

Microsemi SoftConsole v5.1

Release Notes

2 Microsemi Softconsole v5.1 Release Notes

Table of Contents

Table of Contents ... 2

Microsemi SoftConsole v5.1 ... 5

Introduction .. 5

Overview ... 5

Key features ... 5

Features not supported ... 5

Quick start guide .. 5

Supported platforms .. 7

Free/Open source packages ... 10

Packages used .. 10

Installation .. 14

Windows .. 14

Installing ... 14

Linux .. 14

Before installing ... 14

Installing ... 15

After installing .. 16

Troubleshooting ... 18

Related Microsemi Tools/Resources ... 19

Libero SoC/Firmware Catalog ... 19

Firmware drivers .. 19

Hardware Abstraction Layers .. 19

Peripheral firmware drivers .. 19

Matching firmware to the target hardware ... 19

FlashPro JTAG programmer ... 20

SoftConsole v3.4 ... 20

Workspaces .. 21

Example workspace... 21

Example projects ... 21

Example debug launch configurations .. 21

Creating a new workspace .. 21

Projects ... 22

Creating a new Cortex-M project ... 22

Creating a new RISC-V project ... 24

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 3

Project Settings .. 25

All targets ... 25

Cortex-M targets .. 25

SmartFusion2 Cortex-M3 targets .. 26

SmartFusion Cortex-M3 targets .. 27

Cortex-M1 targets .. 27

Adding source files to a project ... 27

Building a project ... 28

Debugging .. 29

Debug launch configurations ... 29

OpenOCD command line options and scripts ... 34

SmartFusion/SmartFusion2 DEVICE .. 34

Board scripts .. 35

Cortex-M1 Board Script ... 36

FlashPro JTAG speed ... 37

Other OpenOCD options ... 37

SoftConsole OpenOCD script parameters .. 37

Board configuration for FlashPro debugging ... 37

Using a debug session .. 37

Launching a debug session ... 37

Memory Monitor ... 37

Console view ... 37

Built-in serial terminal view .. 38

Debug using a specific FlashPro programmer .. 38

Debugging using a non FlashPro JTAG interface ... 39

How to connect to/debug a running program .. 40

Troubleshooting ... 40

Other Features ... 41

Cortex-M semihosting .. 41

Integer only newlib support .. 41

Static stack profiling ... 42

Known Issues ... 43

Debug launch configuration settings differ for Cortex-M and RISC-V ... 43

Windows occasionally crashes when plugging FlashPro in/out .. 43

OpenOCD crashes when attempting to debug RISC-V .. 43

RISC-V C++ support .. 43

Invalid command name "arm" when debugging RISC-V ... 43

Initial startup may be slow ... 43

Flash Programming ... 43

Build Project context menu option sometimes disabled .. 43

Windows firewall and OpenOCD ... 44

Multiple debug sessions .. 44

Memory Monitor fails to display ... 44

Microsemi SoftConsole v5.1

4 Microsemi Softconsole v5.1 Release Notes

Warning when installing Windows FlashPro drivers .. 44

FlashPro JTAG debugging is unreliable on virtual machines .. 44

Invalid Project Path warnings in Cortex-M projects ... 44

“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3 44

Error: Got exception when reading some RISC-V registers .. 44

Debugging and multiple device JTAG chains .. 45

RISC-V target support ... 45

SoftConsole v3.4 or earlier workspaces/projects .. 46

SoftConsole v5.0 RISC-V projects and debug launch configurations ... 46

Other useful Documentation ... 47

Product Support ... 48

Customer Service .. 48

Customer Technical Support Center .. 48

Technical Support .. 48

Website ... 48

Contacting the Customer Technical Support Center .. 48

Email .. 48

My Cases ... 48

Outside the U.S. .. 49

ITAR Technical Support .. 49

Microsemi Softconsole v5.1 Release Notes 5

Microsemi SoftConsole v5.1

Introduction
These are release notes for Microsemi SoftConsole v5.1.

This document uses <SoftConsole-install-dir> as a placeholder for the actual SoftConsole install directory.

Where this is mentioned substitute the actual SoftConsole install directory name (e.g.

C:\Microsemi\SoftConsole_v5.1 on Windows or $HOME/Microsemi_SoftConsole_v5.1 on Linux).

Overview

Key features

 Runs on Windows and Linux.

 Development/debug support for ARM
®
 Cortex

®
-M and RISC-V CPUs/SoCs in a single package.

 Built using the latest industry standard stock free/open source components and tools for ARM
®
 Cortex

®
-M

and RISC-V firmware development and debugging.

 Support for SmartFusion
®
 and SmartFusion2 ARM Cortex-M3, ARM Cortex-M1 and RISC-V firmware

development and debugging.

 Uses OpenOCD for ARM Cortex-M1/3 and RISC-V debugging and SmartFusion/SmartFusion2/Fusion

eNVM programming/program download.

 Supports download to and debugging from SmartFusion eSRAM and eNVM, SmartFusion2 eSRAM, eNVM

and external RAM (MDDR), Cortex-M1 RAM and Fusion eNVM, and RISC-V RAM.

 Supports FlashPro JTAG programmer for debugging (FlashPro5 on Linux, FlashPro3/4/5 on Windows).

 Supports ARM Cortex-M semi-hosting redirection of standard/file I/O from target board to host debugger.

 Allows users to install arbitrary additional Eclipse plug-ins and features.

 Includes a built-in terminal emulator for connecting to a target board’s serial port.

Features not supported

 Compatibility with SoftConsole v3.4 workspaces/projects/debug launch configurations. SoftConsole v3.4

workspaces/projects/debug launch configurations cannot be used with SoftConsole v4. SoftConsole v4

workspaces/projects/debug launch configurations cannot be use with SoftConsole v3.4.

 Debugger driven download of programs to non CFI external parallel flash memories.

 Launching Firmware Catalog from SoftConsole.

 Core8051/Core8051s firmware development and debugging. Use Keil C51 Development Tools with

Core8051/Core8051s ISD-51 support.

Quick start guide
1. Read the release notes in full.

2. Follow the installation instructions below for the relevant OS platform.

3. Run SoftConsole from the desktop shortcut or “Start” menu entries created by the installer. This will launch

SoftConsole and open the example workspace.

4. To use the example projects in the example workspace on an actual board it is necessary to update the

projects to match the target hardware – for example by generating the relevant HAL/CMSIS and firmware

drivers from Libero SoC or the Firmware Catalog and copying the generated files into the project.

5. The example projects come with default debug launch configurations for debugging. If necessary modify the

settings passed to OpenOCD so that they match the actual target hardware.

Microsemi SoftConsole v5.1

6 Microsemi Softconsole v5.1 Release Notes

6. Use the Microsemi website (https://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-

support), Firmware Catalog (https://www.microsemi.com/products/fpga-soc/design-resources/design-

software/firmware-catalog) and/or the Microsemi github (https://github.com/RISCV-on-Microsemi-FPGA) to

obtain example/demo/reference design projects and firmware.

https://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
https://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog
https://github.com/RISCV-on-Microsemi-FPGA

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 7

Supported platforms
 Operating systems (32 and 64 bit versions except where noted)

NOTE: physical machines only recommended/supported - see the Known Issues section for details of issues

with virtual machines.

o Windows

 7

 8.1

 10

o Linux

 CentOS and Red Hat Enterprise Linux (RHEL)

 6.9

 7.3 (64 bit only)

 Ubuntu

 14.04 LTS

 16.04 LTS

 openSUSE

 LEAP 42.2 (64 bit only)

 Debian

 8.8.0

 CPUs

o Microsemi SmartFusion2 ARM Cortex-M3

o Microsemi SmartFusion ARM Cortex-M3

o Microsemi ARM Cortex-M1 for M1 IGLOO, ProASIC3, ProASIC3L and Fusion FPGAs

o Microsemi ARM Cortex-M1 for RTG4 and PolarFire FPGAs

o Microsemi RV32IM RISC-V

 Boards

o SmartFusion2

 SmartFusion2 Advanced Development Kit – M2S150-ADV-DEV-KIT

 SmartFusion2 Security Evaluation Kit – M2S090TS-EVAL-KIT

 SmartFusion2 Starter Kits – SF2-STARTER-KIT and SF2-484-STARTER-KIT

 Arrow SF2+ Development Kit (M2S010)

 Creative Development Board (M2S025) by Future Electronics

o SmartFusion

 SmartFusion Evaluation Kit – A2F-EVAL-KIT-2

 SmartFusion Development Kit – A2F500-DEV-KIT-2

o Cortex-M1 for M1 FPGAs

 Fusion Embedded Development Kit – M2AFS-EMBEDDED-KIT-2

o Cortex-M1 for RTG4 and PolarFire FPGAs and RISC-V RV32IM

 RTG4 Development Kit (RT4G150)

 PolarFire Evaluation Kit (MPF300TS)

 JTAG Debug

o FlashPro3, FlashPro4 and FlashPro5 on Windows

o FlashPro5 on Linux

o Other JTAG debug probes supported by OpenOCD may be used but are not specifically tested or

supported

 Other software

o Microsemi Libero SoC

https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/soc-processors/arm-cortex-m3
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion
https://www.microsemi.com/products/fpga-soc/soc-processors/arm-cortex-m3
https://www.microsemi.com/products/fpga-soc/soc-processors/arm-cortex-m1
https://www.microsemi.com/products/fpga-soc/fpga/igloo-overview
https://www.microsemi.com/products/fpga-soc/fpga/proasic3-overview
https://www.microsemi.com/products/fpga-soc/fpga/proasic3l
https://www.microsemi.com/products/fpga-soc/fpga/fusion
https://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4
https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
https://www.microsemi.com/products/fpga-soc/technology-solutions/embedded-processing/risc-v
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/smartfusion2-advanced-development-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/smartfusion2-starter-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/arrow-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/future-creative-board
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion/smartfusion-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion/smartfusion-development-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/fusion/fusion-embedded-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/rtg4-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/polarfire/polarfire-eval-kit

Microsemi SoftConsole v5.1

8 Microsemi Softconsole v5.1 Release Notes

 Microsemi Libero SoC and Firmware Catalog v11.8

 Microsemi Libero SoC PolarFire v1.1

o Firmware (minimum required version)

 SmartFusion2 CMSIS Hardware Abstraction Layer 2.3.105

 SmartFusion CMSIS-PAL 2.4.102

 Cortex-M1 CMSIS Hardware Abstraction Layer 2.0.7

 RISC-V Hardware Abstraction Layer (HAL) 2.0.104

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 9

 (DirectCore) Hardware Abstraction Layer 2.3.102

Microsemi SoftConsole v5.1

10 Microsemi Softconsole v5.1 Release Notes

Free/Open source packages

Packages used

Microsemi SoftConsole uses a number of free and/or open source packages. Microsemi acknowledges and thanks

those organizations and individual developers who work on these projects and make them to others for reuse under

the relevant license conditions.

