SmartDebug for Libero SoC v11.8
User Guide

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

& Microsemi

Power Matters.”

SmartDebug for Libero SoC v11.8 User Guide

Power Matters.”
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
wWww.microsemi.com

©2017 Microsemi Corporation. All
rights reserved. Microsemi and
the Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks
and service marks are the
property of their respective
owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does Microsemi
assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must
conduct and complete all performance and other testing of the products, alone and together with,
or installed in, any end-products. Buyer shall not rely on any data and performance specifications
or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party
any patent rights, licenses, or any other IP rights, whether with regard to such information itself or
anything described by such information. Information provided in this document is proprietary to
Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and
system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization
devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions;
security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet
ICs and midspans; as well as custom design capabilities and services. Microsemi is
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

5-02-00638-2/01.17

& Microsemi

Power Matters.”

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

SmartDebug for Libero SoC v11.8 User Guide C M’cmsem"

Power Matters.”

Table of Contents

Welcome to SMartDebUQuuuiiiiii e 5
SmartDebug User INterface. ... 10
[T o XU o Fo T 1 o USSR 19
SmartDebug Tcl CommMandS.........ouuuiiiiiii e 71
Solutions to Common Issues Using SmartDebugccccceeiiiiiiiiiiiinnnn, 105
Frequently Asked QUESTIONSccciiviiiiiiiiie e 107
Embedded Flash Memory (NVM) Frequently Asked Questions............. 117
Addendum — FHB IP Design Specificationccccoevuiiiiieieiiiieieiiiien. 117

Welcome to SmartDebug

Introduction to SmartDebug

Use Models

Design debug is a critical phase of FPGA design flow. Microsemi’s SmartDebug tool complements design
simulation by allowing verification and troubleshooting at the hardware level. SmartDebug provides access
to non-volatile memory (eNVM), SRAM, SERDES, DDR controller, and probe capabilities. Microsemi
SmartFusion2 System-on-chip (SoC) field programmable gate array (FPGA), IGLOO2 FPGA, and RTG4
FPGA devices have built-in probe logic that greatly enhance the ability to debug logic elements within the
device. SmartDebug accesses the built-in probe points through the Active Probe and Live Probe features,
which enables designers to check the state of inputs and outputs in real-time without re-layout of the design.

SmartDebug can be run in two modes:

¢ Integrated mode from the Libero Design Flow
e Standalone mode

Integrated Mode

When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug
FPGA Array.

To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click
SmartDebug Design.

Standalone Mode

SmartDebug can be installed separately in the setup containing FlashPro, FlashPro Express, and Job
Manager. This provides a lean installation that includes all the programming and debug tools to be installed
in a lab environment for debug. In this mode, SmartDebug is launched outside of the Libero Design Flow.
When launched in standalone mode, you must to go through SmartDebug project creation and import a
Design Debug Data Container (DDC) file, exported from Libero, to access all debug features in the
supported devices.

Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified 1/0.

Standalone Mode Use Model Overview

The main use model for standalone SmartDebug requires users to generate the DDC file from Libero and
import it into a SmartDebug project to obtain full access to the device debug features. Alternatively,
SmartDebug can be used without a DDC file with a limited feature set.

Supported Families, Programmers, and Operating Systems

Programming and Debug: SmartFusion2, IGLOO2, and RTG4
Programming only: ProAsic3/E, IGLOO, Fusion, and SmartFusion
Programmers: FlashPRO3, FlashPRO4, and FlashPRO5
Operating Systems: Windows XP, Windows 7, and RHEL 6.x

Note: Debug for ProAsic3/E, IGLOO, Fusion, and SmartFusion devices are available via FlashPro. Also
refer to "Inspect Device" in the "Device Debug User Interface" section of the FlashPro User's Guide.

Supported Tools

The following table lists device family support for SmartDebug tools.

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

SmartDebug Support per | SmartFusion2 IGLOO2 RTG4 SmartFusion | Fusion
Device Family
Live Probes X X X
Active Probes X X X
Memory Debug X X X
Probe Insertion (available X X X
only through Libero flow)
View Flash Memory Content X X X X
Debug SERDES X X X
FPGA Hardware Breakpoint X X
(Needs FHB Auto
Instantiation)
Event Counter (Needs FHB X X
Auto Instantiation)
Frequency Monitor (Needs X X
FHB Auto Instantiation)
FlashROM X X
Analog Block Configuration X X

Note: "X" indicates the tool is supported.

Getting Started with SmartDebug

This topic introduces the basic elements and features of SmartDebug. If you are already familiar with the
user interface, proceed to the Solutions to Common Issues Using SmartDebug or Frequently Asked
Questions sections.

SmartDebug enables you to use JTAG to interrogate and view embedded silicon features and device status
(FlashROM, Security Settings, Embedded Flash Memory (NVM) and Analog System). SmartDebug is
available as a part of the FlashPro programming tool.

See Using SmartDebug and Using SmartDebug with SmartFusion2, IGLOO2, and RTG4 for an overview of

the use flow.

See Using SmartDebug with SmartFusion2, IGLOO2, and RTG4 for an overview of the use flow.

You can use the debugger to:
e Get device status and view diagnostics

e Use the FlashROM debug GUI to read out and compare content

e Use the Embedded Flash Memory Debug GUI to read out and compare your content with your original

files

e Use the Analog System Debug to read out and compare your analog block configuration with your

original file

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Using SmartDebug with SmartFusion and Fusion

Note: SmartDebug is referred to as Device Debug in some older families.

The most common flow for SmartDebug is:

1.

Start FlashPro. If necessary, create a new project. You must have a FlashPro programmer connected
to use SmartDebug.

Set up your FlashPro Project with or without a PDB file. If you are in single-device mode you will need
a PDB file. You can create a PDB file in both Single Device and Chain mode.

With a PDB, you will get additional information such as FlashROM and Embedded Flash Memory
partitions when debugging the silicon features. Best practice is to use a PDB with a valid-use design to
start a debug session.

Select the target device from your chain and click Inspect Device.
Click Device Status to get device status and check for issues

Examine individual silicon features (FlashROM, Embedded Flash Memory Block and Analog System)
on the device.

Using SmartDebug with SmartFusion2, IGLOO2, and RTG4

The most common flow for SmartDebug is:

1.
2.

Create your design. You must have a FlashPro programmer connected to use SmartDebug.

Expand Debug Design and double-click Smart Debug Design in the Design Flow window.
SmartDebug opens for your target device.

Click View Device Status to view the device status report and check for issues.
Examine individual silicon features, such as FPGA debug.

Create Standalone SmartDebug Project

A standalone SmartDebug project can be configured in two ways:

Import DDC files exported from Libero
Construct Automatically

From the SmartDebug main window, click Project and choose New Project. The Create SmartDebug
Project dialog box opens.

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

-@‘ Create SmartDebug Project Iél

Mame: sdebugl

Location; C:fUsers

Construct JTAG chain for the project

Connected programmers: [SZUl‘I’QSTl"J' "’” Refresh]

@ ImportDDC File: de vjnegedgeckf2048 18 1024 36 v/srcs/RAM Logical View.ddc |

Design debug dafa wil be imporfed with JTAG chain

) Construct Automatically

(] o) oot

Figure 1 - Create SmartDebug Project Dialog Box

Import from DDC File (created from Libero)

When you select the Import from DDC File option in the Create SmartDebug Project dialog box, the Design
Debug Data of the target device and all hardware and JTAG chain information present in the DDC file
exported in Libero are automatically inherited by the SmartDebug project. The programming file information
loaded onto other Microsemi devices in the chain, including ProAsic3/E, SmartFusion, and Fusion devices,
are also transferred to the SmartDebug project.

Debug data is imported from the DDC file (created through Export SmartDebug Data in Libero) into the
debug project, and the devices are configured using data from the DDC file.

Construct Automatically

When you select the Construct Automatically option, a debug project is created with all the devices

connected in the chain for the selected programmer. This is equivalent to Construct Chain Automatically in
FlashPRO.

Configuring a Generic Device

For Microsemi devices having the same JTAG IDCODE (i.e., multiple derivatives of the same Die—for
example, M2S090T, M2S090TS, and so on), the device type must be configured for SmartDebug to enable
relevant features for debug. The device can be configured by loading the programming file, by manually
selecting the device using Configure Device, or by importing DDC files through Programming Connectivity
and Interface. When the device is configured, all debug options are shown.

For debug projects created using Construct Automatically, you can use the following options to debug the
devices:

e Load the programming file — Right-click the device in Programming Connectivity and Interface.
e Import Debug Data from DDC file — Right-click the device in Programming Connectivity and Interface.

The appropriate debug features of the targeted devices are enabled after the programming file or DDC file is
imported.

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Connected FlashPRO Programmers

The drop-down lists all FlashPro programmers connected to the device. Select the programmer connected
to the chain with the debug device. At least one programmer must be connected to create a standalone
SmartDebug project.

Before a debugging session or after a design change, program the device through Programming
Connectivity and Interface.

See Also

Programming Connectivity and Interface

View Device Status

Export SmartDebug Data (from Libero)

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

SmartDebug User Interface

Standalone SmartDebug User Interface

You can start standalone SmartDebug from the Libero installation folder or from the FlashPRO installation
folder.

Windows:
<Libero Installation folder>/Designer/bin/sdebug.exe
<FlashPRO Installation folder>/bin/sdebug.exe
Linux:
<Libero Installation folder>/ bin/sdebug
<FlashPRO Installation folder>/bin/sdebug

"9 SmantDebug || B
Project View Tools
W |
| B | M 5

SmartDebuqg Projects

Lag & X

| () @ e v @

Figure 2 - Standalone SmartDebug Main Window
Project Menu
The Project menu allows you do the following:
e Create new SmartDebug projects (Project > New Project)
e Open existing debug projects (Project > Open Project)

10

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

e Execute SmartDebug-specific Tcl scripts (Project > Execute Script)
e Export SmartDebug-specific commands to a script file (Project > Export Script File)
e See a list of recent SmartDebug projects (Project > Recent Projects).

Log Window

SmartDebug displays the Log window by default when it is invoked. To suppress the Log window display,
click the View menu and toggle View Log.

The Log window has four tabs:
Messages — displays standard output messages
Errors — displays error messages
Warnings — displays warning messages
Info — displays general information
Tools Menu

The Tools menu includes Programming Connectivity and Interface and Programmer Settings options, which
are enabled after creating or opening a SmartDebug project.

Programming Connectivity and Interface

To open the Programming Connectivity and Interface dialog box, from the standalone SmartDebug Tools
menu, choose Programming Connectivity and Interface. The Programming Connectivity and Interface
dialog box displays the physical chain from TDI to TDO.

J+[Programming Connectivity and Interface == X

2 TDO

O Y4

Figure 3 - Programming Connectivity and Interface Dialog Box — Project created using Import from DDC File

All devices in the chain are disabled by default when a standalone SmartDebug project is created using the
Construct Automatically option in the Create SmartDebug Project dialog box.

[Programming Connectivity and Interface e=aney X

% wgowrs e~
SR
a -2mo § o
A § D¢

Programming Connectivity and Interface window — Project created using Construct Automatically
The Programming Connectivity and Interface dialog box includes the following actions:
e Construct Chain Automatically - Automatically construct the physical chain.

11

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Running Construct Chain Automatically in the Programming Connectivity and Interface removes all
existing debug/programming data included using DDC/programming files. The project is the same as a
new project created using the Construct Chain Automatically option.

e Scan and Check Chain — Scan the physical chain connected to the programmer and check if it
matches the chain constructed in the scan chain block diagram.

e Run Programming Action — Option to program the device with the selected programming procedure.

When two devices are connected in the chain, the programming actions are independent of the device.
For example, if M2S090 and M2GL010 devices are connected in the chain, and the M2S090 device is to
be programmed and the M2GL010 device is to be erased, both actions can be done at the same time
using the Run Programming Action option.

e Zoom In — Zoom into the scan chain block diagram.

e Zoom Out — Zoom out of the scan chain block diagram.

Hover Information

The device tooltip displays the following information if you hover your cursor over a device in the scan chain
block diagram:

¢ Name: User-specified device name. This field indicates the unique name specified by the user in the
Device Name field in Configure Device (right-click Properties).

e Device: Microsemi device nhame.
e Programming File: Programming file name.

e Programming action: The programming action selected for the device in the chain when a
programming file is loaded.

¢ |R: Device instruction length.

e TCK: Maximum clock frequency in MHz to program a specific device; standalone SmartDebug uses

this information to ensure that the programmer operates at a frequency lower than the slowest device
in the chain.

|RT4G150_ES =
| [RT4G 150_ES] i
& TDO ! TOI <5
o100 [TOI
L}
i |Name: RT4G150_E5 |

[Device: |[RT4G150_ES |
:.'r"uc-:iu.arm'm.n.q File: I
..'-"ucc;u.amrm.-wg action:

[Tck: (10000000 |

Device Chain Details

The device within the chain has the following details:

e User-specified device name
e Device name
e Programming file name

e Programming action — Select Enable Device for Programming to enable the device for programming.
Enabled devices are green, and disabled devices are grayed out.

12

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Right-click Properties

The following options are available when you right-click a device in the Programming Connectivity and
Interface dialog box.

Configure Device...

v Enable Device for Programming...
Load Programming File...
Select Program Procedure/Actions...
Import Debug Data from DDC File...

Configure Device - Ability to reconfigure the device.
e Family and Die: The device can be explicitly configured from the Family, Die drop-down.
¢ Device Name: Editable field for providing user-specified name for the device.

Enable Device for Programming - Select to enable the device for programming. Enabled devices are
shown in green, and disabled devices are grayed out.

Load Programming File - Load the programming file for the selected device.

Select Programming Procedure/Actions- Option to select programming action/procedures for the devices
connected in the chain.

e Actions: List of programming actions for your device.

e Procedures: Advanced option; enables you to customize the list of recommended and optional
procedures for the selected action.

Import Debug Data from DDC File - Option to import debug data information from the DDC file.

The DDC file selected for import into device must be created for a compatible device. When the DDC file is
imported successfully, all current device debug data is removed and replaced with debug data from the
imported DDC file.

The JTAG Chain configuration from the imported DDC file is ignored in this option.

If a programming file is already loaded into the device prior to importing debug data from the DDC file, the
programming file content is replaced with the content of the DDC file (if programming file information is
included in the DDC file).

Debug Context Save

Debug context refers to the user selections in debug options such as Debug FPGA Array, Debug SERDES,
and View Flash Memory Content. In standalone SmartDebug, the debug context of the current session is
saved or reset depending on the user actions in Programming Connectivity and Interface.

The debug context of the current session is retained for the following actions in Programming Connectivity
and Interface:

e Enable Device for Programming

e Select Programming Procedure/Actions
e Scan and Check Chain

e Run Programming Action

The debug context of the current session is reset for the following actions in Programming Connectivity and
Interface:

13

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

e Auto Construct — Clears all the existing debug data. You need to reimport the debug data from DDC
file.

e Import Debug Data from DDC file

e Configure Device — Renaming the device in the chain
e Configure Device — Family/Die change

e Load Programming File

Selecting Devices for Debug

Standalone SmartDebug provides an option to select the devices connected in the JTAG chain for debug.
The device debug context is not saved when another debug device is selected.

My A
R
Device: ST Programener: (93536 (usb93536) v
i
M25M2GLO 10(T |5 [TS) (M2GL010TS)
ID code read from device: IFE07ICF
| View Device Status... | [Debug FPGA Array... I
| View Flash Memory Content. .. I I Debug SERDES... ;

View Device Status (SmartFusion2, IGLOOZ2, and RTG4 Only)

Click View Device Status in the standalone SmartDebug main window to display the Device Status Report.
The Device Status Report is a complete summary of IDCode, device certificate, design information,
programming information, digest, and device security information. Use this dialog box to save or print your
information for future reference.

14

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

- Device Status Report b

———— |
Device: M25080T (M25090T) Programmer: S201YPV0ZC (S201YPVOZC) Save I &3 Print |

Device Status:
IDCode (read from the device) (HEX): 113071cf

Device Certificate

Family: SmartFusion2
Die: M25090
Design Information
Design Name: SYS_SERDES
Design checksum (HEX): 53AA
Design Version: 0
Back Level: li]
Operating voltage: 1.2V
Internal Oscillator: 50MHz

Digest Information
Fabric Digest (HEX): 8d5382634b094bc52a0667 7115134 2dfa
0000f78130faBla31dcb45cbbl1cf159

eNVM_0 Digest (HEX): 90d743000bb62aBbacabab52cOdbbibe
e3f809034344d1a26624180728507254

Device Security Settings
ARM CortexM3 access to eSRAM module 0 read is protected.
ARM CortexM3 access to eSRAM module 0 write is protected.
ARM CortexM3 access to eSRAM module 1 read is protected.
ARM CortexM3 access to eSRAM module 1 write is protected.
ARM CortexM3 access to eNVM_0 read is protected.
ARM CortexM3 access to eNVM_0 write is protected.
ARM CortexM3 access to DDR bridge read is protected.
ARM CortexM3 access to DDR bridge write is protected.
Factory test mode access: Allowed.
Power on reset delay: 100ms
System Controller Suspend Mode: Disabled.

Programming Information

Cycle count: 333

WPP Range: HIGH { VPP >= 3.3V)
Temp Range: HOT

=Algorithm Version: 2

* Programmer: FlashPro 5
* Software Version: FlashPro v11.6

* Programming Software: FlashPro
* Programming Interface Protocel: |TAG
* Programming File Type: STAPL

MNOTE: * - The above Information is only relevant if the device was pregrammed through JTAG or SPI Slave mode.

I Help - x Close . |
Figure 4 - Device Status Report

I[dCode

IDCode read from the device under debug.

Device Certificate
Device certificate displays Family and Die information if device certificate is installed on the device.

If the device certificate is not installed on the device, a message indicating that the device certificate may not
have been installed is shown.

15

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Design Information
Design Information displays the following:

Design Name

Design Checksum

Design Version

Back Level (SmartFusion2 and IGLOO2 only)
Operating Voltage (SmartFusion2 and IGLOQO?2 only)
Internal Oscillator (SmartFusion2 and IGLOO2 only)

Digest Information

Digest Information displays Fabric Digest, eNVM_0 Digest and eNVM_1 Digest (for M2S090 and M2S150
devices only) computed from the device during programming. eNVM digest is shown when eNVM is used in
the design.

Device Security Settings
Note: For RTG4 devices, only Lock Bit information is displayed.
Device Security Settings indicate the following:

Factory test mode access
Power on reset delay
System Controller Suspend Mode

In addition, if custom security options are used, Device Security Settings indicate:

User Lock segment is protected

User Pass Key 1/2 encrypted programming is enforced for the FPGA Array

User Pass Key 1/2 encrypted programming is enforced for the eNVM_0 and eNVM_1
SmartDebug write access to Active Probe and AHB mem space

SmartDebug read access to Active Probe, Live Probe & AHB mem space

UJTAG access to fabric

Programming Information
Programming Information displays the following:

Cycle Count

VPP Range

Temp Range

Algorithm Version

Programmer

Software Version

Programming Software
Programming Interface Protocol
Programming File Type

Embedded Flash Memory (NVM) Content Dialog Box
(SmartFusion2 and IGLOO2 Only)

The NVM content dialog box is divided into two sections:

View content of Flash Memory pages (as shown in the figure below)

16

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

e Check page status and identify if a page is corrupted or if the write count limit has exceeded the 10-
year retention threshold

Choose the eNVM page contents to be viewed by specifying the page range (i.e., start page and the end
page) and click Read from Device to view the values.

You must click Read from Device each time you specify a new page range to update the view.

Specify a page range if you wish to examine a specific set of pages. In the Retrieved Data View, you can
enter an Address value (such as 0010) in the Go to Address field and click the corresponding button to go
directly to that address. Page Status information appears to the right.

Contents of Page Status
e ECCI1 detected and corrected
e ECC2 detected
e Write count of the page
¢ If write count has exceeded the threshold
e If the page is used as ROM (first page lock)
e Overwrite protect (second page lock)
e Flash Freeze state (deep power down)

@ Flash Memory
Select | <Page fange> = 3] Fiead from Dewce:
StatPage: [adress (S0t)
Erd Page: = {11 pages, 1408 byses)
Latest Content Retrieved from Devioe: Mo S 18 1t 1

Retieved Content: from Page 10 to Page 20, 5404 bytes stwrtng fom address 0500

Verm &) Page Ststa Do o Address (e Lt

Figure 5 - Flash Memory Dialog Box for a SmartFusion2 Device (SmartDebug)
The page status gets updated when you:
e Click Page Range
e Click a particular cell in the retrieved eNVM content table
e Scroll pages from the keyboard using the Up and Down arrow keys
e Click Go to Address (hex)

The retrieved data table displays the content of the page range selection. If content cannot be read (for
example, pages are read-protected, but security has been erased or access to eNVM private sectors), Read
from Device reports an error.

Click View Detailed Status for a detailed report on the page range you have selected.

For example, if you want to view a report on pages 1-3, set the Start Page to 1, set the End Page to 3, and
click Read from Device. Then click View Detailed Status. The figure below is an example of the data for a
specific page range.

17

SmartDebug for Libero SoC v11.8 User Guide

from Page 1 to Page 3, 384 bytes starting from address 0x80 as of Thu Jan 07 14:49:29 2016

Page Status Summary [Page 110 3]

Total number of pages with ECC2 errors: 0

Total number of pages with write count out of range: 0
FlashMemory Check PASSED for [Page 1to 3]
Flash Memory Page Status [Page 1to 3]

FlashMemory Page =1:

Recoverable ECC1 error detected:
Non recoverable data error detected:
Write counter over threshold:

Write count:

Use as ROM;

Overwrite Protect:

FlashFreeze state:

FlashMemory Page 22:

Recoverable ECC1 error detected:
Mon recoverable data error detected:
Wirite counter over threshold:

Write count:

Use as ROM:

Recoverable ECC1 error detected:
Non recoverable data error detected:
Write counter over threshold:

Write count:

Use as ROM:

Overwrite Protect:

FlashFreeze state:

False
False

False
38 ===This value may be incomrect due to OEPB is not set.

off
Not set

False
False
False

False
38 === This value may be incorrect due to OEPE is not set,

Off
Not set

Figure 6 - Flash Memory Details Dialog Box (SmartDebug)

18

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Debugging

Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4 Only)

In the Debug FPGA Array dialog box, you can view your Live Probes, Active Probes, and Memory Blocks,
and Insert Probes (Probe Insertion).

The Debug FPGA Array dialog box includes the following four tabs:
e Live Probes
e Active Probes
e Memory Blocks
e Probe Insertion
It also includes the FPGA Hardware Breakpoint (FHB) controls, consisting of the following tabs:
e "Event Counter" Error! Bookmark not defined.
e "Frequency Monitor" Error! Bookmark not defined.
e "User Clock Frequencies" Error! Bookmark not defined.

Hierarchical View

The Hierarchical View lets you view the instance level hierarchy of the design programmed on the device
and select the signals to add to the Live Probes, Active Probes, and Probe Insertion tabs in the Debug
FPGA Array dialog box. Logical and physical Memory Blocks can also be selected.

¢ Instance — Displays the probe points available at the instance level.

e Primitives — Displays the lowest level of probeable points in the hierarchy for the corresponding

component —i.e., leaf cells (hard macros on the device).

You can expand the hierarchy tree to see lower level logic.
Signals with the same name are grouped automatically into a bus that is presented at instance level in the
instance tree.

The probe points can be added by selecting any instance or the leaf level instance in the Hierarchical View.
Adding an instance adds all the probe able points available in the instance to Live Probes, Active Probes,
and Probe Insertion.

19

SmartDebug for Libero

& Microsemi

SoC v11.8 User Guide

[A

L]
g
]
g

BEEEEEE

_out_1[1]
_out_1[2]
- _out_1[3]
_out_1[4]
¢ (s}
_out_1[8]
_out_1[7]
_out_1[8]
_out_1[9]

o & &

£

3

.9
Uglg
sgﬁﬁiﬁiiiﬂii
2B 2

I

P w
0
CORECONFIGP_0
I Primitives
& I FIC_2_APB_M_PRDATA
B FIC_2_APB_M_PREADY
¥ FIC_2_APB_M_PSLVERR

.
‘B8 Hg #

Figure 7 - Hierarchical View

20

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Search

In Live Probes, Active Probes, Memory Blocks, and the Probe Insertion Ul, a search option is available in
the Hierarchical View. You can use wildcard characters such as * or ? in the search column for wildcard
matching.

Probe points of leaf level instances resulting from a search pattern can only be added to Live Probes, Active
Probes, and the Probe Insertion Ul. You cannot add instances of search results in the Hierarchical View.

Netlist View

The Netlist View displays a flattened net view of all the probe-able points present in the design, along with
the associated cell type.

21

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Herarchical View | Netist View |

e
reet(s):

I MName

ol

3

count_0_g[0]:count_0/q[0]:Q
eount_0_q[[10]:count_0/q[10]:Q
count_0_g[11]:count_0/g[11):Q
count_0_q[13]:count_0/q[12]:Q
count_0_q[13]:count_0/q[13]:Q
count_0_g[14]:count_0/q[14]:Q
count_0_q[15]:count_0/q[15]:Q
count_0_g[16]:count_0/q(16]:Q
count_0_q[17):count_0/a[17]:Q
count_0_q[18]:count_0/a[18]:Q
count_0_g[15]:count_0/q[15]:Q
count_0_q[1]:count_0fq[1]:Q
count_0_q[Z]:count_0/q[2]:Q
count_0_g[3]:count_0/q[3]:Q
count_0_q[4]:count_0/q[4]:Q
count_0_q[S]:count_0/q[5]:Q
count_0_q[6]:count_0/q[6]:Q
count_0_g[7):count_0/q[7]:Q
count_0_q[8]:count_0/q[8]:Q

R F9(F[3 (3|9 %[/ %/%(%,%3/%3 %33

count_0_g[9]:count_0/q[9]:Q

Figure 8 - Netlist View
Search

A search option is available in the Netlist View for Live Probes, Active Probes, and Probe Insertion. You can
use wildcard characters such as * or ? in the search column for wildcard matching.

22

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Live Probes (SmartFusion2, IGLOO2, and RTG4)

Live Probe is a design debug option that uses non-intrusive real time scoping of up to two probe points with
no design changes.

The Live Probes tab in the Debug FPGA Array dialog box displays a table with the probe names and pin
types.
Note: SmartFusion2 and IGLOO2 support two probe channels, and RTG4 supports one probe channel.

SmartFusion2 and IGLOO2

Two probe channels (ChannelA and ChannelB) are available. When a probe name is selected, it can be
assigned to either ChannelA or ChannelB.

You can assign a probe to a channel by doing either of the following:
¢ Right-click a probe in the table and choose Assign to Channel A or Assign to Channel B.

e Click the Assign to Channel A or Assign to Channel B button to assign the probe selected in the
table to the channel. The buttons are located below the table.

When the assignment is complete, the probe hame appears to the right of the button for that channel, and
SmartDebug configures the ChannelA and ChannelB I/Os to monitor the desired probe points. Because
there are only two channels, a maximum of two internal signals can be probed simultaneously.

Click the Unassign Channels button to clear the live probe names to the right of the channel buttons and
discontinue the live probe function during debug.

