
-setup

Specifies that the uncertainty applies only to setup checks. If you do not specify either option (-setup or
-hold) or if you specify both options, the uncertainty applies to both setup and hold checks.

-hold

Specifies that the uncertainty applies only to hold checks. If you do not specify either option (-setup or -
hold) or if you specify both options, the uncertainty applies to both setup and hold checks.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Clock uncertainty defines the timing between an two clock waveforms or maximum clock skew.
Both setup and hold checks must account for clock skew. However, for setup check, SmartTime looks for
the smallest skew. This skew is computed by using the maximum insertion delay to the launching
sequential component and the shortest insertion delay to the receiving component.
For hold check, SmartTime looks for the largest skew. This skew is computed by using the shortest
insertion delay to the launching sequential component and the largest insertion delay to the receiving
component. SmartTime makes this distinction automatically.

Exceptions
None

Design Constraints for Libero SoC v11.8 SP1 User Guide

94

Examples
The following example defines two clocks and sets the uncertainty constraints, which analyzes the inter-
clock domain between clk1 and clk2.

create_clock –period 10 clk1

create_generated_clock –name clk2 -source clk1 -multiply_by 2 sclk1

set_clock_uncertainty 0.4 -rise_from clk1 -rise_to clk2

Microsemi Implementation Specifics
• SDC accepts a list of clocks to -set_clock_uncertainty.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
create_clock (SDC)
create_generated_clock (SDC)
remove_clock_uncertainty

set_disable_timing
SDC command; disables timing arcs within the specified cell and returns the ID of the created constraint if
the command succeeded.

 set_disable_timing [-from from_port] [-to to_port] cell_name

Arguments
-from from_port

Specifies the starting port.
-to to_port

Specifies the ending port.
cell_name

Specifies the name of the cell in which timing arcs will be disabled.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command disables the timing arcs in the specified cell, and returns the ID of the created constraint if
the command succeeded. The –from and –to arguments must either both be present or both omitted for
the constraint to be valid.

Examples
The following example disables the arc between a2:A and a2:Y.

set_disable_timing -from port1 -to port2 cellname

This command ensures that the arc is disabled within a cell instead of between cells.

Design Constraints for Libero SoC v11.8 SP1 User Guide

95

Microsemi Implementation Specifics
• None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

set_external_check
SDC command; defines the external setup and hold delays for an input relative to a clock.

set_external_check delay_value -clock clock_ref [–setup] [–hold] input_list

Arguments
delay_value

Specifies the external setup or external hold delay in nanoseconds. This time represents the amount of
time available inside the FPGA for the specified input after a clock edge.

-clock clock_ref

Specifies the reference clock to which the specified external check is related. This is a mandatory
argument.

-setup or -hold
Specifies that delay_value refers to the setup/hold check at the specified input. -setup is a mandatory argument
if -hold is not used. You must specify either -setup or -hold option.

input_list

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
The set_external_check command specifies the external setup and hold times on input ports relative to a
clock edge. This usually represents a combinational path delay from the input port to the clock pin of a
register internal to the current design. For in/out (bidirectional) ports, you can specify the path delays for
both input and output modes. The tool uses external setup and external hold times for paths starting at
primary inputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be an object accessor
that will refer to one clock. For example:

[get_clocks {system_clk}]

[get_clocks {sys*_clk}]

Examples
The following example sets an external setup check of 12 ns and an external hold check of 6 ns for port
data_in relative to the rising edge of CLK1:

set_external_check 12 -clock [get_clocks CLK1] -setup [get_ports data_in]

set_external_check 6 -clock [get_clocks CLK1] -hold [get_ports data_in]

Design Constraints for Libero SoC v11.8 SP1 User Guide

96

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

set_false_path
SDC command; identifies paths that are considered false and excluded from the timing analysis.

set_false_path [-from from_list] [-through through_list] [-to to_list]

Arguments
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-through through_list

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
The set_false_path command identifies specific timing paths as being false. The false timing paths are
paths that do not propagate logic level changes. This constraint removes timing requirements on these
false paths so that they are not considered during the timing analysis. The path starting points are the
input ports or register clock pins, and the path ending points are the register data pins or output ports.
This constraint disables setup and hold checking for the specified paths.
The false path information always takes precedence over multiple cycle path information and overrides
maximum delay constraints. If more than one object is specified within one -through option, the path can
pass through any objects.

Examples
The following example specifies all paths from clock pins of the registers in clock domain clk1 to data pins
of a specific register in clock domain clk2 as false paths:

set_false_path –from [get_clocks {clk1}] –to reg_2:D

The following example specifies all paths through the pin U0/U1:Y to be false:
set_false_path -through U0/U1:Y

Microsemi Implementation Specifics
SDC accepts multiple -through options in a single constraint to specify paths that traverse multiple points in
the design. In Microsemi design implementation, only one –through option is accepted.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

Design Constraints for Libero SoC v11.8 SP1 User Guide

 97

Set False Path Constraint

set_input_delay
SDC command; defines the arrival time of an input relative to a clock.

set_input_delay delay_value -clock clock_ref [–max] [–min] [–clock_fall] input_list

Arguments
delay_value

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal is
available at the specified input after a clock edge.

-clock clock_ref

Specifies the clock reference to which the specified input delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.

-max

Specifies that delay_value refers to the longest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

-min

Specifies that delay_value refers to the shortest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

-clock_fall

Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.
input_list

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion and IGLOOe, except ProASIC3
nano and ProASIC3L

Description
The set_input_delay command sets input path delays on input ports relative to a clock edge. This usually
represents a combinational path delay from the clock pin of a register external to the current design. For
in/out (bidirectional) ports, you can specify the path delays for both input and output modes. The tool adds
input delay to path delay for paths starting at primary inputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be:

• a single port name used as source for a clock constraint
• a single pin name used as source for a clock constraint; for instance reg1:CLK. This name can be

hierarchical (for instance toplevel/block1/reg2:CLK)
• an object accessor that will refer to one clock: [get_clocks {clk}]

Examples
The following example sets an input delay of 1.2ns for port data1 relative to the rising edge of CLK1:

set_input_delay 1.2 -clock [get_clocks CLK1] [get_ports data1]

The following example sets a different maximum and minimum input delay for port IN1 relative to the
falling edge of CLK2:

set_input_delay 1.0 -clock_fall -clock CLK2 –min {IN1}

Design Constraints for Libero SoC v11.8 SP1 User Guide

98

set_input_delay 1.4 -clock_fall -clock CLK2 –max {IN1}

Microsemi Implementation Specifics
In SDC, the -clock is an optional argument that allows you to set input delay for combinational designs.
Microsemi Implementation currently requires this argument.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set Input Delay

set_load
SDC command; sets the load to a specified value on a specified port.

set_load capacitance port_list

Arguments
capacitance

Specifies the capacitance value that must be set on the specified ports.
port_list

Specifies a list of ports in the current design on which the capacitance is to be set.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
The load constraint enables the Designer software to account for external capacitance at a specified port.
You cannot set load constraint on the nets. When you specify this constraint on the output ports, it
impacts the delay calculation on the specified ports.

Examples
The following examples show how to set output capacitance on different output ports:

set_load 35 out_p

set_load 40 {O1 02}

set_load 25 [get_ports out]

Microsemi Implementation Specifics
• In SDC, you can use the set_load command to specify capacitance value on nets. Microsemi

Implementation only supports output ports.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set Load on Port

Design Constraints for Libero SoC v11.8 SP1 User Guide

 99

set_max_delay (SDC)
SDC command; specifies the maximum delay for the timing paths.

set_max_delay delay_value [-from from_list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required maximum delay value for
specified paths.

• If the path starting point is on a sequential device, the tool includes clock skew in the computed
delay.

• If the path starting point has an input delay specified, the tool adds that delay value to the path
delay.

• If the path ending point is on a sequential device, the tool includes clock skew and library setup
time in the computed delay.

• If the ending point has an output delay specified, the tool adds that delay to the path delay.
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command specifies the required maximum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The tool automatically derives the individual maximum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create_clock, set_input_delay, and set_output_delay
commands.
The maximum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples
The following example sets a maximum delay by constraining all paths from ff1a:CLK or ff1b:CLK to
ff2e:D with a delay less than 5 ns:

set_max_delay 5 -from {ff1a:CLK ff1b:CLK} -to {ff2e:D}

The following example sets a maximum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set_max_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The –through option in the set_max_delay SDC command is not supported.

Design Constraints for Libero SoC v11.8 SP1 User Guide

100

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set Max Delay

set_min_delay
SDC command; specifies the minimum delay for the timing paths.

set_min_delay delay_value [-from from_list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required minimum delay value for
specified paths.

• If the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

• If the path starting point has an input delay specified, the tool adds that delay value to
the path delay.

• If the path ending point is on a sequential device, the tool includes clock skew and
library setup time in the computed delay.

• If the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command specifies the required minimum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The tool automatically derives the individual minimum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create_clock, set_input_delay, and set_output_delay
commands.
The minimum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples
The following example sets a minimum delay by constraining all paths from ff1a:CLK or ff1b:CLK to ff2e:D
with a delay less than 5 ns:

set_min_delay 5 -from {ff1a:CLK ff1b:CLK} -to {ff2e:D}

Design Constraints for Libero SoC v11.8 SP1 User Guide

 101

The following example sets a minimum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set_min_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The –through option in the set_min_delay SDC command is not supported.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

set_multicycle_path
SDC command; defines a path that takes multiple clock cycles.

set_multicycle_path ncycles [-setup] [-hold] [-from from_list] [–through through_list] [-to
to_list]

Arguments
ncycles

Specifies an integer value that represents a number of cycles the data path must have for setup or hold
check. The value is relative to the starting point or ending point clock, before data is required at the ending
point.

-setup

Optional. Applies the cycle value for the setup check only. This option does not affect the hold check. The
default hold check will be applied unless you have specified another set_multicycle_path command for the
hold value.

-hold

Optional. Applies the cycle value for the hold check only. This option does not affect the setup check.
Note: If you do not specify "-setup" or "-hold", the cycle value is applied to the setup check and the

default hold check is performed (ncycles -1).
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-through through_list

Specifies a list of pins or ports through which the multiple cycle paths must pass.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Setting multiple cycle paths constraint overrides the single cycle timing relationships between sequential
elements by specifying the number of cycles that the data path must have for setup or hold checks. If you
change the multiplier, it affects both the setup and hold checks.

Design Constraints for Libero SoC v11.8 SP1 User Guide

102

False path information always takes precedence over multiple cycle path information. A specific maximum
delay constraint overrides a general multiple cycle path constraint.
If you specify more than one object within one -through option, the path passes through any of the
objects.

Examples
The following example sets all paths between reg1 and reg2 to 3 cycles for setup check. Hold check is
measured at the previous edge of the clock at reg2.

set_multicycle_path 3 -from [get_pins {reg1}] –to [get_pins {reg2}]

The following example specifies that four cycles are needed for setup check on all paths starting at the
registers in the clock domain ck1. Hold check is further specified with two cycles instead of the three
cycles that would have been applied otherwise.

set_multicycle_path 4 -setup -from [get_clocks {ck1}]

set_multicycle_path 2 -hold -from [get_clocks {ck1}]

Microsemi Implementation Specifics
• SDC allows multiple priority management on the multiple cycle path constraint depending on the scope

of the object accessors. In Microsemi design implementation, such priority management is not
supported. All multiple cycle path constraints are handled with the same priority.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set Multicycle Path

set_output_delay
SDC command; defines the output delay of an output relative to a clock.

set_output_delay [-max] [-min] delay_value -clock clock_ref [–clock_fall] output_list

Arguments
delay_value

Specifies the amount of time before a clock edge for which the signal is required. This represents a
combinational path delay to a register outside the current design plus the library setup time (for maximum
output delay) or hold time (for minimum output delay).

-clock clock_ref

Specifies the clock reference to which the specified output delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.

-max

Specifies that delay_value refers to the longest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.

-min

Specifies that delay_value refers to the shortest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.

-clock_fall

Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.
output_list

Design Constraints for Libero SoC v11.8 SP1 User Guide

103

Provides a list of output ports in the current design to which delay_value is assigned. If you need to
specify more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
The set_output_delay command sets output path delays on output ports relative to a clock edge. Output
ports have no output delay unless you specify it. For in/out (bidirectional) ports, you can specify the path
delays for both input and output modes. The tool adds output delay to path delay for paths ending at
primary outputs.