Oracle Java SE

Version 8u131

Home page https://www.oracle.com/java/index.html

Documentation https://www.oracle.com/java/index.html

License Oracle Binary Code License Agreement for the Java SE Platform Products and JavaFX

http://www.oracle.com/technetwork/java/javase/terms/license/index.html

Notes Oracle Java SE provides the base Java platform on which Eclipse/CDT and other Eclipse

plugins run.

Credit/thanks to Oracle.

Eclipse/CDT

Version Eclipse 4.4.2 (Luna SR2) + CDT 8.6.0 for Eclipse Luna

Home page https://eclipse.org/luna/

Documentation https://eclipse.org/luna/

License Eclipse Public License v1.0

http://www.eclipse.org/legal/epl-v10.html

Notes Eclipse/CDT – in conjunction with the GNU ARM Eclipse and Roa Logic Eclipse plugin for

RISC-V GNU Toolchain – provide the main SoftConsole GUI Integrated Development

Environment.

The Windows Eclipse/CDT starter.exe has been modified by Microsemi to allow for

graceful termination of OpenOCD or other external executables launched from Eclipse.

Credit/thanks to the Eclipse/CDT developer community.

GNU ARM Eclipse Plugins

Version V3.4.1-201704251808

Home page http://gnuarmeclipse.github.io/

Documentation http://gnuarmeclipse.github.io/

License Eclipse Public License v1.0

http://gnuarmeclipse.github.io/licenses/plug-ins/

Notes Only the following GNU ARM Eclipse plugins are used:

 GNU ARM C/C++ Cross Compiler: provides specific support for ARM targets by

way of custom project properties pages and integration with the back end GNU

ARM Embedded Toolchain.

 GNU ARM C/C++ OpenOCD Debugging: provides specific support for debugging

ARM (and RISC-V) targets using OpenOCD from within the Eclipse environment.

Credit/thanks to Liviu Ionescu.

GNU ARM Embedded Toolchain

https://www.oracle.com/java/index.html
https://www.oracle.com/java/index.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
https://eclipse.org/luna/
https://eclipse.org/luna/
http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/legal/epl-v10.html
http://gnuarmeclipse.github.io/licenses/plug-ins/

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 11

Version Windows: 6-2017-q1-update

Linux: 5-2016-q3-update

Home page https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

Documentation https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

License https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q3-update/+download/license.txt

Notes Provides GCC, GDB, binutils, newlib (including newlib nano) etc. development/debug tools

for ARM targets (in particular Cortex-M targets).

Details of the specific versions of the individual tools in each release package can be found

on the ARM Developer website.

Credit/thanks to ARM and the GNU ARM Embedded Toolchain development community.

ARM Cortex Microcontroller Software Interface Standard (CMSIS)

Version V4.5

Home page https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-

interface-standard.php

Documentation http://www.keil.com/pack/doc/CMSIS/General/html/index.html

License Apache 2.0 License:

http://www.keil.com/pack/doc/CMSIS/General/html/index.html#License

Notes Along with the Microsemi SmartFusion2 CMSIS Hardware Abstraction Layer and

SmartFusion CMSIS-PAL firmware packages provides a lightweight hardware abstraction

layer on which startup code and firmware drivers can operate.

Credit/thanks to ARM.

Roa Logic Eclipse Plugin for RISC-V GNU Toolchain

Version v2017.1.0.201705151317

Home page https://github.com/RoaLogic/riscv_gnu_eclipse

Documentation https://github.com/RoaLogic/riscv_gnu_eclipse

License Eclipse Public License v1.0

http://www.eclipse.org/legal/epl-v10.html

Notes As the GNU ARM C/C++ Cross Compiler does for ARM targets this plugin provides specific

support for RISC-V targets by way of custom project properties pages and integration with

the back end RISC-V GNU toolchain.

Microsemi have made some minor modifications to this plugin to better suit the needs of

SoftConsole and Microsemi RISC-V Hardware Abstraction Layer (HAL) users.

Credit/thanks to Roa Logic/Richard Herveille.

RISC-V GNU Toolchain

Version May 3
rd

 2017 Toolchain Release (https://github.com/riscv/riscv-gnu-toolchain/releases)

based on GCC 7.1 and related binutils, newlib etc.

Home page https://github.com/riscv/riscv-gnu-toolchain

Documentation https://github.com/riscv/riscv-gnu-toolchain

License https://github.com/riscv/riscv-gnu-toolchain/blob/master/LICENSE

Notes The riscv64-unknown-elf prefixed tools support 32 and 64 bit targets and the following

multilibs: https://github.com/riscv/riscv-gcc/blob/riscv-next/gcc/config/riscv/t-elf-multilib

Credit/thanks to the RISC-V development community.

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q3-update/+download/license.txt
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.keil.com/pack/doc/CMSIS/General/html/index.html
http://www.keil.com/pack/doc/CMSIS/General/html/index.html#License
https://github.com/RoaLogic/riscv_gnu_eclipse
https://github.com/RoaLogic/riscv_gnu_eclipse
http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/legal/epl-v10.html
https://github.com/riscv/riscv-gnu-toolchain/releases
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain/blob/master/LICENSE
https://github.com/riscv/riscv-gcc/blob/riscv-next/gcc/config/riscv/t-elf-multilib

Microsemi SoftConsole v5.1

12 Microsemi Softconsole v5.1 Release Notes

OpenOCD

Version v0.10.0

Home page http://openocd.org/

Documentation http://openocd.org/documentation/

License GNU General Public License v3

http://www.gnu.org/copyleft/gpl.html

Notes OpenOCD sits between GDB and the target hardware (JTAG debug probe, target board

and CPU) to allow for program download and debug using real hardware. When debugging

Eclipse launches GDB and then uses GDB’s GDB/MI (Machine Interface) to communicate

with the debugger. Meanwhile GDB communicates with OpenOCD using OpenOCD’s

Remote Serial Protocol interface. GDB debug operations are translated into JTAG

operations by OpenOCD which communicates with the target hardware/CPU using JTAG

via the relevant JTAG debug probe. OpenOCD also has knowledge of specific CPU target

debug frameworks (e.g. ARM CoreSight, RISC-V Debug Module) so that it can

communicate with and debug supported CPUs.

The base OpenOCD v0.10.0 is supplemented by modifications by

 Microsemi – to add support for FlashPro, SmartFusion2/SmartFusion/Fusion

envm, finding scripts relative to OpenOCD bin directory, other fixes and

enhancements

 SiFive (https://www.sifive.com/) – to add support for RISC-V debugging

Credit/thanks to the OpenOCD development community and to SiFive.

GNU ARM Eclipse Build Tools (Windows only)

Version v2.8-20161122

Home page http://gnuarmeclipse.github.io/windows-build-tools/download/

Documentation http://gnuarmeclipse.github.io/windows-build-tools/download/

License http://gnuarmeclipse.github.io/licenses/tools/

Notes Credit/thanks to Liviu Ionescu.

Inno Setup (Windows only)

Version Inno Setup QuickStart Pack v5.5.9-unicode

Home page http://www.jrsoftware.org/isdl.php

Documentation http://www.jrsoftware.org/ishelp/

License Inno Setup License

http://www.jrsoftware.org/files/is/license.txt

Notes Inno Setup is used to create the SoftConsole installer for Windows.

Credit/thanks to Jordan Russell.

InstallJammer (Linux only)

Version v2.8-20161122

Home page http://www.installjammer.com/

Documentation http://installjammer.com/docs/

License GNU General Public License with exception

http://installjammer.com/docs/

Notes InstallJammer is used to create the SoftConsole installer for Linux.

http://openocd.org/
http://openocd.org/documentation/
http://www.gnu.org/copyleft/gpl.html
https://www.sifive.com/
http://gnuarmeclipse.github.io/windows-build-tools/download/
http://gnuarmeclipse.github.io/windows-build-tools/download/
http://gnuarmeclipse.github.io/licenses/tools/
http://www.jrsoftware.org/isdl.php
http://www.jrsoftware.org/ishelp/
http://www.jrsoftware.org/files/is/license.txt
http://www.jrsoftware.org/files/is/license.txt
http://www.installjammer.com/
http://installjammer.com/docs/
http://installjammer.com/docs/
http://installjammer.com/docs/

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 13

While InstallJammer is no longer supported/actively development and maintained it is still a

useful and simple way to create GUI wizard based installers for Linux.

Credit/thanks to the InstallJammer development community.