Note: At least one channel must be set; if you want to use both probes, they must be set at the same time.
The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).
s | Debug FPGA Array)

&

Live/Active Probes Selection 8 x

FPGA Array debug data

sal View Netlist View ‘1‘ Ld Live Probes | Active Probes Memory Blocks
Filter: search | | oelete || oelete
p ———
Het(s): Add i |

Assign to Channel A
Assign to Channel B
:Inst_CLKD_Topy/Tnst_CLK(

:Inst_CLKD_Top/Inst_CLK(
:Inst_CLKO_Top,/Inst_CLK(
:Inst_CLKO_TopyInst_CLK(‘ LL1] ’
“Inst_CLKO_Top/Inst_CLKC [Assignto channela | ->

:Inst_CLKO_Topy/Inst_CLK([ssign to Chamnel 8 | ->
:Inst_CLKO_Topy/Inst_CLK(_ ———— -

4 n [

[o |

Figure 9 - Live Probes Tab (SmartFusion2 and IGLOO2) in SmartDebug FPGA Array Dialog Box

RTG4

One probe channel (Probe Read Data Pin) is available for RTG4 for debug. When a probe name is selected,
it can be assigned to the Probe Channel (Probe Read Data Pin).

You can assign a probe to a channel by doing either of the following:
e Right-click a probe in the table and choose Assign to Probe Read Data Pin.

e Click the Assign to Probe Read Data Pin button to assign the probe selected in the table to the
channel. The button is located below the table.

23

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Click the Unassign probe read data pin button to clear the live probe name to the right of the channel
button and discontinue the live probe function during debug.

The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).

" Bl
] Debug FPGA Array [E=Fa ™
Live/Active Probes Selection [FPGA Array debug data
Hierarchical View Metlist View Live Probes Active Probes Memory Blocks
Filter: [Delete I [Delete Al
— tame voe
s LED_ctrl_0jpb1_regl:LED_ctrl_0/pb1 reg1l:Q
4 i LED_cirl 0 LED_ctrl_0/pb1_reg2:LED_ctrl_0/pb1 req2:Q Assign to probe read data pin
4 I Primitives - - B -
> 10 counter LED_ctrl_0/pb2_reg1:LED_ctrl_0/pb2_reg1:Q DFF
I pb1_regl
B pbl reg2 LED_ctrl_0/pb2_req2:LED_ctrl_0/pb2_req2:Q DFF
1 ph2_regl
1 pb2_reg2
b 1 rotlft
> 1 rot_rgt
Assign to probe read data pin | -3
Help Close

Figure 10 - Live Probes Tab (RTG4) in SmartDebug FPGA Array Dialog Box

Active Probes (SmartFusion2, IGLOO2, and RTG4)

Active Probe is a design debug option to read and write to one or many probe points in the design through

JTAG.

In the left pane of the Active Probes tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are listed with the Name and Type (which is the physical location of

the flip-flop) in the Netlist View.

Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them to the
Active Probes Ul. You can also add the selected probe points by clicking the Add button. The probes list
can be filtered by using the Filter box.

24

B Debug FPGA Aeray

Hetisk: I
Hase
+ B DOUT c[7:0]
+ Fabrie Dby Dfcsunt_0_seata[7:0]
+ Fabric_Debusg Ofcount_0_ooutB{7.0]
+ Fabric_Debug Ofssunt_chic_f1jan_chie[7:0]
Fabric_Debug Ofcount_chik OfsyrcFabric_ Debug Qlcourt_chic Qs
SERDES Debrag OM_S400-SERDES Debug_0/50_DEMO_0_CORER]
SERDES Debeug OM_540RSIRDES Debug 050 _DEMO_0_CORER
SERDES _Pebug_0J_S404SIRDES_Debug_0SD_DEMO_N_CORERI
SERDES_Debug_0/50_DEMO_0.CORECONFIGR_0.IMIT_DOME_ql:£
SERDES_Debug 05D DEMO_0. CORECONFIGR 0. IMIT_DOME_q2:%

!
!
!
§
;
;

‘SERDES_Debug 050 DEMO_). OORECONFIGR_0.5DIF_RELEASED,

SERDES Db /S0 DEMO 1. OORECONFIGE (. pael:SERDES, Del
* SERDES Debug 0/SD_DEMO._N.CORECONFIGR_0.saft_reset_reg(!
+ SERDES Debug O/50_DEMGO 0. CORECONFIGR 0. sxane1-0]

SERDES Debesy 050 DEMO_0.CORECONFIGP (0 CONFIG L DONE
SERDES Debug 050 _DEMO_0.OORECONFIGE D CONFIGY_DOME
D

ERORES Pabss & ER PELA A
i

FARERSD i GPET BELET BT |
v

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

= B O’
FPGA Amay debug dats
[[ve Probes | actve Probes | Memory Bods | Probe tnserton |
{"'E - | & | Save. j Load...] ebete Doelete A1
[Hame lipe [Read Value Write Value
SERDES, Debug 0. M5 _READY_nitg FF 1 =
SERDES Debug 0t ok base:Q oer 1 =]
SERDES Debug 0..eset_n rocoscp CFf 1 K |
* |Febric_Debug O/count 0 coutAf7:6) oFr 7 [
Fabric, couth| FF [ra] h
(Feloric_Piebug 0.k _fon_chid[7-0] OFF LiLa] [
[mestncovaprobes | [sove Acove probesDam...| | i acoe probes
LS. |

Figure 11 - Active Probes Tab in SmartDebug FPGA Array Dialog Box

When you have selected the desired probe, points appear in the Active Probe Data chart and you can read
and write multiple probes (as shown in the figure below).

You can use the following options in the Write Value column to modify the probe signal added to the Ul:
e Drop-down menu with values ‘0’ and ‘1’ for individual probe signals
o Editable field to enter data in hex or binary for a probe group or a bus

FPGA Array debug data

Live Probes | Active Probes | Memory Blocks I Probe Insertion |
FEDE e) [= | [==a)
Mame b Type Read Value Write Value
SERDES_Debug_0..M5_READY int:Q) DOFF i JEd |
SERDES Debug 0.t n_dk_base:Q DFF 1 -
SERDES_Debug_0..eset_n_rcosciQ) DFF 1 1
[» |Fabric_Debug_0/count_0_coutA[7:0] DFF ghET gh
[» | Fabric_Debug_0/count_0_coutB[7:0] DFF g'hB4 gh
[» |Fabric_Debug_0/c.. k_0fdn_chk[7:0] DFF g'ha4 gh
Read Active Probes] [E‘.ave Active Probes' Dam...] | Write Active Probes

Figure 12 - Active Probes Tab - Write Value Column Options

25

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Probe Grouping (Active Probes Only)

During the debug cycle of the design, designers often want to examine the different signals. In large
designs, there can be many signals to manage. The Probe Grouping feature assists in comprehending
multiple signals as a single entity. This feature is applicable to Active Probes only. Probe nets with the same
name are automatically grouped in a bus when they are added to the Active Probes tab. Custom probe
groups can also be created by manually selecting probe nets of a different name and adding them into the

group

The Active Probes tab provides the following options for probe points that are added from the Hierarchical
View/Netlist View:

Display of bus name. An automatically generated bus name cannot be modified. Only custom bus
names can be modified.

Expand/collapse of bus or probe group

Move Up/Down the signal or bus or probe group

Save (Active Probes list)

Load (already saved Active Probes list)

Delete (applicable to a single probe point added to the Active Probes tab
Delete All (deletes all probe points added to the Active Probes tab)

In addition, the context (right-click) menu provides the following operations:

(o]

(o]
(o]
(o]

Create Group, Add/Move signals to Group, Remove signals from Group,
ungroup

Reverse bit order, Change Radix for a bus or probe group

Read, Write, or Delete the signal or bus or probe group

26

FPGA Array debug data

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Live Probes | Active Probes | Memory Blocks I Probe Insertion |

+_ E] @ @ l Save... l l Load...] Delete
MNarme . Type Read Yalue Write Value

SERDES_Debug_0.. MS_READY_int:Q) DFF 1 1 |
SERDES_Debug_0...t_n_ck_base:Q DFF 1 o 3
SERDES_Debug_0..eset_n_rcosciQ DFF i =

Fabric_Debug_0/c.. k_0/cn_chk[7:0] DFF 8'hBE gh
Fabric_Debug_0...0fdn_chk[7]:Q DFF 1 =1
Fabric_Debug_0...0/cin_chk[6]:Q DFF 0 =
Fabric_Debug_0..10/cin_chk[5]:Q DFF i =]
Fabric_Debug_0...0/cin_chk[4]:Q DFF 1 R |
Fabric_Debug_0..10/cin_chk[3]:Q DFF 1 =]
Fabric_Debug_0..0fdn_chk[2]:Q DFF i 1
Fabric_Debug_0...0/cin_chk[1]:0 DFF 1 =
Fabric_Debug_0...0fdn_chk[0]:Q DFF (1] |

4 |group1[1:0] 2'h2 Zh
Fabric_Debug_0...0fdn_chk[1]:Q DFF 1 1
Fabric_Debug_0...0fcn_chk[0]:Q DFF 1] 3

4 [group2[1:0] 2h3 2h
Fabric_Debug_0...0/cin_chk[5]:Q DFF i =]
Fabric_Debug_0...0fdn_chk[4]:Q DFF i =1

Read Active Probes] [Save Active Probes' Daia...]

Write Active Probes

Figure 13 - Active Probes Tab

Green entries in the “Write Value” column indicate that the operation was successful.

Blue entries in the “Read Value” column show indicate values that have changed since the last read.

Context Menu of Probe Points Added to the Active Probes Ul

When you right-click a signal or bus, you will see the following menu options:
For individual signals that are not part of a probe group or bus:

Read

Write

Delete

Create Group
Add to Group
Move to Group

27

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

5YS_SERDES_sh_0_SDIF0_INIT@ADE CLWWDITE.cve cEonec oh [)/CORECOMFIGP 0 /pwrite:Q)
Read

Delete

Poll...
Create Group...
Add to Group...

Mawve to Group...

For individual signals in a probe group:

e Read
e Write
e Delete

e Create Group

e Add to Group

e Move to Group

¢ Remove from Group

4 | group[4:0]

count_0_g[7]:count_0fgq[7]:Q

count_0_g[6]:count_0fg[6]:Q Read

count_0_q[5]:count_0/g[5]:Q Delete

count_0_q[4]:count_0/q[4]:Q

SYS_SERDES_sb_0/CORECOMFIGP_0/soft_reset_reg[12..._SERDES_ Sok- reg[12]:Q
4 |5YS_SERDES_sh_0/CORECONFIGP_O/soft_reset_req[14:8,6:2,0] S I

SYS_SERDES._sb_0/CORECONFIGP_D/soft_reset_reg[14..._SERDES_ Add to Group... rea[14]:Q

SYS_SERDES_sb_0/CORECOMFIGP_D/soft_reset_reg[13.._SERDES_ Move to Group... reg[13]:0

SYS_SERDES_sb_0/CORECOMFIGP_0/soft_reset_reg[12... SERDES_ Remove from Group reg[12]:Q

SY5_SERDES_sb 0/CORECOMFIGP_0/soft reset reg[11... SERDES sb 0/CORECOMFIGF _0/soft_reset_reg[11]:Q
For individual signals in a bus:

e Read

e Write

e Create Group

e Add to Group

4 | count_0_g[19:0]
count_0_g[19]:count_0/q[19]:Q

count_0_g[18]:count_0/g[18]:Q

count_0_g[17]:count_0/q[17]:Q Read
count_0_g[16]:count_0/g[186]:Q Delete
count_0_g[15]:count_0/q[15]:Q Poll...

count_0_g[14]:count_0jg[14]:Q
count_0_g[13]:count_0/q[13]:Q
count_0_g[12]:count_0jg[12]:Q
count_0_g[11]:count_0/q[11]:Q
count_0_g[10]:count_0jg[10]:Q

Create Group...

Add to Group...

For a bus:
e Read
e Write
e Delete

e Reverse Bit Order
e Change Radix to Hex/Binary
e Create Group

R —m—""m—"™

count_0_g[19]:count_0fg[19]:Q

count_0_g[18]:count_0/q[18]:Q

count_0_g[17]:count_0fgq[17]:Q

count_0_qg[16]:count_0/q[18]:Q

count_0_g[15]:count_0fg[15]:Q

count_0_g[14]:count_0/g[14]:Q

count_0_g[13]:count_0/q[13]:Q

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Delete

Reverse Bit Order
Change Radix to Binary

Poll...
Create Group...

count_0_g[17]:count_0fgq[12]:Q

count_0_g[11]:count_0/g[11]:Q

For a probe group:

e Write
e Delete

e Reverse Bit Order

¢ Change Radix to Hex/Binary
e Create Group

e Ungroup

F

count_0_q[2]:count_0/q[2]:Q

Delete

count_0_g[1]:count_0/q[1]:Q

Reverse Bit Order

count_0_q[0]:count_0/q[0]:Q

count_0_g[6]:count_0/q[6]:Q

Change Radix to Binary

count_0_q[5]:count_0/q[5]:Q

Poll...

4 |5Y5_SERDES_sb_0/CoreAHBLite_0/ma

Create Group...

SYS_SERDES_sb_0/CoreAHBLite_C

Ungroup

5YS_SERDES_sb_0/CoreAHBLite_0

=

e
|6 /mas

|6/mas

SYS_SERDES sb_0/CoreAHBLite_0/matrix16/masters. ite_0/matrixdy 16 /mas

Differences Between a Bus and a Probe Group

A bus is created automatically by grouping selected probe nets with the same name into a bus. A bus
cannot be ungrouped.

A Probe Group is a custom group created by adding a group of signals in the Active Probe tab into the
group. The members of a Probe Group are not associated by their names. A Probe Group can be

ungrouped.

In addition, the certain operations are also restricted to the member of a bus, whereas they are allowed in a

probe group.

The following operations are not allowed in a bus:
* Delete: Deleting an individual signal in a bus

29

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

* Move to Group: Moving a signal to a probe group
*« Remove from Group: Removing a signal from a probe group

Memory Blocks (SmartFusion2, IGLOO2, and RTG4)

The Memory Blocks tab in the Debug FPGA Array dialog box shows the hierarchical view of all memory
blocks in the design. The depth and width of blocks shown in the logical view are determined by the user in
SmartDesign, RTL, or IP cores using memory blocks.

The example figure that follows shows the hierarchical view of the Memory Blocks tab. You can view logical
blocks and physical blocks. Logical blocks are shown with an L (Et), and physical blocks are shown with
aP (ﬂ).

Memory Blodks Selection - B3

FPGA Amay debug dsta
Fiter: [seawen | WveProbes | AcwveProbes | MemoryBlods | Probe nserton
Ry ke uitinct User Design Memary Block:
Dats Wdth:
Instance Tree 5 Fort Used:
4 I Fabrc_Logk 0
4 @
« (8 F_0_Fo_u
4 3 ramtnp_rast=p_0_0
4 I Privitives
B BST_RAMICIE P
&/, F_wF1 2
B F_1iF1 2
& F_1a F1 2
. B F_13F1L2
/| E 4 FL R
B/ F_15_Fi1_u2
B F_6F1 U2
8/ F7F1LU2
/| F_8F1 2
£ F_19 F1 U2
n MEE §FLID

Figure 14 - Memory Blocks Tab - Hierarchical View
You can only select one block at a time. You can select and add blocks in the following ways:

e Right-click the name of a memory block and click Add as shown in the following figure.
- | Debug FPGA Ar

&

Memory Blocks Selection FPGA Array debug data

Filter: LiveProbes | ActiveProbes | MemoryBlocks | Probe Insertion

Memery Blocks: User Design Memory Block:

Data Width:
Port Used:

J HbS

Instance Tree
4 T Fabric_Logic_0
4 W U2
4 BFoOFOWLL
4 B ramtn Add
4 B Pomroves =
¥ INST RAMIK1B [P
> #k F_10_F1_U2
b HFF_11 F1 U2

> W F_12 F1 U2
> 3k F_13_F1_U2
B/ F_14F1 U2
> M F_15F1 U2
> Ik F_16_F1 U2
> B F_17 F1 U2
» MW F_ 18 FLL2 Read Block
> W F_19_F1 U2
> 3k F_1_F1_U2 ~|

n

Save Block Data.. Write Block

Figure 15 - Add Memory Block

30

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

¢ Click on a name in the list and then click Select .
e Select a name, drag it to the right, and drop it into the Memory Blocks tab.

e Enter a memory block name in the Filter box and click Search or press Enter . Wildcard search is
supported.

Note: Only memory blocks with an L or P icon can be selected in the hierarchical view.

Memory Block Fields

The following memory block fields appear in the Memory Blocks tab.

User Design Memory Block

The selected block hame appears on the right side. If the block selected is logical, the name from top of the
block is shown.

Data Width

If a block is logical, the width from each physical block is retrieved, consolidated, and displayed. If the block
is physical, the width is 9-bits, and the depth is 128 for u>SRAM blocks and 2048 for LSRAM blocks.

Port Used

This field is displayed only in the logical block view. Because configurators can have asymmetric ports,
memory location can have different widths. The port shown can either be Port A or Port B. For TPSRAM,
where both ports are used for reading, Port A is used. This field is hidden for physical blocks, as the values
shown will be irrespective of read ports.

The following figure shows the Memory Blocks tab fields for a logical block view.

[=]

Mesory Biks Seecton 8 % ppoa dray debug data
Fiter: . Live Probes | ActiveProbes | MemarySods | Probe Insertion
Memsry Blnda: ooy User Design Memory Bodc Fabric_Legic _0/U3E_0_FO_UI1
Dt Width: 154t
Instarce Wee = Port Uised: [Parta -

a I Fabric_Logc 0 ! g

4 I ul

« & FOF0 UL
4 & rambmo_ramémo_0_0
4 B Primitres
B ST R 1B _IP
4 & F_W Fiuz
4 B rambmp_ramtmp 00
A B Prisvtves
B DST_RAMSE P
4 B FLFILZ
@ | ramtmp_ramimp_0_0
4 B Privtes
B ST _RAMS L8 _IP r 1
4 | F_12F1 L2 | ReadBiodk | Save
4 B ramtmp_ramimp_0_0
A B Driectoone.

Figure 16 - Memory Blocks Tab Fields for Logical Block View
The following figure shows the Memory Blocks tab fields for a physical block view.

31

Read Block

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Memory Blodks Selecton 8 x PPGA Array debug data
Fitar: ' Stbrch [e Probes | mm Mgy B mm“‘ |
Memary Blodks | Select | User Design Memory Blode Fabric_Logic (/U3 _0_P0_U L ramimp,_ramtmp_fi_0/INST_RAMS&x 18 _[P
. Data Width: i
| instance Tree =1 p
4 I Febrc_Logic 0
- Ul
4 B FO_Fo_UL
4 B ramimp_ramimg_0_0
2 B Prisvtves
B DT RaMGas P

4 W F_WFLUZ
a I ramtmp_rammp_0_0
4 B Privtives
B PET_RAMEALE_IP
4 | F_1LFLLZ
4 B ramtmp_ramimp_0_0
o I Privvtres
B PET_RAMG4 S P | 1
4 M F12F1LL2 R Block. | Save Blogk Data. Write Eock
4 B ramimp_ramimp_0_0)
A_BE Drieitohe

Figure 17 - Memory Blocks Tab Fields for Physical Block View

Memory blocks can be read once they are selected. If the block name appears on the right-hand side, the
Read Block button is enabled. Click Read Block to read the memory block.

Logical Block Read

A logical block shows three fields. User Design Memory Block and Data Width are read only fields, and Port
Used has options. If the design uses both ports, Port A and Port B are shown under options. If only one port

Memery blndks: oct. User Design Memory Blodk: Fabric_Logic_0/U3F_0_Fo_Uit
Catn Width: 14t
{ IS o = Pt Used: [parta -
@ I Fabric_Logc 0
+ ;U g
4 B FOF0UL Bl 2o Sl dinle Sl Bl ol Nle ol e Rl B b BB P |
4 f ;"‘m—'“mﬁ-" 0000 D0AR3 05909 0FO0F 14500 00010 0351 12025 00040 12050 04000 20214 02000 11090 20040 1220 BARZD)|
RAMA |
P ,”:Uam— L5 0010 02700 04451 04001 08000 05000 32500 OO0 0O OOSD 00420 04015 ICAND 0DDS2 00106 OOCZZ 100SS |
r :‘z ;num.mw_u_o 0020 10400 DODID 10000 4044 ICOMO OBL0E 39425 (0990 10C14 000D 04001 D000 00100 00042 20100 08002 |
ives |
T Ern F[*U;‘S'-“”WW-”’ 0030 DOOLB DOGNG MGH 0OOBA OOIED 28100 0253 00770 10020 04000 00000 00200 20004 22400 04008 0ACS0|
P r;ml;p_rmmu_o_o
o B Prisitees
B DST_RAMG 18I r - .
a B|F12F1U2 | Read Block. !.mmm.._
4 B ramimp_ramémp_0_0
a B Dreitione i
| Hep Close |

Figure 18 - Logical Block Read

The data shown is in Hexadecimal format. In the example figure above, data width is 18. Since each
hexadecimal character has 4 bits of information, we can see 5 characters corresponding to 18 bits. Each
row has 16 locations (shown in the column headers) which are numbered in hexadecimal from O to F.

Note: For all logical blocks that cannot be inferred from physical blocks, the corresponding icon does not
contain a letter.

Physical Block Read
When a Physical block is selected, only the User Design Memory Block and Data Width fields are shown.

32

Write Block

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Logical Block write

Memary Blecks Selsction 8 X FPGA Array debug data
Fiter: [sewch | [iwerobes | Actvefrobes | MemorySods | Probe insertion
Memory blocks E User Design Memory Blode: Fabric_Lopic_0/U3/E_0_F0_U L ramitmp_ramtmp_0_0/INST_RAME<x18_P
- — Data Width: 90
B B 2] I 1
| 4 M Pabric_Loge 0 [O bt i Sk Bicka il B Lo bk o B o] ol DGl Eal 2 B
& wu _—
| ‘aUlForoU: 0000 (083 005 003 044 08 048 100 0AZ 010 000 81 00U 028 090 D40 00D
| 4 B ramtvo_ramimo_0_0 3 L
"; 000 080 090 OO 020 04 101 D00 010 00 088 040 100 020 EL 020 050 =
DT _RAMGAX 1B _IP
| . B FwFLL 0020 100 I3 051 022 001 020 000 DA} 00 028 0 192 120 000 OO0 OO0
| a e
B ramimp_ramimp_0_0 1
1 -
| g i 0030 080 OO 030 002 015 030 OO OE4 OK2 000 105 000 DX 006 OS2 080
B ST RAMG4 IS
P ik 0040 000 092 010 000 OO0 00 044 DAD 4D UED IE 040 035 ICA 190 06C
| 4 B ramtmp_ramémp_0_0
i (0050 014 086 004 000 001 020 000 00 100 000 042 000 100 100 002 040 .|
B INST_RAMG4 P (.
- WrFL ResdBiock | [Save BodkOta.. s Bk
| @ I ramtmp_ramémp_0_0 .
L A B Dt L2z
[ne] Cose
Figure 19 - Physical Block Read

Memory block write can be done on each location individually. Logical block has each location of width that
is displayed. Written format is hexadecimal numbers from 0 to F. Width is shown in bits, and values are
shown in hexadecimal format. If an entered value exceeds the limit, SmartDebug displays a popup message
showing the range of values that can be entered.

Fiter: [sewsn |
Memory Blocks: | Gelect |
=

v

User Design Memory Blodk: Fasbric_Logic 0/U3F_12 F1_L12

Dats Width:
Port Lsed:

'] 1

0000 ODOE3 FFFF 00M02 OO0SS QU0 00824 00004 00304 00200 00E00 O0O0GA 20004 00060 00050 00300 00000
00M) 0DOOD 20410 20002 02101 00080 08015 020CO 0C200 DO0AQ 00002 0S000 10020 05004 OO00SE 20008 08300
0020 DOOC Q0000 00000 DOOE4 Q0080 02403 00001 02080 0000 00000 000 00005 02000 02012 0OCO1 00454

0030 02400 10001 00001 04000 00400 00002 01201 OO004 00020 OICO0 NG040 10008 07242 18002 24041 03044

e
[Perta_ -

2 3 4 5] 7 g R B <] 3 F

| ResdBod: | [sove sosiOata..] | wrneock |

Physical Block Write

Figure 20 -

Logical Block Write

Physical blocks have a fixed width of 9 bits. The maximum value that can be written in hexadecimal format is
1FF. If an entered value exceeds the limit, SmartDebug displays a popup message showing the range of

values that can be entered.

33

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Unsupported Memory Blocks

Memory Blodks Selecton 8 x PPGA Array debug data
Fier: seach | [Lweprobes | ActveProbes | MemoryBods | Probe nsertion |
Memary Blodks _ Select. User Design Memory Blode Fabric_Logic_(0JUZJE_0_R0_U L Famimp,_ramtmp_ii_0/INST_RAMIK12 5
Data Width: it
Instance Tree = r
4 1 Fabrc_Logc 0 i ool b e Lo Sl BTl 8|0 b Aol El DUl B B R
i ,
? :—_E F_0Fo_uL D00 123 |1FF| 032 0B4 117 1CZ 0O7 OCH 044 031 ICD 135 037 68 083 051
P
- ;ﬂmﬁrﬂﬁw_q_ﬂ 0010 014 023 180 037 114 028 15C 003 OOA 017 OI1 008 060 1D2 O41 002
B DT RAMIKS,
B F_i0_FiL2 = P 0020 024 159 I5C 053 110 68 OD4 13C 18D 042 0I5 068 1AB 061 I 142
| F_ntF1u2
ey 003 0F 054 058 O 10C 1CE 025 0OF 165 012 053 123 011 OB 128 1IC
» B F_13Fiu2
& F :l:FtUl 0040 D40 1A7 052 102 O4A I 145 OGF Q10 029 O 049 106 LAC 011 D4
g:lz::;_ﬂ: [o0s0 o 1A 01C 0@ 1S 044 165 018 0ED 117 033 003 110 CBC QA4 088 .|
uF 17 F112 . . x
€ Far | Resdbok | [saveBockData...
=/ F_19 F1u2
o F 1 Fiir e
Hep Close
Figure 21 - Physical Block Write

If RTL is used to configure memory blocks, it is recommended that you follow RAM block inference
guidelines provided by Microsemi. See Inferring Microsemi SmartFusion2 RAM Blocks for more information.

SmartDebug may or may not be able to support logical view for memory blocks that are inferred using RTL
coding not specified in the above document.

Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4

Introduction

Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be routed to
unused I/Os. Nets are selected and assigned to probes using the Probe Insertion window in SmartDebug.
The rerouted design can then be programmed into the FPGA, where an external logic analyzer or
oscilloscope can be used to view the activity of the probed signal.

Note: This feature is not available in standalone mode because of the need to run incremental routing.