Examples
The following example sets an output delay of 1.2ns for port OUT1 relative to the rising edge of CLK1:

set_output_delay 1.2 -clock [get_clocks CLK1] [get_ports OUT1]

The following example sets a different maximum and minimum output delay for port OUT1 relative to the
falling edge of CLK2:

set_output_delay -max 1.400 -clock { CLK } [get_ports { Y }]

 set_output_delay -min 1.000 -clock { CLK } [get_ports { Y }] }

Microsemi Implementation Specifics
• In SDC, the -clock is an optional argument that allows you to set the output delay for combinational

designs. Microsemi Implementation currently requires this option.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set Output Delay

Design Constraints for Libero SoC v11.8 SP1 User Guide

104

Design Object Access Commands

Design object access commands are SDC commands. Most SDC constraint commands require one of these
commands as command arguments.
Microsemi software supports the following SDC access commands:

Design Object Access Command

Cell get_cells

Clock get_clocks

Net get_nets

Port get_ports

Pin get_pins

Input ports all_inputs

Output ports all_outputs

 Registers all_registers

See Also
About SDC Files

all_inputs
Design object access command; returns all the input or inout ports of the design.

all_inputs

Arguments
• None

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
• None

Example
set_max_delay -from [all_inputs] -to [get_clocks ck1]

Design Constraints for Libero SoC v11.8 SP1 User Guide

105

Microsemi Implementation Specifics
• None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

all_outputs
Design object access command; returns all the output or inout ports of the design.

all_outputs

Arguments
• None

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
• None

Example
set_max_delay -from [all_inputs] -to [all_outputs]

Microsemi Implementation Specifics
None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

all_registers
Design object access command; returns either a collection of register cells or register pins, whichever you
specify.

all_registers [-clock clock_name] [-cells] [-data_pins]
 [-clock_pins] [-async_pins] [-output_pins]

Arguments
-clock clock_name

Creates a collection of register cells or register pins in the specified clock domain.
-cells

Creates a collection of register cells. This is the default. This option cannot be used in combination with
any other option.

Design Constraints for Libero SoC v11.8 SP1 User Guide

106

-data_pins

Creates a collection of register data pins.
-clock_pins

Creates a collection of register clock pins.
-async_pins

Creates a collection of register asynchronous pins.
-output_pins

Creates a collection of register output pins.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command creates either a collection of register cells (default) or register pins, whichever is specified.
If you do not specify an option, this command creates a collection of register cells.

Exceptions
• None

Examples
set_max_delay 2 -from [all_registers] -to [get_ports {out}]

set_max_delay 3 –to [all_registers –async_pins]

set_false_path –from [all_registers –clock clk150]

set_multicycle_path –to [all_registers –clock c* -data_pins

–clock_pins]

Microsemi Implementation Specifics
• None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_cells
Design object access command; returns the cells (instances) specified by the pattern argument.

get_cells pattern

Arguments
pattern

Specifies the pattern to match the instances to return. For example, "get_cells U18*" returns all instances
starting with the characters "U18", where “*” is a wildcard that represents any character string.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Design Constraints for Libero SoC v11.8 SP1 User Guide

107

Description
This command returns a collection of instances matching the pattern you specify. You can only use this
command as part of a –from, -to, or –through argument for the following constraint exceptions: set_max
delay, set_multicycle_path, and set_false_path design constraints.

Exceptions
None

Examples
set_max_delay 2 -from [get_cells {reg*}] -to [get_ports {out}]

set_false_path –through [get_cells {Rblock/muxA}]

Microsemi Implementation Specifics
• None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_clocks
Design object access command; returns the specified clock.

get_clocks pattern

Arguments
pattern

Specifies the pattern to match to the SmartTime on which a clock constraint has been set.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
• If this command is used as a –from argument in maximum delay (set_max_path_delay), false path

(set_false_path), and multicycle constraints (set_multicycle_path), the clock pins of all the registers
related to this clock are used as path start points.

• If this command is used as a –to argument in maximum delay (set_max_path_delay), false path
(set_false_path), and multicycle constraints (set_multicycle_path), the synchronous pins of all the
registers related to this clock are used as path endpoints.

Exceptions
• None

Example
set_max_delay -from [get_ports datal] -to \

[get_clocks ck1]

Design Constraints for Libero SoC v11.8 SP1 User Guide

108

Microsemi Implementation Specifics
None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_pins
Design object access command; returns the specified pins.

get_pins pattern

Arguments
pattern

Specifies the pattern to match the pins.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
create_clock -period 10 [get_pins clock_gen/reg2:Q]

Microsemi Implementation Specifics
• None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_nets
Design object access command; returns the named nets specified by the pattern argument.

get_nets pattern

Arguments
pattern

Specifies the pattern to match the names of the nets to return. For example, "get_nets N_255*" returns all
nets starting with the characters "N_255", where “*” is a wildcard that represents any character string.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 109

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command returns a collection of nets matching the pattern you specify. You can only use this
command as source objects in create clock (create_clock) or create generated clock
(create_generated_clock) constraints and as -through arguments in set false path (set_false_path), set
minimum delay (set_min_delay), set maximum delay (set_max_delay), and set multicycle path
(set_multicycle_path) constraints.

Exceptions
None

Examples
set_max_delay 2 -from [get_ports RDATA1] -through [get_nets {net_chkp1
net_chkqi}]

set_false_path –through [get_nets {Tblk/rm/n*}]

create_clcok -name mainCLK -per 2.5 [get_nets {cknet}]

Microsemi Implementation Specifics
None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_ports
Design object access command; returns the specified ports.

get_ports pattern

Argument
pattern

Specifies the pattern to match the ports. This is equivalent to the macros $in()[<pattern>] when used as –
from argument and $out()[<pattern>] when used as –to argument or $ports()[<pattern>] when used as a –
through argument.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
create_clock -period 10[get_ports CK1]

Design Constraints for Libero SoC v11.8 SP1 User Guide

110

Microsemi Implementation Specifics
None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

About Physical Design Constraint (PDC) Files
Physical design constraints (PDC) are used to constrain the I/Os attributes, placement, and routing during
the physical layout phase.
You can enter PDC commands manually using the Libero SoC’s Text Editor. PDC commands can also be
generated by the Libero SoC’s interactive tools. The I/O Attribute Editor is the interactive tool for making I/O
attributes changes and the Chip Planner is the interactive tool for making floorplanning changes. When
changes are made in the I/O Attribute Editor or the Chip Planner, the PDC file(s) are updated to reflect the
changes. These PDC commands can be used as part of a script file to constrain the Place and Route step of
your design.

Command Action

assign_global_clock Assigns regular nets to global clock networks by
promoting the net using a CLKINT macro

assign_local_clock Assigns regular nets to LocalClock regions

assign_net_macros Assigns the macros connected to a net to a specified
defined region

assign_quadrant_clock Assigns regular nets to a specific quadrant clock region

assign_region Assigns macros to a pre-specified region

define_region Defines either a rectangular or rectilinear region

delete_buffer_tree Removes all buffers and inverters from a given net

dont_touch_buffer_tree Restores all buffers and inverters that were removed from
a given net with the delete_buffer_tree command

move_block Moves only the block core (COMB, SEQ) of the specified
instance (I/Os or PLLs) to the specified location on the
chip

move_region Moves a region to new coordinates

reset_floorplan Deletes all defined regions. Placed macros are not
affected.

reset_io Resets all attributes on a macro to the default values

reset_iobank Resets an I/O banks technology to the default technology

reset_net_critical Resets net criticality to default level

set_io Sets the attributes of an I/O

Design Constraints for Libero SoC v11.8 SP1 User Guide

 111

Command Action

set_iobank Specifies the I/O bank’s technology and sets the VREF
pins for the specified banks

set_location Places a given logic instance at a particular location

set_block_options Overrides the compile option for either a specific block or
an instance of a block

set_multitile_location Assigns specified two-tile and four-tile macros to
specified locations on the chip

set_port_block Sets properties on a port in the Block flow

set_preserve Preserves instances before compile so that instances are
not combined

set_net_critical Sets net criticality, which is issued to influence placement
and routing in favor of performance

set_reserve Reserves the specified pins in the design

set_unreserve Resets the specified pins in the design that were
previously reserved

unassign_global_clock Assigns clock nets to regular nets

unassign_local_clock Unassigns the specified user-defined net from a
LocalClock or QuadrantClock region

unassign_macro_from_regi
on

Unassigns macros from a specified region, if they are
assigned to that region

unassign_net_macros Unassigns macros connected to a specified net from a
defined region

unassign_quadrant_clock Unassigns the specified net from a QuadrantClock region

undefine_region Removes the specified region

Note: PDC commands are case sensitive. However, their arguments are not.

See Also
Constraint Entry
PDC Syntax Conventions
PDC Naming Conventions
Importing Constraint Files

PDC Syntax Conventions
The following table shows the typographical conventions that are used for the PDC command syntax.

Design Constraints for Libero SoC v11.8 SP1 User Guide

112

Syntax Notation Description

command
-argument

Commands and arguments appear in Courier New
typeface.

variable Variables appear in blue, italic Courier New typeface. You
must substitute an appropriate value for the variable.

[-argument value]
[variable]+

Optional arguments begin and end with a square bracket
with one exception: if the square bracket is followed by a
plus sign (+), then users must specify at least one
argument. The plus sign (+) indicates that items within
the square brackets can be repeated. Do not enter the
plus sign character.

Note: PDC commands are case sensitive. However, their arguments are not.

Examples
Syntax for the assign_local_clock command followed by a sample command:

assign_local_clock -type value -net netname [LocalClock_region]+

assign_local_clock -type hclk -net reset_n tile1a tile2a

Syntax for the set_io command followed by a sample command:

set_io portname [-iostd value][-register value][-out_drive value][-slew value][-res_pull
value][-out_load value][-pinname value][-fixed value][-in_delay value]

set_io ADDOUT2 \

-iostd PCI \

-register yes \

-out_drive 16 \

-slew high \

-out_load 10 \

-pinname T21 \

-fixed yes

Wildcard Characters
You can use the following wildcard characters in names used in PDC commands:

Wildcard What It Does

\ Interprets the next character literally

? Matches any single character

* Matches any string

Note: The matching function requires that you add a slash (\) before each slash in the port, instance, or net

name when using wildcards in a PDC command and when using wildcards in the Find feature of the
MultiView Navigator. For example, if you have an instance named “A/B12” in the netlist, and you
enter that name as “A\\/B*” in a PDC command, you will not be able to find it. In this case, you
must specify the name as A\\\\/B*.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 113

Special Characters ([], { }, and \)
Sometimes square brackets are part of the command syntax. In these cases, you must either enclose the
open and closed square brackets characters with curly brackets or precede the open and closed square
brackets characters with a backslash (\). If you do not, you will get an error message.
For example:

set_iobank {mem_data_in[57]} -fixed no 7 2

or

set_iobank mem_data_in\[57\] -fixed no 7 2

Entering Arguments on Separate Lines
To enter an argument on a separate line, you must enter a backslash (\) character at the end of the
preceding line of the command as shown in the following example:

set_io ADDOUT2 \

-iostd PCI \

-register Yes \

-out_drive 16 \

-slew High \

-out_load 10 \

-pinname T21 \

-fixed yes

See Also
About PDC Files
PDC Naming Conventions

PDC Naming Conventions
Note: The names of ports, instances, and nets in an imported netlist are sometimes referred to as their
original names.

Rules for Displaying Original Names
Port names appear exactly as they are defined in a netlist. For example, a port named A/B appears as A/B
in ChipPlanner, PinEditor, and I/O Attribute Editor in MultiView Navigator.
Instances and nets display the original names plus an escape character (\) before each backslash (/) and
each slash (\) that is not a hierarchy separator. For example, the instance named A/\B is displayed as
A\/\\B.

Which Name Do I Use in PDC Commands?
The names of ports, instances, and nets in a netlist displayed in MultiView Navigator (MVN) for
SmartFusion, IGLOO, ProASIC3 and Fusion devices are names taken directly from the imported netlist.

Using PDC Commands
When writing PDC commands, follow these rules:

• Always use the macro name as it appears in the netlist. (See "Merged elements" in this topic for
exceptions.)

• Names from a netlist: For port names, use the names exactly as they appear in the netlist. For
instance and net names, add an escape character (\) before each backslash (\) and each slash (/) that
is not a hierarchy separator.

Design Constraints for Libero SoC v11.8 SP1 User Guide

114

• Names from MVN and compile report: Use names as they appear in MultiView Navigator or the
compile report.

• For wildcard names, always add an extra backslash (\) before each backslash.
• Always apply the PDC syntax conventions to any name in a PDC command.

The following table provides examples of names as they appear in an imported netlist and the names as
they should appear in a PDC file:

Type of name and its location Name in the
imported netlist

Name to use in
PDC file

Port name in netlist A/:B1 A/:B1

Port name in MVN A/:B1 A/:B1

Instance name in a netlist A/:B1 A$(1) A\\/:B1 A$(1)

Instance name in the netlist but using a
wildcard character in a PDC file

A/:B1 A\\\\/:B*

Instance name in MVN or a compile report A\/:B1 A\\/:B1

Net name in a netlist Net1/:net1 Net1\\/:net1

Net name in MVN or a compile report Net1\/:net1 Net1\\/:net1

When exporting PDC commands, the software always exports names using the PDC rules described in this
topic.

Case Sensitivity When Importing PDC Files
The following table shows the case sensitivity in the PDC file based on the source netlist.

File
Type

Case Sensitivity

Verilog Names in the netlist are case sensitive.

Edif Names in the netlist are always case sensitive because we use the Rename
clause, which is case sensitive.

Vhdl Names in the netlist are not case sensitive unless those names appear
between slashes (\).

For example, in VHDL, capital "A" and lowercase "a" are the same name, but \A\ and \a\ are two different
names. However, in a Verilog netlist, an instance named "A10" will fail if spelled as "a10" in the set_location
command:

set_location A10 (This command will succeed.)

set_location a10 (This command will fail.)