RXTX Java Library and Eclipse Plugins

Version v2.1-7r4

Home page http://rxtx.qbang.org/wiki/index.php/Main_Page

Documentation http://rxtx.qbang.org/wiki/index.php/Main_Page

https://mcuoneclipse.com/2015/04/20/serial-terminal-view-in-eclipse-luna/

License RXTX License v 2.1 - LGPL v 2.1 + Linking Over Controlled Interface

http://users.frii.com/jarvi/rxtx/license.html

Notes RXTX allows the Eclipse TCM Terminal (Console) View to communicate with serial ports in

order to provide built-in serial terminal functionality.

Credit/thanks to Trent Jarvi and the RXTX development community.

http://rxtx.qbang.org/wiki/index.php/Main_Page
http://rxtx.qbang.org/wiki/index.php/Main_Page
https://mcuoneclipse.com/2015/04/20/serial-terminal-view-in-eclipse-luna/
http://users.frii.com/jarvi/rxtx/license.html

Microsemi SoftConsole v5.1

14 Microsemi Softconsole v5.1 Release Notes

Installation

Windows

Installing

Refer to the Supported Platforms section for details of which Windows versions are supported.

The installer is a 32 bit executable GUI based program named Microsemi-SoftConsole-v5.1-Windows-

Installer.exe. It must be run with admin privileges. Run the installer and follow the GUI installer wizard

instructions on screen.

If the FPDrivers – InstallShield Wizard presents the Modify/Repair/Remove page then select Modify or Repair and

continue with the installation.

If, when installing the drivers, Windows warns that “Windows can’t verify the publisher of this driver software” then

please select the “Install this driver anyway” option. This may happen if the drivers are not signed for the specific

Windows version installed.

There may be a slight pause completing the SoftConsole installation after the FlashPro drivers installer has

completed – please be patient.

Linux

Refer to the Supported Platforms section for details of which Linux distributions and versions are supported.

Many of the commands below require root privileges using su, sudo or by logging in as root.

Before installing

SoftConsole is a 32 bit application therefore before it can be installed on a 64 bit system or run a number of 32 bit

packages/libraries must be installed first.

Ubuntu/Debian 64 bit

1. dpkg --add-architecture i386

2. apt-get update

3. apt-get install libgtk2.0-0:i386

4. apt-get install libxtst6:i386

5. apt-get install lib32ncurses5

CentOS/Red Hat Enterprise Linux 64 bit

1. yum install gtk2.i686

2. yum install libXtst.i686

3. yum install ncurses-libs.i686

openSUSE (64 bit)

1. zypper install gtk2-tools-32bit

2. zypper install libXtst6-32bit

3. zypper install libncurses5-32bit

4. zypper install libgthread-2_0-0-32bit

Notes:

1. Most platforms have the make and xdg-utils packages installed by default but it is advisable to make

sure that these are installed using the relevant package management command for the system in use:

<package-management-command> install make

<package-management-command> install xdg-utils

2. If, when installing the required 32 bit packages on CentOS/RHEL 64 bit, the following error occurs:

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 15

Error: Protected multilib versions ...

then first update the 64 bit package(s) before attempting to install the 32 bit package again. For example if

the error occurs when attempting to install gtk2.i686 then do the following:

yum upgrade gtk2

yum install gtk2.i686

3. It is recommended that the Linux platform used to run SoftConsole has all available updates installed.

4. It may be possible to install and run SoftConsole on other Linux distributions or versions once the required

packages are installed. However some earlier distributions (for example, CentOS/RHEL 5.11) may not

work and are not recommended or supported.

Installing

1. The installer is a 32 bit executable GUI based program named Microsemi-SoftConsole-v5.1-

Linux-x86-Installer.

2. Download the installer and ensure that the execute permission bit is set before attempting to run the

installer. If it is not then set it as follows from the command line (the following assumes that the installer

has been downloaded to $HOME/Downloads):

cd ~/Downloads

chmod +x Microsemi-SoftConsole-v5.1-Linux-x86-Installer

Microsemi SoftConsole v5.1

16 Microsemi Softconsole v5.1 Release Notes

3. Run the installer:

./Microsemi-SoftConsole-v5.1-Linux-x86-Installer

4. Follow the installer GUI wizard instructions on screen. If the installer does not appear on screen then

double check that all of the required dependent packages/libraries were installed as explained previously.

5. If necessary run the installer in debug mode to diagnose problems with running it:

./Microsemi-SoftConsole-v5.1-Linux-x86-Installer --debugconsole

After installing

By default USB devices are only accessible with root privileges. In order to debug using SoftConsole and FlashPro5

as a non-root user some additional steps must be taken.

1. The user running SoftConsole must be a member of the plugdev group. Many recent Linux distributions

create this group by default and add new users to it by default. Where this is not the case (for example

some versions of CentOS/RHEL) the plugdev group will need to be created and the relevant user

account added to it manually. When this has been done it may be necessary to log out and in again or

even to reboot the machine for the changes to take effect.

2. Copy the OpenOCD udev rules file and tell the udev substystem to load it. This rules file describes all USB

JTAG devices supported by OpenOCD to the system and makes them accessible by users belonging to

the plugdev group without requiring root privileges.

cd ~/Microsemi_SoftConsole_v5.1/openocd/share/openocd/contrib

sudo cp 60-openocd.rules /etc/udev/rules.d

sudo udevadm trigger

In some cases it may be necessary to reboot for the changes to take effect.

If you previously used SoftConsole v4.x or 5.0 and installed the 99-openocd.rules file into

/etc/udev/rules.d then you can delete that file (as it is now redundant) and run udevadm trigger

again or reboot for the changes to take effect.

To check that FlashPro5 can be used without root privileges…

3. Connect a FlashPro5 JTAG programmer to the host machine and check that it is visible to the operating

system:

lsusb

Bus 001 Device 004: ID 1514:2008 Actel

If the FlashPro5 device (ID 1514:2008 (vendor ID 0x1514, product ID 0x2008)) does not appear then

double check that the previous instructions were carried out correctly.

4. To the JTAG end of the FlashPro5 connect a suitable board containing a Cortex-M1, SmartFusion or

SmartFusion2 Cortex-M3, or RISC-V CPU based SoC design. Power the board on. Make sure that the

board is configured for FlashPro JTAG debugging of the target CPU (depending on the board and

CPU/SoC in use some board switches/jumpers configuration may be required). Run OpenOCD from the

command line to ensure that the debug connection can be established to the target CPU/SoC.

cd ~/Microsemi_SoftConsole_v5.1/openocd/bin

export LD_LIBRARY_PATH=`pwd`

./openocd -f board/microsemi-cortex-m1.cfg

OR

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 17

./openocd -c "set DEVICE M2S090" -f board/microsemi-cortex-m3.cfg

OR

./openocd -f board/microsemi-riscv.cfg

For Cortex-M1 the output should be of the form:

Open On-Chip Debugger 0.10.0

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

Info : only one transport option; autoselect 'jtag'

adapter speed: 6000 kHz

microsemi_flashpro tunnel_jtag_via_ujtag off

cortex_m reset_config sysresetreq

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: usb50266

Info : FlashPro port used: usb50266

Info : clock speed 6000 kHz

Info : JTAG tap: FPGA.tap tap/device found: 0x2353a1cf (mfg: 0x0e7

(GateField), part: 0x353a, ver: 0x2)

microsemi_flashpro tunnel_jtag_via_ujtag on

Info : JTAG tap: FPGA.tap disabled

Info : JTAG tap: FPGA.dap enabled

Info : Cortex-M1 IDCODE = 0x4ba00477

Info : FPGA.cpu: hardware has 2 breakpoints, 1 watchpoints

cortex_m auto_bp_type off

For Cortex-M3 the output should be of the form:

Open On-Chip Debugger 0.10.0

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

M2S090

Info : only one transport option; autoselect 'jtag'

adapter speed: 6000 kHz

cortex_m reset_config sysresetreq

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: S201Z7LB20, E200X3ID7

Info : FlashPro port used: S201Z7LB20

Info : clock speed 6000 kHz

Info : JTAG tap: M2S090.tap tap/device found: 0x1f8071cf (mfg: 0x0e7

(GateField), part: 0xf807, ver: 0x1)

Info : JTAG tap: M2S090.tap disabled

Info : JTAG tap: M2S090.dap enabled

Info : Cortex-M3 IDCODE = 0x4ba00477

Info : M2S090.cpu: hardware has 6 breakpoints, 4 watchpoints

For RISC-V the output should be of the form:

Open On-Chip Debugger 0.10.0

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

http://openocd.org/doc/doxygen/bugs.html
http://openocd.org/doc/doxygen/bugs.html
http://openocd.org/doc/doxygen/bugs.html

Microsemi SoftConsole v5.1

18 Microsemi Softconsole v5.1 Release Notes

Info : only one transport option; autoselect 'jtag'

adapter speed: 6000 kHz

microsemi_flashpro tunnel_jtag_via_ujtag off

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: S201Z7LB20, E200X3ID7

Info : FlashPro port used: S201Z7LB20

Info : clock speed 6000 kHz

Info : JTAG tap: FPGA.tap tap/device found: 0x1f8071cf (mfg: 0x0e7

(GateField), part: 0xf807, ver: 0x1)

microsemi_flashpro tunnel_jtag_via_ujtag on

Info : JTAG tap: FPGA.tap disabled

Info : JTAG tap: FPGA.dap enabled

Info : RISC-V IDCODE = 0x10e31913

Info : Examined RISCV core; XLEN=32, misa=0x40902223

halted at 0x80000b60 due to debug interrupt

5. Output of the following form or other errors (excluding any documented in the known issues section)

indicate a problem in which case double check that all of the previous steps have been carried out

correctly and that the target hardware/board is correctly configured for debugging of the target CPU/SoC.