34

http://www.microsemi.com/document-portal/doc_view/129966-inferring-microsemi-smartfusion2-ram-blocks-app-note

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

—_—

Pra-Synthesis
Simulation

Design Implementation Synthesis PakEviiiianth

l Simulation
I —

Insert probes into design

Original — R— .\;....@ o Wb Place & Route
Signal
R;ﬂa — ’3[] Incrementally

/“i """ i routed net for
Routing may change probing
after incremental
route

—
Analyze Probed Signals

Figure 22 - Probe Insertion in the Design Process

The Probe Insertion debug feature is complementary to Live Probes and Active Probes. Live Probes and
Active Probes use a special dedicated probe circuitry.

Probe Insertion
1. Double-click SmartDebug Design in the Design Flow window to open the SmartDebug main window.
Note: FlashPro Programmer must be connected for SmartDebug.
2. Select Debug FPGA Array and then select the Probe Insertion tab.

1] Debug FPGA Amay o8] B

Probe Insertion Data Selection F X FPGA Array debug data

Hierarchical View | Netist View | . Live Probes | Active Probes | Hemryﬂodss Probe Insertion |

|anD2_0_¥ AND2_0MI0:Y

User 01K | :
<ount_0 Insert probee(s) and program the device lII

=) Ca=1)

Figure 23 - Probe Insertion Tab

In the left pane of the Probe Insertion tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are shown with the Name and Type in the Netlist View.

3. Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them
to the Active Probes UI. You can also add the selected probe points by clicking the Add button. The
probes list can be filtered by using the Filter box.

Each entry has a Net and Driver name which identifies that probe point.

35

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

The selected net(s) appear in the Probes table in the Probe Insertion tab, as shown in the figure
below. SmartDebug automatically generates the Port Name for the probe. You can change the Port
Name from the default if desired.

4. Assign a package pin to the probe using the drop-down list in the Package Pin column. You can assign
the probe to any unused package pin (spare 1/O).
1] Debug FPGA Array [E=RlC)

53]

Probe Insertion Data Selection B x

FPGA Array debug data
Herarchical View | Netist View LiveProbes | Active Probes | Memory Blodks | Probe Insertion
Delete Al

Instance(s): [A Net Driver Package P Port Name

q_c[o] count_0/q[0]:Q fH5 | Probe_Insert)

W Printthves a_el1] count_0fa[1]:Q |rs - [Test2

r |
 opuf acf3) count_0fa[31:Q |36 * | Prabe_Insertz

o
5

Insert probe(s) and program the device | Run

Figure 24 - Debug FPGA Array > Probe Insertion > Add Probe
5. Click Run.

This triggers Place and Route in incremental mode, and the selected probe nets are routed to the
selected package pin. After incremental Place and Route, Libero automatically reprograms the device
with the added probes.

The log window shows the status of the Probe Insertion run.

Probe Deletion
To delete a probe, select the probe and click Delete. To delete all the probes, click Delete All.

Note: Deleting probes from the probes list without clicking Run does not automatically remove the probes
from the design.

Reverting to the Original Design
To revert to the original design after you have finished debugging:
1. In SmartDebug, click Delete All to delete all probes.
2. Click Run.

3. Wait until the action has completed by monitoring the activity indicator (spinning blue circle). Action is
completed when the activity indicator disappears.

4. Close SmartDebug.

36

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Event Counter

The Event Counter counts the signals that are assigned to Channel A through the Live Probe feature. This
feature can track events from the MSS or the board. When the Event Counter is activated, and a signal is
assigned to Channel A, the counter starts counting the rising edge transitions. The counter must be stopped
to get the final signal transition count. During the count, you cannot assign another signal to Channel
A/Channel B or go to any other tab on the window.

5 Debug FPGA Array B —— lﬂw
5]
Live fActive Probes Selection o, = [
Hierarchical View | Metlist View | LiveProbes | Active Probes | MemoryBlocks | Probe Insertion |

Fiter: [Searcn | Delete Delete Al
trstance(s): [] s Tvee

g & n_oour_u_c[al:mm_s\m_mm_s_w_nzm_aocamm_nmsa:1s_La:n_mrr{a]}

b 1 URAM_O\ E 2

b B URAMLI }e‘ A_DOUT_0_c[7]:URAM_3\/sd_URAM_3_URAM_ROC3/INST_RAMG64x18_IP:A_DOUT[1] RAMG4x18
b M URAM_2\ 3

- mm:;. A_DOUT_0_c[6):URAM_3\/sd_URAM_3 URAM_ROC3/INST RAMG4x18_IP:A_DOUT[D] RAME4:18
Lt B count 6 O i

A_DOUT_0_c[5]:URAM_3\/sd_URAM_3_URAM_ROC2/INST_RAMG64x18_IP:A_DOUT[1]| RAMS4x18

ENTTETT T T S | |2_DOUT_0_c[4):URAM

A_DOUT_0_c[3}:URAM_3Y/sd_URAM_3 URAM_ROC1/INST_RAM64x18_[F:A_DOUT[I] RAMS4x18

d_URAM_3_ URAM_ROCZ/INST_RAM64x18_IP:A_DOUT[D] RAMS4x18

Activate Event Counter @ Reset -
A_DOUT_0_c[2]:URAM_3\jed_URAM_3_URAM_ROC1/INST_RAM64x18_[P:A_DOUT[0] RAME4x%18
Edge Selected: Riging
A T_0_c[1]:URAM_3\/sd_URAM_3_URAM_ROCO/INST_RAMG4x18_IP:A_DOUT[1] MG
Time ©): lzl _DOUT_0_c[1]:URAM_3\/sd_URAM_3_URAM_ROCO/INST_RAMG4x18_[P:A_DOUT([1] RAM54x18
TotslEvents: SSASSSS45 A_DOUT_0_c[0}:URAM_3Visd_URAM_3_URAM_ROCO/INST_RAM64x18_IP:A_DOUT[O] RAM64x18

Signal : A_DOUT_0_c[8]:URAM_3\/sd_URAM_3_URAM

<])

AssigntoChannel A | -> A_DOUT_0_c[8]:URAM_3\/sd_URAM_3_URAM_ROCH/INST_RAMS4x18_IP

Assign to ChannelB | ->

Unassign Channels

Event Counter | Frequency Monitor | User Clock Frequences |

@
[G]

T

Figure 25 - Event Counter Tab/Ul

Activating the Event Counter
You can activate the Event Counter in either of the following two ways:
e Click Activate Event Counter and then assign a signal to Live Probe Channel A.

37

SmartDebug for Libero SoC v11.8 User Guide

) oo sy — e — =

&=
Herarchical Ve | etit vew

]glwamm L) |

Edge Selected: Rising
PR e
Total tvents: 0

Sgnal ; sdil_I\ioounter_top 0_ent[194_couriter

| EventCounter | Prequency Monfor | User Clock Frequendes |

[ree]

LvefActve Probes Selexton &%

FRGA Aray debug data
| Wneprobes | AcheeProbes | MemoryBods | Probe sertion -
[opeese || poewm |
Fame s
[

el Icounter _top 04 ot 145)_counter \reg_countes[5)_ned_L:ed1_J\kounter_top 04 ont{15
ecdl_Icounter_top 04 cnt188) counter'reg_counter[5)_ned_L:sd1_Z\kounter_top Ol ont{15
=dl_Hcounter_top 0Wg_cnt{187)_counter\reg_counter[5)_ned_Lisd1_JYkounter_top 04 ont{15
ocd)_Tcounter_top 04 cnt{106) counter'\reg_counter[S) nes_Lied1_Jyounter_top 0\ ont]15
sdl_Hcounter_top 0V ont{195) rounter\reg_counter[S)_nes_kisd1_Z\iounter_top 0 ontf15

sall_Ficounter_top_0'vo_ont{293)_counter \reg_counterS)_net_Lisd1_Zioounter_top OWig_mt{15
sall_Ficounter_top_0'vo_ont{191)_counter \reg_counter{S)_net_Lisd1_Zioounter_top 0Wig_mt{15
scill_Ficounker_top_0'vo_ont{250)_counter \Ureg_counterS)_net_Lisd1_Z\oounter_top OW_mt{15
soll_Fjeounger_top_0g_ont{ 185 _rounter reg_counter{S)_net_Lisd1_2\founter_top_04ig_mi{1E
sl |_Z\eounker_tnp_0yg_cnt{183) reurier \heg_oounber{S)_net_lisd1_F\foounker_tsp 0l ont{1E

- | - | "

Assion to Charmel A | -3 il _2ounter_top_0Vn_cra{ 194 _oounterireg_counter[]_net_Lsdl 2

Agsion be CharrelB | - >

e Assign a signal to Probe Channel A and then click Activate Event Counter.

Figure 26 - Activating the Event Counter

e . "
=

Live fctve Pasbes Seiections

Total EBvents: 0
Sgpul : 58 2Viesurter_tops_0\ip_ent] 154 eoumier e

EveriCourter | Proquincy Moo | User Clock Frequences |

Cre]

| Delew

B X Fpga Amay debug data
Herorchicalver: | batist Ve | Uvebeobes | Acore Probes | Memory Boos | Probe inserson |
Fitas
— | E
E T - ;uwnmuwmwmwwan -
S s ‘iHLMJ”mHMMMMWWMJMi
: Emﬁ : 1 2eoummer_top 0Vg_enif197]_counter \eep_courasio] res_t:ad1,_2Vesunter_top,_ONG_ant]1s

Assige te Channel B
| e _counter (¥ _ned_1:ad1_2)counter,_top_0Wg_ant{15

im.mm.wmummwmmumn.nw
|nmmmmmwmmmn.ﬂm1
inm_w_mumumummww_wm1
|set1_2ycounter_tap 01\ cnit{190]_counter \eg_counter{5] ret_l:sd1_2\eouriter_top_ 0N ant{1s
}ﬂm_mmmmummmwm_mjw

iuw_mmmmumﬂlmﬁm_ij =4

Apsicn toCharnel & | -3 ed]_T\iounter_teo 4G ont{194]_counterreg_oounter[5)_net_iisd]_:

Assign o ChannelB | -

[oo]

Figure 27 - Activating the Event Counter - Assign Probe Channel

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Running the Event Counter

Event Counter automatically runs the counter, which is indicated by a green LED. The counts are updated
every second, and are shown next to Total Events. FPGA Array debug data and the control tabs in the
Event Counter panel are disabled while Event Counter is running. When a signal is assigned, the signal
name appears next to Signal.

W1 Debug FPGA Amey [E=SECT x|
Live/Acitve Probes Seleciion B X g sy debug dats
Hererchucal View | Metist View | 3 I-LNEPrdul | Aceoe Probes | ey Blocks | Probe Inserion |
Fiter: Search Dhobe b Dile b AR
—_— I - |
Instanceisl: A | — {
EE I =1 ;H|;'.w:H_:ao_)'.‘c_m:[:?s_‘_-:«.-'w'."ti_:Maefa}_ﬁel_L.s:l|_2'.\m.r'.:r_i:o_)'.'c_a".['.=. 1
= I el =] | W i Vsl 1_Tooumter_top_Og o[55
4 W s, | Jedt Phoariter_top 0k et 158]_counter e counberfa] met_Dosdl Feounter oy 0o omit[55
b+ IR counter oo, |
. W W_Mt?’\[A el _esmiier_top 0 ort[307)_counderVeay_counber(D]_net_lsdl Nlosurter oo Ol o[
B countes ton, 24 3
Lvent Countes Fraqusncy Momtor Jed1_2\icourner_top i\ ar{95]_counterYheg_counter{3]_net_Lisd1_Zioounter_ton 0o, orf 16
I y Jsd1_2\courter_top 0\ art[394) counterVre_counter(]_net_tisdl_2ikounter_top OV or{Es
l Actate Event Counder @ I Riezed |
a1 _2esunter_tog 0o ont{ 393 counter Vred counter(] net_Lsdl Xjcoumter oo WG oIS
Edgt Selected: Ring |
e) E';ll_:"'.'cclcr.!n_!:p_:l'_\" T counter Yeag_counber [B]_ret_ el _Tikeurter oo O cra[al
Total Events: SIS I oanbe 3] _net_loed1_Tidoounter top_Olg_cafrt
Syl : wdli_Hifeounter_top_ 0\ enif 194] _courrier Jed1_Secourtter_top 0L ora390)_counterireg_counter{S]_net_Ledl Fiiourter_top OV _aafrs
Jed1_Z\eoumter_top 0y ora{185)_counteriress_counter{s]_net_Lisdl Joounter_top 0 ol 1e
8 1_2Wcourter_top D ont[363]_counseryreg _counber{B]_net_L:sdl Zyoourder_tep OWg aose[EE
| J L |
Aspgn i Charnal A | -3 sl _Tiieounber _top 00 ent{if] _sounier\heg_counter [4]_net_Ladi
Asmign 1 Channel B >
| ; : : Urassgn Charred
| Evert Counter| | Freguency Montor l Usser Cloeck Frequendes
Tabs disabled Window disabled
Hep | |

Figure 28 - Running the Event Counter

Stopping the Event Counter

The only button enabled when Event Counter is running is the “Stop” button. Click button to stop counting. A
red LED is shown to indicates the Event Counter has stopped. FPGA Array debug data and the control tabs
in the Event Counter panel are enabled when Event Counter is not running.

39

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

5 Debug FPGA Ay - =
1]
| Livefistrve Probes SelecBon & x
Heerae chucal View I!.‘_IL\H__
Fiter [Seardn
Instancedsl: [s]
| s 0 =1 s 1_JWeeunter _tap 0\ ent[199]_ssunterreg_oourter [S]Lnet_1ssd1_Meounter top O\g aa[iS
i L |e1_2Vcoumter: om0y {1981 counter re_coumser [5)_net_1-adi_2Veounter_top @ sma[1S |
: ﬂ:ﬁ:ﬂ %m.zwm.mﬂwﬂﬂ.mm,nmmmm_m:_zm_w_m_m[n
e s e . iH1_2'.M_bﬂ_ﬂ'ﬁ_ﬂElﬂ_w“u_wm_l#l_m_ﬁ_ﬁw_ﬂ[ﬁ
o | requency Pos | s _2Ncourter_tom_01\ip_evt[195]_smurvter Yen_counter [5]_net_t-sd1_2Veonter_top: SV_cr[1S
- | — : | sd1_2\icourvter_tog_fi\ip {194 _couries reg,_counter (5] net,_1-sd1_2\counter_top: OVig_ (1S
Acteate Event Couriter Aeset |
e 'R\ ’ : |sdt_2Vecouriter_ing 0\ 193] _counter reg,_counter (9] net_i-sd]_2counter_tep. OVG_ar[iS
tmestned i [7] |t _2veeurner_top 0 ent{192]_seurrie e _eoxrites 3] net_1:33_2\eounter_top,_ 0\ era(1s
Total Events: pirat] | sd1_Tiicouniter_top_0'yi_ont[191]_counterireg_counier [5]_net_1sd1_¥\counter _top_OUg_oni[15
Sl : wdl_2ieounter_top_ 0_cnt[154_counterye | sel1_2\oumier _tog_0ig_eni{190]_scounier'jireg _couner [3)_net_l-sd1_#\rounter_top_O\g_erd {16

| el _Teouriter e 0\ _ent{169]_counierireg counter [7]_net_1=sd1_X\eounter_top, Dljg_ent{iE
IHUM_WJMMMM.MMM.WIM_WMJH“ =
14 m L]

:A-:n'dunda -3 sdl_2Veounter_top 0V ort[194)_oounterre_oounter [5]_net_lisdi_;

:’-‘-mwﬂ'-nll -

Figure 29 - Stopping the Event Counter

Note: When a DC signal (signal tied to logic ‘0") is assigned to Live Probe Channel A, or if there are no
transitions on the signal assigned to Live Probe Channel A with initial state ‘0’, the Event Counter value is
updated as ‘1’ when the counter is stopped. This is a limitation of the FHB IP, and will be fixed in upcoming
releases.

See Also
"Frequency Monitor" Error! Bookmark not defined.
"User Clock Frequencies" Error! Bookmark not defined.

Frequency Monitor

The Frequency Monitor calculates the frequency of any signal in the design that can be assigned to Live
Probe channel A. The Frequency Monitor must be activated before or after the signal is assigned to Live
Probe Channel A. You can enter the time to monitor the signal. The accuracy of results increases as the
monitor time increases. The unit of measurement is displayed in Megahertz (MHz). During the run, progress
is displayed in the pane.

40

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

p .
"5 Debug FPGA Array o))
Livefactive Probes Selection 8 X| FpGA Array debug data

|| Mererchicalview | netitvien | [e probes [Tacive probes | Memory Blodks | probe insetion |

g Filter: Delete Delete Al
(p—
. W Primitves o | A_DOUT_0_c[8]:URAM_3\/sd_URAM_3_URAM_ROC4/INST_RAM64x18_IP:A_DOUT[0] | RAM64x18
b > T URAM 0\ |

i =/ a1\ =| A_DOUT_D_c[7]:URAM_3\fsd_URAM_3 URAM ROC3/INST RAMG4x18 IP:A DOUT[1] RAM64x18
1 I URAM_2\ i N i ~

i T URAM 3\ A_DOUT_D_c[6]:URAM_ URAM_3_URAM_ROC3/INST_RAMG4x18_IP:A_DOUT[D] RAM64x18
: B count 6 0\ iz

! A_DOUT_D_c[S]:URAM_3\/sd_URAM_3_URAM_ROC2/INST_RAMG4x18_IP:A_DOUT[1] RAMG4x18
Il - Event Counter/Frequency Momitor | A_DOUT_D_c[4]:URAM_3\/sd_URAM_3_URAM_ROC2/INST_RAMG4x13_IP:A_DOUT[0] RAMG4x18
i A_DOUT_0_c[3]:URAM_3\sd_URAM_3_URAM_ROC1/INST_RAMG4x18_[P:A_DOUT[1] RAMG4x18
! A_DOUT_0_c[2]:URAM_3\/sd_URAM_3_URAM_RDC1/INST_RAM64x18_IP:A_DOUT[0] RAME4x18
! Monitor time (s): 5 -

i A_DOUT_0_c[1]:URAM_3Vsd_URAM_3_URAM_ROCD/INST_RAMB4x18_IP:A DOUT[1) RAMGx18
i Frequency (MHz): 0

| Sional : A_DOUT_0_c[8]:URAM_3\/sd_URAM_3_URAM_ROCHTNST_Ral A_DOUT_0_c[0]:URAM_3\/sd_URAM_3_URAM_ROCO/INST_RAMG4x18_IP:A_DOUT[0] RAM64x18
4

i [« | r
i Assign to Channel A | =3 A_DOUT_0_c[8]:URAM_3\/sd_URAM_3_URAM_ROCH/IN

: Assign to ChannelB | ->

Unassign Channels

h Event Counter Frequency Monitor User Clock Frequencies

i

Figure 30 - Frequency Monitor Tab/Ul

In the Frequency Monitor tab, you can activate the Frequency Monitor, change the monitor time (delay to
calculate frequency), reset the monitor, and set the frequency in megahertz (MHz). Click the drop-down list
to select monitor time value. During the frequency calculation, all tabs on the right side of the window are
disabled, as well as the tabs in the FPGA Hardware Breakpoint (FHB) pane.

Activating the Frequency Monitor
You can activate the Frequency Monitor in either of the following two ways:

e Click Activate Frequency Monitor, and then click the Live Probe tab and assign a signal to Channel
A (Channel B is not configured for spatial debug operations).

41

SmartDebug for Libero SoC v11.8 User Guide

B Debug FOGA Array
=
Live fActive Probes Selection B3 FPGA ey debug dats
Hierarchical Ve | ietint view | UveProbes | AcavePrabes | Memery Bods | Probe esrton |
Lyl | Dol || Doewa
BT T2l sd1_ZWomnser_top,_ 0g_cnt{159]_counterreg_couriter [5)_ine2_l:sd1_Z\tountes_top_0Vg_antf15
. :Eﬂ E ad1_2\counter_top_ 01 _ent{158]_countes e _countes[5]_net,_1zsd1_2\oountes_top OV cnt{15
3 ﬁ%‘i] 5d1_2\aouter_op_0\g_ene[157]_sounter Ureg _coumter[3]_net_L:sd1_2\oounter_iop, 0g_an{15
scll_TWeounber_fop 0g_enif 1] _counterreq_counier [H]_net_issd]_Zyeounter_tep Jg_ent{1f

ed1_2Vcounser_top Og_cre{ K] counter Urey_counter [H]_net_i-ed1_Tcounter_tep 0V ont{id

[Birae s « |— T

Frequency Mzl 0

[]

p——

| EvertCountsr | Frequency Manbor User Clock Freguercies |

5d1_2Vcounter_top_0\g_ont{153]_counterYreg_couniter [5)_net_1sd2_2Vcounter_top 0Vg_ont{15
Sl : sl _Mounter_bop_0Y_ent193]_ssurter \reg_counter[S]_n 5dl1,_Tyicounner_Rep RV _one] 1911 _oounterYreg_couniter [3]_net_1-sd3_2Voounter_top, Vg ont{15
ad_Feounner_Bop O\ onk] 190]_ceunter Ve _couriter [H_net_1-sdli_\eounter_tep O\ ent{1S
edl_3eounter_top_0\g_cnk] 1] _counterreg_couniter [5)_net_1asdi_X\eounter_top O\ ont{1#
sd1_Ticounter_top_0_onk[189]_counterreg_counter [5]_net_1msdi_Z\oounter_top 0\ ant{12 _

K}]] "

-3 wdl_2\courter_top 0\ ont{192)_oounderVren_counter(3]_net_Lisdl ©

Aaign o Channel B | -

| Unassgn chammess

[]

Figure 31 - Activating the Frequency Monitor - Assign a Signal

Click the Live Probe tab and assign a signal to Channel A, and then click the Frequency Monitor tab
and check the Activate Frequency Monitor checkbox.

B X Frga oy debug data
| Herarchical View | patist View | [Civefrobes L acte — :I— —i_é.;:]—m----..._ i
[] Filter: .-_&_-’,‘" -J Ii A "
| tmncei | Hame]
[= wis Z iuum_mmmmmmmmumm_mm#
: : ::._Ua't !ﬂ |ed1_2counter_ton o _ent{158]_counter e counterfs]_net_t:sd1_2counter_top 00 mtf15
I counter |
B Wij“: (aft_Fosunter_top_ 0\jg_ent]197] _counter\rey_counter{S]_net_Lisd1_2Ycounter_top_0\g_ent{15
b M cevmber fen P - |
g . :Hummmtﬂmmmummmu
|1 2\koumter oD\ ene{1951_sountevep_soumie(]_ret_isad 12Nkt o0 D16
s _top_04g_ont{ 154]_counter\reg_counter{5]_net_Lisd
D poe oy e ©_| ' el

— |sdt_2Nooumter_top_D\fg_one]193]_ccumter\beg countes5]._ret_tisd1_Zemunter_top_D\g_ent{15
Meriter bt () (DL - |
| _ton_0o_ent{ 193] _counterreg_sounter (5] : _top
4 idLM LK |_reet_:ad]_INoounter koo OV _ent{if
Sigral £ sdl_Z\eounter_tap_0)g_ent{ 197]_counter {ln :dmwnmmmﬁ]m_nﬁmw
jdmpmwwmumwﬁ

| Assgn to Chanrelll | -5
e PR am—-
| BventCounter | Freguency Moriter | User Clock Frequendes |

;HUM.WMWNJHW.M.MJ'H.“

e 1_2icounter_top_01\a_cnt[188]_sounterreg_sounter{8]_ret_Lisd1_3\counter_top_0ig_ent{1d _

Assign o Channel & | -3 sd1_2\founter_top_ 040 _mnt]153]_counterreg_counter{S]_net_L:sd

i
=

Figure 32 - Activating the Frequency Monitor

42

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Running the Frequency Monitor
The Frequency Monitor runs automatically, and is indicated by a green LED. While it is running, FPGA Array
debug data and the control tabs in the panel are disabled. A progress bar shows the monitor time progress
when it is 1 second and above (as shown in the following figure). The Reset button is also disabled during
the run. When a signal is assigned, the signal name appears next to Signal.

3 s 0 e ==

e [Aurfve Probees Selerfion - FRGA Ay debug data
| - . LR —
Herarchical View | Hethst View | UveProbes | Actve Probes | Memory Blods | Probe rsertion |
—_—

Fiter: Search Delete Dbzt Al

Instanceds): [ada] Mame 5

5 3 sd1_0) | sdl_Fikounter_top O\ [154 _counterfreg_counterfS]_net_Lisdl_2ycourier_top 0g o156

¢ ik sdi_1\ | . p |
1 1_2\eo fop 0] _counber'reg_oounter5]_net_Lisdl_2courmier _top OVg ont15

Sagral ; sdl_ZVeounber_bop_0Va_enk[153]_tounterireg_counter[3]_n

Agsin to Channel B | -»

Uinassign Charnels

Tabs dizabled Window disabled

Figure 33 - Running the Frequency Monitor

Stopping the Frequency Monitor
The Frequency Monitor stops when the specified monitor time has elapsed. This is indicated by a red LED.
The result appears next to Frequency. The window and the tabs on the control panel are enabled. The
Reset button is also enabled to reset the Frequency to 0 to start over the next iteration. The progress bar is
hidden when the Frequency Monitor stops.

43

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

i —— e
8| Debug FVGﬂ_-kr T — L1
&
LoeActve Probes Selecton X pock ey deing data
Hierarchical View | Nstist View Lve Probes | Actve Probes | Memory ks | Probe Irserbon |
Fiter: | Seach | Delete Delete A1
Instancefsh [aad | Hame =
& 5410, = sd1_2\oounier_top 04 _ont]195]_counterfreg_counter[5]_net_Lisd1_I\oounter_top_0'yn_ent[14
| sd1_ Y E
+ & mt':t = sd1_Jicounter_top OV ont] 198]_counter Vneg_counter(sl]_net_bisdl JWoeunter_top_ g ontf1s

 EE counber L]
Py (wj::l:: 81_T\eourer_tog O\ ot 197]_csunber neg_osunter[B]_net_Lisdl_T\Reunter_teo 0V _ent{1f

b B rounter ton 31 e

sd]_2oounier_top_0WG_ont]196]_counter\reg_counter(5]_net_Lisd1_2\oounter_top_0'_ent[15

| Event Counter/Frequemscy Honitoe | sd1_TWosunier_top 0N ont]195]_counter\reg_oounteri]_net_Lisdl_2Woounter_top_0g_oni{15

a1 Tcounter_tog 04 _ont] 194 _counteVneg_oounter (5] _net_Liadl_IVesunter_teo 0 _cnt]15

: 3 ~ T 5 1_7\feounvier_top_04g_ont] 153]_counterfreg_counter [3]_net_L:sd1_I\oounter_top_0'g_mt[15
Monitor Bme (s): B =/
sd1_7 1 ter e L:sd e]
[reames v o s] e
Signal - sd1_F\ounter_top_fg_oi{ 192 _counter {reg_courter [51_n e 1_3\feouniter_top 04 _ent191]_counterreg_counter [B]_ret_L:sd1_J\eounter_top 0o ent{id

wd1_Hoounter_top 04 ort{150]_counter'\reg_counterf5]_net_Lisd1_2Wkounter_top_0'Yg_cnt]15
sd1_Tecounder _top 0\ _ont{185]_counter\freg_counter(s]_net_l:sdl_T\eeunter_top 0Wg_onifis

aell_Ieourder_top 0NG_ont{188]_counter'\neg_sounter([]_net_Lisdl_2\eounter_tap_0g_ent[id

‘ m P

.wbﬂml. -3 sd]l_Foounter_top_0%g_ont]152] _counber reg_counter 5] _net_lisdl 2
Aoagn o Chand B~ -

1 Py — | Unassgn Charrsts
Event Counber Frequeny Mornioe I Ul Clock: Frequendes B

Tabs enabled
abs enabile Window enabled

Figure 34 - Stopping the Frequency Monitor

See Also
"Event Counter" Error! Bookmark not defined.
"User Clock Frequencies" Error! Bookmark not defined.