Which Name to Use in the Case of Merged Elements (IGLOO, Fusion, and ProASIC3
Only)

The following table indicates which name to use in a PDC command when performing the specified
operation:

Design Constraints for Libero SoC v11.8 SP1 User Guide

 115

Operation Name to Use

I/O connected to PLL with a hardwired connection PLL instance name

I/O combined with FF or DDR I/O instance name

Global promotion

See Also
About PDC Files
PDC Syntax Conventions

assign_global_clock
PDC command; assigns regular nets to global clock networks by promoting the net using a CLKINT
macro.

assign_global_clock -net netname

Arguments
-net netname

Specifies the name of the net to promote to a global clock network. The net is promoted using a CLKINT
macro, which you can place on a chip-wide clock location.

Supported Families
 SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
The assign_global_clock command is not supported in auxiliary PDC files.

Examples
assign_global_clock -net globalReset

See Also
Assign Net to Global Clock
assign_local_clock (IGLOO, Fusion, and ProASIC3)
unassign_global_clock
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

assign_local_clock
PDC command; assigns regular nets to LocalClock regions.

assign_local_clock -net netname-type clock_type clock_region

Design Constraints for Libero SoC v11.8 SP1 User Guide

116

Arguments
-net netname

Specifies the name of the net to assign to a LocalClock region.
-type clock_type
Specifies the type of region to which the net will be assigned:

Value Description

chip Specifies a LocalClock region driven by a clock rib located on
the middle of the chip

quadrant Specifies one of the following:
• A QuadrantClock region
• A LocalClock region driven by a clock rib located on

the top or bottom of the chip

clock_region

Specifies a LocalClock region.
LocalClock regions are defined as one of the following:

• A single spine defined as T# (Top spine) or B# (Bottom spine)
• A multi-spine rectangle defined as [T | B]#:[T | B]#
Spines are numbered from left to right starting at 1. The maximum spine number is a function of the die
selected by the user. Please refer to the examples in this help topic.
Local clock uses clock spine resources remaining after global assignment from Input Netlist and PDC
constraints. There are six chip-wide and twelve quadrant-wide clock resources per device. You may
reserve portions of a clock network (chip-wide or quadrant-wide) for local clocks by assigning clock nets to
regions. If there are not enough clock resources to honor all local clock assignments, the Layout
command will fail.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion
Note: You must import the PDC file along with the netlist as a source file because Compile needs to

delete buffers and legalize the netlist. Shared instances between local clocks are supported.
Compile will insert buffers to legalize the netlist.

Exceptions
• If the net is a clock net, it is demoted to a regular net. You will see an unassign_global_net command

in the PDC file if the net is demoted to a regular net by the compiler and the assignment to local clock
failed.

Examples
This example assigns the net named localReset to the chip-wide spine T1:

assign_local_clock -net localReset -type chip T1

This example assigns the net named localReset to the quadrant spines T1, T2, T3, T4, and T5, which
span more than one quadrant:

assign_local_clock -net localReset -type quadrant T1:T5

This example assigns the net named localReset to the chip-wide spines T1, T2, T3, T4, T5, T6, B1, B2,
B3, B4, B4, and B6:

assign_local_clock -net localReset -type chip T1:B6

Design Constraints for Libero SoC v11.8 SP1 User Guide

 117

See Also
Assign Net to Local Clock
unassign_local_clock
assign_quadrant_clock
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

assign_net_macros
PDC command; assigns to a user-defined region all the macros that are connected to a net.

assign_net_macros region_name [net1]+ [-include_driver value]

Arguments
region_name

Specifies the name of the region to which you are assigning macros. The region must exist before you
use this command. See define_region (rectangular) or define_region (rectilinear). Because the
define_region command returns a region object, you can write a simple command such as
assign_net_macros [define_region]+ [net]+

net1

You must specify at least one net name. Net names are AFL-level (flattened netlist) names. These names
match your netlist names most of the time. When they do not, you must export AFL and use the AFL
names. Net names are case insensitive. Hierarchical net names from ADL are not allowed. You can use
the following wildcard characters in net names:

Wilcard What It Does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

net1

Specifies whether to add the driver of the net(s) to the region. You can enter one of the following values:

Value Description

Yes Include the driver in the list of macros assigned to the region (default) .

No Do not assign the driver to the region.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Design Constraints for Libero SoC v11.8 SP1 User Guide

118

Exceptions
• Placed macros (not connected to the net) that are inside the area occupied by the net region are

automatically unplaced.
• Net region constraints are internally converted into constraints on macros. PDC export results as a

series of assign_region <region_name> macro1 statements for all the connected macros.
• If the region does not have enough space for all of the macros, or if the region constraint is impossible,

the constraint is rejected and a warning message appears in the Log window.
• For overlapping regions, the intersection must be at least as big as the overlapping macro count.
• If a macro on the net cannot legally be placed in the region, it is not placed and a warning message

appears in the Log window.
• Net region constraints may result in a single macro being assigned to multiple regions. These net

region constraints result in constraining the macro to the intersection of all the regions affected by the
constraint.

Examples
assign_net_macros cluster_region1 keyin1intZ0Z_62 -include_driver no

See Also
Assign Net to Region
unassign_net_macros
Unassign macros on net from region
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

assign_quadrant_clock
PDC command; assigns regular nets to a specific quadrant clock region.

 assign_quadrant_clock -net netname -quadrant quadrant_clock_region [-fixed value]

Arguments
-net netname

Specifies the name of the net to assign to a QuadrantClock region. You must specify a net name that
currently exists in the design.

-quadrant quadrant_clock_region

Specifies the QuadrantClock region to which the net will be assigned. Each die has four quadrants.
QuadrantClock regions are defined as one of the following:

• UL: Upper-Left quadrant
• UR: Upper-Right quadrant
• LL: Lower-Left quadrant
• LR: Lower-Right quadrant
For quadrant clock assignments, regular nets are automatically promoted to clock nets driven by an
internal clock driver (CLKINT).
There are twelve quadrant-wide clock resources per device. You may reserve portions of a clock network
for quadrant clocks by assigning clock nets to regions. If there are not enough clock resources to honor all
local clock assignments, the Layout command will fail.

-fixed value

Design Constraints for Libero SoC v11.8 SP1 User Guide

 119

Specifies if the specified QuadrantClock region is locked. If you do not want the Global Assigner to
remove it, then lock the region. You can enter one of the following values:

Value Description

yes The QuadrantClock region is locked.

no The QuadrantClock region is not locked.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
• This command is not supported in auxiliary PDC files. If importing a PDC file that includes this

command, you must import it as a source file.

Examples
This example assigns the net named FRAMEN_in to the quadrant clock in the upper-left (UL) quadrant of
the chip:

assign_quadrant_clock -net FRAMEN_in -quadrant UL

This example assigns the net named STOPN_in to the quadrant clock in the lower-right (LR) quadrant of
the chip:

assign_quadrant_clock -net STOPN_in -quadrant LR

This example assigns the net named n32 to the quadrant clock in the lower-right (LR) quadrant of the chip
and locks it so that the Global Assigner cannot delete the quadrant region:

assign_quadrant_clock -net n32 -quadrant LR -fixed yes

See Also
Assign Net to Quadrant Clock

unassign_quadrant_clock

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

assign_region
PDC command; constrains a set of macros to a specified region.

assign_region region_name [macro_name]+

Arguments
region_name

Specifies the region to which the macros are assigned. The macros are constrained to this region.
Because the define_region command returns a region object, you can write a simpler command such as
assign_region [define_region]+ [macro_name]+

macro_name

Specifies the macro(s) to assign to the region. You must specify at least one macro name. You can use
the following wildcard characters in macro names:

Design Constraints for Libero SoC v11.8 SP1 User Guide

120

Wildcard What It Does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
• The region must be created before you can assign macros to it.
• You can assign only hard macros or their instances to a region. You cannot assign a group name. A

hard macro is a logic cell consisting of one or more silicon modules with locked relative placement.
• You can assign a collection of macros by providing a prefix to their names.

Examples
In the following example, two macros are assigned to a region:

assign_region cluster_region1 des01/G_2722_0_and2 des01/data1_53/U0

In the following example, all macros whose names have the prefix des01/Counter_1 (or all macros whose
names match the expression des01/Counter_1/*) are assigned to a region:

assign_region User_region2 des01/Counter_1

See Also
Assign Macro to Region

unassign_macro_from_region

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

define_region
PDC command; defines either a rectangular region or a rectilinear region.

define_region [-name region_name] -type region_type [x1 y1 x2 y2]+ [-color value] [-route
value] [-push_place value]

Arguments
-name region_name

Specifies the region name. The name must be unique. Do not use reserved names such as “bank0” and
“bank<N>” for region names. If the region cannot be created, the name is empty. A default name is
generated if a name is not specified in this argument.

-type region_type

Specifies the region type. The default is inclusive. The following table shows the acceptable values for this
argument:

Region Type Value Description

Design Constraints for Libero SoC v11.8 SP1 User Guide

121

Region Type Value Description

Empty Empty regions cannot contain macros.

Exclusive Only contains macros assigned to the region.

Inclusive Can contain macros both assigned and unassigned to the
region.

x1 y1 x2 y2

Specifies the series of coordinate pairs that constitute the region. These rectangles may or may not
overlap. They are given as x1 y1 x2 y2 (where x1, y1 is the lower left and x2 y2 is the upper right corner in
row/column coordinates). You must specify at least one set of coordinates.

-color value

Specifies the color of the region. The following table shows the recommended values for this argument:

Color Decimal Value

16776960

65280

16711680

16760960

255

16711935

65535

33023

8421631

9568200

8323199

12632256

-route value

Specifies whether to direct the routing of all nets internal to a region to be constrained within that region. A
net is internal to a region if its source and destination pins are assigned to the region. This option only
applies to IGLOO, Fusion, and ProASIC3 families. You can enter one of the following values:

Constrain
Routing Value

Description

Yes Constrain the routing of nets within the region as well as the
placement.

Design Constraints for Libero SoC v11.8 SP1 User Guide

122

Constrain
Routing Value

Description

No Do not constrain the routing of nets within the region. Only constrain
the placement. This is the default value.

Note: Local clocks and global clocks are excluded from the -route option. Also, interface nets are

excluded from the –route option because they cross region boundaries.
An empty routing region is an empty placement region. If -route is "yes", then no routing is allowed inside
the empty region. However, local clocks and globals can cross empty regions.
An exclusive routing region is an exclusive placement region (rectilinear area with assigned macros) along
with the following additional constraints:

• For all nets internal to the region (the source and all destinations belong to the region), routing must be
inside the region (that is, such nets cannot be assigned any routing resource which is outside the
region or crosses the region boundaries).

• Nets without pins inside the region cannot be assigned any routing resource which is inside the region
or crosses any region boundaries.

An inclusive routing region is an inclusive placement region (rectilinear area with assigned macros) along
with the following additional constraints:

• For all nets internal to the region (the source and all destinations belong to the region), routing must be
inside the region (that is, such nets cannot be assigned any routing resource which is outside the
region or crosses the region boundaries).

• Nets not internal to the region can be assigned routing resources within the region.
-push_place value

Specifies whether to over-constrain placement for routability, contracting or expanding the size of a
placement region, depending on the region's type. To use this option, you must also specify the route
option (-route yes). This option only applies to IGLOO, Fusion, and ProASIC3 families. You can enter one
of the following values:

Over-constrain
Placement

Value

Description

Yes Adjust the size of a placement region according to its type.

No Do not adjust the size of a placement region. This is the default
value.

Specifying both -route yes and -push_place yes usually creates a tighter placement region (for
example, a normal MxN Inclusive placement region would shrink to (M-2)x(N-2)). On the other hand, the
prohibited region for external nets of Exclusive and Empty Region types would expand to (M+2)x(N+2).

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Description
Unlocked macros in empty or exclusive regions are unassigned from that region. You cannot create
empty regions in areas that contain locked macros.
You can define a rectilinear region only in a PDC file; you cannot define a rectilinear region using the
MultiView Navigator tool.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 123

Use inclusive or exclusive region constraints if you intend to assign logic to a region. An inclusive region
constraint with no macros assigned to it has no effect. An exclusive region constraint with no macros
assigned to it is equivalent to an empty region.

Exceptions
• If macros assigned to a region exceed the area's capacity, an error message appears in the Log

window.

Examples
The following example defines an empty rectangular region.

define_region -name cluster_region1 -type empty 100 46 102 46

The following example defines a rectilinear region with the name RecRegion. This region contains two
rectangular areas.

define_region -name RecRegion -type Exclusive 0 40 3 42 0 77 7 79

The following examples define three regions with three different colors:
define_region -name UserRegion0 -color 128 50 19 60 25

define_region -name UserRegion1 -color 16711935 11 2 55 29

define_region -name UserRegion2 -color 8388736 61 6 69 19

See Also
Create Region
assign_region
Creating Regions
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

delete_buffer_tree
PDC command; instructs the Compile command to remove all buffers and inverters from a given net. In
the IGLOO and ProASIC3 architectures, inverters are considered buffers because all tile inputs can be
inverted.

delete_buffer_tree [netname]+

Arguments
netname

Specifies the names of the nets from which to remove buffer or inverter trees. This command takes a list
of names. You must specify at least one net name. You can use the following wildcard characters in net
names:

Wildcard What It Does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

Design Constraints for Libero SoC v11.8 SP1 User Guide

124

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
• The delete_buffer_tree command is not supported in auxiliary PDC files.