Info: FlashPro ports available: none

Info: FlashPro port used: usb

Error: InitializeProgrammer(usb) failed: Can not connect to the programmer

Troubleshooting

After performing the steps above SoftConsole should run when launched from the system menu or desktop

shortcut. If it does not then the most likely cause is some other missing package/library or configuration. In this case

run the following commands and check for any errors that arise. If necessary install any other packages that are

missing:

cd <SoftConsole-install-dir>/eclipse

./eclipse

cd <SoftConsole-install-dir>/openocd/bin

export LD_LIBRARY_PATH=`pwd`

./openocd –v

cd <SoftConsole-install-dir>/arm-none-eabi-gcc/bin

./arm-none-eabi-gdb --version

cd <SoftConsole-install-dir>/riscv-unknown-elf-gcc/bin

./riscv64-unknown-elf-gdb --version

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 19

Related Microsemi Tools/Resources

Libero SoC/Firmware Catalog

Use Microsemi Libero SoC v11.8 or later to create hardware designs and to export firmware drivers and example

projects.

For PolarFire FPGAs use Microsemi Libero SoC PolarFire v1.1 or later.

The Microsemi Firmware Catalog can be used to generate firmware drivers and example projects for use in

SoftConsole v5.1.

Firmware drivers

Hardware Abstraction Layers

The following firmware cores (or later versions if available) must be used and can be generated from Libero SoC or

from the Firmware Catalog.

 SmartFusion2 CMSIS Hardware Abstraction Layer 2.3.105

 SmartFusion CMSIS-PAL 2.4.102

 Cortex-M1 CMSIS Hardware Abstraction Layer 2.0.7

 RISC-V Hardware Abstraction Layer (HAL) 2.0.104

 (DirectCore) Hardware Abstraction Layer 2.3.102

Warning:

 If earlier versions of these firmware cores are used then there will be problems compiling, linking and/or

debugging.

Peripheral firmware drivers

Use Libero SoC or the Firmware Catalog to generate the latest available peripheral drivers for the target system.

Matching firmware to the target hardware

The firmware used in a SoftConsole project must match the target hardware. For SmartFusion and SmartFusion2

projects Libero SoC generates specific firmware files that must be used in order for the SoftConsole project to

match and be compatible with the target hardware

The most convenient way to avoid problems is to ensure that Libero SoC is configured to use the appropriate

firmware repositories and the LIbero project is configured to use the latest versions of all firmware drivers (including

CMSIS/HAL). Then export the firmware from Libero and import/copy the generated files into the SoftConsole

project.

Refer to the Libero SoC and Firmware Catalog documentation for more information about the firmware flows

supported by these tools.

Warning:

 Before importing/copying Libero SoC or Firmware Catalog generated firmware files into a SoftConsole

project it is advisable to manually delete all CMSIS, hal, drivers, riscv_hal and

drivers_config folders from the SoftConsole project leaving only the project specific custom source

files.

 For SmartFusion and SmartFusion2 projects the drivers_config folder must be generated/exported

from Libero SoC and copied/imported into the SoftConsole project every time that the Libero project is

modified to ensure that the SoftConsole project matches the target hardware.

 SoftConsole v3.4 workspaces or projects generated by Libero SoC or the Firmware Catalog are not

compatible with SoftConsole v5.1 and should not be used.

Microsemi SoftConsole v5.1

20 Microsemi Softconsole v5.1 Release Notes

FlashPro JTAG programmer

SoftConsole includes OpenOCD which uses a FlashPro JTAG programmer for debug access to the target

platform/CPU.

On Windows the FlashPro3/4/5 programmers are supported and the relevant drivers must be installed. On Linux

only the FlashPro5 programmer is supported and the post-install configuration steps must be carried out to allow

access to the FlashPro5 programmer by a non-root user.

SoftConsole v3.4

SoftConsole v3.4 workspaces, projects and debug launch configurations are not compatible with SoftConsole v5

and should not be used. They will not open or operate correctly. Existing SoftConsole v3.4 workspaces, projects

and debug launch configurations must be created anew in SoftConsole v5. However this is not an onerous task and

is explained elsewhere in the release notes.

Similarly SoftConsole v5 workspaces, projects and debug launch configurations are not compatible with
SoftConsole v3.4.

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 21

Workspaces

Example workspace

SoftConsole includes an example workspace which is opened by default when you run SoftConsole. This example

workspace is located at:

<SoftConsole-install-dir>/extras/workspace.examples

This workspace contains a number of simple example projects and debug launch configurations that are ready to

use once the relevant projects have been updated to match the target hardware – for example by copying the

Libero SoC generated drivers_config folder into the project where applicable. It is also advisable to update these

example projects with the relevant CMSIS/HAL and firmware drivers generated from the Firmware Catalog.

It is advisable to make a copy of this example workspace and use the copy for experimentation. Note that the

SoftConsole uninstaller will delete some or all of this workspace in which case any changes made may be lost.

Refer to the README.txt for each example project for more information.

Example projects

 fpga-cortex-m1-blinky: LED blinker program for a system containing the encrypted HDL soft core

CoreCortexM1 (Microsemi:DirectCore:CoreCortexM1:<version>) in an RTG4 or PolarFire FPGA device.

 m1fpga-cortex-m1-blinky: LED blinker program for a system containing the pre placed and routed CortexM1

(Microsemi:DirectCore:CortexM1Top:<version>) in an M1 variant IGLOO, ProASIC3, ProASIC3L or Fusion

FPGA device.

 riscv-interrupt-blinky: interrupt driven LED blinker and UART echo program for a system containing the

RISC-V RV32IM soft processor.

 riscv-systick-blinky: timer driven LED blinker and UART echo program for a system containing the RISC-V

RV32IM soft processor.

 smartfusion-cortex-m3-blinky: LED blinker program for a SmartFusion Cortex-M3 system.

 smartfusion2-cortex-m3-blinky: LED blinker program for a SmartFusion2 Cortex-M3 system.

Example debug launch configurations

Debug launch configurations for each of the above projects. Remember to ensure that the OpenOCD command

lines parameters used in the debug launch configuration (Debugger tab > Other options) matches the target

hardware/board used. Also remember to configure the target hardware for FlashPro debugging (e.g. JTAG_SEL tied

high and, if applicable, FlashPro/USB rather than RVI debug access enabled).

Be aware of the differences in debug launch configuration settings between Cortex-M1, SmartFusion Cortex-M3,

SmartFusion2 Cortex-M3 and RISC-V targets.

When creating new debug launch configurations for a other systems use the example debug launch configurations

as a guide or else copy the one that most closely matches the target system and reconfigure it as needed.

Creating a new workspace

To create a new empty workspace in SoftConsole select File > Switch Workspace > Other... and select a folder in

which to store the workspace. It is best if a new or empty folder is selected.

Microsemi SoftConsole v5.1

22 Microsemi Softconsole v5.1 Release Notes

Projects

Creating a new Cortex-M project

1. Select File > New > C Project or C++ Project depending on the type of project required.

2. In the C/C++ Project page of the wizard enter the Project name, select Project type = Executable > Empty

Project (or Static Library > Empty Project for a library project), select Toolchains = Cross ARM GCC and

click Next >.

Figure 1. New Cortex-M Project

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 23

3. On the Select Configurations page of the wizard click Next >.

4. On the Cross GNU ARM Toolchain wizard page make sure that Toolchain name = GNU Tools for ARM

Embedded Processors (arm-none-eabi-gcc) and Toolchain path = ${eclipse_home}/../arm-none-

eabi-gcc/bin. These are set correctly by default and will remain so unless changed so do not change

them. Click Finish.

Figure 2. Cross GNU ARM Toolchain

Microsemi SoftConsole v5.1

24 Microsemi Softconsole v5.1 Release Notes

Creating a new RISC-V project

1. Select File > New > C Project or C++ Project depending on the type of project required.

2. In the C/C++ Project page of the wizard enter the Project name, select Project type = RISC-V Embedded

Exexutable > Empty Project (or RISC-V Embedded Static Library > Empty Project for a library project),

select Toolchains = RISC-V GCC/Newlib Toolchain and click Next >.

Figure 3. New RISC-V Project

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 25

3. On the Select Configurations page of the wizard click Finish.

Project Settings

Some project settings should be modified depending on the target device/CPU.

To modify the project settings right click on the project in the Project Explorer and select Properties from the context

menu. Then navigate to C/C++ Build > Settings.

Select Configuration = [All configurations] to configure settings applicable to all build targets (e.g. Debug and

Release) or else select a specific configuration (e.g. Debug or Release) to configure settings applicable only to that

build target.

Except where noted the settings below can usually be configured for all configurations/build targets.

All targets

Linker Script

It is essential that the appropriate linker script is configured for the project. This will often be one of the example

linker scripts bundled with the relevant CMSIS/HAL firmware core which has been generated and imported/copied

into the project. For example:

For Cortex-M projects select Tool Settings > Cross ARM C/C++ Linker > General click the Script files (-T) > Add...

button and enter the linker script name into the Add file path dialog – e.g.:

 SmartFusion2:

"${workspace_loc:/${ProjName}/CMSIS/startup_gcc/debug-in-microsemi-

smartfusion2-esram.ld}"

 SmartFusion:

"${workspace_loc:/${ProjName}/CMSIS/startup_gcc/debug-in-actel-smartfusion-

envm.ld}"

 Cortex-M1:

"${workspace_loc:/${ProjName}/blinky_linker_config.ld}"

For RISC-V projects select Tool Settings > RISC-V GCC/Newlib C/C++ Linker > General > Script file (-T) and enter

the linker script name – e.g.:

 RISC-V:

 ../riscv_hal/microsemi-riscv-ram.ld

Notes:

 Refer to the relevant CMSIS/HAL documentation for more information about what example linker scripts are

available and the circumstances in which they are used.