FPGA Hardware Breakpoint Auto Instantiation

The FPGA Hardware Breakpoint (FHB) Auto Instantiation feature automatically instantiates an FHB instance
per clock domain that is using gated clocks (GLO/GL1/GL2/GL3) from an FCCC instance. The FHB
instances gate the clock domain they are instantiated on. These instances can be used to force halt the
design or halt the design through a live probe signal. Once a selected clock domain or all clock domains are
halted, you can play or step on the clock domains, either selectively or all at once. The FPGA Hardware
Breakpoint controls in the Smart Debug Ul allow you to control the debugging cycle.

Note: This option is enabled in the Enhanced Constraint Flow when you select Verilog netlist as the
Synthesis gate level netlist format in Project Settings (Project Settings > Design flow). It is only available
for SmartFusion2 and IGLOO?2 devices.

To enable this option, select the Enable FHB Auto Instantiation check box in the Design flow tab of the
Project Settings dialog box (Libero > File > Project Settings). See the example figure that follows.

44

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

T Fromct seties |
Dace mbecticn
Devica sattings HEL g 0 Tt it s
g e Ll 55 Bt sl =0, it e W O] Mg e VML 1 o e iR
Sensysis operating coadions For e o Lo v B Sy e ot o # e ko S coven it g corathuch,
¢ Servasiatan optaes For VHOL S, o sy chonee Bt WOL008 s WL
Dirbde
Wavrhserms tardog
ooy Sratem kg & vriog 2004
Tovariisie
Sorvedation Bhniriei W,
Serurtfumond
LRS- LA
L parsewated ey nguage aptors
1 #OL e e aied by Libaes S0 mch i carviured corea, Sear i comporemis and ot ot el el meink Lae B orefered larguage spton.
| @ wering oL
L L
s ach CEann
Rt w1t
¥ Enatin myrifwsn
| e
St gale vl et frmad
iariog resiat DR netiat
i Sy
ot e Prtab i b naCR R SR ey
Rorports
1 M a0 v b be dagkirsd: 10
¥ dort fow e are found n Poyecal Desgr Consirants FOC)
o #ort fow f gron aee fourd i Teng Cormfrants (500)

Figure 35 - Enable FHB Auto Instantiation in Project Settings: Design flow Window

FPGA Hardware Breakpoint (FHB) controls appear in the Debug FPGA Array dialog box when there is an
auto-instantiated FHB instance in the design. See the example figure that follows.

¥ Debug FRGA Array =@ &
[
[
| Useihctve Pobes Selctin = o [
| | verorchical view | betist View [LivmProbes | Active Probes | Memery Blodks
[| Fiter [Sewer | [=[] [#][swe. |[tosd Delete A3
|| tnstamcegsy: | [Type Fead Value rte Vabue |
: FCCC_0_Count_c{15:0] orF 20000849 | 20m
e FOCC_1_Count_c{19:0) [20haTOas | a0m
B counl_rocs_2) FOOC_3_Count_ef19:0] CFF 0'WC1548 20h
FPGA Hardware BreakPonl
@ Operate on All ok Domains (7 Dperate en Selected Clodk Domain
Select Clodk Damain @ | FOCC_0JGL0_INST -
Tiager Seap
Trigger Signal : Not Connected
Edge Selecied: Rising
Diedary Cycles Before Halt 1 250
r ——
n > a
Export Warveform
o | Read Actrv Probes J';’s'e{e'm"_'m'"'bm.ﬂ S
|] [ome |

Figure 36 - FPGA Hardware Breakpoint (FHB) Controls

You can choose Operate on All Clock Domains or Operate on Selected Clock Domain by selecting the
appropriate radio button. Selecting either of these modes sets the FHB instances to the respective mode.
Once you assign the Live Probe PROBE_A connection and click Arm Trigger, the DUT halts on the next

positive edge that occurs on the signal connected to Live Probe PROBE_A.

45

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

When you choose Operate on Selected Clock Domain mode, the Select Clock Domain combo box is

enabled, and all available clock domains are listed. The Halt (Pause) " , Play , and Step

buttons are associated for that clock domain. If you switch between clock domains in this mode,
previous clock domain settings are not retained.

When you choose Operate on All Clock Domains mode, the Select Clock Domain combo box is disabled.
The Halt, Play, and Step buttons are associated for all clock domains.

The Trigger Signal is shown as Not Connected until a live probe is assigned. See the example figure that
follows.

W] Debug FRGA Argy S

® |

Livefactve Probes Selecton B X ppga armay debug data

Hieriarchcal View st Vaew Live Proes Active Probes Mmooy Bocs | Frooe ngerton

Filter! | sewar | _+ - _"._" - Sl

Instance{s): add | Hame Tipa

o T q_0_c19:0]
o :

B/ cont_14 q_2 «[19:0]

B cnt_2 la_1 <f19:0)
o, a5 cl15:0]

HhITCEC 2h

2
HhFIISE Hh
FOhODC AL A

) _ I
Fead \alue [hinte dakue |
|
|
|
|

‘iﬁ‘ﬁﬁ E
g
3

| FPGA Hardware BreakPaint |

@ Dperabe on Al Ciock Domaing vt on S bed Clock Dorman
Sedect Clock Doman ©
Teigger Setp

I Troger Sional ¢ bt Covcted 1
Edge Selected: Risng
Delyy Cycles Before Halt: 240

RESET

n > a

Espart Waweform

‘ n

When a probe is assigned to Live Probe PROBE_A, the Trigger Signal updates.

If you require a certain number of clock cycles before halting the clock domain after triggering, a value
between 0 and 255 must be entered for Delay Cycles Before Halt before you click Arm Trigger. This sets
the FHBs to trigger after the specified delay from the rising edge trigger.

Delay is not applied to a forced Halt. See the example figure that follows.

Read Actve Probes HNmHMDﬂ.

had

B —

46

SmartDebug for Libero SoC v11.8 User Guide

=
Live fictve Probes Selecton B X g Amay debug data
Ferarchesl Vew | hatist wew | Lve Probes | ActeProbes | MemoryBlocs | Probe Insertion |
e Gl | | @) =) (1) [0 (e (tsate] [ooee | [oiemmt] |
] add - M I
nssircdtel] o 0_e[10] e 2oharceC 20h I
[:ﬁ;t l » la_z2c[19:0) oFF Hh1AF1E 27h | I
I counk A & la_t zf19:0) DFF HUHFI3NE] il
gty | las i) v |awwocec [am '
FPGA Hardware BoeakiPoist
@ Cperate on Al Clock Domains) Oerate on Saiscted Clodk Domain
Sebect Clock Domain ; FOOC_GJG00_esT -
Tragger Setn
Trger Signal ¢ Mt Conmectied
Seected: Ring
Dty Cycles Before Halt: 140 |
[RESET [e Trigger
n > o4
Esgat Warweform
!_._ L 1 I
‘ l m | Read Actve Probes Ehmﬁnj Winte Arfve Prokes |
I
(. Com) |

is

When a live probe connection is made, you click Arm Trigger, FPGA Hardware Breakpoint functionality
disabled until the trigger is disarmed automatically or the design is force halted.

=

Live icive Probes Selecton BT | ook hvay debs e
Fherarchel View | hatist e | [[Lve Probes | Actve Probes | Memory Bocks | Probe insevson |

| (=] [#]|# SEvE..

Delete Defete Al

Tiea n t m |
= |
Hh

E

Filter:

Instance{s):

[oot 0y
| & B count_t\
| ¢ ot Y
| & B count 3

FHhIFCEC
HHAAFLE X
H0HF339E am
HTHODCA &h |

| |o_o_cfae:0)

¥ |a_2.cl15:0]
| & [tz
| bl el19:0]

EIETENE

L bH

FPGA Hardware BreakPomst

@) Cperabe on Al Jinck Domars Cver vt on Sefected Clock Doman

Select Clock Domain ;| FOCC_0/GL0_PesT -
Triger St

Cigesod o @ ieor Dyali-g 1
Edge Selected: Rang
Dty Cycles Before Halt: 240

L Read Active Probes | [Save Actve Probes’ Data.. Vinte Actve Probes

== Com |

Force Halt/Play/Step is done using the FPGA Hardware Breakpoint controls (see the example figure that
follows). Once the clock domain is halted, you can either force Play the clock domain or Step the clock
domain by 1 clock cycle.

47

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

You can save the waveform view of the selected active probes using Export Waveform by specifying the
number of clock cycles to capture. The waveform is saved to a .vcd file.

3 Detug 1 ey - L e
=
Livefdctve Brobes Selecton B X ppoa amay debug dats
Herorcheal View | Hatist View Lvefrobes | ActheProbes | MemoryBlods | Probe Insevion
Fiter: Search |] =] |#] [* = Load... it [coe=a | |
Irstancels): add [riame Type Feead il [iirde bt |
= o q_0_cf 15:0) DFF 20ha01E2 2Th |
counk_04 =
B coune_t\ 8.2 ¢lag:0] S O Y] o K L I
B count_2\ a1, s[19:0) oFF 20m201F2 20m !
B count 3 a3 cl19:0]) oFF WhAF2 2h f
| - | FPGA Hardware BreakPoint |

& Operate on Al Clock Domping Cpseratn on Selected Clodk Doman |
Sedect Clock Domain ;
Teugper Setn
Trigger Sipnal : g0 _c17:count_0\a[17):0
Edge Selected: Ramg
Delry Cycles Before Halt: 240

RESET e Triggee
1] > o
Export Wane form
L Rend Actve Probes | | Save Actve Probes' Data...|
|
| -
Hei cose | |

FPGA Hardware Breakpoint Operations

Live Probe Halt

You can halt a selected clock domain or all clock domains in Live Probe Halt mode based on the mode
selection (Operate on All Clock Domains or Operate on Selected Clock Domain).

Assign a signal to Live Probe PROBE_A in the Live Probes tab of the Ul, and then click the Active Probe
tab to see the FPGA Hardware Breakpoint controls.

Click Arm Trigger to arm the FHBs to look for a trigger on the signal connected to Live Probe PROBE_A.
Once the trigger occurs, the clock domains are halted.

Note: If only one clock domain is halted, other clock domains continue to run, and you should anticipate
results accordingly.

See Assumptions and Limitations for more information.

Force Halt

You can force halt a selected clock domain or all clock domains based on mode selection without having to
wait for a trigger from a live probe signal. Click the Halt button in the FPGA Hardware Breakpoint (FHB)
controls.

In Operate on Selected Clock Domain mode, the state of the Halt button is updated based on the state of
the clock domain selected.

In Operate on all Clock Domains mode, the Halt button is disabled only when all clock domains are halted.
Each clock domain is halted sequentially in the order shown in the Select Clock Domain combo box.

Note: If only one clock domain is halted, other clock domains continue to run, and you should anticipate
results accordingly.

48

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Play

Once the clock domain is in a halted state (live probe halt or force halt), you can click Play in the FPGA
Hardware Breakpoint controls. This resumes the clock domain from the halted state.

In Operate on all Clock Domains mode, each clock domain runs sequentially in the order shown in the
Select Clock Domain combo box.

Step

Once the clock domain is in a halted state (live probe halt or force halt), you can click the Step button in the
FPGA Hardware Breakpoint controls. This advances the clock domain by one clock cycle and holds the
state of the clock domain.

In Operate on All Clock Domains mode, each clock domain steps sequentially in the order shown in the
Select Clock Domain combo box.

Waveform Capture
You can save the waveform view of the selected active probes using Export Waveform by specifying the

1]
number of clock cycles to capture in text box and then clicking Capture Waveform . The waveform
is saved to a .vcd file.

You can view the waveforms by importing the .vcd file. The waveform file can be viewed in any waveform
viewer that supports vcd format.

Reset

You can reset a selected clock domain or all clock domains (based on the mode selection) by clicking
RESET at any time. This resets the FHBs on clock domains and instructs FHB muxes not to look for a
trigger.

Assumptions and Limitations

o If you select the auto instantiation option in Libero, you need to rerun Synthesis (if already run) to get
the FHB related functionality.

e The auto instantiation flow is supported for SmartFusion2 and IGLOO2 only.

e Available for Enhanced Constraint Flow only.

e Supported for FCC driven gated clocks (GLO/GL1/GL2/GL3) only.

e CLKINT_PRESERVE - FHB is not auto-instantiated if the user design contains this macro.
¢ Designs that have Encrypted IPs are not supported.

e EDIF using constraints flow is not supported.

e Live Probe triggering occurs on the Positive Edge only.

e For imported Verilog netlist files (.vm files), you must rerun synthesis to get FHB-related functionality. If
synthesis is disabled and the netlist is compiled directly, FHB functionality is not inferred.

e If only one clock domain is halted during operations, other clock domains continue to run, and you
should anticipate results accordingly.

e FHB performance can only be characterized against the clock which it is running at (i.e. 50MHz).

o If the DUT clock is running at or less than 50MHz, the DUT clock will halt
within one clock cycle (1 or less).

o For frequencies higher than 50MHz, the point at which the DUT halts cannot
be guaranteed.

User Clock Frequencies

The User Clock Frequencies tab shows the frequencies that have been configured from the FCCC block. If
assigned, live probe channels are temporarily unassigned, and reassigned after user clock frequencies have
been calculated. The Refresh button recalculates frequencies if clocks have been changed.

49

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

i (o © e

i Debug FPGA Array

Live/Active Probes Selection & X

Filter:

Instance(s):

[& B Primitives
T URAM_D\
URAM_1\
T URAM_2\
I uram_3|
count & 0\

| al il L4 E E

B8 ant Counter/Frequency Monito

[User Clocks Frequency (MHz)
1 FCCC_0_GLO ~M5
2 FCCC_0_GL1 ~487
3 FCCC_0_GL2 974

4 FCCCOGL3 ~1946

=
=

[EventCointer | Freasency Monie | user CockFreuences |

@

FPGA Array debug data

Live Probes | Active Probes | Memory Biocks | Probe Insertion

[peete |[oseten

Hame Type
A_DOUT_0_c[B]:URAM_3\/sd_URAM_3_URAM_ROC4INST_RAMG4x15_IP:A_DOUT[0] RAMG4x13
A_DOUT_0_c[7]:URAM_3\jsd_URAM_3_URAM_ROC3/INST_RAMG4x18_IP:A_DOUT[1] RAMS4x18
A_DOUT_0_c[6]:URAM_3\/sd_URAM_3_URAM_ROC3/INST_RAME4x15_IPiA_DOUT[0] RAMG4x18
A_DOUT_0_c[5]:URAM_3\/sd_URAM_3_URAM_ROC2/INST_RAME4x18_[P:A_DOUT[1] RAMG4x 18
A_DOUT_0_c[4]:URAM_3Vsd_URAM_3_URAM_ROC2/INST_RAMG4x18_[P:A DOUTI0] RAME4x18
A_DOUT_0_c[3]:URAM_3\/sd_URAM_3_URAM_ROC1/INST_RAMG4x15_IP:A_DOUT[1] RAMS<x13
A_DOUT_0_c[2]:URAM_3\/sd_URAM_3_URAM_ROC1/INST_RAME4x18_IP:A_DOUT[0] RAMG4x18
A_DOUT_0_e[1]:URAM_3\fsd_URAM_3_URAM_ROCO/INST_RAMGE4x18_[P:A_DOUT[1] RAMS4x18

A_DOUT_0_c[0]:URAM_3V/sd_URAM_3_URAM_ROCO/INST_RAME4x18_[P:A_DOUT[0] RAME4x18

N n 3

Assign to Channel A | - A_DOUT_D_c[8]:URAM_3\fsd_URAM_3_URAM_ROC4/INST_RAMG4x18_IP

T

Figure 37 - User Clock Frequencies Tab/Ul

See Also

"Event Counter" Error! Bookmark not defined.
"Frequency Monitor" Error! Bookmark not defined.
UG0449- SmartFusion2 and IGLOO2 Clocking Resources User Guide

UG0586- RTG4 FPGA Clocking Resources User Guide

Pseudo Static Signal Polling

With Active Probes you can check the current state of any probe in the design. However, in most cases, you
will not able to time the active probe read to capture its intended value. For these cases, you can use
Pseudo Static Signal Polling, in which the SmartDebug software polls the signal at intervals of one second to
check if the probe has the intended value. This feature is useful in probing signals which reach the intended

state and stay in that state.

From the Active Probes tab in the Debug FPGA Array dialog box, right-click a signal, bus, or group and
choose Poll.... See the example figure that follows.

50

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134406

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

5 Debug FRGA Amray =)=
=
Live [Actree Probes Selection & X FPGA Afray debug data
Herarchicsl View | Netist view | [LveProbes | Actveprobes | MemoryBlods | Probe Inserton |
rac: e | @O0 e e e s
tstance (s} Add IName [lype
s — Sheft_Reg_0fshit_reg[13:0]
Sl ?3“#;;:.“ . D_FF_0fq_0:0_FF_0ja:Q
»q
4 I shift Reg 0
4 B Primitves
+ B shitgeg
B shit_reglo]
B shift_reg[1]
B shit_reg[2)
B shft_reg[3]
- shft_reg[4)
: shft_reg[s)
shft_reg[é]
B s regln) [masd Prebes Save Probes Data. e
B sfiredls] i

Figure 38 - Debug FPGA Array Dialog Box - Poll Option
The Pseudo-static signal polling dialog box opens.

Scalar Signal Polling
Polling Setup

To poll scalar signals, select Poll for 0 or Poll for 1.

The selected signal is polled once per second. It should be used for pseudo-static signals that do not
change frequently. The elapsed time is shown next to Time Elapsed in seconds.

To begin polling, click Start Polling. See the following example figure.

-
] Pseudo-static signal polling

ECA™==)

Signal : D_FF_0/q_0:D_FF_0/q:Q
Polling Setup
@ Poll for 0

Time Elapsed in seconds: 0

Note: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.
For more information about pseudo-static signal polling, dick the Help button.

Start Polling

Stop Polling

Figure 39 - Pseudo-static signal polling Dialog Box (Scalar Signal Polling) - Start Polling

To end polling, click Stop Polling. See the following example figure.

51

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Pseudo-static signal polling lm

Signal: D_FF_0jq_0:D_FF_0/q:Q
Polling Setup

o
T
(=]
Ph
sl
(=]
=
=

MNote: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.
For more information about pseudo-static signal polling, dick the Help button,

Time Blapsed in seconds: 0

Cow)

Figure 40 - Pseudo-static signal polling Dialog Box (Scalar Signal Polling) - Stop Polling
Note: You cannot change the poll value or close the polling dialog box while polling is in progress.

The elapsed time is updated in seconds until the polled value is found. When the polled value is found, User
value matched is displayed in green in the dialog box. See the following example figure.

% Pseudo-static signal polling lM

Signal: D_FF_0jq_0:D_FF_0/q:Q
Polling Setup
| @ potfero Pol for 1

MNote: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.
For more information about pseudo-static signal polling, dick the Help button.

Time Elapsed in seconds: 1

User Value matched

Start Polling Stop Polling
o)

Figure 41 - Pseudo-static signal polling Dialog Box (Scalar Signal Polling) - User Value matched

Vector Signal Polling

To poll vector signals, enter a value in the text box. The entered value is checked and validated. If an invalid
value is entered, start polling is disabled, and an example displays showing the required format. See the
following example figures.

52

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

% Pseudo-static signal polling lm
Signal: Shift_Reg_0fshft_reg
Polling Setup
Poll for 14h0

Note: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.
For more information about pseudo-static signal polling, didk the Help button.
Time Elapsed in seconds: 0

Stop Polling

Figure 42 - Pseudo-static signal polling Dialog Box (Vector Signal Polling)

Pseudo-static signal polling lM

Signal : Shift_Reg_0fshft_reg
Polling Setup
Poll for 14h
Enter a valid hex value. Eg: 19h0

MNaote: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.
For more information about pseudo-static signal polling, didk the Help button.
Time Elapsed in seconds: 0

Start Polling Stop Polling

[Hew Gose |

Figure 43 - Pseudo-static signal polling Dialog Box (Vector Signal Polling) -- After Validation
When you enter a valid value and click Start Polling is clicked, polling begins.
To end polling, click Stop Polling.
Note: You cannot change the poll value or close the polling dialog box while polling is in progress.

The elapsed time is updated in seconds until the polled value is found. When the polled value is found, User
value matched is displayed in green in the dialog box.

53

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Debug SERDES (SmartFusion2, IGLOOZ2, and RTG4)

You can examine and debug the SERDES blocks in your design in the Debug SERDES dialog box (shown
in the figure below).

To Debug SERDES, expand SmartDebug in the Design Flow window and double-click Debug SERDES.

Debug SERDES Configuration is explained below. See the PRBS Test and Loopback Test topics for
information specific to those procedures.

SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

Debug SERDES - Configuration

Configuration Report

The Configuration Report output depends on the options you select in your PRBS Test and Loopback Tests.
The default report lists the following for each Lane in your SERDES block:

Lane mode - Indicates the programmed mode on a SERDES lane as defined by the SERDES system
register.

PMA Ready - Indicates whether PMA has completed its internal calibration sequence for the specific lane
and whether the PMA is operational. See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User
Guide on the Microsemi website for details.

TxPIl status - Indicates the loss-of-lock status for the TXPLL is asserted and remains asserted until the PLL
reacquires lock.

RxPLL status - Indicates the CDR PLL frequency is not grossly out of range of with incoming data stream.

Click Refresh Report to update the contents of your SERDES Configuration Report. Changes to the
specified SERDES register programming can be read back to the report.

SERDES Register Read or Write

Script - Runs Read/Write commands to access the SERDES control/status register map using a script.
Enter the full pathname for the script location or click the browse button to navigate to your script file. Click
Execute to run the script.

54

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

r e
€ Debug SERDES 7=
SERDES Block: |SERDESIF 0 ~
@ Lane 0 Lane 1 Lane 2 Lane 3
SERDES Lanes:

Lane 0 Reset| [Lane 1Reset| [Lane 2Reset| [Lane 3Reset |

| Debug SERDES | confguration Report:
Configuration -] Refresh Report |
4 Tests Serdes Blodk SERDESIF 0 :
PRI Tt laemode: S (atom)
ane mode : us|
Loopback Test PMA Ready : Troe

THPLL status : Lodked
RxPLL status : Lodked

Lane 1:
Lane mode : EPCS (custom)
PMA Ready : True

TxPLL status : Lodked
RiPllstatus: Locked T

Lane 2 :
Lane mode : EPCS (ocustom)
PMA Ready : True
TxPLL status : Lodked
RaFLL status : Lodked

Lane 3:
Lane mode : EPCS (custom)
PMA Ready : True

THPLL status : Locked
RxPLL status : Locked

SERDES Register Read or Write:

| sapt (] [Exeane |

ko | | Cose |

Figure 44 - Debug SERDES - Configuration
Note: The PCle and XAUI protocols only support PRBS7. The EPCS protocol supports PRBS7/11/23/31.

Debug SERDES — Loopback Test

Loopback data stream patterns are generated and checked by the internal SERDES block. These are used
to self-test signal integrity of the device. You can switch the device through predefined tests.

See the PRBS Test topic for more information about the PRBS test options.

SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

SERDES Lanes

Test Type

Select the Lane and Lane Status on which to run the Loopback test. Lane mode indicates the programmed
mode on a SERDES lane as defined by the SERDES system register.

PCS Far End PMA RX to TX Loopback- This loopback brings data into the device and deserializes and
serializes the data before sending it off-chip. This loopback requires OPPM clock variation between the TX
and RX SERDES clocks.

See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for
details.

Near End Loopback (On Die) - To enable, select the Near End Loopback (On Die) option and click Start.
Click Stop to disable. Using this option allows you to send and receive user data without sending traffic off-
chip. You can test design functionality without introducing other issues on the PCB.

55

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for

details.
; .
© Debug SERDES |9 S
SERDES Block: |SERDESIFO v |
@ Laned Lane 1 Lane 2 Lane 3
SERDES Lanes: ’ : 2
[Lane 0Reset] [Lane 1Reset | [Lane 2Reset | Lane 3Reset
| Debug SERDES Lane 0 status: RxPLL TaPLL
Configuration Test Type:
4 Tests
PRBS Test @ PLCS Far End PMA Rx to Tx Loopback
Loopback Test | Near End Serial Loopback (On Die)
Start
[t | [oo |

Figure 45 - Debug SERDES - Loopback Test

Debug SERDES — PRBS Test

PRBS data stream patterns are generated and checked by the internal SERDES block. These are used to
self-test signal integrity of the device. You can switch the device through several predefined patterns.
View Loopback Test settings in the Debug SERDES - Loopback Test topic.

SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

SERDES Lanes
Check the box or boxes to select the lane(s) on which to run the PRBS test. Then select the Lane Status,
test type, and pattern for each lane you have selected. Lane mode indicates the programmed mode on a
SERDES lane as defined by the SERDES system register. See the examples below.

56

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

© Debug SERDES i =)
coes o
SERDES Lanas: (4] Lane 0 (] Lane 1 [7] Lane 2 [] Lare 3 [Resat Seiacted Lanas |
|
Debug SERDES
o Suton Lane OStatus: Nea End Serial Loopback (On-De) v | [PRES7 v |RPLLGY TPW® Lodktodam
a Tests
PRES Test
Loopback Test Lane Mumber Cumalative Errer Count Data Rate Bt Error Rate Reset Emor Count
Lane] Gops NA B
[Stop
(e] [(ome]
Figure 46 - SERDES Lanes - Single Lane Selected
€ Debug SERDES J—— . - [E==)
SERDES Bock:
SERDES Lanes: (7] Lane 0 (] Lane 1 [¥] Lane 2 [Lane 3 [Reset Selected Lanes
Cimlgmmﬁn LaneO5tats: [Nea End SerialLoopback (On-D) v | [PRES7 v |RPUL® TPU® Locktodat
= Tﬂ';msu lane 15tabs: [New EndSeclloopbeck [OnDe) ~ | [PRES7 v |RFUL® TRUO loiedata
Loopback Test Lane 25tats: [Neas Endserialloogback (Onee) v | [PRES7 v |RPWE TRUG Lodktadata
Lane Murber Cumulative Error Count Data Rate 8t Erroe Rate Reset Ervor Count
Lane 0 0 Ghos MA B
Lane 1] Ghps MA B
Lone 2 0 Ghps MA]
500

Figure 47 - SERDES Lanes - Multiple Lanes Selected

57

Test Type

Pattern

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Near End Serial Loopback (On-Die) enables a self-test of the device. The serial data stream is sent
internally from the SERDES TX output and folded back onto the SERDES RX input.

Serial Data (Off-Die) is the normal system operation where the data stream is sent off chip from the TX
output and must be connected to the RX input via a cable or other type of electrical interconnection.