Examples
delete_buffer_tree net1

delete_buffer_tree netData\[*\]

See Also
dont_touch_buffer_tree
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

dont_touch_buffer_tree
PDC command; undoes the delete_buffer_tree command. That is, it restores all buffers and inverters that
were removed from a given net.
Note: This command is not supported in auxiliary PDC files.

dont_touch_buffer_tree [netname]+

Arguments
netname

Specifies the names of the nets from which to restore buffers or inverters. This command takes a list of
names. You must specify at least one net name. Separate each net name with a space. You can use the
following wildcard characters in net names:

Wildcard What It Does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
dont_touch_buffer_tree net1 net2

dont_touch_buffer_tree netData\[*\]

Design Constraints for Libero SoC v11.8 SP1 User Guide

 125

See Also
delete_buffer_tree
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

move_block
PDC command; moves a design block from its original, locked placement by preserving the relative
placement between the instances. You can move the Block to the left, right, up, or down.

Note: If possible, routing is preserved when you move the blocks for IGLOO, SmartFusion, Fusion and ProASCI3
families.

move_block -inst_name instance_name -up y -down y -left x -right x -non_logic value

Arguments
-inst_name instance_name

Specifies the name of the instance to move. If you do not know the name of the instance, run a Compile
report or look at the names shown in the Block tab of the Chip Planner.

-up y

Moves the block up the specified number of rows. The value must be a positive integer.
-down y

Moves the block down the specified number of rows. The value must be a positive integer.
-left x

Moves the block left the specified number of columns. The value must be a positive integer.
-right x

Moves the block right the specified number of columns. The value must be a positive integer.
-non_logic value

Specifies what to do with the non-logic part of the block, if one exists. The following table shows the
acceptable values for this argument:

Value Description

move Move the entire block.

keep Move only the logic portion of the block (COMB/SEQ) and keep the rest
locked in the same previous location, if there is no conflict with other blocks.

 unplace Move only the logic portion of the block (COMB/SEQ) and unplace the rest of
it, such as I/Os and RAM.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command moves a block from its original, locked position to a new position.
You can move the entire block or just the logic part of it. You must use the -non_logic argument to specify
what to do with the non-logic part of the block. You can find placement information about the block in the

http://coredocs.s3.amazonaws.com/Libero/11_8_0/Tool/chipplanner_ug.pdf

Design Constraints for Libero SoC v11.8 SP1 User Guide

126

Block report. From the Tools menu in the designer software, choose Reports > Block > Interface to
display the report that shows the location of the blocks.
The -up, -down, -left, and -right arguments enable you to specify how to move the block from its original
placement. You cannot rotate the block, but the relative placement of macros within the block will be
preserved and the placement will be locked. However, routing will be lost. You can either use the
ChipPlanner tool or run a Block report to determine the location of the block.
The -non_logic argument enables you to move a block that includes non-logic instances, such as RAM or
I/Os that are difficult to move. Once you have moved a part of a block, you can unplace the remaining
parts of the block and then place them manually as necessary.
Note: Microsemi recommends that you move the block left or right by increments of 12. If not,

placement may fail because it violates clustering constraints. Also, Microsemi recommends that
you move the block up or down by increments of three.

Exceptions
• You must import this PDC command as a source file, not as an auxiliary file.
• You must use this PDC command if you want to preserve the relative placement and routing (if

possible) of a block you are instantiating many times in your design. Only one instance will be
preserved by default. To preserve other instances, you must move them using this command.

Examples
The following example moves the entire block (instance name instA) 12 columns to the right and 3 rows up::

move_block -inst_name instA -right 12 -up 3 -non_logic move

The following example moves only the logic portion of the block and unplaces the rest by 24 columns to the
right and 6 rows up.

move_block -inst_name instA –right 24 –up 6 –non_logic unplace

See Also
set_block_options
PDC Reference

move_region
PDC command; moves the named region to the coordinates specified.

move_region region_name [x1 y1 x2 y2]+

move_region -region_name <region_name> -x1 <integer> -y1 <interger> -x2 <integer> -y2 <integer>

Arguments
region_name

Specifies the name of the region to move. This name must be unique.
x1 y1 x2 y2

-x1 <integer> -y1 <integer> -x2 <integer> -y2 <integer>

Specifies the series of coordinate pairs representing the location in which to move the named region.
These rectangles can overlap. They are given as x1 y1 x2 y2, where x1, y1 represents the lower-left
corner of the rectangle and x2 y2 represents the upper-right corner. You must specify at least one set of
coordinates.

Supported Families
SmartFusion2, IGLOO2, SmartFusion, IGLOO, ProASIC3 and Fusion

Design Constraints for Libero SoC v11.8 SP1 User Guide

 127

Exceptions
• None

Examples
This example moves the region named RecRegion to a new region which is made up of two rectangular
areas:

move_region RecRegion 0 40 3 42 0 77 7 79

move_region -region_name UserRegion1 -x1 0 -y1 40 -x2 3 -y2 42

See Also
Move region
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

reserve
PDC command; reserves the named pins in the current device package.

reserve -pinname "list of package pins"

Arguments
-pinname "list of package pins"

Specifies the package pin name(s) to reserve. You can reserve one or more pins.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
reserve -pinname "F2"

reserve -pinname "F2 B4 B3"

reserve -pinname "124 17"

See Also
unreserve

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

reset_floorplan
PDC command; deletes all regions.

reset_floorplan

Design Constraints for Libero SoC v11.8 SP1 User Guide

128

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
reset_floorplan

See Also
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

reset_io
PDC command; restores all attributes of an I/O macro to its default values. Also, if the port is assigned, it
will become unassigned.

reset_io portname -attributes value

Arguments
portname

Specifies the port name of the I/O macro to be reset. You can use the following wildcard characters in port
names:

Wildcard What It Does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

-attributes value

Preserve or not preserve the I/O attributes during incremental flow. The following table shows the
acceptable values for this argument:

Value Description

yes Unassigns all of the I/O attributes and resets them to their default values.

no Unassigns only the port.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Design Constraints for Libero SoC v11.8 SP1 User Guide

 129

Exceptions
None

Examples
reset_io a

Resets the I/O macro “a” to the default I/O attributes and unassigns it.
reset_io b_*

Resets all I/O macros beginning with "b_" to the default I/O attributes and unassigns them.
reset_io b -attributes no

Only unassigns port b from its location.

See Also
Reset attributes on an I/O to default settings

set_io

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

reset_iobank
PDC command; resets an I/O bank’s technology to the default technology, which is specified using the
Designer software in the Device Selection Wizard.

reset_iobank bankname

Arguments
bankname

Specifies the I/O bank to be reset to the default technology. For example, for ProASIC3E devices, I/O
banks are numbered 0-7 (bank0, bank1,.. bank7).

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
Any pins that are assigned to the specified I/O bank but are incompatible with the default technology are
unassigned.

Examples
The following example resets I/O bank 4 to the default technology:

reset_iobank bank4

See Also
Reset an I/O bank to the default settings

set_iobank

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

Design Constraints for Libero SoC v11.8 SP1 User Guide

130

reset_net_critical
PDC command; resets the critical value to its default. Net criticality can vary from 1 to 10, with 1 being the
least critical and 10 being the most. The default is 5. Criticality numbers are used in timing driven place-
and-route.
Increasing a net’s criticality forces place-and-route to keep instances connected to the net as close as
possible, at the cost of other (less critical) nets.

reset_net_critical [netname]+

Arguments
netname

Specifies the name of the net to be reset to the default critical value. You must specify at least one net
name. You can use the following wildcard characters in net names:

Wildcard What It Does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
This example resets the net preset_a:

reset_net_critical preset_A

See Also
Reset net's criticality to default level

set_net_critical

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

set_block_options
PDC command; overrides the compile option for placement or routing conflicts for an instance of a block.

set_block_options -inst_name instance_name -placement_conflicts value -routing_conflicts
value

Arguments
-inst_name instance_name

Design Constraints for Libero SoC v11.8 SP1 User Guide

 131

Specifies the block instance name. If you do not know the name of the instance, run a Block Report
(Design > Reports > Blocks > Interface) or look at the names shown in the Block tab of the Chip
Planner.

-placement_conflicts value.

Specifies what to do when the software encounters a placement conflict. The following table shows the
acceptable values for this argument:

Value Description

error Compile errors out if any instance from a Designer block becomes unplaced
or its routing is deleted. This is the default compile option.

resolve If some instances get unplaced for any reason, the non-conflicting elements
remaining are also unplaced. Basically, if there are any conflicts, nothing from
the block is kept.

keep If some instances get unplaced for any reason, the non-conflicting elements
remaining are preserved but not locked. Therefore, the placer can move them
into another location if necessary.

 lock If some instances get unplaced for any reason, the non-conflicting elements
remaining are preserved and locked.

discard Discards any placement from the block, even if there are no conflicts.

-routing_conflicts value

Specifies what to do when the software encounters a routing conflict. The following table shows the
acceptable values for this argument:

Value Description

error Compile errors out if any route in any preserved net from a Designer block is
deleted.

resolve If a route is removed from a net for any reason, the routing for the non-
conflicting nets is also deleted. Basically, if there are any conflicts, no routes
from the block are kept.

keep If a route is removed from a net for any reason, the routing for the non-
conflicting nets is kept unlocked. Therefore, the router can re-route these
nets.

 lock If routing is removed from a net for any reason, the routing for the non-
conflicting nets is kept as locked, and the router will not change them. This is
the default compile option.

 discard Discards any routing from the block, even if there are no conflicts.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

http://coredocs.s3.amazonaws.com/Libero/11_8_0/Tool/chipplanner_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/11_8_0/Tool/chipplanner_ug.pdf

Design Constraints for Libero SoC v11.8 SP1 User Guide

132

Description
This command enables you to override the compile option for placement or routing conflicts for an
instance of a block.

Exceptions
You must import this PDC command as a source file, not as an auxiliary file.
If placement is discarded, the routing is automatically discarded too.

Examples
This example makes the designer software display an error if any instance from a block becomes unplaced
or the routing is deleted:

set_block_options -inst_name instA -placement_conflicts ERROR -
routing_conflicts ERROR

See Also
move_block
PDC Reference

set_io (SmartFusion2 and IGLOO2)
PDC command; sets the attributes of an I/O for SmartFusion2 and IGLOO2 devices.
You can use the set_io command to assign an I/O technology, the I/O attributes, place, or lock the I/O at a
given pin location. There are three I/O Bank types available in SmartFusion2 and IGLOO2: MSIOD, MSIO
and DDRIO.

set_io portname
[-iostd value]
[-pre_emphasis value]
[-lpe value]
[-ff_io_state value]
[-out_drive value]
[-slew value]
[-res_pull value]
[-schmitt_trigger value]
[-input_delay value]
[-odt_static value]
[-odt_imp value]
[-ff_io_avail value]
[-register value]
[-in_reg value]
[-out_reg value]
[-en_reg value]

Arguments
portname

Specifies the portname of the I/O macro.
-iostd value

Sets the I/O standard for this macro. Choosing a standard allows the software to set other attributes, such
as the slew rate and output loading. If the voltage standard used with the I/O is not compatible with other
I/Os in the I/O bank, then assigning an I/O standard to a port will invalidate its location and automatically
unassign the I/O.
The following table shows a list of supported I/Os by Bank type.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 133

MSIOD MSIO DDRIO

- LVTTL -

- LVCMOS33 -

- PCI -

- LVPECL (Input ONLY) -

- LVDS33 -

LVCMOS12 LVCMOS12 LVCMOS12

LVCMOS15 LVCMOS15 LVCMOS15

LVCMOS18 LVCMOS18 LVCMOS18

LVCMOS25 LVCMOS25 LVCMOS25

SSTL2I SSTL2I SSTL2I (DDR1)

- STL2II SSTL2II (DDR1)

SSTL18I SSTL18I SSTL18I (DDR2)

- SSTL18II SSTL18II (DDR2)

HSTLI HSTLI HSTLI

- - HSTLII

- - SSTL15I (DDR3)

- - SSTL15II (DDR3)

- - LPDDRI

- - LPDDRII

LVDS LVDS -

RSDS RSDS -

MINILVDS MINILVDS -

BUSLVDS (Input ONLY) BUSLVDS -

MLVDS (Input ONLY) MLVDS -

I/O standards support for single and differential I/Os is shown in the table below.

Value Single Differential Description

LVTTL X - (Low-Voltage TTL) A general purpose

Design Constraints for Libero SoC v11.8 SP1 User Guide

134

Value Single Differential Description

standard (EIA/JESDSA) for 3.3 V
applications. It uses an LVTTL input buffer
and a push-pull output buffer.

LVCMOS33 X - (Low-Voltage CMOS for 3.3 Volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 3.3 V
applications.

LVCMOS25 X - (Low-Voltage CMOS for 2.5 Volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 2.5 V
applications.