 In some cases different configurations/build targets will use different linker scripts.

Cortex-M targets

Newlib-Nano

newlib is the standard library bundled with SoftConsole and it is optimized for use in resource/memory constrained

bare metal embedded firmware environments. newlib also comes with a “nano” version which is even smaller at the

cost of omitting some functionality which may be rarely used in such environments (e.g. the full range of *printf

formatting options etc.). In many cases it makes sense to use newlib-nano and only switch to the full blown newlib if

necessary because using newlib-nano can significantly reduce the compiled and linked programs which use

standard library features.

To use newlib-nano check the Tool Settings > Cross ARM C/C++ Linker > Miscellaneous > Use newlib-nano (--

specs=nano.specs) option.

Create Extended Listing

An extended listing file (e.g. Debug/<project-name>.lst) is often useful for understanding the structure and

layout of the linked executable.

Microsemi SoftConsole v5.1

26 Microsemi Softconsole v5.1 Release Notes

To enable generation of this file check the Toolchains > Create extended listing checkbox.

Preprocessor Defines and Includes

If any preprocessor defines/symbols or includes are needed then they can be specified under Tool Settings > Cross

ARM C/C++ Compiler > Preprocessor > Defined symbols (-D) and Tool Settings > Cross ARM C/C++ Compiler >

Include paths (-I) or Include files (-include) respectively.

Depending on the target CPU and CMSIS/HAL used additional CMSIS/HAL related include paths may be required.

Refer to the relevant CMSIS/HAL documentation for more information.

Optimization Options

Most optimization options can be set at the project “top level” under Tool Settings > Optimization.

Other optimization settings, including Language standard (which defaults to GNU ISO C11 (-std=gnu11) or GNU

ISO 2011 C++ (-std=gnu++11)), can be specified under Tool Settings > Cross ARM C/C++ Compiler >

Optimization.

“Fine grained” linking using -fdata-sections -ffunction-sections and -gc-sections is enabled by

default here and also under Tool Settings > Cross ARM Linker > General > Remove unused sections (-Xlinker --gc-

sections).

Library Dependencies

Where an application project depends on a static library project this dependency can be configured in the

application project’s properties so that building the application will ensure that the static library project is also built

and up to date if necessary.

Note: for this to work the same configuration/build target (e.g. Debug or Release) must be selected for both

projects: e.g. right click on each project and from the context menu select Build Configurations > Set Active >

Debug or Release or any other configuration/build target.

To configure such an application/library project dependency right click on the application project in Project Explorer

and from the context menu select Properties then Project References and check the library project(s) on which the

application project depends.

Cross ARM GNU Print Size

By default the Cross ARM GNU Print Size build step is configured to output size information in “Berkeley” format.

The alternative, “SysV” format is often more informative and useful. To change this option right click on the project

in Project Explorer and from the context menu select Properties then C/C++ Build > Settings > Tool Settings >

Cross ARM GNU Print Size > General > and select Size format = SysV instead of Berkeley.

Other Options

There are many other options that can be set if needed. Explore the SoftConsole project properties dialog and refer

to the relevant GNU/GCC tool documentation for more information on these.

Specifying Options for All Build Configurations

Some project settings can be set once for all built configurations/targets (e.g. Debug and Release). To do this select

Configuration = [All Configurations] before specifying the relevant options and applying/saving them.

SmartFusion2 Cortex-M3 targets

CMSIS

SmartFusion2 projects require an additional setting in order for the preprocessor to find the toolchain CMSIS header

files otherwise compilation will fail to find core_cm3.h, core_cmFunc.h and/or core_cmInstr.h.

Under Tool Settings > Cross ARM C/C++ Compiler > Miscellaneous set Other compiler flags = --

specs=cmsis.specs.

Production-Smartfusion2-Relocate-to-External-Ram.ld

For a SmartFusion2 Cortex-M3 program linked using the SmartFusion2 CMSIS Hardware Abstraction Layer

example linker script production-smartfusion2-relocate-to-external-ram.ld some additional settings

must be specified.

When this linker script is used the hex (Intel HEX or Motorola S-record) file generated by SoftConsole is normally

used as the input file to a Libero SoC eNVM Data Storage client which is used to program the production firmware

into eNVM.

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 27

If the following project settings are not configured then the eNVM Data Storage client will reject the hex file as

invalid.

Under Tool Settings > Cross ARM GNU Create Flash Image > General > Other flags enter --change-section-

lma *-0x60000000.

This has the effect of “normalising” addresses in the Cortex-M3 memory map view of eNVM (based at 0x60000000)

to the more restricted view of memory of the eNVM Data Storage client which only sees eNVM based at

0x00000000.

For more on this and other objcopy options see here: https://sourceware.org/binutils/docs/binutils/objcopy.html.

SmartFusion Cortex-M3 targets

There are no additional settings required for SmartFusion Cortex-M3 projects.

Cortex-M1 targets

Target Processor

The target processor for a project is configured under Tool Settings > Target Processor > ARM family. New projects

default to having this set to cortex-m3 to suit SmartFusion and SmartFusion2 Cortex-M3 targets. When targeting

Cortex-M1 this must be changed to cortex-m1.

CMSIS

Cortex-M1 projects require an additional setting in order for the preprocessor to find the toolchain CMSIS header

files otherwise compilation will fail to find certain CMSIS header files.

Under Tool Settings > Cross ARM C/C++ Compiler > Miscellaneous set Other compiler flags = --

specs=cmsis.specs.

Adding source files to a project

Once the project has been created the required source files should be added.

In most cases the best way to do this is to use Libero SoC to select the relevant firmware cores (including

CMSIS/HAL, SmartFusion/SmartFusion2 MSS peripheral drivers, DirectCore drivers etc.), generate these, export

the firmware files and then import or copy them into the SoftConsole project.

In fact for SmartFusion and SmartFusion2 is it essential that at least the drivers_config folder is generated

by/exported from Libero SoC and imported/copied into the SoftConsole project every time that the hardware project

is changed. This is because the files in this folder contain information about the target platform that is essential to

the correct functioning on firmware on that hardware platform.

It is also possible to generate specific firmware cores/drivers from the Firmware Catalog and then import/copy them

into the SoftConsole project.

Refer to the Libero SoC and Firmware Catalog tools and documentation for more information on

generating/exporting firmware cores from these tools.

Warning: remember that any SoftConsole v3.4 workspaces or projects generated by Libero SoC or the Firmware

Catalog cannot be used with SoftConsole v5.

When importing/copying firmware files generated by/exported from Libero SoC or the Firmware Catalog it is safest

to first manually delete all relevant folders from the SoftConsole project (e.g. CMSIS, hal, drivers,

drivers_config) and retain only the custom source files created for the project itself.

Firmware folders/files can be copied by dragging and dropping from a file manager on Windows or Linux or by using

the SoftConsole import facility. Right click on the project in the Project Explorer and from the context menu select

Import... then select General > File System and click Next >. Browse to and select the directory from which the

https://sourceware.org/binutils/docs/binutils/objcopy.html

Microsemi SoftConsole v5.1

28 Microsemi Softconsole v5.1 Release Notes

firmware files are to be imported (e.g. the firmware directory below a Libero SoC project directory), select the

required folders/files and click Finish to import the files.

Building a project

Once a project has been correctly configured and populated with the required firmware it can be built.

Select/click on the project in the Project Explorer and from the application menu select Project > Build

Configurations > Set Active and select the required configuration/build target – usually one of Debug or Release.

With the project still selected in the Project Explorer select Project > Build Project. The results of the build process

can be viewed in the Console view and the Problems view if there are any problems (e.g. errors or warnings).

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 29

Debugging

Debug launch configurations

In order to debug a program a debug launch configuration must be created. Most of the default settings for a debug

launch configuration can be left as they are but a few needs to be manually configured.

1. Select the project in the Project Explorer and from the SoftConsole application menu select Run > Debug

Configurations...

2. In the Debug Configurations dialog select GDB OpenOCD Debugging and click on the New launch

configuration button which will create a new debug launch configuration for the previously selected project.

3. On the Main tab ensure that the C/C++ Application field contains the correct executable name. Note that

using forward slashes in paths here aids portability of projects and debug launch configurations between

Windows and Linux:

Figure 4. Debug launch configuration Main tab

Microsemi SoftConsole v5.1

30 Microsemi Softconsole v5.1 Release Notes

4. On the Debugger tab it is critical that the Config options field contains the correct command line

options/script to be passed to OpenOCD. The example settings here work for SmartFusion or SmartFusion2

targets where the program uses only eSRAM and/or eNVM – as long as the DEVICE setting is modified to

match the actual target device (SmartFusion A2FXXX or SmartFusion2 M2SXXX where XXX is the three

digit device size designator). Further details about these options are provided elsewhere in this

documentation.

For a Cortex-M target the Config options should be:

--file board/microsemi-cortex-m1.cfg

Figure 5. Debug launch configuration Debugger tab for Cortex-M3

5. For a RISC-V target the Debugger tab settings must be different – specifically:

OpenOCD Setup > Config options:

--file board/microsemi-riscv.cfg

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 31

GDB Client Setup > Executable:

${eclipse_home}/../riscv-unknown-elf-gcc/bin/riscv64-unknown-elf-gdb

GDB Client Setup > Commands:

set mem inaccessible-by-default off

set arch riscv:rv32

set riscv use_compressed_breakpoints no

Notes:

Use set arch riscv:rv64 if targeting a RISC-V RV64 processor.

Omit set riscv use_compressed_breakpoints no if targeting a RISC-V processor that implements

the C (compressed instructions) extension.