If more than one SERDES Lane has been selected, the test type can be selected per lane. In the following
example, Near End Serial Loopback (On-Die) has been selected for Lane 0 and Lane 3, and Serial Data
(Off-Die) has been selected for Lane 1 and Lane 2.

£ Debug SERDES 9 o]
SERDES Bock:
SERDES Lanes: [V Lane 0 [¥f| Lane 1 (V| Lane 2 [V| Lane 3 Reset
|
Debug SERDES . -
Confiquration Lane 0 Stahus: . r RFALEG DALG Llokildats @
Tests Lane 1 Status: ta (OFF-Dic: RALEG TPLP Lokimdats @
PRES Test
Loopback Tet Lane 2 Statuss b i ¥ RePLLIP L@ Lock wdata i
Lane 3 Stabuss E F RaFLLIH T>FLL@ Lock todata i
Lane Number Cumulatree Error Count Data Rate Bt Error Rate Rueset Error Count _-
Lane 0 1] Gbps NA
Lane 1 a Gbps WA
| Lane 2 a Ghps MA
Lane 3] Ghos NA
o
||
[ren dlose

Figure 48 - Test Type Example

The SERDESIF includes an embedded test pattern generator and checker used to perform serial
diagnostics on the serial channel, as shown in the table below. If more than one lane is selected, the PRBS
pattern can be selected per lane.

Pattern Type

PRBS7 Pseudo-Random data stream of 27 polynomial sequences

PRBS11 Pseudo-Random data stream of 2211 polynomial sequences

PRBS23 Pseudo-Random data stream of 2223 polynomial sequences

PRBS31 Pseudo-Random data stream of 2231 polynomial sequences

58

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Cumulative Error Count

Lists the number of cumulative errors after running your PRBS test. To reset the error count to zero, select
the lane(s) and click Reset. By default, Cumulative Error Count = 0, the Data Rate text box is blank, and Bit
Error Rate = NA.

£ Debug SERDES " " P 8 X]
SERDES Biod:
SERDES Lanes: |V Lane @ (| Lane 1 [V Lane 2 [Lane 3 [Reset
|
Debug SERDES 1
Configuration Lane O Stabus; b £ bk E = | |F = | ML L Lok todats i
4 Tets Lane 1 Stahus: : sta (OFf-Due! | |PABS1l v | MPUL@ TPLE loktodata @
| PRES Test
| Leapback Test Lane 2 Stabs: ariall Dt (O -Dve v ||PRES2 v | RaPL@ TG lodiodia @
L
Lane JStakus: | hear - = | PR - R=PL@ TP Lok todata @
Lsne bumber Cusmiative Bror Count Dista Rate Btfror Rate | ResetBrrorCount |
Lanw 0] Ghps 2.00e-10
Lare 1 o Ghps L.O0e-10
Lane 2] Ghps G.67e-11
Lare 3] Ghos 5.00e-11
oo
e] [o

Figure 49 - Debug SERDES - PRBS Test
Note: If the design uses SERDES PCle, PRBS7 is the only available option for PRBS tests.

Bit Error Rate

The Bit Error Rate is displayed per lane. If you did not specify a Data Rate, the Bit Error Rate displays the
default NA. When the PRBS test is started, the Cumulative Error Count and Bit Error Rate are updated
every second. You can select specific lanes and click Reset Error Count to clear the Cumulative Error
Count and Bit Error Rate fields of the selected lanes.

In the example below, the Bit Error Rate is displayed for all lanes.

59

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Debug SERDES i . — e ee— w
SERDES Block: | SERDESIF 0 -
SERDES Lanes: [V Lane O[] Lane 1 [V Lane 2 [¥] Lane 3 | Reset Selectad Lanes
I
Debug SERDES o i —
Configuration Lane O Stabus; Mesr End Serial Loogback [Onfee) = B = L@ TPLL Lot todats i
* Tets Lane 15tobus: | Seriad Diasta (OFF-Ds) = || paEs1l ¢ faPU@ DAL lokiodata @
PRES Test
Loapback Test Lane 2Stabus: | Serial Data (Off-Due) = ||mEs2 ¢ | PLE TRLE lodeindata i
Lane 35takus: | hiear End Serial Loopback (On-Dee) = | |PRESIL - | RxPUL TPl loktodata
Lare Mumber Cumulstive Bror Count Data Rabe Bt Brror Raabe | Reset Error Count
Lana 0] 1 Gos 2.00e-10 B
Lare 1 o Fl Ghps L0OS-10
Lare 2 o 3 Ghos 66711
Lare 3] 4 Ghos 5.00e-11
Start
[oo]

]

Figure 50 - Bit Error Rate Example - All Lanes
In the example below, Lane 1 and Lane 2 are selected and Reset Error Count is clicked.

-
& Debug SERDES T (R
SERDES Mock: | SERDESIF O -
SERDES Lanes: [V Lane 0 [¥] Lane 1 [Lane 2 [¥] Lane 3 Reset Selected Lanes
i
Debug SERDES
[Es ok ¢ A = RET =
Configuration Lane 0 Statusc | Mear End Serial Loopback (On-Die) PRES Reflli@ TPU@® Llokiodata @
4 Tests Lone 15tatuss | Seria Data (OFF-Die) ~| FRESLL v RPU@ TRULE lokwdata @
' PRES Test
Loopback Test Lane 2 Stabus: Serial Data (Off-Die) = | [PRESIZ ~ | RxPLLU LS Lockivdata @
Lane 35ttus: | Mear End Serial Loopback (On-Die] = | PRES31 = | RxPLLE LS locktodata @
Lane Number Cumulatve Ermor Count Daita Rate Bt Error Rabe | Reset Error Count
Lane 0 [1 Ghps L82e-11 il
Lane 1] F: Ghos MA el
Lane 2 [3 Ghos MA]
Lanie 3 a 4 Ghps 455612 B
Start
Sk

Figure 51 - Reset Error Count Example
Notes:
The formula for calculating the BER is as follows:
BER = (#bit errors+1)/#bits sent
#bits sent = Elapsed time/bit period

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

When clicked on Start:
e The BER is updated every second for the entered data rate and errors observed.
¢ If no data rate is entered by the user, the BER is set to the default NA.
When clicked on Stop:
e The BER resets to default.
When clicked on Reset:
e The BER resets to default.
e If notestisin progress, the BER remains in the default value.
e If the PRBS test is in progress, the BER calculation restarts.

Debug SERDES — PHY Reset

SERDES PMA registers (for example, TX_AMP_RATIO) modified using a TCL script from the Configuration
tab require a soft reset for the new values to be updated. Lane Reset for individual lanes achieves this
functionality. Depending on the SERDES lanes used in the design, the corresponding Lane Reset buttons
are enabled.
Lane Reset Behavior for SERDES Protocols Used in the Design
e EPCS: Reset is independent for individual lanes. Reset to Lane X (where X = 0,1,2,3) resets the Xth
lane.
e PCle: Reset to Lane X (where X =0,1,2,3) resets all lanes present in the PCle link and PCle controller.

For more information about soft reset, refer to the SmartFusion2 and IGLOO2 High Speed Serial Interfaces
User Guide.

Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3

Only)

Inspect Device is available as a part of the FlashPro programming tool. Refer to Using SmartDebug for
information about how to configure FlashPro to access this feature.

In the Inspect Device dialog box, you can access all device features, such as the FlashROM, Embedded
Flash Memory (NVM), and Analog Block. If you have multiple devices and programmers connected, choose
your target device/programmer from the drop-down menu, and use the ID code to verify that you are
inspecting the correct device.

View Device Status - Displays the Device Status Report. The Device Status Report is a summary of your
device state, analog block test values, user information, factory data, and security information. You can save
or print your information for future reference.

View Analog Block Configuration - Opens the Analog Block Configuration dialog box. You can view the
channel configuration for your analog block and compare the channel configuration with any other analog
block file.

View Flash Memory Content - Opens the Flash Memory dialog box. You can view the details for each flash
memory block in your device.

View FlashROM Content - Opens the FlashROM data dialog box. You can view a list of the physical blocks
in your FlashROM and the client partitions in FlashROM configuration files.

61

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

T Inspect Device

=T R A 200MEF (AZF200M3F)

Programmer: |51535 (usbh51538) w

ID code read from device: SA131CF

| view Device Status | |view Analog Block Configuration | |View Flash Memory Content | |view FlashRomM Content |

Figure 52 - Inspect Device Dialog Box

Device Status Report (SmartFusion and Fusion Only)

This dialog box displays the Device Information report. The Device Information report is a complete
summary of your device state, analog block test values, user information, factory serial number, and security
information. Use this dialog box to save or print your information for future reference.

62

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Y Device Status Report

Device Status:

[e]

Device: AFS600 (AFSS00) Programmer: 10868 (usb10868)

IDCode (HEX): 233261cf

User Information:
LROW data (HEX):
Programming Method:
Progr afmimes :
Programmer Software:
Drecagn hoarme
Design Check Sum:
Algorithen Yersion:
Array Prog. Cyche Count:

Device State:
IRCapture Regester (HEX):
FPGA Array Stabus:

Analog Block:
OABTR Regester (HEX):
3.3V (wdd33):
1.5¥ (vdd1S):
Bandgap:
-3. 3V (vddn33):
ADC Referance:
FPGA_Good:

Status:

Factory Data:
Factory Serial Number (HEX):

Security:
Device has no sacurity enforced.

s || @pn |

2308004 10204081 02045Fd8766803481
FOB

FlashPro3

FlashPro v8.6

top

2308

19

1

55
Programmed and enabled

1dbe3bb
PASS
PASS
PASS
PASS
PASS
PASS

Analog Block is operational

B0e00486c60

Figure 53 - Device Status Report

Embedded Flash Memory (NVM) Content Dialog Box
(SmartFusion and Fusion Only)

You can do the following in the NVM content dialog box:

e View content of Flash Memory pages (as shown in the figure below)
e Compare device content with original design content (requires a PDB that contains your EFC data)

e Check page status and identify if a page is corrupted or if the write count limit has exceeded the 10-
year retention threshold

Fusion Devices: Choose your block from the From block drop-down list This action populates the Select
drop-down list with the names of the clients in the selected block that is configured in the Flash Memory

System Builder.

SmartFusion Devices: Block selection is unused and unavailable.

63

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Choose a client name from the Select drop-down list and click Read from Device to view the values. You
can also view a specific page range by selecting the <Page Range> option in the Select drop-down list and
then specifying the start page and the end page.

You must click Read from Device each time you specify a new page range to update the view.

If you do not have your original design programming database (PDB) file, you can examine and retrieve a
range of pages. Specify a page range if you wish to examine a specific set of pages. Page Status
information appears to the right.

Y Flash Memory ['F EI

Retrieve Flash Memory Content from Device:

From block
Select ACTEL_PPE_MERGE_CONFIG (p) 2} Read from Device *
Start address: (page 2044)
Chent size: i bytes (1 page)
Latest Content Retrieved from Device: Mo Jun 06 1611601 2011

Retrieved Content: Chent "ACTEL_PPE_MERGE_CONFIG, 48 bytes starting from address 0 IFEDD

View Detaded Status| [Compare Clent Content|

G0 to Address (hex)

5 Add Content
ot Ao T s 1 215141 c1cl7101v]Alolclolelr

2044 SFE00| 00 03 00 00 10 00 10 0 00 15} 0 o2 03 o4 10 20
2044 IFE10] 00 03 40 00 10 00 10 o il a3 10 a2 43 o4 10 20
2044 ¥FE20| 11 1] 18 0l ol o3 0 18 10 00 10 o1 e] ix] Fa i) 10
2044 JFE30| 00 o0 00 00 00 00 00 0o 00 00 00 00 00 00 00 00
2044 JFE40| 00 00 o0 00 00 00 00 00 00 i) 00 00 00 1] 00 00
2044 IFESO| 00 1] 00 1.1} 00 Lo 1] 1] L] 00] 1] 1] 1] 11 0 1] 00
2044 IFEGD| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
2044 J¥FE70| 00 1 ei] o0 00 i i 1] 00 i} 00 o] i} 1] i] L]

Figure 54 - Flash Memory Content Dialog Box for a SmartFusion Device (SmartDebug)

Embedded Flash Memory: Browse Retrieved Data (SmartFusion
and Fusion Only)

The retrieved data table displays the content of the selected client or the page range selection. Corrupted
page content is displayed in red. Read-only page content, corresponding to clients defined with the Prevent
read option in Flash Memory System Builder, is displayed with a gray background. If content cannot be read
(for example, pages are read-protected, but security has been erased), the content is displayed as XX. The
mouse tooltip summarizes abnormal content status (as shown in the figure below).

The corresponding page number and address (relative to the current block) are displayed in the left column.
The client size specified in the Flash Memory System Builder is shown at the top of the content table.

In the Retrieved Data View, you can enter an Address value (such as 0010) in the Go to Address field and
click the corresponding button to go directly to that address.

Click View Detailed Status for a detailed report on the page range you have selected.

64

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide
For example, if you want to view a report on pages 1-3, set the Start Page to 1, set the End Page to 3, and

click Read from Device. Then click View Detailed Status The figure below is an example of the data for a
specific page range.

¥ Flash Memory Details

In Elock 1, from Page 1 to Page 3, 334 bytes starting from address 0x50 as of Wed Jan 20 154057 2010 ’ H Save] ’ & Print]

Flash Memary Content [Page 1 ka3]
FlashMemory Page #1:
Status Register{HEX): 0O0SF000
Stakus ECC2 check: Pass
Dats ECC2 Check: Pass
\Write Counk: Pass (2285 writes)
FlashMemory Page #2:
Status Register{HEX): 0O0SF000
Stakus ECC2 check: Pass
Dats ECC2 Check: Pass
W'rite Count: Pass (Z288 writes)
FlashMemory Page #3:
Status Register{HEX): 0O0SF000
Stakus ECC2 check: Pass
Dats ECC2 Check: Pass
W'rite Count: Pass (Z288 writes)
Total number of pages with status ECCZ errars: 0
Tatal number of pages with data ECCZ errors: 0
Tatal number of pages with write count ouk of range: 0
FlashMemary Check PASSED for [Page 1 o 3] —

Figure 55 - Flash Memory Details Dialog Box (SmartDebug)

65

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

1 Flash Memory Elgl

Select <Page Range>
Seark Page: 0

End Pags: 3

G0 b dddrass (hee:

Retrieve Flash Memory Content from Device:
From block |3 - newCore.efc |+

Latest Content Retrieved from Device:

Retrieved Content: In Block 3, from Page 0 to Page 3, 512 bybes starting from address 00

.
{address 0:x00000)

{4 pages, 512 bytes)

Wed Jun 20 103317 2010

Wiews Detaded Stabus

Conbent

Page Mumber | Address

o |1 J2z]3]+ s]s]s]els]ale]c]ole]Eer

ojojoljloljlolo|o

g

»

{11] o0 00 00 00 00

| 0 00
Corrupted; Resd Protected;
s aca e ol

g

}j B E|8 B &8 82 8 8B 8 B

i B E|]2 8 28 B E B E B
4

i 8 E|]g B 8 8 B 8 B B
i 8 Bl E B3 82 B 8 8B 8
i 8B BE|e 8 2 B E B E B
S PE|Fg FE R8N N8| FE e I E
i 8 Bl 8 8 8 & 8 =
B[B3 BB BB I8 ElE
i 8 Bl 2 2 8B BE B E B
i B E|]|2 8 28 B E B E B
i 8 BE|8 B B8 B B

i 8 B|l8 B 8§ B B

i B E|lg B E B E

i 8 B|leg 8 g B B

i 8 BE|lg 8 g B E

BB B 8 BB B &=

E

Figure 56 - Flash Memory Browse Retrieved Data

Embedded Flash Memory: Compare Memory Client (SmartFusion
and Fusion Only)

After you retrieve the data from the device, the Compare Client Content button lets you compare the content
of the selected client from the device with the original programming database (PDB) file. The differences are
shown in the Compare Memory Client dialog box (as shown in the figure below).

Note: This option is not available when you select to retrieve the data based on a page range.

66

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

1 Compare Memory Client

In Block 0, Client "DSBbIK", 256 bytes starting from address 0x0 as of Sun Jan 17 12:12:06 2010 | | save || &Pt |

Flash Memory Client Compare [DS8bit - Block 0] ~|

Difference at byte 0.
Byte Design |Device
il ey]

Difference at bytes 2 to 4.
Byte Design Device
2 Ooeh, | Ol
3 e (000
4 OxEE | Ol

Difference at bytes 6 ko 255,
Byte |Design |Device

& |mFF |ox00
7 OoeCD | OweieD
I3 Oxhd, | 0wl
9 |oeas |ox00
10 |0xAA |0x00
T
17__Imzas_ [nznn b

Figure 57 - Compare Memory Client Dialog Box

FlashROM Content Dialog Box (Fusion and SmartFusion Only)

In the FlashROM Content dialog box, you can view the physical blocks in your FlashROM and the client
partitions specified in the original design content (requires a PDB that contains your UFC data). If the
project’'s PDB does not contain UFC data, only the physical blocks are displayed.

Scroll through the table to view the Words and Pages for your physical blocks.

The Client Partitions section lists the names and configuration details of the clients set up in the FlashROM
Builder. It automatically finds all mismatched client regions. To view the differences between a client and the
device content, select a region row in the Client Partitions table. This action highlights the corresponding

device content in the Physical Blocks table. The mismatch details are displayed below the Client Partitions
table.

To copy the content of the Physical Blocks table to clipboard, select one or more cells in the table and type
Ctrl+C.

67

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

1 FlashROM

Phesical Blocks

1514|1312 22| 1w| 9| 8| 7|als|4]3]z|1]o0

7 FF 7E 7D |FC 7B FA F9 75 (77 F6 F5 74 F3 72 |71 FO
6 22 222 |2z 22 |22 P2 22 |22 E2 22 |22 22 m2 ER 22
5 5F DE DD |5 DB |54 59 DS D7 S5 55 D4 53 D2 D1 50
Pages |4 @ CcE FO ABE D EF 0a BC DE |FO |AB D
3 3F EBE BD (3C BB |34 39 BS |BF 36 35 B4 33 B2 Bl 30

200 00 00 |00 0O 00 00 OF B FA FA FA FA FA FA BB
100 |00 00 00 00 00 |00 00 |00 (00 00 00 |00 |00 |00 |00
ool |Z3 45 |67 &2 01 |23 45 |67 &9 AA AE BE CC (D DD

Client Partitions

FlashRoOM configuration file: Di\tempifrom2\from_file_core\from_File_core.ufc

Found 2 client reqions that do not match with device content,

Reqgion Mame Region Type Page Start Waord Size (words)
Region_3_11 Read from File 3 11 5
Region_4_11 Stakic 4 11 5 ;‘i\,
Region 5_11 Ao Ine 5 11 1 i

Content details for selected region

From dewice: ABCDEFOABC
Shown as: HEXADECIMAL
From config file: 0000000000

& Mismatch between configuration file content and device content,

Figure 58 - FlashROM Content Dialog Box

Analog Block Configuration Dialog Box (SmartFusion and Fusion
Only)

In the Analog Block Configuration dialog box, you can:
e View the channel configuration on your analog system and identify if/how the channels are configured.

e Compare with the design configuration from the Analog System Builder for Fusion and SmartDesign
MSS Configurator for SmartFusion.

The values displayed for each channel vary depending on the device family and channel you select; the
Channel configuration register read from the ACM is shown for each analog channel. Individual, decoded bit
fields of the register are listed immediately beneath (as described in the Fusion and SmartFusion
handbook). The dialog box may display the following values:

Fusion Device:

68

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Analog MUX select

Internal chip T monitor

Scaling factor control

Current monitor switch

Current monitor drive control

Direct analog input switch

Pad polarity - G, T, V, C pad polarity, positive or negative
Select low/high drive

Prescaler op amp mode

SmartFusion Device:

Gain select

Channel state

Direct Input state

Current Monitor state
Current monitor strobe state
Comparator state
Hysteresis select

Analog MUX select

DAC input select
Temperature monitor state
Temperature monitor strobe state
Vref switch state

To use the compare feature, select the Compare with checkbox. If the loaded PDB file contains Analog

Block configuration information, the comparison appears automatically.

To use a specific Project File, click Browse and navigate to the Analog System Builder directory for Fusion

or SmartDesign for SmartFusion. In a typical IDE project, this directory is located at:

Fusion - <project_root>/smartgen/<analog_block_core_name>

SmartFusion - <project root>/component/work/<SmartDesign project>/MSS_ACE_0

After specifying the compare directory, the differences (if any) are indicated in red on a channel by channel
basis, as shown in the figure below.

69

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

1 Analog Block Configuration

Channel configuration Compare with: as15
. Faund 32 mismatched dwmels. - Brohea
sl
Channel Byte | s
Device Content File: Content
ACD Ox00 «"'jh Byte 051 038
Analog MUY select Prescaler Direck inpuk
ACO Ox00D &
Scaling factor control 0.3125 (8Y) 0.15625 (16¥)
ATO OxB0 & Current monitor switch OFf on
x52 Direct analog input switch OFF on
AVl ¥-pad polarity Positive Positive
AC1 w10 Prescaler op amp mode Operational Powerdown
AC1 Ox00 i\.
AT1 00 | Ay
AN OS2 &
lAC2? 0410 |

Figure 59 - Analog Block Configuration Dialog Box for a Fusion Device (Differences in Red)

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

SmartDebug Tcl Commands

SmartDebug Tcl Support (SmartFusion2, IGLOOZ2, and RTGA4)

The following table lists the Tcl commands related to SmartDebug for SmartFusion2, IGLOO2, and RTGA4.
Click the command to view more information.

Table 1 - SmartDebug Tcl Commands

Command Action

DDR/MDDR

ddr_read Reads the value of specified configuration registers
pertaining to the DDR memory controller
(MDDR/FDDR)

ddr_write Writes the value of specified configuration registers
pertaining to the DDR memory controller
(MDDR/FDDR)

Probe

add probe_insertion_point Adds probe points to be connected to user-specified
I/Os for probe insertion flow.

add_to probe_group Adds the specified probe points to the specified probe
group

create_probe_group Creates a new probe group

delete_active probe Deletes either all or the selected active probes.

load_active probe_list Loads the list of probes from the file.

move_to probe group Moves the specified probe points to the specified probe
group.

program_probe_insertion Runs the probe insertion flow on the selected nets.

remove_probe_insertion_point | Deletes an added probe from the probe insertion Ul.

set_live_probe Set Live probe channels A and/or B to the specified
probe point (or points).

select_active_probe Manages the current selection of active probe points to
be used by active probe READ operations.

read_active_probe Reads active probe values from the device.

remove_from_probe_group Move out the specified probe points from the group.

save_active_probe_list Saves the list of active probes to a file.

select_active_probe Manages the current selection of active probe points to

71

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Command Action

DDR/MDDR

be used by active probe READ operations.

ungroup Disassociates the probes as group.

unset_live_probe Discontinues the debug function and clears live probe
channels.

write_active_probe Sets the target probe point on the device to the

specified value.

LSRAM
read_Isram Reads a specified block of large SRAM from the
device.
write_Isram Writes a seven bit word into the specified large SRAM
location.
USRAM
read_usram Reads a uSRAM block from the device.
write_usram Writes a seven bit word into the specified uUSRAM
location.
SERDES
prbs_test Starts, stops, resets the error counter and reads the

error counter value in PRBS tests.

loopback_test Starts and stops the loopback tests.
serdes lane reset In EPCS mode, this command resets the lane. In PCI

mode, this command resets the lane, all other lanes in
the link, and the corresponding PCle controller.

serdes_read_reqister Reads the SERDES register value and displays the
result in the log window/console.

serdes_write_reqister Writes the value to the SERDES register.

Additional Commands

event_counter Runs on signals that are assigned to channel A on the
live probe, and displays the total events.

export_smart debug_data Exports debug data for the SmartDebug application.

fhb_control Provides FPGA Hardware Breakpoint (FHB) feature
capability for SmartDebug.

frequency_monitor Calculates the frequency of a signal that is assigned to
live probe A.

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Command

Action

DDR/MDDR

get_programmer_info

to the machine.

Lists the IDs of all FlashPRO programmers connected

Device Debug / SmartDebug Tcl Commands (SmartFusion,

IGLOO, ProASIC3, and Fusion Only)

Note: Note: Tcl commands in this section may not be supported by all device families listed above. See the
individual commands for specific device support.

The following table lists the Tcl commands related to Device Debug / SmartDebug for SmartFusion and

Fusion). Click the command to view more information.

Table 2 - Device Debug / SmartDebug Tcl Commands

Command

Action

Type

check flash_memory

Performs diagnostics of the page status
and data information.

Embedded
Flash Memory
(NVM)

compare_analog_config

Compares the content of the analog block
configurations in your design against the
actual values in the device.

Analog Block

compare_flashrom_client

Compares the content of the FlashROM
configurations in your design against the
actual values in the selected device.

FlashROM

compare_memory_client

Compares the memory client in a specific
device and block.

Embedded
Flash Memory
(NVM)

(page status and page data).

read_analog_block config | Reads each channel configuration on your | Analog Block
analog system, enabling you to identify
iffnow each channel is configured.

read_device_status Displays a summary of the selected
device.

read_flashrom Reads the content of the FlashROM from | FlashROM
the selected device.

read_flash_memory Reads information from the NVM modules | Embedded

Flash Memory
(NVM)

read _id code

Reads IDCode from the device without
masking any IDCode fields.

recover flash _memory

Removes ECC2 errors due to memory
corruption by reprogramming specified
flash memory (NVM) pages and initializing

Embedded
Flash Memory
(NVM)

73

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

Command Action

Type

all pages to zeros.

sample_analog_channel | Samples analog channel; enables you to
debug ADC conversion of the
preconfigured analog channel (you must
provide ADC conversion parameters).

set_debug_device Identifies the device you intend to debug.

set_debug_programmer Identifies the programmer you want to use
for debugging (if you have more than
one).

add_probe_insertion_point

This Tcl command adds probe points to be connected to user-specified 1/0s for probe insertion flow.

add_probe_insertion_point —net net_name -driver driver -pin package_pin_name -port port name

Arguments
-net net_name
Name of the net used for probe insertion.
-driver driver
Driver of the net.
-pin package_pin_name

Package pin name (i.e. /0 to which the net will be routed during probe insertion).

-port port_name
User-specified hame for the probe insertion point.

Supported Families
SmartFusion2, IGLOO2, RTG4

Example

add_probe_insertion_point -net {count_out_c[0]} -driver {Counter_8bit_0O_count_out[0]:Q} -

pin {H5} -port {Probe_lInsert0O}

add_to_probe_group (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; adds the specified probe points to the specified probe group.

add_to_probe_group -name probe_name -group group_name

Arguments
-name probe_name
Specifies one or more probes to add.
—-group group_name
Specifies name of the probe group.

74

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Supported Families

Example

SmartFusion2, IGLOO2, and RTG4

add_to_probe_group -name out[5]:out[5]:Q \

-name grpl.out[3]:out[3]:Q \
-name out.out[1].out[1]:Q \
—-group my_new_grp

check_flash_memory

The command performs diagnostics of the page status and data information as follows:

e Page Status — includes ECC2 check of the page status information, write count
e Page Data - ECC2 check

check_flash_memory

[-name {device_name}]

[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]
[-access {all | status | data}]
[-show {summary | pages}]
[-File {filename}]

Arguments

At a minimum you must specify -client <name> OR

-startpage <page_number> -endpage <page_number> -block <number>

-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-block {integer_value}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies
location of block for memory check.