LVCMOS18 X - (Low-Voltage CMOS for 1.8 Volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 1.8 V
applications. It uses a 3.3 V-tolerant CMOS
input buffer and a push-pull output buffer.

LVCMOS15 X - (Low-Voltage CMOS for 1.5 volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 1.5 V
applications. It uses a 3.3 V-tolerant CMOS
input buffer and a push-pull output buffer.

LVCMOS12 X - (Low-Voltage CMOS for 1.2 volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 1.2 V
applications. This I/O standard is supported
only in ProASIC3L and the IGLOO family of
devices.

LVDS X A moderate-speed differential signaling
system, in which the transmitter generates
two different voltages which are compared at
the receiver. It requires that one data bit be
carried through two signal lines; therefore,
you need two pins per input or output. It also
requires an external resistor termination. The
voltage swing between these two signal lines
is approximately 350mV (millivolts).

LVDS33 X LVDS for 3.3 V

BUSLVDS X 2.5 V BUSLVDS

MLVDS X

MINILVDS X

RSDS X

LVPECL (only
for inputs)

 X PECL is another differential I/O standard. It
requires that one data bit is carried through
two signal lines; therefore, two pins are

Design Constraints for Libero SoC v11.8 SP1 User Guide

 135

Value Single Differential Description

needed per input or output. It also requires
an external resistor termination. The voltage
swing between these two signal lines is
approximately 850mV. When the power
supply is +3.3 V, it is commonly referred to
as low-voltage PECL (LVPECL).

PCI (Peripheral Component Interface) Specifies
support for both 33 MHz and 66 MHz PCI
bus applications. It uses an LVTTL input
buffer and a push-pull output buffer. With the
aid of an external resistor, this I/O standard
can be 5V-compliant for most families.

PCIX (Peripheral Component Interface Extended)
An enhanced version of the PCI specification
that can support higher average bandwidth; it
increases the speed that data can move
within a computer from 66 MHz to 133 MHz.
PCI-X is backward-compatible, which means
that devices can operate at conventional PCI
frequencies (33 MHz and 66 MHz). PCI-X is
also more fault tolerant than PCI.

HSTLI X X (High-Speed Transceiver Logic) A general-
purpose, high-speed 1.5 V bus standard
(EIA/JESD 8-6). It has four classes;
Microsemi SoC supports Class I and II for
IGLOOe and ProASIC3E devices. It requires
a differential amplifier input buffer and a
push-pull output buffer.

HSTLII X X (High-Speed Transceiver Logic) A general-
purpose, high-speed 1.5 V bus standard
(EIA/JESD 8-6). It has four classes;
Microsemi SoC supports Class I and II for
IGLOOe and ProASIC3E devices. It requires
a differential amplifier input buffer and a
push-pull output buffer.

SSTL2I X X (Stub Series Terminated Logic for 2.5 V) A
general-purpose 2.5 V memory bus standard
(JESD8-9). It has two classes; Microsemi
SoC supports both. It requires a differential
amplifier input buffer and a push-pull output
buffer.

SSTL2II X X See SSTL2I above.

SSTL15I X X (Stub Series Terminated Logic for 1.5 V) A
general-purpose 1.5 V memory bus standard
(JESD8-9). It has two classes; Microsemi
SoC supports both. It requires a differential
amplifier input buffer and a push-pull output
buffer

Design Constraints for Libero SoC v11.8 SP1 User Guide

136

Value Single Differential Description

SSTL15II X X See SSTL15I

SSTL18II X X (Stub Series Terminated Logic for 1.8 V) A
general-purpose 1.8 V memory bus standard
(JESD8-9). It has two classes; Microsemi
SoC supports both. It requires a differential
amplifier input buffer and a push-pull output
buffer

-pre_emphasis value

The pre-emphasis rate is the amount of rise or fall time an input signal takes to get from logic low to logic
high or vice versa. It is commonly defined to be the propagation delay between 10% and 90% of the
signal's voltage swing. Possible values are shown in the table below. The output buffer has a
programmable slew rate for both high-to-low and low-to-high transitions. The low rate is incompatible with
3.3 V PCI requirements.

Value Description

NONE Sets to none (default)

MIN Sets to minimum

MEDIUM Sets to medium

MAX Sets to maximum

-lpe value

Sets the state at which your device exits from Low Power mode. Possible values are shown in the table
below.

Value Description

OFF Default; no LPE set

Wake_on_Change Exits from Low Power mode on change

Wake_on_0 Exits from Low Power mode on 0

Wake_on_1 Exits from Low Power mode on 1

-ff_io_state value

Preserves the previous state of the I/O. By default, all the I/Os become tristated when the device goes into
Flash*Freeze mode. (A tristatable I/O is an I/O with three output states: high, low, and high impedance.)
You can override this default using the FF_IO_STATE attribute. When you set this attribute to
LAST_VALUE, the I/O remains in the same state in which it was functioning before the device went into
Flash*Freeze mode. Possible values are shown in the table below.

Value Description

TRISTATE Sets the I/O to tristate (default).

LAST_VALUE Preserves the previous state of the I/O.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 137

-out_drive value

Sets the strength of the output buffer to 2, 4, 6, 8, 10, 12, 16, or 20 in mA, weakest to strongest. The list of
I/O standards for which you can change the output drive and the list of values you can assign for each I/O
standard is family-specific. Not all I/O standards have a selectable output drive strength. Also, each I/O
standard has a different range of legal output drive strength values. The values you can choose from
depend on which I/O standard you have specified for this command. See the Slew and Out_drive Settings
table under "Exceptions" in this topic for possible values. The table below lists acceptable values.

Value Description

2 Sets the output drive strength to 2mA

4 Sets the output drive strength to 4mA

6 Sets the output drive strength to 6mA

8 Sets the output drive strength to 8mA

10 Sets the output drive strength to 10mA

12 Sets the output drive strength to 12mA

16 Sets the output drive strength to 16mA

20 Sets the output drive strength to 20mA

-slew value

Sets the output slew rate. Slew control affects only the falling edges for some families. Slew control
affects both rising and falling edges. Not all I/O standards have a selectable slew. Whether you can use
the slew attribute depends on which I/O standard you have specified for this command.
 See the Slew and Out_drive Settings table under Exceptions in this topic. The table below shows the
acceptable values for the -slew attribute.

Value Description

SLOW Sets the I/O slew to slow

MEDIUM Sets the I/O slew to medium

MEDIUM_FAST Sets the I/O slew to medium fast

FAST Sets the I/O slew to fast

-res_pull value

Allows you to include a weak resistor for either pull-up or pull-down of the input buffer. Not all I/O
standards have a selectable resistor pull option. The following table shows the acceptable values for the -
res_pull attribute:

Value Description

up Includes a weak resistor for pull-up of the input buffer

down Includes a weak resistor for pull-down of the input buffer

Design Constraints for Libero SoC v11.8 SP1 User Guide

138

Value Description

none Does not include a weak resistor

-schmitt_trigger value

Specifies whether this I/O has an input chmitt trigger. The schmitt trigger introduces hysteresis on the I/O
input. This allows very slow moving or noisy input signals to be used with the part without false or multiple
I/O transitions taking place in the I/O. The following table shows the acceptable values for the -
schmitt_trigger attribute:

Value Description

on Turns the schmitt trigger on

off Turns the schmitt trigger off

-input_delay value

Specifies whether this I/O has an input delay. You can specify an input delay between 0 and 63. The input
delay is not a delay value but rather a selection from 0 to 63. The actual value is a function of the
operating conditions and is automatically computed by the delay extractor when a timing report is
generated. The following table shows the acceptable values for the -input_delay attribute:

Value Description

off This I/O does not have an input delay

0 Sets the input delay to 0

1 Sets the input delay to 1

2 Sets the input delay to 2

... ...

63 Sets the input delay to 63

-odt_static value

On-die termination (ODT) is the technology where the termination resistor for impedance matching in
transmission lines is located inside a semiconductor chip instead of on a printed circuit board.
Note: ODT is not allowed for 2.5V or higher single-ended signals. It is allowed for differential signals.
Possible value are listed in the table below.

Value Description

on Yes, the termination resistor for impedance matching is located inside the chip

off No, the termination resistor is on the printed circuit board

-odt_imp value

On-die termination (ODT) is the technology where the termination resistor for impedance matching in
transmission lines is located inside a semiconductor chip instead of on a printed circuit board.
Note: ODT is not allowed for 2.5V or higher single-ended signals. It is allowed for differential signals.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 139

Port Configuration (PC) bits are static configuration bits set during programming to configure the IO(s) as
per your choice. See your device datasheet for a full range of possible values.

-ff_io_availvalue

Indicates the I/O is available in Flash*Freeze mode. The table below lists possible values.

Value Description

yes I/O is available in Flash*Freeze mode

no Default; I/O is unavailable in Flash*Freeze mode

-register value

Specifies whether the register will be combined into the I/O. If this option is yes, the combiner combines
the register into the I/O module if possible. I/O registers are off by default. The following table shows the
acceptable values for the -register attribute:

Value Description

yes Register combining is allowed on this I/O

no Register combining is not allowed on this I/O

-in_reg value

Specifies whether the input register will be combined into the I/O. The –register option must be set to yes
to be enable -in_reg. If in_reg is set to yes, the combiner combines the register into the I/O module if
possible. This is off by default. The following table shows the acceptable values for the –in_reg attribute:

Value Description

yes Input register combining is allowed on this I/O

no Input register combining is not allowed on this I/O

-out_reg value

Specifies whether the output register will be combined into the I/O. The –register option must be set to yes
to enable -out_reg. If -out_reg is set to yes, the combiner combines the register into the I/O module if
possible. This is off by default. The following table shows the acceptable values for the –out_reg attribute:

Value Description

yes Output register combining is allowed on this I/O

no Output register combining is not allowed on this I/O

-en_reg value

Specifies whether the enable register will be combined into the I/O. The –register option must be set to
yes to enable -en_reg. If -en_reg is set to yes, the combiner combines the register into the I/O module if
possible. This is off by default. The following table shows the acceptable values for the -en_reg attribute:

Value Description

yes Enable register combining is allowed on this I/O

no Enable register combining is not allowed on this I/O

Design Constraints for Libero SoC v11.8 SP1 User Guide

140

Examples
set_io IO_in\[2\] -iostd LVCMOS25 \

-slew slow \

-schmitt_trigger off \

-input_delay off \

-ff_io_avail no \

 See Also
I/O Register Combining
Assign I/O to pin

reset_io

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

set_io (RTG4)
PDC command; sets the attributes of an I/O for RTG4 devices.
You can use the set_io command to assign an I/O technology, the I/O attributes, place, or lock the I/O at a
given pin location. There are three I/O Bank types available in RTG4: MSIOD, MSIO and DDRIO.

set_io portname
[-direction input | output]
[-iostd value]
[-pre_emphasis value]
[-ff_io_state value]
[-out_drive value]
[-out_load value]
[-slew value]
[-res_pull value]
[-schmitt_trigger value]
[-input_delay value]
[-odt_static value]
[-odt_imp value]
[-register value]
[-in_reg value]
[-out_reg value]
[-en_reg value]

Arguments
portname

Specifies the portname of the I/O macro.
-direction value

Specifies the direction of the I/O ports. Valid values are input, output, inout.
-iostd value

Sets the I/O standard for this macro. Choosing a standard allows the software to set other attributes, such
as the slew rate and output loading. If the voltage standard used with the I/O is not compatible with other
I/Os in the I/O bank, then assigning an I/O standard to a port will invalidate its location and automatically
unassign the I/O.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 141

The following table shows a list of supported I/Os by Bank type.

MSIOD MSIO DDRIO

- LVTTL -

- LVCMOS33 -

- PCI -

- LVPECL (Input ONLY) -

- LVDS33 -

LVCMOS12 LVCMOS12 LVCMOS12

LVCMOS15 LVCMOS15 LVCMOS15

LVCMOS18 LVCMOS18 LVCMOS18

LVCMOS25 LVCMOS25 LVCMOS25

SSTL2I SSTL2I SSTL2I (DDR1)

SSTL2II STL2II SSTL2II (DDR1)

SSTL18I SSTL18I SSTL18I (DDR2)

SSTL18II SSTL18II SSTL18II (DDR2)

HSTLI HSTLI HSTLI

- - HSTLII

- - SSTL15I (DDR3)
Only for IOs used by FDDR

- - SSTL15II (DDR3)
Only for IOs used by FDDR

- - LPDDRI

- - LPDDRII

LVDS LVDS -

RSDS RSDS -

MINILVDS MINILVDS -

BUSLVDS (Input ONLY) BUSLVDS -

MLVDS (Input ONLY) MLVDS -

I/O standards support for single and differential I/Os is shown in the table below.

Design Constraints for Libero SoC v11.8 SP1 User Guide

142

Value Single Differential Description

LVTTL X - (Low-Voltage TTL) A general purpose
standard (EIA/JESDSA) for 3.3 V
applications. It uses an LVTTL input buffer
and a push-pull output buffer.

LVCMOS33 X - (Low-Voltage CMOS for 3.3 Volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 3.3 V
applications.

LVCMOS25 X - (Low-Voltage CMOS for 2.5 Volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 2.5 V
applications.