Microsemi SoftConsole v5.1

32 Microsemi Softconsole v5.1 Release Notes

Figure 6. Debug launch configuration Debugger tab for RISC-V

6. On the Startup tab the default settings should be configured as shown below and these are the default

settings so do not change them unless absolutely necessary and you understand what effect these changes

will have.

Initialization Commands > Initial Reset must be checked and Type set to init. Enable ARM semihosting can

be enabled whether or not semihosting will be used – it should be disabled for RISC-V targets since they do

not support semihosting.

Load symbols/executable should be configured as shown. Runtime Options > Debug in RAM should always

be disabled – even when targeting embedded or external RAM. Run/Restart Commands > Pre-run/Restart

reset must be disabled. Set breakpoint at main and Continue should normally be checked although can be

modified if, for example, an initial breakpoint somewhere other than main() is required or startup code

executed before main() needs to be debugged.

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 33

Figure 7. Debug launch configuration Startup tab

7. On the Common tab the Save as > Local file option is selected by default. This causes the debug launch

configuration to be saved into the workspace. However if the Shared file option is selected (the default name

can be accepted) then the debug launch configuration instead gets saved into the project which aids

portability as it means that the debug launch configuration moves in tandem with the project (e.g. when

copying or exporting/importing the project).

`

Microsemi SoftConsole v5.1

34 Microsemi Softconsole v5.1 Release Notes

Figure 8. Debug launch configuration Common tab

OpenOCD command line options and scripts

As explained above, it is important that the correct command line options/scripts are passed to OpenOCD via the

Debugger > Config options setting in the debug launch configuration. This section explains these settings.

Note:

 All --command ... settings mentioned below must be placed before the --file ... setting.

 Commands can be specified using --command ... or -c

 Multiple commands can be specified individually

--command "set DEVICE M2S090" --command "set JTAG_KHZ 1000"

or together separated by semi-colons

--command "set DEVICE M2S090; set JTAG_KHZ 1000"

SmartFusion/SmartFusion2 DEVICE

For SmartFusion and SmartFusion2 the target device must be specified using --command "set DEVICE

<devicename>".

For SmartFusion the target device must be set using --command "set DEVICE A2FXXX" where XXX is one of

060, 200 or 500.

For SmartFusion2 the target device must be set using --command "set DEVICE M2SXXX" where XXX is one of

005, 010, 025, 050, 060, 090 or 150.

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 35

Board scripts

The board script describes the relevant aspects of the target hardware to OpenOCD. A number of example scripts

are provided and are stored in <SoftConsole-install-dir>/openocd/share/openocd/scripts. The

following list enumerates these and outlines the context in which each of them can be used. Remember that the

target device must also be correctly specified in the debug launch configuration.

 SmartFusion/SmartFusion2 Cortex-M3

o board/microsemi-cortex-m3.cfg: for SmartFusion or SmartFusion2 programs that target

only eSRAM or eNVM.

 SmartFusion2 Cortex-M3 only

o board/microsemi-smartfusion2-eval-or-starter-kit-ddr.cfg: an example

script supporting a specific SmartFusion2 MDDR configuration on the SmartFusion2 Evaluation Kit,

Security Evaluation Kit or either of the Starter Kit boards. For use when downloading to/debugging

from MDDR.

o board/microsemi-smartfusion2-dev-kit-ddr.cfg: an example script supporting a

specific SmartFusion2 MDDR configuration on the SmartFusion2 Development Kit or Advanced

Development Kit boards. For use when downloading to/debugging from MDDR.

o board/microsemi-smartfusion2-dev-kit-ddr-ecc.cfg: an example script

supporting a specific SmartFusion2 MDDR configuration with ECC enabled on the SmartFusion2

Development Kit or Advanced Development Kit boards. For use when downloading to/debugging

from MDDR with ECC enabled.

 Cortex-M1

o board/microsemi-cortex-m1.cfg: for targeting Cortex-M1. Explained in the next section.

 RISC-V

o board/microsemi-riscv.cfg: for targeting RISC-V.

Note: For more information about SmartFusion2 MDDR external RAM support see elsewhere in this document

and also in the <SoftConsole-install-dir>/extras/smartfusion2-mddr folder in the

SoftConsole installation.

The following outlines the normal correlation between the linker script used to link the program and the OpenOCD

board script used for debugging:

Microsemi SoftConsole v5.1

36 Microsemi Softconsole v5.1 Release Notes

SmartFusion2 CMSIS Hardware Abstraction Layer

Linker script OpenOCD board script

debug-in-microsemi-smartfusion2-esram.ld

debug-in-microsemi-smartfusion2-envm.ld

board/microsemi-cortex-m3.cfg

debug-in-microsemi-smartfusion2-external-

ram.ld

board/microsemi-smartfusion2-eval-or-

starter-kit-ddr.cfg

board/microsemi-smartfusion2-dev-kit-

ddr.cfg

board/microsemi-smartfusion2-dev-kit-ddr-

ecc.cfg

production-smartfusion2-execute-in-place.ld

production-smartfusion2-relocate-to-

external-ram.ld

Not applicable – not for interactive debugging

SmartFusion CMSIS-PAL

Linker script OpenOCD board script

debug-in-actel-smartfusion-esram.ld

debug-in-actel-smartfusion-envm.ld

board/microsemi-cortex-m3.cfg

debug-in-external-ram.ld Not applicable – not yet supported

production-execute-in-place.ld

production-relocate-executable.ld

Not applicable – production flow, not for interactive

debugging

Hardware Abstraction Layer (Cortex-M1/DirectCore)

Linker script OpenOCD board script

ram-debug.ld board/microsemi-cortex-m1.cfg

boot-from-intel-flash.ld

boot-from-nvm.ld

Not applicable – production flow, not for interactive

debugging

run-from-nvm.ld

run-from-intel-flash.ld

Not applicable – not yet supported

Cortex-M1 CMSIS Hardware Abstraction Layer

Linker script OpenOCD board script

Refer to the Cortex-M1 CMSIS HAL documentation board/microsemi-cortex-m1.cfg

RISC-V Hardware Abstraction Layer (HAL)

Linker script OpenOCD board script

Refer to the RISC-V HAL documentation board/microsemi-riscv.cfg

Cortex-M1 Board Script

Use the board/microsemi-cortex-m1.cfg board script when targeting a Cortex-M1 based system on chip.

Unlike SmartFusion/SmartFusion2 when targeting Cortex-M1 --command "set DEVICE ..." is not needed.

If the Cortex-M1 system includes flash memory then the board/microsemi-cortex-m1.cfg board script needs

to be modified (or copied and modified) to add this.

The Cortex-M1 can be configured to allow debugging using FlashPro “indirectly” via the FPGA’s UJTAG block or

“directly” via general I/O pins carrying the JTAG signals. The board script assumes the former (UJTAG) by default.

To override this and select “direct” debugging add the following:

--command "set FPGA_TAP N"

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 37

FlashPro JTAG speed

The SoftConsole OpenOCD scripts use a default JTAG clock speed of 6MHz. If this needs to be overridden then it

can be specified (in kHz) alongside the target device – e.g. to use 1MHz (1000kHz):

--command "set DEVICE M2S090; set JTAG_KHZ 1000"

or

--command "set DEVICE M2S090" --command "set JTAG_KHZ 1000"

Warning: do not change the JTAG clock speed unless absolutely necessary and only if you understand the

implications and possible pitfalls of doing so.

Other OpenOCD options

In some cases where OpenOCD debugging does not work as expected it may be useful to add the --debug n

(where n is a debug level between 0 and 3) to the debug launch configuration.

See also the OpenOCD User’s Guide for other OpenOCD options and commands:

http://openocd.org/documentation/.

SoftConsole OpenOCD script parameters

A number of parameters can be used to configure/control how the SoftConsole OpenOCD scripts operate.

Refer to the comments in the example scripts for more details.

 <SoftConsole-install-dir>/openocd/share/openocd/scripts/interface/microsemi-

flashpro.cfg

 <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

cortex-m1.cfg

 <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

cortex-m3.cfg

 <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

riscv.cfg

Board configuration for FlashPro debugging

Debugging a Cortex-M3 target with the FlashPro JTAG programmer requires that JTAG_SEL is tied high and,

where applicable, FlashPro/USB rather than RVI debug access is enabled.

If JTAG_SEL is not configured correctly then debugging will not work.

Using a debug session

Launching a debug session

Select the project in the Project Explorer, right click on it and from the context menu select Debug As > Debug

Configurations, select the relevant debug launch configuration and click Debug.

Memory Monitor

The default Memory Monitor view rendering is Hex which may render values in big-endian rather than little-endian

form. If this is the case then switch to Traditional or Hex Integer rendering which renders values properly as little-

endian.

Console view

During a debug session SoftConsole can display a number of different consoles in the Console view. By default the

OpenOCD console is displayed showing OpenOCD output:

http://openocd.org/documentation/

Microsemi SoftConsole v5.1

38 Microsemi Softconsole v5.1 Release Notes

Figure 9. Debug session – OpenOCD console view

The highlighted Display Selected Console toolbar button allows different consoles to be selected:

Figure 10. Debug session – selecting a specific console view

The openocd and arm-none-eabi-gdb consoles are usually the ones of most interest. If semihosting is used the I/O

is done via the GDB console. The arm-none-eabi-gdb console must be the active console in order to manually enter

GDB commands.