-client {client_name}

Name of client for memory check.

-startpage {integer_value}

Startpage for page range; value must be an integer. You must specify a —endpage and —block along with
this argument.

-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a —startpage and -block along with
this argument.

-access {all | status | data}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies what
NVM information to check: page status, data or both.

Value Description

all Shows the number of pages with corruption status, data corruption and
out-of-range write count (default)

status | Shows the number of pages with corruption status and the number of

75

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Value

Description

pages with out-of-range write count

data | Shows only the number of pages with data corruption

-show {summary | pages}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies
output level, as explained in the table below.

Value Description
summary Displays the summary for all checked pages (default)
pages Displays the check results for each checked page

-file {filename}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Name of output
file for memory check.

Supported Families
SmartFusion, Fusion

Exceptions

Example

None

The following command checks the page status for block 0 from starpage 0 to endpage 2:
check_flash_memory -startpage 0O -endpage 2 -block O

The following command checks the memory status for the client 'DS8bit' and saves it to the file
‘checkFlashMemory.log":

check_flash_memory -client {DS8bit} -file {checkFlashMemory.log}

compare_analog_config

Compares the content of the analog block configurations in your design against the actual values in the
device. In a typical SoC project, this directory is located at
<project_root>/smartgen/<analog_block_core_name>.

compare_analog_config

[-name "device_name'] -mem_Ffile_dir "mem_file_directory"
[-File "filename']

Arguments

-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-mem_Ffile_dir {mem_file_directory}
Location of memory file.

-file {filename}

Output filename.

76

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Supported Families
Fusion

Exceptions
None

Example

The following command reads the analog block configuration in the directory F:/tmp/Analog_Block and
saves the data in the logfile compare_analogReport.log:

compare_analog_config -mem_file_dir {F:/tmp/Analog_Block} -file
{compare_analogReport. log}

The following command reads the analog block configuration information in the device '"AFS600' in the
directory F:/tmp/Analog_Block and saves the data in the log file compare_analogReport.log:

compare_analog_config —name {AFS600} -mem_file_dir {F:/tmp/Analog_Block} -file
{compare_analogReport.log}

Note: If an absolute path is not entered, the log file is saved in the directory in which the Tcl script was
executed in SmartDebug.

compare_flashrom_client

Compares the content of the FlashROM configurations in your design against the actual values in the
selected device.

compare_flashrom _client [-name {device name}] [-File {filename}]

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-file {filename}
Optional file name for FlashROM compare log.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following command saves the FlashROM data to the file 'FlashRomCompReport.log":
compare_flashrom_client -file {FlashRomCompReport.log}

The following command compares the data in the device 'A3P250' and saves the data in the logdfile
'FlashRomCompReport.log'":
compare_flashrom_client —name {A3P250} -file {FlashRomCompReport.log}

Note: If an absolute path is not entered, the log file is saved in the directory in which the Tcl script was
executed in SmartDebug.

compare_memory_client

Compares the memory client in a specific device and block.

7

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

compare_memory_client [-name {device_name}] [-block integer_value] -client {client_name} [-
file {filename}]

Arguments
-name { device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-block {integer_value}

(Optional argument; you must set -client.) Specifies location of block for memory compare.
-client {client_name}

Name of client for memory compare.

-file {filename}

Optional file name.

Supported Families
SmartFusion and Fusion

Exceptions
None

Example
The following command compares the memory in the client 'DS32' on the device 'AFS600'.
compare_memory_client -client DS32 -name AFS600

The following command compares the data at block 'O’ to the client 'DS8bit'":
compare_memory_client -block 0 -client {DS8bit}

The following command compares the memory in the device 'AFS600' at block '0' to the memory client
'DS8hit":
compare_memory_client —name {AFS600} -block O -client {DS8bit}

The following command compares the memory at block '1' to the memory client ‘DS8bit' and saves the
information in a log file to F:/tmp/NVMCompReport.log:

compare_memory_client -block 1 -client {DS8bit} -file {F:/tmp/NVMCompReport.log}

create_probe group (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; creates a new probe group.

create_probe_group -name group_name

Arguments
-name group_name
Specifies the name of the new probe group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
create_probe_group -name my_new_grp

78

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

delete active probe

Tcl command; deletes either all or the selected active probes.
Note: You cannot delete an individual probe from the Probe Bus.

delete_active_probe -all | -name probe_name

Arguments
-all
Deletes all active probe names.
-name probe_name
Deletes the selected probe names.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
delete -all <- deletes all active probe names
delete -name out[5]:out[5]:Q \
-name my_grpl.out[1]:out[1]:Q <- deletes the selected probe names

delete -name my_grpl \
-name my_bus <- deletes the group, bus and their members.

ddr_read (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; reads the value of specified configuration registers pertaining to the DDR memory controller
(MDDR/FDDR).

ddr_read -block ddr_name -name reg_name

Arguments
-block <fddr || mddr || east_fddr || west_fddr>
e Specifies which DDR configurator is used in the Libero design.
e SmartFusion2 and IGLOO2 - fddr and mddr
e RTGA4 - east_fddr and west_fddr
-name register_name

e Specifies which configuration registers need to be read.
o A complete list of registers is available in the DDR Interfaces User Guides for the respective families.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
Read DDR Controller register DDRC_DYN_REFRESH_1_CR for a configured FDDR block on a
SmartFusion2 or IGLOO2 device:
ddr_read -block fddr -name DDRC_DYN_REFRESH_1 CR

Returns

Returns 16-bit hexadecimal value.

79

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

The result of the command in the example above will be:
Register Name: DDRC_DYN_REFRESH_1 CR Value: 0x1234
“ddr_read” command succeeded.

ddr_write (SmartFusion2, IGLOO2, and RTG4)

Tcl command; writes the value of specified configuration registers pertaining to the DDR memory controller
(MDDR/FDDR).

ddr_write-block ddr_name -name reg_name -value hex_value

Arguments
-block <fddr || mddr || east_fddr || west_fddr>
e Specifies which DDR configurator is used in the Libero design.
e SmartFusion2 and IGLOO?2 - fddr and mddr
e RTGA4 - east_fddr and west_fddr
-name register_name
e Specifies which configuration registers need to be read.
o A complete list of registers is available in the DDR Interfaces User Guides for the respective families.
-value hex_value
e Specifies the value to be written into the specified register of a given block.
e Hex value in the form of “Ox12FA".

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
Write a 16-bit value DDR Controller register DDRC_DYN_REFRESH_1_CR for a configured FDDR block on
a SmartFusion2 or IGLOO2 device:
ddr_write -block fddr -name DDRC_DYN_REFRESH_1 CR —value 0x123f

Returns

Returns if the command succeeded or failed to execute.
“ddr_write” command succeeded

event_counter

The event_counter Tcl command runs on signals that are assigned to channel A on the live probe, and
displays the total events. It can be run before or after setting the live probe signal to channel A. The user
specifies the duration to run the event_counter command.

event_counter -run -stop —after duration_in_seconds

Arguments
-run
Run event_counter.
-stop
Stop event_counter.
-after duration_in_seconds

80

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Duration to stop event_counter. Specified by the user. This argument is required when —stop is specified.

Supported Families
SmartFusion2, IGLOO2

Example
set_live_probe -probeA {count_out_c[0]:Counter_8bit 0_count_out[0]:Q} -probeB {}
event_counter -run
event_counter —stop —after 10
Output

Device ID Code = 2FB07ICF

The ‘read_id_code' command succeeded.

Live probes have been assigned.

Channel A: count_out_c[0]:Counter_8bit_0_count_out[0]:Q
Channel B: Not spedfied

The "set_live_probe’ command succeeded.

Event Counter = Activated
The ‘event_counter’ command succeeded.,

Event Counter = Stopped

Total Events = 1603561

The ‘event_counter’ command succeeded.
The Execute Script command succeeded.

export_smart_debug data (SmartFusion2, IGLOO2, and RTGA4)

Tcl command; exports debug data for the SmartDebug application.

export_smart_debug_data [device_components] [bitstream_components] [-File_name {file} [-
export_dir {dir}]

The command corresponds to the Export SmartDebug Data tool in Libero. The command creates a file with
the extension “ddc” that contains data based on selected options. This file is used by SmartDebug to create
a new SmartDebug project, or it can be imported into a device in SmartDebug.

e If you not specify any design components, all components available in the design will be included by
default.

e The generate_bitstream parameter is required if you want to generate bitstream file and include it in
the exported file.

0 You must specify the bitstream components you want to include in the
generated bitstream file or all available components will be included.

o If you choose to include bitstream, and the design has custom security, the
custom security bitstream component must be included.

Arguments

device_components
The following device components can be selected. Specify "1" to include the component, and "0" if you do
not want to include the component.
-probes <1]0>
-package_pins <1]0>
-memory_blocks <1]0>
-envm_data <1]0>

81

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

-security_data <1]0>
-chain <1]0>
-programmer_settings <1]0>
-io_states <1]0>
bitstream_components
The following bitstream components can be selected. Specify "1" to include the component, and "0" if you
do not want to include the component.
-generate_bitstream <1]|0>
-bitstream_security <1]|0>
-bitstream_fabric <1]0>
-bitstream_envm <1]0>
-file_name file

Name of exported file with extension “ddc”.
-export_dir dir
Location where DDC file will be exported. If omitted, design export folder will be used.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example

The following example shows the export_smart_debug_data command with all parameters:

export_smart_debug_data \
-file_name {sd1} \
-export_dir {d:\sd_prj\test3T\designer\sdl\export} \
-probes 1 \

-package_pins 0 \
-memory_blocks 1 \
-envm_data 0 \

-security _data 1 \

-chain 1 \
-programmer_settings 1 \
-ios_states 1 \
-generate_bitstream 0 \
-bitstream_security 0 \
-bitstream_fabric 0 \
-bitstream_envm O

The following example shows the command with no parameters:
export_smart_debug_data

fhb_control

This Tcl command provides FPGA Hardware Breakpoint (FHB) feature capability for SmartDebug.

fhb_control

-halt -clock_domain clkDomName(s)/all

-run -clock _domain clkDomName(s)

-step number_of _steps -clock_domain clkDomName(s)

-reset -clock _domain clkDomName(s)

-arm_trigger —trigger_signal liveProbePoint —trigger_edge_select rising -delay value -
clock_domain clkDomName(s)

—-disarm_trigger -clock_domain clkDomName(s)/all

—capture_waveform number_of _steps -vcd_Ffile target_file_name

—clock_domain_status -clock domain clkDomName(s)/all

82

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Arguments

-halt
Specifies to halt the clock.
-clock_domain clkDomName(s)/all
Specifies clock domain names to halt. Can be single or multiple clock domains, halted in order specified
by user.

-run
Specifies to run the clock.
-clock_domain clkDomName(s)

Specifies clock domain names to run. Can be single or multiple clock domains, releasing the user clock
based on order specified.

-step number_of_steps

Specifies to step the clock “number_of_steps” times. Minimum value is 1.

-clock_domain clkDomName(s)

Specifies clock domain names to step. Can be single or multiple clock domains.
-reset

Specifies to reset FHB configuration for the specified clock domain.

-clock_domain clkDomName(s)

Specifies clock domain names to reset. Can be single or multiple clock domains.
-arm_trigger

Specifies to arm FHB configuration for the specified clock domain.

-trigger_signal liveProbePoint

Set the trigger signal to arm the FHBs.

-trigger_edge_select rising

Specifies the trigger signal edge to arm the FHBs. FHBs will be armed on rising edge of trigger signal.

-delay value

-clock_domain clkDomName(s)

Specifies clock domain names to be armed by the trigger signal. Can be single or multiple clock domains.
-disarm_trigger

Specifies to disarm FHB configuration for the specified clock domain.

-clock_domain clkDomName(s)

Specifies clock domain names to be reset by the trigger signal. Can be single or multiple clock domains.
-capture_waveform number_of_steps

Specifies to capture waveform of all the added signals to active probes in the specified clock domain for
number_of_steps.

- vced_file target_file_name
Target file to save the data and see the waveform.
-clock_domain_status clkDomName(s)/all
Specifies to read and display status of specified clock domain(s). Can be single or multiple clock domains.

Supported Families
SmartFusion2, IGLOO2

Examples
fhb_control —halt —clock_domain {“FCCC_O0O/GLO_INST “ “FCCC_O/GL1_INST” }
fhb_control —run —clock_domain {“FCCC_O0O/GLO_INST “ “FCCC_O/GL1_INST” }
fhb_control —step —clock _domain {“FCCC_O0/GLO_INST “ “FCCC_O/GL1_INST” }
fhb_control —-reset —clock _domain {“FCCC_0/GLO_INST “ “FCCC_0/GL1_INST” }

83

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

fhb_control —arm_trigger —trigger_signal {g_0_c[14]:count_1_q[14]:Q}
—trigger_edge_select {rising} — delay 0 — clock_domain {""FCCC_0/GLO_INST"}
fhb_control —disarm_trigger —trigger_signal {q_0_c[14]:count_1 q[14]:Q}
—trigger_edge_select {rising} — delay 0 — clock_domain {"FCCC_0/GLO_INST"}
fhb_control —capture_waveform {10} —vcd_file {D:/wvf_location/waveform.vcd}

fhb_control — clock _domain_status — clock_domain { "FCCC_0O/GLO_INST"™ "FCCC_0/GL1_INST"
"FCCC_0/GL2_INST" }

frequency_monitor

The frequency_monitor Tcl command calculates the frequency of a signal that is assigned to live probe A.

run_frequency_monitor -signal signal_name —time duration

Arguments

-signal signal_name

Specifies the signal name.

—time duration

Specifies the duration to run the command. The value can be 0.1, 1, 5, 8, or 10.

Supported Families

Example

SmartFusion2, IGLOO2

run_frequency_monitor -signal {count_out_c[7]:Counter_8bit_0_count_out[7]:Q} -time {5}
Output

Device ID Code = 2FB07ICF
The ‘read_id_code' command succeeded.

Freqguency =0.192716 MHz
The ‘run_frequency_monitor' command succeeded.
The Execute Script command succeeded.

get_programmer_info

This Tcl command lists the IDs of all FlashPRO programmers connected to the machine.

get_programmer_info

This command takes no arguments.

Supported Families

Example

SmartFusion2, IGLOO2, RTG4

set a [get_programmer_info]

load_active_probe _list

Tcl command; loads the list of probes from the file.

load_active_probe_list —File file_path

84

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Arguments
-file file_path
The input file location.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
load_active_probe_list -file “./my_probes.txt”

loopback_test (SmartFusion2, IGLOO2, RTG4)

Tcl command; used to start and stop the loopback tests.

loopback test [-deviceName device_name] -start -serdes num -lane num -type LoopbackType
loopback test [-deviceName device_name] -stop -serdes num -lane num

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User's Guide for details).

-start

Starts the loopback test.

-stop

Stops the loopback test.

-serdes num

Serdes block number. Must be between 0 and 4 and varies between dies.

-lane num

Serdes lane number. Must be between 0 and 4

-type LoopbackType

Specifies the loopback test type. Must be meso (PCS Far End PMA RX to TX Loopback)

Supported Families
SmartFusion2, IGLOO2, RTG4

Example
loopback_test —start —serdes 1 -lane 1 -type meso
loopback_test —start —serdes 0 -lane 0 -type plesio
loopback_test —start —serdes 1 -lane 2 -type parallel
loopback_test —stop —serdes 1 -lane 2

move_to_probe group (SmartFusion2, IGLOO2, and RTG4)

Tcl command; moves the specified probe points to the specified probe group.
Note: Probe points related to a bus cannot be moved to another group.

move_to_probe_group -name probe_name -group group_name

85

Arguments

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

-name probe_name

Specifies one or more probes to move.
—-group group_name

Specifies name of the probe group.

Supported Families

Example

SmartFusion2, IGLOO2, and RTG4

move_to_probe_group -name out[5]:out[5]:Q \

-name grpl.out[3]:out[3]:Q \
-group my_grp2

prbs_test (SmartFusion2, IGLOO2, RTG4)

Tcl command; used in PRBS test to start, stop, reset the error counter and read the error counter value.

prbs_test [-deviceName device_name] -start -serdes num -lane num [-near] -pattern PatternType

prbs_test [-deviceName device_name] -stop -serdes num -lane num

prbs_test [-deviceName device_name] -reset_counter -serdes num -lane num

prbs_test [-deviceName device_name] -read_counter -serdes num -lane num

Arguments

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User's Guide for details).

-start

Starts the prbs test.

-stop

Stops the prbs test.

—reset_counter

Resets the prbs error count value to 0.

-read_counter

Reads and prints the error count value.

-serdes num

Serdes block number. Must be between 0 and 4 and varies between dies.
-lane num

Serdes lane number. Must be between 0 and 4.

-near

Corresponds to near-end (on-die) option for prbs test. Not specifying implies off-die.
-pattern PatternType

The pattern sequence to use for PRBS test. It can be one of the following:
prbs7, prbs11, prbs23, or prbs31

Supported Families

SmartFusion2, IGLOO2, RTG4

86

Example

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

prbs_test -start -serdes 1 -lane 0 -near -pattern prbsll
prbs_test -start -serdes 2 -lane 2 -pattern custom -value all_zeros
prbs_test -start -serdes 0 -lane 1 -near -pattern user -value 0x0123456789ABCDEF0123

program_probe_insertion

This Tcl command runs the probe insertion flow on the selected nets.

program_probe_insertion

Supported Families

SmartFusion2, IGLOO2, RTG4

read_active_probe (SmartFusion2, IGLOO2, and RTGA4)

Tcl command; reads active probe values from the device. The target probe points are selected by the
select_active_probe command.

read_active_probe [-deviceName device_name] [-name probe_name] [-group_name

bus_name]group_name] [-value_type b|h] [-File file_path]

Arguments

-deviceName device_name
Parameter is optional if only one device is available in the current configuration.
-name probe_name

Instead of all probes, read only the probes specified. The probe name should be prefixed with bus or
group name if the probe is in the bus or group.

-group_name bus_name | group_name

Instead of all probes, reads only the specified buses or groups specified here.

-value_type b | h

Optional parameter, used when the read value is stored into a variable as a string.

b = binary

h = hex

-file file_path

Optional. If specified, redirects output with probe point values read from the device to the specified file.

Note: When the user tries to read at least one signal from the bus/group, the complete bus or group is read.
The user is presented with the latest value for all the signals in the bus/group.

Supported Families

Example

SmartFusion2, IGLOO2, and RTG4

read_active_probe -group_name {busl}

read_active_probe -group_name {groupl}

To save into variable:

set a [read_active_probe -group_name {bus_name} -value_type h] (save read data in hex string

If read values are stored into a variable without specifying value_type parameter, it saves values as a binary
string by default)

87

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Example

set a [read_active_probe] (sets variable a as binary string of read values after read_active_probe
command)

read_analog_block config

Reads each channel configuration on your analog system, enabling you to identify iffhow each channel is
configured.

read_analog_block config [-name {device_name}] [-File {filename}]

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-file {filename}
(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
Fusion

Exceptions
None

Example

The following command reads the analog block configuration information in the device '"AFS600'":
read_analog_block_config —name {AFS600}

read_device_status

Displays the Device Information report; the Device Information report is a complete summary of your device
state, analog block test values, user information, factory serial number and security information..

read_device_status [-name {device_name}] [-File {Ffilename}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-file {filename}
(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

88

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Example

The following reads device info from the '"AFS600' device.
read_device_status -name AFS600

read_id_code

The command reads IDCode from the device without masking any IDCode fields. This is the raw IDcode
from the silicon.

Note: Being able to read the IDCode is an indication that the JTAG interface is working correctly.

read_id_code [-name {device_name}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following command reads the IDCODE from the device 'AFS600':
read_id_code —name {AFS600}

read_flashrom

Reads the content of the FlashROM from the selected device.

read_flashrom [-name {device_name}] [-mapping {logical | physical}] [-File {filename}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-mapping {logical | physical}
(Optional) Specifies how the data read from the UFROM is mapped. Values are explained in the table

below.
Value Description
logical Logical mapping (default)
physical Physical mapping

-file {filename}
(Optional) Identifies the name of the file to which read results will be saved.

89

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following reads the FROM content on the device 'AFS600' and sets to physical mapping:
read_flashrom -name {AFS600} -mapping {physical}

read_flash_memory

The command reads information from the NVM modules. There are two types of information that can be
read:

e Page Status — includes ECC2 status, write count, access protection

e Page Data

read_flash_memory

[-name {device_name}]

[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]
[-access {all | status | data}]
[-File {filename}]

At a minimum you must specify -client <name> OR
-startpage <page_number> -endpage <page_number> -block <number>

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-block {integer_value}

(Optional argument; you must set -client or —startpage and —endpage before use.) Specifies location of
block for memory read.

-client {client_name}

Name of client for memory read.

-startpage {integer_value}

Startpage for page range; value must be an integer. You must specify a —endpage and -block along with
this argument.

-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a —startpage and -block along with
this argument.

-access {all | status | data}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies what
eNVM information to check: page status, data or both.

Value Description

all Shows the number of pages with corruption status, data corruption and
out-of-range write count (default)

90

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Value Description

status | Shows the number of pages with corruption status and the number of
pages with out-of-range write count

data | Shows only the number of pages with data corruption

-file {filename}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Name of output
file for memory read.

Supported Families
SmartFusion, Fusion

Exceptions
None

Example

The following command reads the flash memory for the client ‘DS8bit' and reports the data in a logfile
‘readFlashMemoryReport.log'":

read_flash_memory -client {DS8bit} -file {readFlashMemoryReport.log}
read_flash_memory —startpage 0 —endpage 2 —block 0 —access {data}

read_Isram (SmartFusion2, IGLOO2, and RTG4)

Tcl command; reads a specified block of large SRAM from the device.

Physical block

read_lsram [-deviceName device_name] -name block_name [—File filename]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-name block_name
Specifies the name for the target block.
-file filename

Optional; specifies the output file name for the data read from the device.

Exceptions
e You must set a debug file
e Array must be programmed and active
e Security locks may disable this function

Example

Reads the SRAM Block sram_block1 from the sf2 device and writes it to the file sram_block_output.
read_Isram [-deviceName sf2] —name sram_blockl [-file sram_block_output]

91

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Logical block

read_Isram -logicalBlockName block_name -port port_name [—File filename]

Arguments
-logicalBlockName block_name

Specifies the name for the user defined memory block.
-port port_name

Specifies the port for the memory block selected. Can be either Port A or Port B.
-file filename

Optional; specifies the output file name for the data read from the device.

Example
read_Isram -logicalBlockName {Fabric_Logic_0/U2/F_0_FO_Ul} -port {Port A}

read_usram (SmartFusion2, IGLOO2, and RTG4)

Tcl command; reads a uSRAM block from the device.

Physical block

read_usram [-deviceName device_name] —name block_name [—File filename]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-name block_name

Specifies the name for the target block.
-file filename

Optional; specifies the output file name for the data read from the device.

Exceptions
e You must set a debug file
e Array must be programmed and active
e Security locks may disable this function

Example

Reads the uSRAM Block usram_block?2 from the sf2 device and writes it to the file sram_block_output.
read_usram [-deviceName sf2] —name usram_block2 [—file sram_block_output]

Logical block

read_usram -logicalBlockName block_name -port port_name [—File filename]

Arguments
-logicalBlockName block_name
Specifies the name for the user defined memory block.
-port port_name
Specifies the port for the memory block selected. Can be either Port A or Port B.
-file filename

92

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Optional; specifies the output file name for the data read from the device.

Example
read_usram -logicalBlockName {Fabric_Logic_0/U3/F_0_FO U1} -port {Port A}

recover_flash_memory

The command removes ECC2 errors due to memory corruption by reprogramming specified flash memory
(NVM) pages and initializing all pages to zeros. The recovery affects data blocks and auxiliary blocks.

The write counters of the corrupted pages might not be accurate due to corruption. The recovery operation
will not change state of the page write counters.

Use the check_flash_memory command to detect flash memory errors.

recover_fTlash_memory

[-name {device_name}]
[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]

Arguments

At a minimum you must specify -client <name> OR
-startpage <page_number> -endpage <page_number> -block <number>

-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-block {integer_value}

(Optional argument; you must set -client or —startpage and —endpage before use.) Specifies location of
block for memory recovery.

-client {client_name}
Name of client for memory recovery.
-startpage {integer_value}

Startpage for page range; value must be an integer.You must specify a —endpage and -block along with
this argument.

-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a —startpage and -block along with
this argument.

Supported Families

Exceptions

Example

SmartFusion, Fusion

None

The following command recovers flash memory data in the client ‘DS8bit":

recover_flash_memory -client {DS8bit}

The following command recovers flash memory from block 0, startpage 0, and endpage 3:

recover_flash_memory -block 0 -startpage O -endpage 3

93

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

remove_from_probe_group (SmartFusion2, IGLOOZ2, and RTGA4)

Tcl command; removes the specified probe points from the group. That is, the removed probe points won'’t
be associated with any probe group.

Note: Probes cannot be removed from the bus.

remove_from_probe_ group -name probe_name

Arguments
-name probe_name
Specifies one or more probe points to remove from the probe group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
The following command removes two probes from my_grp2.
Move_out_of probe_group -name my_grp2.out[3]:out[3]:Q \
-name my_grp2.out[3]:out[3]:Q

remove_probe_insertion_point

This Tcl command deletes an added probe from the probe insertion Ul.

remove_probe_insertion_point —net net_name -driver driver

Arguments
-net net_name
Name of the existing net which is added using the add_probe_insertion_point command.
-driver driver
Driver of the net.

Supported Families
SmartFusion2, IGLOO2, RTG4

Example

remove_probe_insertion_point -net {count_out _c[0]} -driver
{Counter_8bit_0_count_out[0]:Q}

sample_analog_channel

Performs analog-to-digital conversion of a selected analog channel. This command is used when debugging
the Analog Subsystem and is performed on the pre-configured analog channel with user-supplied ADC
conversion parameters. The command also performs digital filtering using a single-pole low-pass filter if you
opt to use it.

sample_analog_channel [(-name {name})*]
[-resolution {8 | 10 | 12}]
[-clock_periods {int_value}]

[-clock _divider {int_value}]
[-num_samples { int_value}]
[-Filtering_factor {real_value}]

94

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

[-initial_value {int_value}]
[-show_details {yes | no}]l
[-file {filename}]

Arguments
-name { name}

Specifies the analog channel to be sampled. Channel name is a combination of the channel type followed
by the channel index. Valid channel names are listed in the table below.

Family Valid Channel Name
Fusion AV<n>, AT<n>, AC<n>
SmartFusion AV<n>, AT<n>, AC<n>, ADC<n>

The maximum number of channels depends on particular device type; refer to the Analog Block
specification in the device handbook.

-resolution {8 | 10 | 12}

ADC conversion resolution. Specifies bit size of the conversion results. Selection of certain resolutions
may affect timing parameter valid ranges. See your device handbook for details.