LVCMOS18 X - (Low-Voltage CMOS for 1.8 Volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 1.8 V
applications. It uses a 3.3 V-tolerant CMOS
input buffer and a push-pull output buffer.

LVCMOS15 X - (Low-Voltage CMOS for 1.5 volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 1.5 V
applications. It uses a 3.3 V-tolerant CMOS
input buffer and a push-pull output buffer.

LVCMOS12 X - (Low-Voltage CMOS for 1.2 volts) An
extension of the LVCMOS standard (JESD 8-
5) used for general-purpose 1.2 V
applications. This I/O standard is supported
only in ProASIC3L and the IGLOO family of
devices.

LVDS X A moderate-speed differential signaling
system, in which the transmitter generates
two different voltages which are compared at
the receiver. It requires that one data bit be
carried through two signal lines; therefore,
you need two pins per input or output. It also
requires an external resistor termination. The
voltage swing between these two signal lines
is approximately 350mV (millivolts).

LVDS33 X LVDS for 3.3 V

BUSLVDS X 2.5 V BUSLVDS

MLVDS X

MINILVDS X

RSDS X

LVPECL (only X PECL is another differential I/O standard. It

Design Constraints for Libero SoC v11.8 SP1 User Guide

 143

Value Single Differential Description

for inputs) requires that one data bit is carried through
two signal lines; therefore, two pins are
needed per input or output. It also requires
an external resistor termination. The voltage
swing between these two signal lines is
approximately 850mV. When the power
supply is +3.3 V, it is commonly referred to
as low-voltage PECL (LVPECL).

HSTLI X X High-Speed Transceiver Logic Class I. A
general-purpose, high-speed 1.5 V bus
standard (EIA/JESD 8-6). It has four classes;
Microsemi SoC supports Class I and Class II.
It requires a differential amplifier input buffer
and a push-pull output buffer.

HSTLII X X High-Speed Transceiver Logic Class II. A
general-purpose, high-speed 1.5 V bus
standard (EIA/JESD 8-6). It has four classes;
Microsemi SoC supports Class I and Class II.
It requires a differential amplifier input buffer
and a push-pull output buffer.

HSTL18I X X High-Speed Transceiver Logic 1.8 V Class I.
A general-purpose, high-speed 1.8 V bus. It
has four classes; Microsemi SoC supports
Class I and Class II. It requires a differential
amplifier input buffer and a push-pull output
buffer.

HSTL18II X X High-Speed Transceiver Logic 1.8 V Class II.
A general-purpose, high-speed 1.8 V bus. It
has four classes; Microsemi SoC supports
Class I and Class II. It requires a differential
amplifier input buffer and a push-pull output
buffer.

SSTL2I X X (Stub Series Terminated Logic for 2.5 V) A
general-purpose 2.5 V memory bus standard
(JESD8-9). It has two classes: Class I and
Class II; Microsemi SoC supports both. It
requires a differential amplifier input buffer
and a push-pull output buffer.

SSTL2II X X See SSTL2I above.

SSTL15I X X Stub Series Terminated Logic for 1.5 V Class
I. A general-purpose 1.5 V memory bus
standard (JESD8-9). It has two classes:
Class I and Class II; Microsemi supports
both. It requires a differential amplifier input
buffer and a push-pull output buffer.

SSTL15II X X Stub Series Terminated Logic for 1.5 V Class
II. See SSTL15I above.

Design Constraints for Libero SoC v11.8 SP1 User Guide

144

Value Single Differential Description

SSTL18I X X Stub Series Terminated Logic for 1.8 V Class
I. A general-purpose 1.8 V memory bus
standard (JESD8-9). It has two classes;
Microsemi SoC supports both. It requires a
differential amplifier input buffer and a push-
pull output buffer.

SSTL18II X X Stub Series Terminated Logic for 1.8 V Class
II. A general-purpose 1.8 V memory bus
standard (JESD8-9). It has two classes;
Microsemi SoC supports both. It requires a
differential amplifier input buffer and a push-
pull output buffer.

LPDDRI X X

LPDDRII X X

-pre_emphasis value

The pre-emphasis rate is the amount of rise or fall time an input signal takes to get from logic low to logic
high or vice versa. It is commonly defined to be the propagation delay between 10% and 90% of the
signal's voltage swing. Possible values are shown in the table below. The output buffer has a
programmable slew rate for both high-to-low and low-to-high transitions.

Value Description Applicable to I/O Standards

NONE Sets to none
(default)

LVDS, RSDS

MIN Sets to minimum LVDS, RSDS

MEDIUM Sets to medium RSDS only

MAX Sets to maximum LVDS, RSDS

-ff_io_state value

Preserves the previous state of the I/O. By default, all the I/Os become tristated when the device goes into
Flash*Freeze mode. (A tristatable I/O is an I/O with three output states: high, low, and high impedance.)
You can override this default using the FF_IO_STATE attribute. When you set this attribute to
LAST_VALUE, the I/O remains in the same state in which it was functioning before the device went into
Flash*Freeze mode. Possible values are shown in the table below.

Value Description

TRISTATE Sets the I/O to tristate (default).

LAST_VALUE Preserves the previous state of the I/O.

-out_drive value

Sets the strength of the output buffer to 2, 4, 6, 8, 10, 12, 16, or 20 in mA, weakest to strongest. The list of
I/O standards for which you can change the output drive and the list of values you can assign for each I/O
standard is family-specific and I/O Bank Type -specific. Not all I/O standards have a selectable output

Design Constraints for Libero SoC v11.8 SP1 User Guide

 145

drive strength. Also, each I/O standard has a different range of legal output drive strength values. The
values you can choose from depend on which I/O standard you have specified for this command. The
table below lists acceptable values.

Value (mA) Description

2 Sets the output drive strength to 2mA

4 Sets the output drive strength to 4mA

6 Sets the output drive strength to 6mA

8 Sets the output drive strength to 8mA

10 Sets the output drive strength to 10mA

12 Sets the output drive strength to 12mA

16 Sets the output drive strength to 16mA

20 Sets the output drive strength to 20mA

I/O Standard User -set Valid Output Drive Values (mA)
Per I/O Bank Type

Valid Output
Drive value for

Die

 MSIO MSIOD DDRIO

LVTTL 2
4
8
12
16

- - 2
4
8
12
16

LVCMOS33 2
4
8
12
16

- - 2
4
8
12
16

LVCMOS12 2
4

2
4
6

2
4
6

2
4
6

LVCMOS15 2
4
6
8

2
4
6

2
4
6
8
10
12

2
4
6
8
10
12

LVCMOS18 2
4
6
8

2
4
6
8

2
4
6
8

2
4
6
8

Design Constraints for Libero SoC v11.8 SP1 User Guide

146

I/O Standard User -set Valid Output Drive Values (mA)
Per I/O Bank Type

Valid Output
Drive value for

Die

10
12

10
12
16

10
12
16

-out_load value

Sets the output load (in pF) of output signals.
-slew value

Sets the output slew rate. Slew control affects only the falling edges for some families. Slew control
affects both rising and falling edges. Not all I/O standards have a selectable slew. Whether you can use
the slew attribute depends on which I/O standard you have specified for this command.
 The table below lists the acceptable values for the -slew attribute.

Value Description I/O Standard IO Bank Type

SLOW Sets the I/O
slew to slow

LVCMOS12 LVCMOS15
LVCMOS18

MSIO, MSIOD, DDRIO

MEDIUM Sets the I/O
slew to
medium

LVCMOS12 LVCMOS15
LVCMOS18

DDRIO

FAST Sets the I/O
slew to fast

LVCMOS12 LVCMOS15 DDRIO

-res_pull value

Allows you to include a weak resistor for either pull-up or pull-down of the input buffer. Not all I/O
standards have a selectable resistor pull option. The following table shows the acceptable values for the -
res_pull attribute for different I/O Standard and I/O Bank combinations:

Value I/O Standard I/O Bank Type Description

up LVTTL, LVCMOS33 PCI

MSIO Includes a weak
resistor for pull-up of
the input buffer

 LVCMOS12, LVCMOS15,
LVCMOS18, LVCMOS25

MSIO/MSIOD/
DDRIO

down LVTTL, LVCMOS33 PCI MSIO Includes a weak
resistor for pull-down
of the input buffer

 LVCMOS12, LVCMOS15,
LVCMOS18, LVCMOS25

MSIO/MSIOD/
DDRIO

none LVTTL, LVCMOS33 PCI MSIO Does not include a
weak resistor (Default
value)

 LVCMOS12, LVCMOS15, MSIO/MSIOD/

Design Constraints for Libero SoC v11.8 SP1 User Guide

 147

Value I/O Standard I/O Bank Type Description

LVCMOS18, LVCMOS25 DDRIO

-schmitt_trigger value

Specifies whether this I/O has an input chmitt trigger. The schmitt trigger introduces hysteresis on the I/O
input. This allows very slow moving or noisy input signals to be used with the part without false or multiple
I/O transitions taking place in the I/O. The following table shows the acceptable values for the -
schmitt_trigger attribute:

Value Description

on Turns the schmitt trigger on

off Turns the schmitt trigger off (Default value)

The applicable valid values are dependent on the I/O Standard and the I/O Bank Type.

I/O Standard I/O Bank Type

 MSIO MSIOD DDRIO

LVTTL Off
On

N/A N/A

LVCMOS33 Off
On

N/A N/A

PCI Off
On

N/A N/A

LVCMOS12 Off
On

Off
On

Off
On

LVCMOS15 Off
On

Off
On

Off
On

LVCMOS18 Off
On

Off
On

Off
On

LVCMOS25 Off
On

Off
On

Off
On

-input_delay value

Specifies whether this I/O has an input delay. You can specify an input delay between 0 and 63. The input
delay is not an absolute delay value but rather a selection from 0 to 63. The actual value is a function of
the operating conditions and is automatically computed by the delay extractor when a timing report is
generated. The following table shows the acceptable values for the -input_delay attribute:

Value Description

off This I/O does not have an input delay (Default value)

0 Sets the input delay to 0

Design Constraints for Libero SoC v11.8 SP1 User Guide

148

Value Description

1 Sets the input delay to 1

2 Sets the input delay to 2

... ...

63 Sets the input delay to 63

-odt_static value

On-die termination (ODT) is the technology where the termination resistor for impedance matching in
transmission lines is located inside a semiconductor chip instead of on a printed circuit board.
Note: ODT is not allowed for 2.5V or higher single-ended signals. It is allowed for differential signals.
Possible value are listed in the table below.

Value Description

on Yes, the termination resistor for impedance matching is located inside the chip

off No, the termination resistor is on the printed circuit board (Default value)

The valid value for each I/O Standard and I/O Bank Type combination is listed in the table below.

I/O Standard I/O Bank Type

 MSIO MSIOD DDRIO

LVPECL Off
On

N/A N/A

LVDS33 Off
On

N/A N/A

SSTL18I (DDR2) Off
On

Off
On

Off
On

SSTL18II (DDR2) Off
On

Off
On

Off
On

HSTL18I Off
On

Off
On

Off
On

HSTL18II N/A N/A Off
On

HSTLI Off Off Off
On

HSTLII Off Off Off
On

SSTL15I (DDR3) N/A N/A Off
On

Design Constraints for Libero SoC v11.8 SP1 User Guide

 149

I/O Standard I/O Bank Type

SSTL15II (DDR3) N/A N/A Off
On

LPDDRI N/A N/A Off
On

LPDDRII N/A N/A Off
On

LVDS Off
On

Off
On

N/A

RSDS Off
On

Off
On

N/A

MINILVDS Off
On

Off
On

N/A

BUSLVDS Off
On

Off
On

N/A

MLVDS Off
On

Off
On

N/A

-odt_imp value

On-die termination (ODT) is the technology where the termination resistor for impedance matching in
transmission lines is located inside a semiconductor chip instead of on a printed circuit board.
Note: ODT is not allowed for 2.5V or higher single-ended signals. It is allowed for differential signals.
The valid value for each I/O Standard and I/O Bank type is listed in the table below. When the value for an
I/O standard is not listed, the impedance value is fixed for the specific I/O standard and is not user-
selectable.

I/O Standard I/O Bank Type

 MSIO MSIOD DDRIO

SSTL18I (DDR2) 50
75 150

50
75
150

50
75
150

SSTL18II (DDR2) 50
75 150

50
75
150

50
75
150

HSTL18I 50
75 150

50
75
150

50
75
150

HSTL18II - - 50
75
150

LPDDRI - - 50
75

Design Constraints for Libero SoC v11.8 SP1 User Guide

150

I/O Standard I/O Bank Type

150

LPDDRII - - 50
75
150

SSTL15I (DDR3) - - 20
30
40
60
120

SSTL15II (DDR3) - - 20
30
40
60
120

Port Configuration (PC) bits are static configuration bits set during programming to configure the IO(s) as
per your choice. See your device datasheet for a full range of possible values.