Built-in serial terminal view

SoftConsole includes a built-in serial terminal view which obviates the need to run a separate serial terminal

emulator when connecting to a target board using a UART. The plug-ins used to implement this view are pre-

installed. Refer to this blog post for information on how to show and configure the terminal view (but skip the parts

dealing with plug-in installation as this is already done):

http://mcuoneclipse.com/2015/04/20/serial-terminal-view-in-eclipse-luna/

Debug using a specific FlashPro programmer

By default SoftConsole will debug using the first FlashPro5 programmer that it detects. If there is no FlashPro5

connected then it will use the first FlashPro3/4 that it detects.

When there is only one FlashPro programmer connected this is fine. In some cases more than one FlashPro

programmer will be connected in which case SoftConsole needs to be told which one to use for debugging.

A specific example of this is when using the M2S090 Security Evaluation Kit board. On this board J5 is the FlashPro

connector normally used for FlashPro programming of the FPGA and SoftConsole debugging. However J18 is also

an on-board SPI only FlashPro5 programmer which can be used for programming the FPGA but cannot be used for

SoftConsole debugging. J18 is also used for access to serial ports on the target design.

In this case if both J5 and J18 are connected to the host computer on which SoftConsole is running then

SoftConsole needs to be told to use the former for debugging.

When OpenOCD runs it lists the FlashPro programmers that it finds and indicates which one it uses by default –

e.g:

http://mcuoneclipse.com/2015/04/20/serial-terminal-view-in-eclipse-luna/

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 39

Open On-Chip Debugger 0.8.0 (2015-09-14-11:33)

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.sourceforge.net/doc/doxygen/bugs.html

M2S010

Info : only one transport option; autoselect 'jtag'

adapter speed: 2000 kHz

cortex_m reset_config sysresetreq

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: usb86709, S200XTYRZ3

Info : FlashPro port used: S200XTYRZ3

To use a specific FlashPro device when there is more than one connected In the debug launch configuration

change the following:

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

to this which specifies which FlashPro programmer/port to use for debugging:

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

--command "microsemi_flashpro port usb86709"

Note: The microsemi_flashpro_port command must appear after the board script has been specified

because this script sources the interface/microsemi-flashpro.cfg script.

Debugging using a non FlashPro JTAG interface

By default the Microsemi OpenOCD board scripts (e.g. board/microsemi-cortex-m3.cfg) specify that a

FlashPro programmer will be used for debugging:

FlashPro

source [find interface/microsemi-flashpro.cfg]

Device

source [find target/microsemi-cortex-m3.cfg]

Board specific initialization

proc do_board_reset_init {} {

}

This is akin to assuming that all boards come with an on-board FlashPro programmer even if some use a

discrete/external programmer. This is the normal and recommended debugging setup.

In this case the debug launch configuration will look something like this:

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

However it is possible to use any other RVI compatible JTAG probe that OpenOCD supports by default. As an

example, to debug using the Olimex ARM-USB-TINY-H

1. In the debug launch configuration put the following:

--command "set DEVCE M2S090; set FPGA_TAP N; set FLASHPRO N"

http://openocd.sourceforge.net/doc/doxygen/bugs.html

Microsemi SoftConsole v5.1

40 Microsemi Softconsole v5.1 Release Notes

--file board/microsemi-cortex-m3.cfg

--file interface/ftdi/olimex-arm-usb-tiny-h.cfg

2. Ensure that the board's JTAG_SEL signal is tied low for RVI (for RVI debugging) rather than high (for

FlashPro debugging via the system controller).

3. Connect the Olimex ARM-USB-TINY-H programmer to the board's RVI connector and the USB end to the

computer. Ensure that the required drivers are installed. Debugging can now be done via the Olimex ARM-

USB-TINY-H device.

The same approach can be taken with other JTAG programmers supported by OpenOCD.

How to connect to/debug a running program

In some situations it is desirable to connect to a program already running on the target without resetting the target,

loading the program, executing from the startup code, breakpointing at main() etc. To enable this form of

debugging:

1. The program/project built must match the program running on the target – i.e. exactly the same code, linker

script etc.

2. On the Startup page of the debug launch configuration...

3. Clear the Initial Reset checkbox

4. In the Initialization Commands text field enter monitor halt

5. Clear the Load Symbols and Executable > Load Executable checkbox

With these settings when the debug session is launched SoftConsole the program remains running and the

Suspend “pause” button can be used to halt it and thereafter normal debugging operations can be performed.

Troubleshooting

If the debug session fails to run as expected then check the following:

a. On Linux was the udev rules file installed to grant non root access to users in the relevant group (usually

plugdev)?

b. Is a FlashPro device connected (FlashPro 5 on Linux, FlashPro3/4/5 on Windows)?

c. Is there more than one FlashPro device connected? If so SoftConsole may not be using the correct one. If

you want to use a specific one of a number of FlashPro devices connected then you can add --command

"microsemi_flashpro port <fp-port-name>" to the OpenOCD command line options.

d. On Windows did a previous FlashPro3/4 debug session fail leaving OpenOCD (openocd.exe) running

because abiactel.dll did not exit cleanly thus blocking access to the FlashPro device? Check Task

Manager/ProcessExplorer for openocd.exe and if it’s still running then unplug the FlashPro USB cable and

then reattach it and OpenOCD should terminate.

e. If the debug session starts but the program does not run/behave as expected then check that the project

was updated to match the target hardware by having the Libero SoC generated firmware and

drivers_config copied in before rebuilding.

f. Ensure that the relevant CMSIS/HAL firmware core is used.

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 41

Other Features

Cortex-M semihosting

Semihosting allows I/O (e.g. file I/O, standard I/O etc.) operations on the target board to be redirected to the

SoftConsole host via OpenOCD and the debugger. For example this allows stdio input and output to be performed

via the SoftConsole GDB console and allows the program running on the target to read/write files on the host

filesystem.

The I/O operations on the target are trapped by library code running on the target and redirected to the host. In

order to use semihosting a number of steps must be taken:

 Under Project > Properties > C/C++ Build > Settings > Tool Settings > Cross ARM C/C++ Linker >

Miscellaneous > Other linker flags add --specs=rdimon.specs in order to link the libraries required for

semihosting.

 The file CMSIS/startup_gcc/newlib_stubs.c clashes with the semihosting library support so must

be deleted from the project or excluded from the build (check Properties > C/C++ Build > Exclude resource

from build) otherwise the program will not link.

 The following code must be added (e.g. to main.c):

#include <stdio.h>

extern void initialise_monitor_handles(void);

int main()

{

 ...

 initialise_monitor_handles();

 ...

 iprintf("Hello, World\n");

 ...

}

 Programs that use semihosting must be run under the debugger and will not run standalone with no

debugger attached as they will hang in the library code that traps I/O operations and attempts to redirect

them to the host debugger.

 By default semihosting output is buffered until a '\n' is output. This can be overridden to force character

granularity output using setvbuf(stdout, NULL, _IONBF, 0); but the output will be much slower

due to the overhead of many additional semihosting trap operations.

Integer only newlib support

SoftConsole bundles newlib standard library support (https://sourceware.org/newlib/).

It is often possible to build embedded programs in constrained resource (CPU, memory etc.) environments without

linking in any standard library overhead. However where standard library support must be used newlib offers a

couple of ways to reduce the overhead:

 Smaller integer only *iprintf() APIs (e.g. iprintf(), siprintf(), fiprintf() etc.) that avoid the significant

additional overhead of floating point support. Refer to the newlib documentation for more information.

 Nano newlib which is a cut down version of the standard newlib library. To use newlib-nano go to the project

properties and check the C/C++ Build > Settings > Tool Settings > Cross ARM C/C++ Linker >

Miscellaneous > Use newlib-nano (--specs=nano.specs) option.

https://sourceware.org/newlib/

Microsemi SoftConsole v5.1

42 Microsemi Softconsole v5.1 Release Notes

Static stack profiling

GCC supports static stack usage analysis/profiling.

See here for more on this and add the relevant options to the project settings as required:

https://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Static-Stack-Usage-Analysis.html

https://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Static-Stack-Usage-Analysis.html

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 43

Known Issues
Know issues documented in this section are under active investigation to ascertain the root cause and to resolve the

underlying problems with the intention that these are resolved in a future release.

Debug launch configuration settings differ for Cortex-M and RISC-V

Be aware that the debug launch configuration settings are different for Cortex-M and RISC-V targets as explained above. The

default settings may not automatically match the target CPU. Care must be taken to ensure that the correct configuration

settings are applied especially on the Debugger tab. The easiest way to avoid problems is to use the example workspace

debug launch configurations as a guide or copy the appropriate one and then customise and specific settings.

Windows occasionally crashes when plugging FlashPro in/out

It has been observed in some cases that plugging a FlashPro JTAG programmer in/out of a Windows machine can

sporadically/occasionally cause it to “Blue Screen” (“Blue Screen of Death” or “BSOD”). When this happens the error is often a

PAGE_FAULT_IN_NONPAGED_AREA in ftdibus.sys but in some cases a different cause may be displayed.

OpenOCD crashes when attempting to debug RISC-V

In some cases OpenOCD may crash when attempting to debug a RISC-V target. This happens when the debug session would

fail anyway due to everything not being order for it to work – for example, the target board is not connected or powered up or

the wrong target board is connected. In some cases such a crash may necessitate closing SoftConsole and restarting it in

order for a subsequent debug session to work.

RISC-V C++ support

At the moment only C (including mixed C and assembly language) projects will work for RISC-. C++ projects will not work

within the SoftConsole Eclipse/CDT environment. The underlying RISC-V GNU toolchain does support C++ but the RISC-V

Eclipse Plugin for RISC-V GNU Toolchain does not yet properly support C++ projects.