-clock_periods {int_value }

Parameter specifying sampling time: Sampling_time = clock_periods * adc_clock_period.
-clock_divider {int_value }

Specifies clock prescaling factor.

-num_samples { int_value }

Optional argument that specifies the number of samples to be performed by the ADC. Default number of
samples is 1. Selecting multiple vs single sample will change appearance of the generated report. For the

single sample a single result is shown and if “show_details” is set to “yes” then detailed status of the ADC
register is also shown.

If multiple samples are requested then the results are printed in a table. If the digital filtering is enabled the
table also includes filtered results.

-filtering_factor {real_value}

Optional argument that specifies the filtering factor if multiple samples requested. The default value of 1.0
disables digital filtering.

-initial_value {int_value}
Optional argument that specifies the initial value for the digital averaging filter. The value is specified in

ADC register counts. Default value is set to 0. Specifying this parameter improves filtering process during
initial samples.

-show_details {yes | no}

Optional argument that specifies the level of the report output. Detailed output includes initial user-
supplied conversion parameters. For the single-sampling case final output also includes detailed content
of ADC register after sampling.

-file {filename}
Optional argument. Specifies name of output file for conversion results.

Supported Families
SmartFusion and Fusion

Exceptions
None

95

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Example
The following example performs single sample analog-to-digital conversion for channel AVO:
sample_analog_channel —channel AVO —resolution 8 —clock_periods 4 —clock_divider 4
Example with multiple sampling and digital signal filtering for AVO:

sample_analog_channel —channel AVO —resolution 10 —clock_periods 4 —clock _divider 4 —
num_samples 10 —Ffiltering_factor 2.5

save_active_probe _list

Tcl command; saves the list of active probes to a file.

save_active_probe list -file file_path

Arguments
-file file_path
The output file location.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
save_active_probe_list -file “./my_probes.txt”

select_active_probe (SmartFusion2, IGLOO2, and RTG4)

Tcl command; manages the current selection of active probe points to be used by active probe READ
operations. This command extends or replaces your current selection with the probe points found using the
search pattern.

select_active_probe [-deviceName device_name] [—-name probe_name_pattern] [-reset true|false]

Arguments
-deviceName device_name
Parameter is optional if only one device is available in the current configuration..
-name probe_name_pattern

Specifies the name of the probe. Optionally, search pattern string can specify one or multiple probe
points. The pattern search characters “*” and “?” also can be specified to filter out the probe names.

-reset true | false

Optional parameter; resets all previously selected probe points. If name is not specified, empties out
current selection.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
The following command selects three probes. In the below example, “grpl” is a group and “out” is a bus..
Select_active_probe -name out[5]:out[5]:Q
Select_active_probe -name out.out[1]:out[1]:Q \
-name out.out[3]:out[3]:Q \
-name out.out[5]:out[5]:Q

96

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

serdes_lane_reset

Tcl command. In EPCS mode, this command resets the lane. In PCI mode, this command resets the lane,
all other lanes in the link, and the corresponding PCle controller. The result is shown in the log
window/console.

serdes_lane_reset —serdes num -lane num

Arguments
-serdes num

The SERDES block number. It must be between 0 and varies between dies. It must be one of the
SERDES blocks used in the design.

lane num

The SERDES lane number. It must be between 0 and 3. It must be one of the lanes enabled for the block
in the design.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
serdes_lane_reset -serdes O -lane 0
In EPCS mode, resets Lane 0, for block 0. In PCI mode, resets Lane 0 for block 0, all other lanes in the
same link for block 0
serdes_lane_reset -serdes 5 -lane 3
Errors

The following errors result in the failure of the Tcl command and the corresponding message on the smart
debug log window:
When the “-serdes” parameter is not specified:
Error: Required parameter "serdes® is missing.
Error: Failure when executing Tcl script. [Line 26: Error in command serdes_lane_reset]
Error: The Execute Script command failed.
When the “-lane” parameter is not specified:
Error: Required parameter "lane® is missing.
Error: Failure when executing Tcl script. [Line 26: Error in command serdes_lane_reset]
Error: The Execute Script command failed.
When “block number” is not specified:
Error: Parameter "serdes® has illegal value.
Error: Failure when executing Tcl script. [Line 26: Error in command serdes_lane_reset]
Error: The Execute Script command failed.
When “lane number” is not specified:
Error: Required parameter "lane® is missing.
Error: Failure when executing Tcl script. [Line 26: Error in command serdes_lane_reset]
Error: The Execute Script command failed.
When “block number” is invalid:
Error: Phy Reset: Serdes block number should be one of the following: O
Error: The command "serdes_lane_reset” failed.
Error: Failure when executing Tcl script. [Line 26]
Error: The Execute Script command failed.
Note: Only the SERDES blocks used the design will be mentioned in the above list.

97

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

When “lane number” is invalid:
Error: Phy Reset: Serdes lane number should be between 0 and 3.
Error: The command "serdes_lane_reset® failed.
Error: Failure when executing Tcl script. [Line 26]
Error: The Execute Script command failed.

For all the above scenarios, the following message appears:
€ SERDES Debug 24

Error running script: Du/SAR_analysis/73276/lane_testing.tcl

serdes _read_register (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; reads the SERDES register value and displays the result in the log window/console.

serdes_read_register —serdes num [-lane num] -name REGISTER_NAME

Arguments
-serdes num
SERDES block number. Must be between 0 and and varies between dies.
-lane num
SERDES lane number. Must be between 0 and 3.
The lane number must be specified when the lane register is used. Otherwise, the command will fail.

When the lane number is specified along with the SYSTEM or PCle register, the command will fail with an
error message, as the lane is not applicable to them.

-name REGISTER_NAME
Name of the SERDES register.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example

serdes_read_register -serdes O -name SYSTEM_SER_PLL_CONFIG_HIGH
serdes_read_register -serdes 0 -lane 0 -name CRO

serdes_write_reqister
UG0567: RTG4 High-Speed Serial Interfaces User Guide (includes all SERDES register names)
UG0447: SmartFusion2 and IGLOO2 FPGA High-Speed Serial Interfaces User Guide

serdes_write_register (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; writes the value to the SERDES register. Displays the result in the log window/console.

serdes_write_register -serdes num [-lane num] -name REGISTER_NAME —value 0x1234

98

http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Arguments
-serdes num

SERDES block number. Must be between 0 and 5 and varies between dies.
-lane num

SERDES lane number. Must be between 0 and 3.
The lane number should be specified when the lane register is used. Otherwise, the command will fail.

When the lane number is specified along with the SYSTEM or PCle register, the command will fail with an
error message, as the lane is not applicable to them.

-name REGISTER_NAME

Name of the SERDES register.

-value

Specify the value in hexadecimal format.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
serdes_write_register -serdes O -name SYSTEM_SER_PLL_CONFIG_HIGH -value 0x5533

See Also

serdes_read_register.htm

UGO0567: RTG4 High-Speed Serial Interfaces User Guide (includes all SERDES register names)
UG0447: SmartFusion2 and IGLOO2 FPGA High-Speed Serial Interfaces User Guide

set _debug_device

Identifies the device you intend to debug.

set_debug_device -name {device_name}

Arguments
name {device_name}
Device name. The device name is not required if there is only one device in the current configuration.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following example identifies the device 'A3P250' for debugging:
set_debug_device —name {A3P250}

set_debug_programmer

Identifies the programmer you want to use for debugging (if you have more than one). The name of the
programmer is the serial number on the bar code label on the FlashPro programmer.

99

http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

set_debug_programmer -name {programmer_name}

Arguments
-name {programmer_name}
Programmer name is the serial number on the bar code label of the FlashPro programmer.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following example selects the programmer 10841
set_debug_programmer -name {10841}

set live_probe (SmartFusion2, IGLOO2, RTG4)

Tcl command; set_live_probe channels A and/or B to the specified probe point(s). At least one probe point
must be specified. Only exact probe name is allowed (i.e. no search pattern that may return multiple points).

set_live_probe [-deviceName device_name] [—probeA probe_name] [—probeB probe _name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug user guide for details).

-probeA probe_ name

Specifies target probe point for the probe channel A.
-probeB probe_ name

Specifies target probe point for the probe channel B.

Supported Families
SmartFusion2, IGLOO2, RTG4

Exceptions
e The array must be programmed and active
e Active probe read or write operation will affect current settings of Live probe since they use same
probe circuitry inside the device
e Setting only one Live probe channel affects the other one, so if both channels need to be set, they
must be set from the same call to set_live_probe
e Security locks may disable this function
e In order to be available for Live probe, ProbeA and ProbeB I/O's must be reserved for Live probe
respectively
Example

Sets the Live probe channel A to the probe point A12 on device sf2.
set_live_probe [-deviceName sf2] [—-probeA Al2]

100

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

ungroup (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; disassociates the probes as a group.

NNgroup -name group_name

Arguments
-name group_name
Name of the group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
ungroup —name my_grp4

unset_live_probe

Tcl command; discontinues the debug function and clears both live probe channels (Channel A and Channel
B). An all zeros value is shown for both channels in the oscilloscope.

Note: For RTG4, only one probe channel (Probe Read Data Pin) is available.

unset_live_probe [-deviceName device_name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User's Guide for details).

Supported Families
SmartFusion2, IGLOO2, and RTG4

Exceptions
e The array must be programmed and active.
e Active probe read or write operation affects current of Live Probe settings, because they use the same
probe circuitry inside the device.
e Security locks may disable this function.
Example

The following example unsets both live probe channels (Channel A and Channel B) from the device sf2.
unset_live_probes [-deviceName sf2]

write_active_probe (SmartFusion2, IGLOOZ2, and RTGA4)

Tcl command; sets the target probe point on the device to the specified value. The target probe point name
must be specified.

write_active _probe [-deviceName device_name] —name probe_name -value true|false
—-group_name group_bus_name -group_value “hex-value” | “binary-value”

101

Arguments

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

-deviceName device_name

Parameter is optional if only one device is available in the current configuration.

-name probe_name

Specifies the name for the target probe point. Cannot be a search pattern.
-value true | false hex-value | binary-value
Specifies values to be written.

True = High
False = Low

—-group_name group_bus_name

Specify the group or bus name to write to complete group or bus.
-group_value ”’hex-value” | “binary-value”

Specify the value for the complete group or bus.

Hex-value format : “ <size>’h<value>”

Binary-value format: “ <size>’b<value>”

Supported Families

SmartFusion2, IGLOO2, and RTG4

Example
write_active_probe
write_active_probe
write_active_probe

write_active_probe

—name out[5]:out[5]:Q —value true <-- write to a single probe
-name grpl.out[3]:out[3]:Q -value low <-- write to a probe in the group
-group_name grpl —group_value “8~hF0Q” <-- write the value to complete group
—group_name out —group_value “87b11110000” \

-name out[2]:out[2]:Q —value true <-- write multiple probes at the same time.

write_Isram (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; writes a seven bit word into the specified large SRAM location.

Physical block

write_lIsram [-deviceName device_name] —name block name] —offset offset_value —value value

Arguments

-deviceName device_|

name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-name block_name

Specifies the name for the target block.
-offset offset_value

Offset (address) of the target word within the memory block.

-value value

Nine-bit value to be written to the target location.

Exceptions

e You must set a debug file

e Array must be programmed and active

102

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

e The maximum value that can be written is OX1FF
e Security locks may disable this function

Example

Writes a value of Ox1A to the device sf2 in the block sram_block1 with an offset of 16.
write_Isram [-deviceName sf2] —name sram_blockl -offset 16 -value Ox1A

Logical block

write_lIsram -logicalBlockName block_name -port port_name -offset offset value -logicalValue
hexadecimal_value

Arguments
-logicalBlockName block_name

Specifies the name for the user defined memory block.
-port port_name

Specifies the port for the memory block selected. Can be either Port A or Port B.
-offset offset_value

Offset (address) of the target word within the memory block.
-logicalValue hexadecimal_value

Specifies the hexadecimal value to be written to the memory block. Size of the value is equal to the width
of the output port selected.

Example

write_Isram -logicalBlockName {Fabric_Logic_0/U2/F_0_FO U1} -port {Port A} -offset 1 -
logicalVvalue {OOFFF}

write_usram (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; writes a seven bit word into the specified uUSRAM location.

Physical block

write_usram [-deviceName device_name] —name block name] —offset offset value —value value

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-name block_name

Specifies the name for the target block.
-offset offset_value

Offset (address) of the target word within the memory block.
-value value

Nine-bit value to be written.

Exceptions
e You must set a debug file
e Array must be programmed and active
e The maximum value that can be written is Ox1FF
e Security locks may disable this function

103

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Example

Writes a value of Ox1A to the device sf2 in the block usram_block2 with an offset of 16.
write_usram [-deviceName sf2] —name usram_block2 -offset 16 -value Ox1A

Logical block

write_usram -logicalBlockName block_name -port port_name -offset offset_value -logicalValue
hexadecimal_value

Arguments
-logicalBlockName block_name
Specifies the name for the user defined memory block.
-port port_name
Specifies the port for the memory block selected. Can be either Port A or Port B.
-offset offset_value
Offset (address) of the target word within the memory block.
-logicalValue hexadecimal_value

Specifies the hexadecimal value to be written to the memory block. Size of the value is equal to the width
of the output port selected.
Example

write_usram -logicalBlockName {Fabric_Logic_0/U3/F_0O_FO0_Ul} -port {Port A} -offset 1 -
logicalVvalue {OOFFF}

104

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Solutions to Common Issues Using
SmartDebug

Embedded Flash Memory (NVM) - Failure when
Programming/Verifying

If the Embedded Flash Memory failed verification when executing the PROGRAM_NVM, VERIFY_NVM or
PROGRAM_NVM_ACTIVE_ARRAY action, the failing page may be corrupted. To confirm and address this
issue:

1. Inthe Inspect Device window click View Flash Memory Content.

2. Select the Flash Memory block and client (or page range) to retrieve from the device.
3. Click Read from Device; the retrieved data appears in the lower part of the window.
4. Click View Detailed Status to check the NVM Status.

Note: You can use the check_flash_memory and read_flash_memory Tcl commands to perform
diagnostics similar to the commands outlined above.

5. Ifthe NVM is corrupted you must reset the affected NVM pages.
To reset the corrupted NVM pages, either re-program the pages with your original data or ‘zero-out’
the pages by using the Tcl command recover_flash_memory.

If the Embedded Flash Memory failed verification when executing a VERIFY_NVM or
VERIFY_NVM_ACTIVE_ARRAY action, the failure may be due to the change of content in your design. To
confirm this, repeat steps 1-3 above.

Note: NOTE: NVM corruption is still possible when writing from user design. Check NVM status for
confirmation.

Analog System Not Working as Expected

If the Analog System is not working correctly, it may be due the following:
1. System supply issue. To troubleshoot:

e Physically verify that all the supplies are properly connected to the device and they are at the proper
level. Then confirm by running the Device Status.

e Physically verify that the relevant channels are correctly connected to the device.
2. Analog system is not properly configured. You can confirm this by examining the Analog System.

ADC Not Sampling the Correct Value

If the ADC is sampling all zero values then the wrong analog pin may be connected to the system, or the
analog pin is disconnected. If that is not the case and the ADC is not sampling the correct value, it may be
due to the following:

1. System supply issues - Run the device status to confirm.

2. Analog system is not configured at all - To confirm, read out the ACM configuration and verify if the
ACM content is all zero.

3. Analog system is not configured correctly - To confirm, read out the ACM configuration and verify that
the configuration is as expected .

Once analog block configuration has been confirmed, you can use the sample_analog_channel Tcl
command for debug sampling of the analog channel with user-supplied sampling parameters.

105

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

If you have access to your Analog System Builder settings project (<Libero IDE
project>/Smartgen/AnalogBlock), you may use the compare function provided by the tool.

106

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Frequently Asked Questions

How do |

How do |

How do |

unlock the device security so | can debug?

You must provide the PDB file with a User Pass Key in order to unlock the device and continue debugging.

If you do not have a PDB with User Pass Key, you can create a PDB file in FlashPro (if you know the Pass
Key value).

export a report?

You can export three reports from the SmartDebug GUI: Device Status, Client Detailed Status from the
NVM, or the Compare Client Content report from the NVM. Each of those reports can be saved and printed.
If using a Tcl command, you can use the —File <filename> option for the following commands:
read_flash_memory

check flash_memory

compare_memory client

read_device_status

read_flashrom
read_analog_block config
sample_analog_channel
compare_flashrom_client
compare_analog_config

For example, you can use the following command to export the content of the client 'datastorel’ in NVM
block 0 to the report file datastorel_content.txt:
read_flash_memory —client “datastorel” —file {C:\temp\datastorel_content.txt}

For more information about Tcl commands supported by SmartDebug, see SmartDebug Tcl Commands.

generate diagnostic reports for my target device?

A set of diagnostic reports can be generated for your target device depending on which silicon feature you
are debugging. A set of Tcl commands are available to export those reports. The following is a summary of
those Tcl commands based on the silicon features.

When using the —file parameter, ensure that you use a different file name for each command so you do not
overwrite the report content. If you do not specify the —file option in the Tcl, the output results will be directed
to the FlashPro log window.

For the overall device:

read _device_status
read_id_code

For FlashROM:

compare_flashrom_client
read_flashrom

For Embedded Flash Memory (NVM):

compare_memory_client
check flash_memory
read_flash_memory

For Analog Block:

read_analog_block config
compare_analog_config

107

sample_analog_channel
To execute the Tcl command, from the File menu choose Run Script.

How do | monitor a static or pseudo-static signal?

To monitor a static or pseudo-static signal:
1. Add the signal to the Active Probes tab.
2. Select the signal in the Active Probes tab, right-click, and choose Poll....

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

5| Debug FPGA Array oullEl
&3]
Live/Active Probes Selection F x FPGA Array debug data
Hierarchical View | nietist View | | Live Probes | Active Probes | MemoryBlods | Probe Insertion |
Fiter: [#][= [+ 4[Save...][Load... H Delet jl Delete All
Instance(s): me [Type [Read Value [Write Value
Shift_Reg_0/shft_reg[13:0] DFF 14h0001 14h
“maEs - e o o :
®q - Read
4 I shift Reg 0 Delete
I Primitives
4 T chft_reg Poll...
B shft_reg[0]
B chft_reg(1] Create Group...
B shft regl2]
B shit_reg(3]
B shit regld]
| B shft_reg(s]
B shit_regf6]
B shit_regl] [Read Active Probes J Save Active Probes Data...| | Write Active Probes
B shit_regfs] = B e o oo o
Cam)
L= -

3. Inthe Pseudo-static Signal Polling dialog box, choose a value in Polling Setup and click Start Polling.

(7 -
] Pseudo-static signal polling

ECA™==)

Signal : D_FF_0/q_0:D_FF_0/q:Q
Polling Setup
@ Poll for 0 @ Poll for 1

For more information about pseudo-static signal polling, dick the Help button.
Time Elapsed in seconds: 0

Start Polling Stop Polling

Mote: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.

e

For more information, refer to the SmartDebug for Libero SoC v11.8 User Guide.

How do | force a signal to a new value?

To force a signal to a new value:

1. Inthe SmartDebug window, click Debug FPGA Array.
2. Click the Active Probes tab.
3. Select the signal from the selection panel and add it to Active Probes tab.

108

http://coredocs.s3.amazonaws.com/Libero/11_8_0/Tool/smartdebug_ug.pdf

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

-
51 Debug F2GA Aray JESTEy==c=|
Livefactve Probes Selection B x| rocaamay o
Hierarchical View | Netist View [LiveProbes | ActveProbes | MemoryBlocks | Probe Insertion |
Fiter: +| [=|[¢][+ Save. Delete Delete Al
Net(s): Iame [rvpe Resdvae Jritevale |
Name Type 7
» B_DOUT_1_c6:0) RAMG4x 18
b i — TRAMGH18 ||
DFN1_0_Q:DFN1_0:Q l Add I oFF
DFN1_1_Z:DFN1_1:Q DFF
ORI St ORI DR RO X DO TSR T
b URAM_D\/sd_URAM_0_URAM_ROCO/B_ADDR_net[9:0] RAMSx 18
b count_6_0_q[5:0] DFF
b count_6_2_0_q[7:0] DFF
b count_7_0_q[6:0] DFF
b count_7_2_0_q[3:0] DFF =
i l i l L Read Active Probes Save Active Probes’ Data.. Write Active Probes
[FPGAHardware BreakPomt
L = 4

1. Click Read Active Probe to read the value.

2. In the Write Value column, enter the value to write to the signal and then click Write Active Probes.

1] Debug FPGA Array

DFN1_1_Z:DFN1_1:Q OFF

I URAM_O\jsd_URAM_0_URAM_ROCO/A_ADDR_net[S:0] RAMG4x18
URAM_D\/sd_URAM_D_URAM_ROCO/B_ADDR_net[9:0] RAME:13
count_6_0_q[5:0]
count_6_2_0_q[7:0]
b count_7_0_q[6:0]
b count_7_2_0_q[8:0]

3993

e (=@ [t
=
Live/Active Probes Selecton B X oo array debug data
Hierarchical View | Netiist View Live Probes | Actve Probes | Memory Blocks | Probe Insertion |
e [[=][t] ¥][sovew |[tordi][oeere Delete Al
Met(s): Add [Name Type. Value rite Value
(g) |pFn_o_g:oFN1 0 DFF | i o -
Name Type o > |B_DOUT _c[5:0] RAMG4x18 |6hoE 6'h9
b B_DOUT_1_c[6:0] RAME4¢18 L
> B_DOUT_2_c[7:0] RAMG4x18
b B_DOUT c[5:0) RAMG4x13
DFN1_0_G:OFN1_0:Q OFF

< i,] »

[restacweotes_ (v v robes o

——

How do | count the transitions on a signal?

If FHB IP is auto-instantiated in the design, you can use the Event Counter in the Live Probes tab to count
the transitions on a signal.

To count the transitions on a signal:

1.
2.

Assign the desired signal to Live Probe Channel A.

Click the Event Counter tab and check the Activate Event Counter checkbox.

109

How do |

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

5 Debug FPGA Array

T e

=)

Instance(s):

& 4B Primitves
b A URAM_O\ E
v I uRAM_1\ H
o M URAM_2\
b URAM_3\
b M count 6 O\ o

Event Counter| quency Monitor

Activate Event Counter @ Reset
Edge Selected: Rising
Y
Total Events: 598355545
Signal : A_DOUT_0_c[8]:URAM_3\/sd_URAM_3_URAM

Event Counter | Frequency Monitor | User Clack Frequendes

ity

FPGA Array debug data

Live Probes | Active Probes | MemoryBlocks | Probe Insertion |

Delete Delete Al
Name Type
A_DOUT_0_c[8]:URAM_3\fed_URAM_3_URAM_ROCA/INST_RAMGAx18_[P:A_DOUT[0] | RAMG4x18
A_DOUT_0_c[7]:URAM_3\fsd_URAM_3_ URAM_ROC3/INST RAMG4x18_IP:A_DOUT[1] RAMG4x18
A_DOUT_0_c[6]:URAM_3\/sd_URAM_3 URAM ROC3/INST RAMG4x18_IP:A_DOUTIO) RAMEAx18
A_DOUT_0_c[S]:URAM_3\/sd_URAM_3_URAM_ROC2/INST_RAMG4x18_IP:A_DOUT[1] RAMG4x18
A_DOUT_0_c[4]:URAM_3\/sd_URAM_3_URAM_ROCZ/INST_RAM64x18_IP:A_DOUT[D] RAME4x18
A_DOUT_0_c[3]:URAM_3\sd_URAM_3_URAM_ROC1/INST_RAMG4x 18_[P:A_DOUT[1] RAMG4x18
A_DOUT_0_c[2]:URAM_3\ed_URAM_3_URAM_ROC1/INST_RAMG4x18_[P:A_DOUT[0] RAME4x18
A_DOUT_0_c[1]:URAM_3V/sd_URAM_3_URAM_ROCO/INST_RAMG4x18_[P:A_DOUT[1] RAME4x18
A_DOUT_0_c[0]:URAM_3\/sd_URAM_3_URAM_ROCO/INST_RAMG4x18_IP:A_DOUTO] RAMG4x18
« |] 3

Assign to Channel A
Assign to Chamnel B | ->

Unassign Channels

-> A_DOUT_0_c[8]:URAM_3\jsd_URAM_3_URAM_ROC4/INST_RAMG4x13_IP

See Also

"Event Counter" Error! Bookmark not defined.
SmartDebug for Libero SoC v11.8 User Guide

monitor or measure a clock?

You can monitor a clock signal from the Live Probe tab when the design is synthesized and compiled with
FHB Auto Instantiation turned on in Project Settings dialog box (Enhanced Constraint Flow).

In the Live Probe tab, SmartDebug allows you to:

1. Measure all the FABCCC GL clocks by clicking the User Clock Frequencies tab, as shown in the

figure below.

110

http://coredocs.s3.amazonaws.com/Libero/11_8_0/Tool/smartdebug_ug.pdf

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

[Debug FPGA Array | B e
®
Live/Active Probes Selection B X Frga Aray debug dete
[Herarchical View | Netist View Live Probes | Active Probes | Memory Biods | Probe Insertion |
= [mr— ———
— ot e
e — A_DOUT_D_c[E]:URAM _3\isd_URAM_3_URAM_ROC/INST_RAMGA4x18_[P:A DOUT[D] RAMG4x13
. E A_DOUT_0_cl7]:LRAM 3sd_URAN_3 LRAM ROC3INST RAMEx18 TPiA DOUTLY] RAMG<x13
T ' A_DOUT_0_cl6:URAM_3\ed URAM _3_URAM_ROCH/INST_RAMG4c18_IP:A DOUTRD] RAMB#x13
b B count 6 0\ = | A_DOUT_0_¢[5]:URAM_3\/sd_URAM_3_URAM_ROC2/INST_RAMG4x18_IP:A DOUT[1] RAM&418
e O T T P e—— A_DOUT_0_c[4]:URAM_3V/sd_URAM_3_URAM_ROC2/INST_RAMG4x18_IP:A_DOUTI0] RAM&4x18
; A_DOUT_O_c[SJ:URAM _3\sd_LRAM_3_URAM ROCI/INST_RAMG4x18_[P:A DOUTLY] RAMG4x13
User Clocks Frequency (MHz) A_DOUT_0_¢[2]:URAM_3\/sd_URAM_3_URAM_ROC1/INST_RAMG4x18_IP:A_DOUT[0] RAMG4x18
! 1 FCCC0_GLO ~245 A DOUT 0_c[1]:URAM_3\jsd_ URAM_3_URAM ROCO/INST RAMS4cIS_[P:A DOUT(T] RAMESx1
I 2 FCCCOGL1 ~4.1 A_DOUT_0_c[0]:URAM_3\/sd_URAM_3_URAM_ROCO/INST_RAMG4x18_IP:A DOUTD] RAMS4x18
3 FCCCOGL2 ~974
4 FCCCOGL3 ~1945

4 n] 3

Assign to Channel & | -> A_DOUT_D_c[B]:URAM_3\/sd_URAM_3_URAM_ROC4/INST_RAMG4x18_IP

)]
EventCounter | Frequency Monitor | User Clock Frequenoes l— iR
| i

Monitor frequencies of any probe points by:
a. Assigning the desired signal to Live Probe Channel A.

b. Selecting the Frequency Monitor tab as shown in the following figure and
checking the Activate Frequency Meter checkbox.