-register value

Specifies whether the register will be combined into the I/O. If this option is yes, the combiner combines
the register into the I/O module if possible. I/O registers are off by default. The following table shows the
acceptable values for the -register attribute:

Value Description

yes Register combining is allowed on this I/O

no Register combining is not allowed on this I/O

-in_reg value

Specifies whether the input register will be combined into the I/O. The –register option must be set to yes
to be enable -in_reg. If in_reg is set to yes, the combiner combines the register into the I/O module if
possible. This is off by default. The following table shows the acceptable values for the –in_reg attribute:

Value Description

yes Input register combining is allowed on this I/O

no Input register combining is not allowed on this I/O

-out_reg value

Specifies whether the output register will be combined into the I/O. The –register option must be set to yes
to enable -out_reg. If -out_reg is set to yes, the combiner combines the register into the I/O module if
possible. This is off by default. The following table shows the acceptable values for the –out_reg attribute:

Value Description

yes Output register combining is allowed on this I/O

no Output register combining is not allowed on this I/O

Design Constraints for Libero SoC v11.8 SP1 User Guide

 151

-en_reg value

Specifies whether the enable register will be combined into the I/O. The –register option must be set to
yes to enable -en_reg. If -en_reg is set to yes, the combiner combines the register into the I/O module if
possible. This is off by default. The following table shows the acceptable values for the -en_reg attribute:

Value Description

yes Enable register combining is allowed on this I/O

no Enable register combining is not allowed on this I/O

Examples
set_io IO_in\[2\] -iostd LVCMOS25 \

-slew slow \

-schmitt_trigger off \

-input_delay off \

 See Also
I/O Register Combining
Assign I/O to pin

reset_io

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

set_iobank (SmartFusion2, IGLOO2, and RTG4)
PDC command; sets the input/output supply voltage (vcci) and the input reference voltage (vref) for the
specified I/O bank.
DDRIO banks have a dedicated vref pin and you do not need to set any pin on these banks. (See the device
datasheet to see which banks are of type DDRIO.)
Diff I/Os do not need a vref pin.

set_iobank bankname
[-vcci vcci_voltage]
[-vref vref_voltage]
[-fixed value]
[-vrefpins value]
[-updateiostd value]

Arguments
bankname

 Specifies the name of the bank. I/O banks are numbered 0 through N (bank0, bank1,...bankN). See the
datasheet for your device to determine how many banks it has.

-vcci vcci_voltage

Sets the input/output supply voltage. You can enter one of the following values:

Vcci
Voltage

Compatible Standards

Design Constraints for Libero SoC v11.8 SP1 User Guide

152

Vcci
Voltage

Compatible Standards

3.3 V LVTTL, LVCMOS 3.3, PCI 3.3, LVPECL

2.5 V LVCMOS 2.5, SSTL2 (Class I and II), LVDS, BUSLVDS, MLVDS,
MINILVDS, RSDS

1.8 V LVCMOS 1.8, LPDDRI, LPDDRII, SSTL18I

1.5 V LVCMOS 1.5, SSTL 1.5 (Class I and II), HSTL (Class I and II)

1.2 V LVCMOS 1.2

-vref vref_voltage

Sets the input reference voltage. You can enter one of the following values:

Vref Voltage Compatible Standards

1.25 V SSTL2 (Class I and II)

1.0 V SSTL18 (Class I and II), LPDDR (Class I and II)

0.75 V SSTL15 (Class I and II), HSTL (Class I and Class II)

-fixed value

Specifies if the I/O technologies (vcci and vccr voltage) assigned to the bank are locked. You can enter
one of the following values:

Value Description

yes The technologies are locked.

no The technologies are not locked.

-vrefpins value

Specifies if the I/O technologies (vcci and vccr voltage) assigned to the bank are locked. You can enter
one of the following values:

Value Description

default Because the VREF pins are not locked, the I/O Bank Assigner can assign a
VREF pin.

pinnum The specified VREF pin(s) are locked if the -fixed option is yes. The I/O Bank
Assigner cannot remove locked VREF pins.

-updateiostd value

Specifies if the I/O technologies (vcci and vccr voltage) assigned to the bank are locked. You can enter
one of the following values:

Value Description

Design Constraints for Libero SoC v11.8 SP1 User Guide

 153

Value Description

yes If there are I/O's placed on the bank, we keep the placement and change the
host to one which is compatible with this bank setting. Check the I/O Attribute
to see the one used by the tool.

no If there are I/O's placed and locked on the bank, the command will fail. If they
are placed I/Os they will be unplaced.

Exceptions
Any pins assigned to the specified I/O bank that are incompatible with the default technology are
unassigned.

Examples
The following example assigns 3.3 V to the input/output supply voltage (vcci) and 1.5 V to the input
reference voltage (vref) for I/O bank 0.

set_iobank bank0 -vcci 3.3 -vref 1.5

The following example shows that even though you can import a set_iobank command with the -vrefpins
argument set to "default", the exported PDC file will show the specific default pins instead of "default."
Imported PDC file contains:

set_iobank bank3 -vcci 3.3 -vref 1.8 -fixed yes -vrefpins {default}

Exported PDC file contains:
set_iobank bank3 -vcci 3.3 -vref 1.8 -fixed yes -vrefpins {N3 P8 M8}

See Also
Configure I/O Bank

reset_io

reset_iobank

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

set_location
PDC command; assigns the specified macro to a particular location on the chip.

set_location macro_name -fixed value x y

Arguments
macro_name

Specifies the name of the macro in the netlist to assign to a particular location on the chip.
-fixed value

Sets whether the location of this instance is fixed (that is, locked). Locked instances are not moved during
layout. The default is yes. The following table shows the acceptable values for this argument:

Value Description

yes The location of this instance is locked.

Design Constraints for Libero SoC v11.8 SP1 User Guide

154

Value Description

no The location of this instance is unlocked.

 x y

The x and y coordinates specify where to place the macro on the chip. Use the ChipPlanner tool to
determine the x and y coordinates of the location.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
This example assigns and locks the macro with the name "mem_data_in\[57\]" at the location x=7, y=2:

set_iobank mem_data_in\[57\] -fixed no 7 2

See Also
Assign macro to location
set_multitile_location
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

set_multitile_location
PDC command; assigns specified two-tile and four-tile macros to specified locations on the chip. Use this
command only for multi-tile, flip-flop macros and, in some cases, enable flip-flop macros).

set_multitile_location macro_name [-fixed value]\

-location {x y} \

-tile {name1 relative_x1 relative_y1} \

-tile {name2 relative_x2 relative_y2} \

[-tile {name3 relative_x3 relative_y3} \]

[-tile {name4 relative_x4 relative_y4} \]

Arguments
macro_name

Specifies the hierarchical name of the macro in the netlist to assign to a particular location on the chip.
-fixed value

Sets whether the location of this set of macros is fixed (that is, locked). Locked macros are not moved
during layout. The default is yes. The following table shows the acceptable values for this argument:

Value Description

yes The location of this instance is locked.

Design Constraints for Libero SoC v11.8 SP1 User Guide

 155

Value Description

no The location of this instance is unlocked.

-location {x y}
The x and y coordinates specify the absolute placement of the macro on the chip. You can use the
ChipPlanner tool to determine the x and y coordinates of the location.

-tile {name1 relative_x1 relative_y1}

Specifies the hierarchical name and location, relative to the macro specified as the macro_name, of the
first tile in a two- or four-tile macro. The relative placement of macro name1 inside the macro cannot be
offset by more than one. (See Notes below for placement rules.) If the macro uses four-tile macros, then
you must define all four tiles. Likewise, if the macro uses two-tile macros, you must define both tiles.
You can place the following two-tile and four-tile macros with the set_multitile_location command:

Four-tile macro

DFN1P1C1 DFI1P1C1 DFN0P1C1 DFI0P1C1

Two-tile macro

DLN1P1C1 DLI1P1C1 DLN0P1C1 DLI0P1C1

Due to the ProASIC3 architecture, if the CLR and PRE pins are NOT driven by a clock net (global,
quadrant or local clock net), the enable flip-flop macros (shown below) are mapped to two-tile flip-flop
macros. When CLR and PRE pins are not driven by a clock net, you must use the set_multitile_location
command instead of the set_location command.

DFN1E1C0
 DFN0E1C1
 DFN1E0P1
 DFN0E0P0
 DFI1E1C0
 DFI0E1P1
 DFI1E0P0

DFN0E1C0
 DFN1E0C1
 DFN0E0P1
 DFI1E1C1
 DFI0E1C0
 DFI1E0P1
 DFI0E0P0

DFN1E0C0
 DFN0E0C1
 DFN1E1P0
 DFI0E1C1
 DFI1E0C0
 DFI0E0P1

DFN0E0C0
 DFN1E1P1
 DFN0E1P0
 DFI1E0C1
 DFI0E0C0
 DFI1E1P0

DFN1E1C1
 DFN0E1P1
 DFN1E0P0
 DFI0E0C1
 DFI1E1P1
 DFI0E1P0

During compile, Designer maps the specified enable flip-flop macro to a two-tiled macro.
If the CLR and PRE pins are driven by a clock net, Designer maps these macros to one tile during
compile. In this case, you cannot use the set_multitile_location command to place them. Instead, you
must use the set_location command.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Description
For two-tile flip-flop macros, the software appends U0 and U1 to the macro name. For four-tile flip-flop
macros, the software appends U0, U1, U2 and U3 to the macro name. The macros specified in the -tile
option cannot be offset by more than one.
To ensure efficiency, you must use local connections between certain tiles in the macros. The distance
between U0 and U1, U1 and U2, and U2 and U3 must not be more than one in either direction (X or Y).
The required local connection between tiles is denoted by the dashes below:

Four-tile macros: U0 --- U1 --- U2 --- U3 Two-tile macros: U0 --- U1

Design Constraints for Libero SoC v11.8 SP1 User Guide

156

Examples of possible placement configurations:

Exceptions
• None

Examples
This example assigns and locks the macro with instance name “multi_tileff/U0 “ at the location
X=10, Y=10 by specifying the relative positions of all the macros.
set_multitile_location multi_tileff -location {10 10} \

 -tile { multi_tileff/U0 0 0 } \

 -tile { multi_tileff/U1 0 1 } \

 -tile { multi_tileff/U2 0 2 } \

 -tile { multi_tileff/U3 0 3 } -fixed yes

As a result of this command, the four-tile macro placement looks like this:

The second example shows you how to configure a two-tile macro:
set_multitile_location multi_tileff -location {10 10} \

 -tile { multi_tileff/U0 0 0 } \

 -tile { multi_tileff/U1 1 0 }

As a result of this command, the two-tile macro placement looks like this:

Design Constraints for Libero SoC v11.8 SP1 User Guide

 157

See Also
Assign macro to location

set_location

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

set_net_critical
PDC command; sets the net criticality, which influences place-and-route in favor of performance.

set_net_criticalcriticality_number [hier_net_name]+

Arguments
criticality_number

Sets the criticality level from 1 to 10, with 1 being the least critical and 10 being the most critical. The
default is 5. Criticality numbers are used in timing-driven place and route.

hier_net_name

Specifies the net name, which can be an AFL (Flattened Netlist) net name or a net regular expression
using wildcard characters. You must specify at least one net name. You can use the following wildcard
characters in names:

Wildcard What It Does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

[] Matches any single character among those listed between brackets (that
is, [A-Z] matches any single character in the A-to-Z range)

Note: This command must have at least two parameters.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Description
Increasing a net’s criticality forces place-and-route to keep instances connected to the specified net as
close as possible at the cost of other (less critical) nets.

Exceptions
• The net names are AFL names, which means they must be visible in SmartTime and ChipPlanner.

Design Constraints for Libero SoC v11.8 SP1 User Guide

158

Examples
This example sets the criticality level to 9 for all addr nets:

set_net_critical 9 addr*

See Also
Set Net's Criticality

reset_net_critical

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

set_port_block
PDC command; sets properties on a port in the block flow. This PDC command applies to only one I/O.

set_port_block -name portName -remove_ios value -add_interface value]

Arguments
-name portName

Specify the name of the port.
-remove_ios value

Sets whether or not to remove I/Os connected to the specified port from the netlist. The following table
shows the acceptable values for this argument:

Value Description

yes Remove I/Os connected to the specified port from the netlist.

no Do not remove I/Os connected to the specified port from the netlist.

-add_interface value

Adds an interface macro each time the fanout of the net connected to the port is greater than the value
specified. The value must be a positive integer.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
• You must import this PDC command as a source file, not as an auxiliary file.
• TRIBUFF and BIBUF macros cannot be removed even if you specify "-remove_ios yes".
• You must enable the block flow before calling this command. To enable the block flow, either select

the "Enable block mode" option in the Setup Design dialog box, or use the -block argument in the
new_design Tcl command to enable block mode.

Examples
This example removes any I/Os connected to portA, excluding TRIBUFF and BIBUF I/Os:

set_port_block -name portA -remove_ios yes

Design Constraints for Libero SoC v11.8 SP1 User Guide

 159

See Also
new_design

PDC Reference

set_preserve
PDC command; sets a preserve property on instances before compile, so compile will preserve these
instances and not combine them.

set_preserve hier_inst_name

Arguments
hier_inst_name

Specifies the full hierarchical name of the macro in the netlist to preserve.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
• This command is not supported in post compiled designs. If importing a PDC file that includes this

command, you must import it as a source file.