Invalid command name "arm" when debugging RISC-V
If the debug launch configuration option Startup > Initialization Commands > Enable ARM semihosting is checked/enabled
when debugging a RISC-V target then the following error will be displayed by OpenOCD but this can be safely ignored or the
Enable ARM semihosting option simply unchecked/disabled:

invalid command name "arm"

Initial startup may be slow

SoftConsole may be slow to start up when run for the first time after installation. The splash screen may be displayed for a

period of time before the GUI proper appears. Please be patient if this happens. It is a once off issue that does not happen on

subsequent launches.

Flash Programming

OpenOCD has been enhanced to add support for program download to and debugging from SmartFusion eNVM,

SmartFusion2 eNVM and Fusion eNVM.

OpenOCD supports programming CFI (Common Flash Interface) external flash parts but not non CFI external flash.

No unlocking or locking of eNVM pages is carried out when downloading to eNVM. eNVM pages to be modified are expected

and assumed to be unlocked.

Build Project context menu option sometimes disabled

Sometimes the Build Project option in the context menu that appears when right clicking on a project is disabled when it

should be enabled. This seems to be a CDT bug. If this happens right click on another node in the Project Explorer tree view

and then back onto the project in question and it will be re-enabled. Alternatively use the Build toolbar (hammer) icon to select

and build a specific project build target.

Microsemi SoftConsole v5.1

44 Microsemi Softconsole v5.1 Release Notes

Windows firewall and OpenOCD

On Windows if there is a firewall in use then the first time that a debug session is run the firewall may prompt that it is blocking

OpenOCD. Allow the firewall to unblock it and save this as the default setting if necessary.

Multiple debug sessions

Only one debug session should be active at any one time. If a deliberate or inadvertent attempt is made to run more than one

then SoftConsole may not work properly and it may be necessary to exit and restart SoftConsole for further debugging to work

properly.

Memory Monitor fails to display

There have been unconfirmed reports that in some cases an attempt to configure/enable a Memory Monitor will fail and the

debug session may not operate correctly subsequently. If this happens then exit and restart SoftConsole.

Warning when installing Windows FlashPro drivers

On some Windows installations the FlashPro drivers installer (FPdrivers.exe) launched from the SoftConsole installer may

display a warning “Windows can’t verify the publisher of this driver software”. If this happens please select the “Install this

driver anyway” option.

FlashPro JTAG debugging is unreliable on virtual machines

FlashPro JTAG debugging is unreliable on virtual machines so it is recommended that only physical machines and not virtual

machines be used for SoftConsole debugging.

Invalid Project Path warnings in Cortex-M projects

Occasionally and sporadically Eclipse may display “Invalid Project Path” warnings in Cortex-M projects for no obvious reason.

For example:

Invalid project path: Duplicate path entries found (/fpga-cortex-m1-blinky [Include path]

base-path:fpga-cortex-m1-blinky isSystemInclude:true)

Invalid project path: Include path not found (smartfusion2-cortex-m3-blinky\#undef

__ARM_FEATURE_CRYPTO)

Deleting these warnings may eliminate them. But if they continue to appear then, for the moment, just ignore them.

“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3

When debugging a SmartFusion2 Cortex-M3 target where the SmartFusion2 envm boot area does not contain a valid Cortex-

M3 program (for example zeroized or garbage envm contents) then one or more instances of the following message may

appear in the OpenOCD log:

Info : DAP transaction stalled (WAIT) - slowing down

This arises because if the Cortex-M3 boots from zeroized or garbage envm it can end up in a double fault/lockup/reset cycle

and the debugger may experience delays while trying to reset it. However the debugger will reset the target and these

messages can be safely ignored.

Error: Got exception when reading some RISC-V registers
Not all RISC-V registers are implemented in all RISC-V targets. For example RISC-V targets with no hardware floating point
support (no F, D or Q extension support) do not implement any FPU (Floating Point Unit) registers. Similarly not all
Control/Status Registers (CSRs) are implemented in all cases. When an attempt is made to read a register that does not exist
then OpenOCD will display a message of the form:

Error: Got exception 0xffffffff when reading register ...

Such error messages can be safely ignored.

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 45

Debugging and multiple device JTAG chains

Debugging is not yet possible in a multiple device JTAG chain where one device (a Microsemi FPGA) in the chain contains a

Cortex-M1 or RISC-V CPU to be targeted. Where the JTAG chain comprises a single Microsemi FPGA device containing

multiple instances of a soft CPU core then a specific CPU instance can be targeted for debugging in that case.

Debugging a particular SmartFusion or SmartFusion2 Cortex-M3 in a multiple device chain can be achieved through judicious

and appropriate customization of the OpenOCD board script to include a description of other device TAPs in the JTAG chain.

For example make a copy of the <SoftConsole-install-

dir>/openocd/share/openocd/scripts/board/microsemi-riscv.cfg board script and modify it to declare any

device TAPS before and/or after the device containing the CPU which is to be debugged. The following example describes a

three M2S090 device chain where the middle device contains the Cortex-M3 to be debugged:

FlashPro

source [find interface/microsemi-flashpro.cfg]

Ignore leading device

jtag newtap M2S090_0 tap -irlen 8 -expected-id 0x0f8071cf -ignore-version

Want to debug the Cortex-M3 in this device

source [find target/microsemi-cortex-m3.cfg]

Ignore trailing device

jtag newtap M2S090_2 tap -irlen 8 -expected-id 0x0f8071cf -ignore-version

Board specific initialization

proc do_board_reset_init {} {

}

RISC-V target support

The primary RISC-V target is the Microsemi RV32IM CPU. However the RISC-V tools bundled with SoftConsole (in particular

the Eclipse Plugin for RISC-V GNU Toolchain and the RISC-V GNU Toolchain itself) should be capable of supporting many

other RISC-V RV32 and RV64 targets. However not all RISC-V targets have been tested in practice so if issues arise please

report them to Microsemi technical support or via the RISC-V mailing lists (https://riscv.org/mailing-lists/). The Eclipse Plugin

for RISC-V GNU Toolchain offers various configuration options in the project properties that control the target CPU, bit size,

ABI and extensions.

https://riscv.org/mailing-lists/

Microsemi SoftConsole v5.1

46 Microsemi Softconsole v5.1 Release Notes

SoftConsole v3.4 or earlier workspaces/projects

SoftConsole v3.4 or earlier workspaces, projects and debug launch configurations are not compatible with this version of

SoftConsole and must be recreated.

SoftConsole v5.0 RISC-V projects and debug launch configurations

Due to changes to the Eclipse Plugin for RISC-V GNU Toolchain since SoftConsole v5.0 was released it is possible that RISC-

V projects created using SoftConsole v5.0 may not work correctly in SoftConsole v5.1. For this reason it is recommended that

existing projects created in SoftConsole v5.0 or any pre-release version of SoftConsole v5.x are recreated in SoftConsole

v5.1. Note that SoftConsole v5.1 RISC-V debug launch configurations require -f board/microsemi-riscv.cfg whereas

some pre-release versions of SoftConsole v5.x used a different board script name (for example -f board/microsemi-

riscv-rv32im.cfg). If there are any problems using existing RISC-V debug launch configurations then recreate them using

one of the example workspace RISC-V debug launch configurations as a guide.

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 47

Other useful Documentation
1. Erich Styger’s “MCU on Eclipse” blog (http://mcuoneclipse.com/): Useful tips and tricks for using

Eclipse/CDT, GNU ARM Eclipse, GNU Tools for ARM Embedded Processors, OpenOCD etc. The

Compendium page is a good place to find posts/articles relevant to Eclipse, OpenOCD etc.

2. The websites and documentation links for the various open source components used in SoftConsole are

also useful references. These are listed below.

http://mcuoneclipse.com/
http://mcuoneclipse.com/compendium/

Product Support

48 Microsemi Softconsole v5.1 Release Notes

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service,

Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains

information about contacting Microsemi SoC Products Group and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update

information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can

help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer

Technical Support Center spends a great deal of time creating application notes, answers to common design cycle

questions, documentation of known issues and various FAQs. So, before you contact us, please visit our online

resources. It is very likely we have already answered your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-

support.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group home

page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by

email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or

phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly

monitor the email account throughout the day. When sending your request to us, please be sure to include your full

name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

http://www.microsemi.com/index.php?option=com_content&view=article&id=2112&catid=1731&Itemid=3022
http://www.microsemi.com/index.php?option=com_content&view=article&id=2112&catid=1731&Itemid=3022
http://www.microsemi.com/soc
http://www.microsemi.com/soc
http://www.microsemi.com/soc/
file:///C:/Documents%20and%20Settings/alim/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/BPCDM203/soc_tech@microsemi.com
http://www.microsemi.com/soc/mycases/

Microsemi SoftConsole v5.1

Microsemi Softconsole v5.1 Release Notes 49

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email

(soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and corporate

contacts.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR),

contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR drop-down list.

For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/mycases/
http://www.microsemi.com/soc/ITAR/

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor

and system solutions for communications, defense & security, aerospace and industrial

markets. Products include high-performance and radiation-hardened analog mixed-signal

integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and

synchronization devices and precise time solutions, setting the world's standard for time; voice

processing devices; RF solutions; discrete components; security technologies and scalable

anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as

custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and

has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

XXXXXXXX-06Jun2017

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or

the suitability of its products and services for any particular purpose, nor does Microsemi assume any

liability whatsoever arising out of the application or use of any product or circuit. The products sold

hereunder and any other products sold by Microsemi have been subject to limited testing and should not

be used in conjunction with mission-critical equipment or applications. Any performance specifications are

believed to be reliable but are not verified, and Buyer must conduct and complete all performance and

other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not

rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s

responsibility to independently determine suitability of any products and to test and verify the same. The

information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the

entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly

or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such

information itself or anything described by such information. Information provided in this document is

proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this

document or to any products and services at any time without notice.

http://www.microsemi.com/
mailto:sales.support@microsemi.com