Examples
In some cases, you may want to preserve some instances for timing purposes. For example, you may
want registers to be combined with input of a bibuf and keep the output as it is.
If the outbuf of a bi-directional signal test[1] needs to be preserved while inbuf is required to combine with
the registers, use the following PDC commands:

set_io test\[1\] -REGISTER yes

set_preserve test\[31\]

If any internal instance is required to be preserved, use the set_preserve command as shown in the
following example:

set_preserve top/inst1 top/inst2

See Also
PDC Syntax Conventions
PDC Naming Conventions
I/O Register Combining
PDC Reference

unassign_global_clock
PDC command; demotes clock nets to regular nets. The unassign_global_clock command is not
supported in auxiliary PDC files.

unassign_global_clock -net netname

Arguments
-net netname

Design Constraints for Libero SoC v11.8 SP1 User Guide

160

Specifies the name of the clock net to demote to a regular net.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
• You cannot assign “essential” clock nets to regular nets. Clock nets that are driven by the following

macros are “essential” global nets: CLKDLY, PLL, and CLKBIBUF.

Examples
 unassign_global_clock -net globalReset

See Also
assign_global_clock

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

unassign_local_clock
PDC command; unassigns the specified net from a LocalClock region.

unassign_local_clock -net netname

Arguments
-net netname

Specifies the name of the net to unassign.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
This command is not supported in auxiliary PDC files. If importing a PDC file that includes this command,
you must import it as a source file.

Examples
This example unassigns the net named reset_n from the local clock region:

unassign_local_clock -net reset_n

See Also
assign_local_clock (IGLOO, Fusion, and ProASIC3)

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

Design Constraints for Libero SoC v11.8 SP1 User Guide

 161

unassign_macro_from_region
PDC command; specifies the name of the macro to be unassigned.

unassign_macro_from_region [region_name] macro_name

Arguments
region_name

Specifies the region where the macro or macros are to be removed.
macro_name

Specifies the macro to be unassigned from the region. Macro names are case sensitive. You can
unassign a collection of macros by assigning a prefix to their names. You cannot use hierarchical net
names from ADL. However, you can use the following wildcard characters in macro names:

Wildcard What It Does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
If the macro was not previously assigned, an error message is generated.

Examples
unassign_macro_from_region macro21

See Also
Unassign macro from region

assign_net_macros

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

unassign_net_macros
PDC command; unassigns macros connected to a specified net.

unassign_net_macros region_name [net1]+

Arguments
region_name

Specifies the name of the region containing the macros in the net(s) to unassign.
net1

Design Constraints for Libero SoC v11.8 SP1 User Guide

162

Specifies the name of the net(s) that contain the macros to unassign from the specified region. You must
specify at least one net name. Optionally, you can specify additional nets to unassign.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
If the region is currently not assigned, an error message appears in the Log window if you try to unassign it.

Examples
unassign_net_macros cluster_region1 keyin1intZ0Z_62

See Also
Unassign macros on net from region
assign_net_macros
PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

unassign_quadrant_clock
PDC command; unassigns the specified net from a QuadrantClock region. If the unassigned net is a clock
net, it will not be demoted to a regular net.

unassign_quadrant_clock -net netname

Arguments
-net netname

Specifies the name of the net to unassign from a quadrant clock region.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
This command is not supported in auxiliary PDC files. If importing a PDC file that includes this command,
you must import it as a source file.

Examples
This example unassigns the net named qnet_n from the quadrant clock region:

unassign_quadrant_clock -net qnet_n

See Also
Unassign macro from region

assign_quadrant_clock

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

Design Constraints for Libero SoC v11.8 SP1 User Guide

 163

undefine_region
PDC command; removes the specified region. All macros assigned to the region are unassigned.

undefine_region region_name

Arguments
region_name

Specifies the region to be removed.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
To use this command, the region must have been previously defined.

Examples
undefine_region cluster_region1

See Also
Delete region

define_region

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

unreserve
PDC command; resets the named pins in the current device, so they are no longer reserved. You can then
use these pins in your design.

unreserve -pinname "list of package pins"

Arguments
-pinname "list of package pins"

Specifies the package pin name(s) to unreserve.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
unreserve -pinname "F2"

unreserve -pinname "F2 B4 B3"

unreserve -pinname "124 63"

Design Constraints for Libero SoC v11.8 SP1 User Guide

164

See Also
reserve

PDC Syntax Conventions
PDC Naming Conventions
PDC Reference

Design Constraints for Libero SoC v11.8 SP1 User Guide

 165

I/O Standards

I/O Standards Table
Use the I/O Standards table to see which I/O standards can be applied to each family.

Table 7 · I/O Standards

I/O Standard SmartFusion2, IGLOO2,
and RTG4

IGLOO SmartFusion
and Fusion

ProASIC3

CMOS

CUSTOM

GTLP25 IGLOOe
only

X ProASIC3E
and
ProASIC3L
only

GTLP33 IGLOOe
only

X ProASIC3E
and
ProASIC3L
only

GTL33 IGLOOe
only

X ProASIC3E
and
ProASIC3L
only

GTL25 IGLOOe
only

X ProASIC3E
and
ProASIC3L
only

HSTL1 X IGLOOe
only

X ProASIC3E
and
ProASIC3L
only

HSTLII X IGLOOe
only

X ProASIC3E
and
ProASIC3L
only

LVCMOS33 X X X X

LVCMOS25 X IGLOOe
only

X X

LVCMOS25_50 X X X

LVCMOS18 X X X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

166

I/O Standard SmartFusion2, IGLOO2,
and RTG4

IGLOO SmartFusion
and Fusion

ProASIC3

LVCMOS15 X X X

LVCMOS12 X X ProASIC3L
only

LVTTL X X X X

TTL X X X

PCI X X X X

PCIX X X X

SSTL2I and
SSTL2II

X IGLOOe
only

X ProASIC3E
and
ProASIC3L
only

SSTL3I and SSTL3II IGLOOe
only

X ProASIC3E
and
ProASIC3L
only

Note: 1.2 voltage is supported for ProASIC3 (A3PL), IGLOOe V2 only, IGLOO V2, and IGLOO PLUS

devices only.

See Also
I/O Standard

SSTL2I and
SSTL2II

X IGLOOe only X ProASIC3E and ProASIC3L only

SSTL3I and SSTL3II IGLOOe only X ProASIC3E and ProASIC3L only

Note: 1.2 voltage is supported for ProASIC3 (A3PL), IGLOOe V2 only, IGLOO V2, and IGLOO PLUS

devices only.

See Also
I/O Standard

LVCMOS15 X X X

LVCMOS12 X X ProASIC3L only

LVTTL X X X X

TTL X X X

PCI X X X X

PCIX X X X

Design Constraints for Libero SoC v11.8 SP1 User Guide

 167

SSTL2I and
SSTL2II

X IGLOOe only X ProASIC3E and ProASIC3L only

SSTL3I and SSTL3II IGLOOe only X ProASIC3E and ProASIC3L only

Note: 1.2 voltage is supported for ProASIC3 (A3PL), IGLOOe V2 only, IGLOO V2, and IGLOO PLUS

devices only.

See Also
I/O Standard

Design Constraints for Libero SoC v11.8 SP1 User Guide

168

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Microsemi SoC Products Group and using these support
services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 650. 318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers
who can help answer your hardware, software, and design questions about Microsemi SoC Products. The
Customer Technical Support Center spends a great deal of time creating application notes, answers to
common design cycle questions, documentation of known issues and various FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-
support/fpga-soc-support.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group
home page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted
by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We
constantly monitor the email account throughout the day. When sending your request to us, please be sure
to include your full name, company name, and your contact information for efficient processing of your
request.
The technical support email address is soc_tech@microsemi.com.

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/soc
http://www.microsemi.com/soc/
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/

Design Constraints for Libero SoC v11.8 SP1 User Guide

 169

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and
corporate contacts.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
mailto:tech@microsemi.com
http://www.microsemi.com/soc/ITAR/

	Constraint Support by Family 11
	Constraint Entry 13
	Constraint File Format by Family 16
	Naming Conventions 18
	Clock 18
	Region 19
	Location 20
	I/O Attributes 20
	I/O Attributes by Family and Device 21
	Bank Name 22
	Direction 23
	Group 23
	Hold State 24
	Hot Swappable 24
	Input Delay 25
	I/O Available in Flash*Freeze Mode 25
	I/O Standard 26
	I/O State in Flash*Freeze Mode 30
	Locked 31
	Low Power Exit 31
	Macro Cell 32
	ODT Imp 32
	ODT Static 33
	Output Drive 33
	Output Load 34
	Pin Number 35
	Port Name 35
	Pre-Emphasis 36
	Resistor Pull 36
	Schmitt Trigger 37
	Skew 38
	Slew 38
	Use Register 39
	User Reserved 40
	Add New Port Dialog Box 41
	Modify Port Dialog Box 41
	I/O Bank Settings Dialog Box (IGLOO and ProASIC3 only) 42
	I/O Bank Settings Dialog Box 42
	I/O Bank Settings for the SmartDesign Microcontroller Subsystem (MSS) 43
	I/O Register Combining 43
	Importing Constraint Files 46
	About SmartTime Constraints Editor 47
	Create Clock 49
	Create Generated Clock 50
	Remove Clock Uncertainty 50
	Set Clock Latency 51
	Set Clock Uncertainty Constraint 52
	Set Disable Timing Constraint 53
	Set False Path 54
	Set Input Delay 55
	Set Load on Output Port 56
	Set Maximum Delay 57
	Set Minimum Delay 58
	Set Multicycle Path 58
	Set Output Delay 59
	Assign I/O to Pin 61
	Assign I/O Macro to Location 62
	Assign Macro to Region 62
	Assign Net to Global Clock 63
	Assign Net to Local Clock 64
	Assign Net to Quadrant Clock 65
	Assign Net to Region 65
	Configure I/O Bank 66
	Create Region 67
	Delete Regions 68
	Move Block 69
	Move Region 70
	Reserve Pins 70
	Reset Attributes on an I/O to Default Settings 71
	Reset an I/O Bank to Default Settings 72
	Reset Net's Criticality to Default Level 73
	Set Block Options 73
	Set Net's Criticality 74
	Set Port Block 75
	Unassign Macro from Region 75
	Unassign Macro(s) Driven by Net from Region 76
	Unreserve Pins 77
	Netlist Optimization Constraints 79
	Delete Buffer Tree 79
	Demote Global Net to Regular Net 80
	Promote Regular Net to Global Net 80
	Restore Buffer Tree 81
	Set Preserve 82
	About Synopsys Design Constraints (SDC) Files 83
	SDC Syntax Conventions 84
	create_clock 86
	create_generated_clock 87
	remove_clock_uncertainty 89
	set_clock_latency 90
	set_clock_to_output 91
	set_clock_uncertainty 92
	set_disable_timing 94
	set_external_check 95
	set_false_path 96
	set_input_delay 97
	set_load 98
	set_max_delay (SDC) 99
	set_min_delay 100
	set_multicycle_path 101
	set_output_delay 102
	all_inputs 104
	all_outputs 105
	all_registers 105
	get_cells 106
	get_clocks 107
	get_pins 108
	get_nets 108
	get_ports 109
	About Physical Design Constraint (PDC) Files 110
	PDC Syntax Conventions 111
	PDC Naming Conventions 113
	assign_global_clock 115
	assign_local_clock 115
	assign_net_macros 117
	assign_quadrant_clock 118
	assign_region 119
	define_region 120
	delete_buffer_tree 123
	dont_touch_buffer_tree 124
	move_block 125
	move_region 126
	reserve 127
	reset_floorplan 127
	reset_io 128
	reset_iobank 129
	reset_net_critical 130
	set_block_options 130
	set_io (SmartFusion2 and IGLOO2) 132
	set_io (RTG4) 140
	set_iobank (SmartFusion2, IGLOO2, and RTG4) 151
	set_location 153
	set_multitile_location 154
	set_net_critical 157
	set_port_block 158
	set_preserve 159
	unassign_global_clock 159
	unassign_local_clock 160
	unassign_macro_from_region 161
	unassign_net_macros 161
	unassign_quadrant_clock 162
	undefine_region 163
	unreserve 163
	I/O Standards Table 165
	Design Constraints
	See Also

	Families Supported
	See Also
	See Also
	See Also

	Basic Concepts
	See Also
	Example 1:
	Example 2:
	See Also
	See Also
	See Also
	See Also

	I/O Attributes
	See Also
	Direction
	Input
	Output
	Bi-directional (Inout)

	Direction
	Input
	Output
	Bi-directional (Inout)
	Choose Bank
	Locked
	Select All Technologies That the Bank Should Support
	VCCI
	See Also
	Choose Bank
	Locked
	Select All Technologies That the Bank Should Support
	VCCI
	VREF
	Use Default Pins for VREFs
	See Also

	Entering Constraints
	See Also
	See Also

	Exporting Constraint Files
	Constraints by Name: Timing
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also

	Constraints by Name: Physical
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also

	Constraints by Name: Netlist Optimization
	See Also
	See Also
	See Also
	See Also
	See Also

	Constraints by File Format - SDC Command Reference
	See Also
	See Also

	Referenced Topics
	See Also
	See Also
	Arguments
	Supported Families
	Description
	Exceptions
	Examples
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also

	Design Object Access Commands
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also

	I/O Standards
	See Also
	See Also
	See Also

	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