111

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

"9 Debug FAGA Array (E=RIel ™)
| iR
i| Live/active Probes Selection FPGA Array debug data
Herrdial Yew [ichnsl [Live Probes [Active Probes | Memory Blocks | Probe Insertion |
Fiter: Delete Delete Al
Name Type

T_RAMG4x18_IP:A_DOUT[1]

T_RAMG4x18_IP:A_DOUT[0] RAMG4x18

4x18_IP:A_DOUT[1]

=A_DOUTID]

T_RAMG4x18_IP:A_DOUT[1]

A_DOUT_0_c[1]:URAI AM_3_URAM

Frequency (MHz): 0
Signal : A_DOUT_0_c[8]:URAM_3\/sd_URAM_3_URAM_ROCH/INST_RA!

T_RAMG4x18_IP:A_DOUTIO]

A_DOUT_0_c[0J;URA

Assign to Channel & | -> A

Assign to Channel B | ->

Unassign Channels

[Event Counter | Frequency Monitor | User Clock Freguendes |

How do | perform simple PRBS and loopback tests?

You can perform PRBS and loopback tests using the Debug SERDES option in SmartDebug.

To perform a PRBS test, in the Debug SERDES dialog box, select PRBS Test to run a PRBS test on-die or
off-die. For more information, see "Debug SERDES — PRBS Test" on page 56.

To perform a loopback test, in the Debug SERDES dialog box, select Loopback Test to run a near end
serial loopback /far end PMA Rx to Tx loopback test. For more information, see "Debug SERDES —

Loopback Test" on page 55.

How do | read LSRAM or USRAM content?

To read RAM content:
1. Inthe Debug FPGA Array dialog box, click the Memory Blocks tab.
2. Select the memory block to be read from the selection panel on the left of the window.

112

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

FPGA Array debug data

Memory Blocks: User Design Memory Block:

Data Width:
Port Used:

Instance Tree
4 I Fabric_Logic_0
aBL2
4WBFOFOW
4 B ramtn Add
4 B Prumoves
¥ INST_RAMIK18_P
> 3k F_10 F1 U2
¢ ik F_11_F1 U2
B/ F12 F1 U2

> B F_13 F1 U2
r Mk F_14 F1_U2
> 8 F_15 F1 U2
b M F_16_F1 U2
> Wk F_17 F1 U2
» B F_18 F1 U2 Read Block Save Block Data.. Write Block
> M F_19 F1 U2

> Mk F_1 F1 U2 -

8 X
Filter: Search | LiveProbes | ActiveProbes | MemoryBlocks | Probe Insertion
([soka |

An "L" in the icon next to the block name indicates that it is a logical block, and a "P" in the icon indicates
that it is a physical block. A logical block displays three fields in the Memory Blocks tab: User Design
Memory Blocks, Data Width, and Port Used. A physical block displays two fields in the Memory Blocks tab:
User Design Memory Block and Data Width.
3. Add the block in one of the following ways:
a. Click Select.
b. Right-click and choose Add.
c. Drag the block to the Memory Blocks tab.
4. Click Read Block to read the content of the block.

e ==
l

Memory Blocks Selection & X FPGA Array debug data
Filter: Search [Live Probes | Active Probes | Memory Blocks | Probe Insertion
Memory Blocks: User Design Memory Block: Fabric_Logic_0/U3/F_0_FO_U1
Data Width: 18-bit
Rarce Ree) i Port Used: [Porta -
4 & Fabric_Logic_0
+ | u3
4 W FoFout Dofalipi ol ok o8 | 8o LT B a0 b Al B C DB o F
4 ? ;“;’:’-:"“W-Dwﬂ 0000 00AS3 03309 0S008 14500 D000 00381 12025 ODO40 12080 04000 20214 02000 11080 20040 1C220 DANZD,
imitives
T FFUZWJ‘WME-P 0010 02700 04451 04001 08000 05000 32500 00120 0000 00080 00420 04019 1CS00 00052 00106 00C22 10058
4 ? g“‘;’r"’—:’\"“:"ﬂ—ﬂ—" 0020 10400 00010 10000 14044 1CO40 OS10E 33425 OD9I0 10C14 00004 04001 10000 00100 00042 20100 08002
mi
g Fnzm—“”“"m—” 0030 O0DDIE 00D 20808 000SA DOED 28100 02883 00770 10020 04000 00000 00200 20004 22400 04006 0ADSO,
4 B ramtmp_ramtmp_0_0
4 P Primitives

B INST_RAMG4x18_IP
s BrFIL2 Save BockData...] | virite Block
4 B ramtmp_ramtmp_0_0

(e) dose |

See Also
"Memory Blocks (SmartFusion2, IGLOO2, and RTG4)" on page 30
SmartDebug for Libero SoC v11.8 User Guide

113

http://coredocs.s3.amazonaws.com/Libero/11_8_0/Tool/smartdebug_ug.pdf

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

How do | change the content of LSRAM or USRAM?

To change the content of LSRAM or USRAM:
1. Inthe SmartDebug window, click Debug FPGA Array.
2. Click the Memory Blocks tab.
3. Select the memory block from the selection panel on the left of the window.

FPGA Array debug data

Memary Blocks: User Design Memory Block:
Data Width:

Port Used:

Instance Tree
4 I Fabric_Logic_0
« B

8 X
Filter: | Search | uveprobes | ActivePprobes | MemoryBlocks | probe Inserton
| Select

4 B ramtn Add
4 B Pwmoves
P INST_RAMIK18_IP

> W F_10_F1 U2
> ik F_11_F1 U2

&/ F12 F1 U2
> B F_13 F1 U2
> W F_14 F1 U2
- ik F_15_F1_U2
b M F_16 F1 U2
> #F F_17 F1 U2
» B F_18 F1U2 Read Block
> B F_19 F1 U2
> B F_1 F1U2 =

Save Block Data..

An "L" in the icon next to the block name indicates that it is a logical block, and a "P" in the icon indicates
that it is a physical block. A logical block displays three fields in the Memory Blocks tab: User Design
Memory Blocks, Data Width, and Port Used. A physical block displays two fields in the Memory Blocks tab:
User Design Memory Block and Data Width.
4. Add the memory block in one of the following ways:
a. Click Select.
b. Right-click and choose Add.
c. Drag the block to the Memory Blocks tab.
5. Click Read Block. The memory content matrix is displayed.
6. Select the memory cell value that you want to change and update the value.
7. Click Write Block to write to the device.

Memory Blocks Selection B X FpGA Aay debug data
Fiter: search | [LveProbes | ActveProbes | MemorySlocks | Probe Insertion |
Memory Blocks: [select] User Design Memory Block: Fabric_Logic_O/U3/F_12_F1_U2
Data Width: 18-bit
R]| e
4 B Fabric_Logic_0
> u2 |=
P Bus O [21 2|3 | & | 563 B8 [A | B|C | D E|F
g iﬁwfgiuljz 0000 00083 IFFFF 00102 00088 01200 00824 00004 00304 00200 OOEDD D00SA 20001 000S0 DOOSD 00300 00000
H g H;{tﬂi 0010 00000 20410 20002 02101 DDOS0 08016 020CO 0C200 00DAD 00002 08000 10020 05004 00018 20008 08300
4 ? ;‘"W—':’“‘W—“—" 0020 0020C 00000 00000 00034 D0OSD 02408 0ODOL 02080 20000 00000 20000 0000S 02000 02012 00COL 00454
Primitives
—am Fnzm—mms—“’ 0030 02400 10001 00001 04000 00400 00002 01201 00004 00020 01CHO 02040 10008 07242 18102 24041 02044
| F14F1LU2
& F_15 F1u2
= F_16_F1 U2 z =
| F7FLL ReadBiock | [SaveBlockData...| | Write Block |
8| F_18_F1 L2
L Mt E 19 F112 it

114

See Also

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

"Memory Blocks (SmartFusion2, IGLOO2, and RTG4)" on page 30
SmartDebug for Libero SoC v11.8 User Guide

How do | read the health check of the SERDES?

You can read the SERDES health check using the following Debug SERDES options:

1. Review the Configuration Report, which returns PMA Ready, TxPLL status, and RxPLL status. For
SERDES to function correctly, PMA ready should be true, and TxPLL and RxPLL status should be
locked. The Configuration Report can be found in the Debug SERDES dialog box under Configuration.
See Debug SERDES (SmartFusion2, IGLOO2, and RTG4).

© Debug SERDES — ==
SERDES Blodc: [SERDESIF D~
@ Lane 0 Lane 1 Lane 2 Lane 3
AESE L R
[Lone 0 Reset]| Lane 1 Reset || Lane 2Reset | Lane 3Reset
Debug SERDES Configuration Report:
Configuration Serdes Block SERDESTF 0 ¢ “ | |Refresh Report
* Tests Lane0:
Lane mode : EPCS (oustom)
PRES Test PMA Ready T ¢
Loopback Test TaPLL status Locked
RPLstats: Locked
Lane 1:
Lane mode 1 EPCS (custom)
PMA Ready : True
THPLL status Locked
RPstatus i Locked
Lane2:
Lane mode © EPCS (custom) @
PMA Ready True
TiPllstats: Locked
RPllstats: Locked
Lane 3:
loemode: B0 (astor) Cangmd
PMA Ready True
TaPLL skt Laocked
RPlstats ! Locked
SERDES Register Read or Wite:
serpt: Execute
Help Cose

2. Runthe PRBS Test, which is a Near End Serial Loopback tests on selected lanes. This should result

in 0 errors in the Cumulative Error Count column. See "Debug SERDES — PRBS Test" on page 56.

Where can | find files to compare my contents/settings?

FlashROM

You can compare the FlashROM content in the device with the data in the PDB file. You can find the PDB in
the <Libero IDE project>/Designer/Impl directory.

Embedded Flash Memory (NVM)

You can compare the Embedded Flash Memory content in the device with the data in the PDB file. You can
find the PDB in the <Libero IDE project>/Designer/Impl directory.

Analog System

You can compare the Analog System configuration in the device with the data in the loaded PDB file or in

the Analog System folder. Go to:

e Fusion devices - <Libero IDE project>/Smartgen/AnalogBlock
e SmartFusion devices - <Libero IDE Project>/component/<SmartDesign Project>/MSS_ACE_0

The tool automatically identifies the necessary files in the selected folder for comparison.

115

http://coredocs.s3.amazonaws.com/Libero/11_8_0/Tool/smartdebug_ug.pdf

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

What is a UFC file? What is an EFC file?

UFC is the User FlashROM Configuration file, generated by the FlashROM configurator; it contains the
partition information set by the user. It also contains the user-selected data for region types with static data.

However, for AUTO_INC and READ_FROM_FILE, regions the UFC file contains only:
e Start value, end value, and step size for AUTO_INC regions, and
e File directory for READ_FROM_FILE regions

EFC is the Embedded Flash Configuration file, generated by the Flash Memory Builder in the Project
Manager Catalog; it contains the partition information and data set by the user.

Both UFC and EFC information is embedded in the PDB when you generate the PDB file.

Is my FPGA fabric enabled?

When your FPGA fabric is programmed, you will see the following statement under Device State in the
Device Status report:

FPGA Array Status: Programmed and Enabled
If the FPGA fabric is not programmed, the Device State shows:
FPGA Array Status: Not Enabled

116

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Embedded Flash Memory (NVM) Frequently
Asked Questions

Is my Embedded Flash Memory (NVM) programmed?

To figure out if your NVM is programmed, read out and view the NVM content or perform verification with the
PDB file.

To examine the NVM content, see the FlashROM Memory Content Dialog Box.
To verify the NVM with the PDB select the VERIFY or VERIFY_NVM action in FlashPro.

How do | display Embedded Flash Memory (NVM) content in the
Client partition?

You must load your PDB into your FlashPro project in order to view the Embedded Flash Memory content in
the Client partition. To view NVM content in the client partition:

1.

o gk wn

Load your PDB into your FlashPro project.
Click Inspect Device.

Click View Flash Memory Content.
Choose a block from the drop-down menu.
Select a client.

Click Read from Device. The Embedded Flash Memory content from the device appears in the Flash
Memory dialog box.

See the Flash Memory Dialog Box topic for more description on viewing the NVM content.

How do | know if I have Embedded Flash Memory (NVM)

corruption?

When Embedded Flash Memory is corrupted, checking Embedded Flash Memory may return with any or all
of the following page status:

ECC1/ECC2 failure

Page write count exceeds the 10-year retention threshold
Page write count is invalid

Page protection is set illegally (set when it should not be)

See the How do | interpret data in the Flash Memory (NVM) Status Report? topic for details.

If your Embedded Flash Memory is corrupted, you can recover by reprogramming with original design data.
Alternatively, you can ‘zero-out’ the pages by using the Tcl command recover_flash_memory.

Why does Embedded Flash Memory (NVM) corruption happen?

Embedded Flash Memory corruption occurs when Embedded Flash Memory programming is interrupted due

to:

Supply brownout; monitor power supplies for brownout conditions. For SmartFusion monitor the
VCC_ENVM/VCC_ROSC voltage levels; for Fusion, monitor VCC_NVM/VCC_OSC.

Reset signal is not properly tied off in your design. Check the Embedded Memory reset signal.

117

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

How do | recover from Embedded Flash Memory corruption?

Reprogram with original design data or ‘zero-out’ the pages by using the Tcl command
recover_flash_memory.

What is a JTAG IR-Capture value?

JTAG IR-Capture value contains private and public device status values. The public status value in the value
read is ISC_DONE, which indicates if the FPGA Array is programmed and enabled.

The ISC_DONE signal is implemented as part of IEEE 1532 specification.

What does the ECC1/ECC2 error mean?

ECC is the Error Correction Code embedded in each Flash Memory page.
ECC1 - One bit error and correctable.
ECC2 — Two or more errors found, and not correctable.

What happens if invalid firmware is loaded into eNVM in
SmartFusion2 devices?

When invalid firmware is loaded into eNVM in SmartFusion2 devices, Cortex-M3 will not be able to boot and
issues reset to MSS continuously. eNVM content using View Flash Memory content will read zeroes in
SmartDebug.

How can | tell if my FlashROM is programmed?

To verify that your FlashROM is programmed, read out and view the FlashROM content or perform
verification with the PDB file by selecting the VERIFY or VERIFY FROM action in FlashPro.

Can | compare serialization data?
To compare the serialization data, you can read out the FlashROM content and visually check data in the
serialization region. Note that a serialization region can be an AUTO_INC or READ_FROM_FILE region.

For serialization data in the AUTO_INC region, check to make sure that the data is within the specified
range for that region.

For READ_FROM_FILE region, you can search for a match in the source data file.

Can I tell what security options are programmed in my device?

To determine the programmed security settings, run the Device Status option from the Inspect Device dialog
and examine the Security Section in the report.

This section lists the security status of the FlashROM, FPGA Array and Flash Memory blocks.

Is my analog system configured?

To determine if the analog block is configured, run the Device Status option from the Inspect Device dialog
and examine the Analog Block Section in the report. For example, the excerpt from the Device Status report
below shows that the analog block status is operational:

Analog Block:
OABTR Register (HEX): 0dbe37b
3.3V (vdd33): PASS
1.5V (vdd15): PASS

118

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Bandgap: PASS

-3.3V (vddn33): PASS

ADC Reference: PASS

FPGA_Good: PASS

Status: Analog Block is operational
If you read out an all zero value when examining the Analog System Configuration, it is possible that the
Analog System is not configured.
You need to compare your analog system configuration with the design configuration from the Analog
System Builder.

The -3.3V (vddn33) voltage is optional.

How do | interpret data in the Device Status report?

The Device Status Report generated from the FlashPro SmartDebug Feature contains the following
sections:

e IDCode (see below)

e User Information

e Device State

e Analog Block (SmartFusion and Fusion only)
e Factory Data

e Security Settings

Device Status Report: IDCode

The IDCode section shows the raw IDCode read from the device. For example, in the Device Status report
for an AFS600 device, you will find the following statement:

IDCode (HEX): 233261cf
The IDCode is compliant to IEEE 1149.1. The following table lists the IDCode bit assignments:

Table 3 - IDCode Bit Assignments

Bit Field (little Example Bit Value for Description
endian) AFS600 (HEX)
Bit [31-28] (4 bits) |2 Silicon Revision
Bit [27-12] (16 3326 Device ID
bits)
Bit [11-0] (12 bits) | 1cf IEEE 1149.1 Manufacturer ID for
Microsemi

Device Status Report: User Info

The User Information section reports the information read from the User ROW (UROW) of IGLOO,
ProASIC3, SmartFusion and Fusion devices. The User Row includes user design information as well as
troubleshooting information, including:

e Design name (10 characters max)

e Design check sum (16-bit CRC)

e Last programming setup used to program/erase any of the silicon features.
e FPGA Array / Fabric programming cycle count

119

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

For example:

User Information:

UROW data (HEX): 603a04e0alc2860e59384af926fe389F
Programming Method: STAPL

Programmer: FlashPro3

Programmer Software: FlashPro vX.X

Design Name: ABCBASICTO

Design Check Sum: 603A

Algorithm Version: 19

Array Prog. Cycle Count: 19

Table 4 - Device Status Report User Info Description

Category Field Description

User Row Data | (Example) Raw data from User Row
UROW data (HEX): (UROW)
603a04e0a1c2860e59384af926fe389f

Programming (Example) Known programming setup

Troubleshooting | Programming Method: STAPL used. This includes:

Info Programmer: FlashPro3 Programming method/file,
Programmer Software: FlashPro v8.6 | programmer and software. It
Algorithm Version: 19 also includes programming

Algorithm version used.

Design Info (Example) Design name (limited to 10
Design Name: ABCASICTO characters) and check sum.
Design Check Sum: 603A
Design check sum is a 16-
bit CRC calculated from the
fabric (FPGA Array)
datastream generated for
programming. If encrypted
datastream is generated
selected, the encrypted
datastream is used for
calculating the check sum.

Device Status Report: Device State

The device state section contains:.

e |IR-Capture register value, and
e The FPGA status
The IR-Capture is the value captured by the IEEE1149.1 instruction register when going through the IR-

Capture state of the IEEE 1149.1 state machine. It contains information reflecting some of the states of the
devices that is useful for troubleshooting.

One of the hits in the value captured is the ISC_DONE value, specified by IEEE 1532 standard. When the
value is ‘1’ it means that the FPGA array/fabric is programmed and enabled. This is available for IGLOO,
ProASIC3, SmartFusion and Fusion devices.

For example:

Device State:

IRCapture Register (HEX): 55

FPGA Array Status: Programmed and enabled

120

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

For a blank device:

Device State:

IRCapture Register (HEX): 51
FPGA Array Status: Not enabled

Device Status Report: Analog Block

The Analog block of the SmartFusion and Fusion devices monitors some of the key power supplies needed
by the device to function. These power supply status is captured in the OABTR test register in the Analog
block.

For example, if you run Device Status when the Fabric and Analog configuration is programmed and
powered up successfully the report indicates:

Analog Block:

OABTR Register (HEX): 0dbe3bb

3.3V (vdd33): PASS

1.5V (vdd15): PASS

Bandgap: PASS

-3.3V (vddn33): PASS

ADC Reference: PASS

FPGA_Good: PASS

Status: Analog Block is operational

Table 5 - Device Status Report - Analog Block Description

Analog Block Status Description
OABTR Register RAW data captured from the device
3.3V (vdd33) Vcc33a supply status
1.5V (vdd15) Vcenvm supply status
Bandgap Internal bandgap supply status
ADC Reference ADC reference voltage status
-3.3V (vddn33) Vddn33 supply status (optional voltage)
FPGA Good FPGA array or Fabric status

If the Fusion device is erased, the report indicates:
Analog Block:
OABTR Register (HEX): 188e3ba
3.3V (vdd33): PASS
1.5V (vdd15): PASS
Bandgap: PASS
-3.3V (vddn33): FAIL
ADC Reference: FAIL
FPGA_Good: FAIL
Status: Analog Block is non-operational
Analog Block is not programmed

121

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Device Status Report: Factory Data

The Factory Data section lists the Factory Serial Number (FSN).
Each of the IGLOO, ProASIC3, SmartFusion and Fusion devices has a unique 48-bit FSN.

Device Status Report: Security

The security section shows the security options for the FPGA Array, FlashROM and Flash Memory (NVM)
block that you programmed into the device.
For example, using a Fusion AFS600 device:
Security:
Security Register (HEX): 0000000088c01b
FlashROM
Write/Erase protection: Off
Read protection: OFf
Encrypted programming: OFfF
FPGA Array
Write/Erase protection: OFff
Verify protection: OFf
Encrypted programming: OFF
FlashMemory Block O
Write protection: On
Read protection: On
Encrypted programming: OFF
FlashMemory Block 1
Write protection: On
Read protection: On
Encrypted programming: OFf
Table 6 - Device Status Report - Security Description

Security Description
Status Info
Security Raw data captured from the device's security status register

Register (HEX)

Write/Erase Write protection is applicable to FlashROM, FPGA Array (Fabric)and
Protection Flash Memory (NVM) blocks. When On, the Silicon feature is
write/erase protected by user passkey.

Read Read protection is applicable to FlashROM and Flash Memory (NVM)

Protection blocks. When On, the Silicon feature is read protected by user
passkey.

Verify Verify Protection is only applicable to FPGA Array (Fabric) only. When

Protection On, the FPGA Array require user passkey for verification.

Reading back from the FPGA Array (Fabric) is not supported.

Verification is accomplished by sending in the expected data for
verification.

Encrypted Encrypted Programming is supported for FlashROM, FPGA Array
Programming (Fabric) and Flash Memory (NVM) blocks. When On, the silicon

122

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Security Description
Status Info

feature is enable for encrypted programmed. This allows field design
update with encrypted datastream so the user design is protected.

Encrypted Programming

To allow encrypted programming of the features, the target feature cannot be Write/Erase protected by user
passkey.

The security settings of each silicon feature when they are enabled for encrypted programming are listed
below.

FPGA Array (Fabric)
Write/Erase protection: OFff
Verify protection: OFf
Encrypted programming: On
Set automatically by Designer or FlashPro when you select to enable encrypted programming of the FPGA

Array (Fabric). This setting allows the FPGA Array (Fabric) to be programmed and verified with an encrypted
datastream.

FlashROM

Write/Erase protection: Off

Read protection: On

Encrypted programming: On
Set automatically by Designer or FlashPro when you select to enable encrypted programming of the
FlashROM. This setting allows the FlashROM to be programmed and verified with an encrypted datastream.
FlashROM always allows verification. If encrypted programming is set, verification has to be performed with
encrypted datastream.

Designer and FlashPro automatically set the FlashROM to be read protected by user passkey when
encrypted programming is enabled. This protects the content from being read out of the JTAG port after
encrypted programming.

Flash Memory (NVM) Block

How do |

Write/Erase protection: Off

Read protection: On

Encrypted programming: On
The above setting is set automatically set by Designer or FlashPro when you select to enable encrypted
programming of the Flash Memory (NVM) block. This setting allows the Flash Memory (NVM) block to be
programmed with an encrypted datastream.
The Flash Memory (NVM) block does not support verification with encrypted datastream.

Designer and FlashPro automatically set the Flash Memory (NVM) block to be read protected by user
passkey when encrypted programming is enabled. This protects the content from being read out of the
JTAG port after encrypted programming.

interpret data in the Flash Memory (NVM) Status Report?

The Embedded Flash Memory (NVM) Status Report generated from the FlashPro SmartDebug feature
consists of the page status of each NVM page. For example:

Flash Memory Content [Page 34 to 34]
FlashMemory Page #34:
Status Register(HEX): 00090000

123

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Status ECC2 check: Pass

Data ECC2 Check: Pass

Write Count: Pass (2304 writes)

Total number of pages with status ECC2 errors: 0

Total number of pages with data ECC2 errors: O

Total number of pages with write count out of range: 0O
FlashMemory Check PASSED for [Page 34 to 34]

The "check_ flash_memory®" command succeeded.

The Execute Script command succeeded.

Table 7 - Embedded Flash Memory Status Report Description

Flash Description
Memory
Status Info

Status Raw page status register captured from device
Register
(HEX)

Status Check for ECC2 issue in the page status
ECC2
Check

Data ECC2 | Check for ECC2 issue in the page data
Check

Write Count | Check if the page-write count is within the expected range.
The expected write count is greater than or equal to:

6,384 - SmartFusion devices
2,288 - Fusion devices

Note: Write count, if corrupted, cannot be reset to a valid value within the
customer flow;invalid write count will not prevent device from being
programmed with the FlashPro tool.

The write count on all good eNVM pages is set to be 2288 instead of 0 in
the manufacturing flow. The starting count of the eNVM is 2288. Each
time the page is programmed or erased the count increments by one.
There is a Threshold that is set to 12288, which equals to 3 * 4096.

Since the threshold can only be set in multiples of 4096 (2712), to set a
10,000 limit, the Threshold is set to 12288 and the start count is set to
2288; and thus the eNVM has a 10k write cycle limit. After the write count
exceeds the threshold, the STATUS bit goes to 11 when attempting to
erase/program the page.

124

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Addendum - FHB IP Design Specification

Introduction

FPGA Hardware Breakpoint (FHB) is silicon technology introduced by Microsemi in its SmartFusion2 and
IGLOO2 FPGAs.

FHB uses the Live Probe and Active Probe features in SmartDebug to enable the selection of any flip-flop in
a user design as a trigger to temporarily “pause” the design. This allows the synchronous elements to be
tapped for their state information through the debug port built into the device.

This document describes the various features of the IP, the RTL involved, timing and block diagrams, pin-
out information, and other features.

Features

The FPGA Hardware Breakpoint (FHB) IP includes the following features:
e DUT execution control with Active Probe

o Halt
0 Run
o Step

e DUT execution control halt
o Trigger input (Live Probe)
o0 Software control (SmartDebug)
e Delayed triggering capability up to 256 clock cycles

DUT Execution Control with Active Probe

DUT execution control is achieved with three inputs to the FHB IP through Active Probe write, as described
in the following sections.

Halt

When this signal is asserted, it halts DUT execution by pausing the clock and therefore freezing all
synchronous elements in their current states. These elements can then be captured with Active Probe read.
This signal is given directly with Active Probe write whenever the user needs to pause the DUT. DUT
execution can also be paused through the trigger signals from the DUT, which are connected through Live
Probe.

When this signal is asserted, it passes through the clock synchronization and pos-edge detection circuits,
and is then given to the pulse delay module, which holds the signal for the necessary number of clock
cycles, as specified by the user. The output signal GLx_ENB is then de-asserted and the DUT is paused.

Run

This feature is used to “unpause” the DUT. Essentially, it performs the reverse operation of the Halt feature.
This signal is also similarly issued by the user through Active Probe write. Once this signal is asserted, it
releases the hold on the DUT and resumes its operations from the current state.

Similar to the Halt feature, the signal is passed through a series of synchronizer and pos-edge detection
blocks before being sent to the combinational logic circuit that enables the value of GLx_ENB. This resumes
the DUT functionality.

Step

This feature is used by the user to observe/control values over a single clock cycle. Functionally, this works
as a combination of Halt and Run signals being asserted in a space of one clock cycle. Therefore, once the
Step is asserted, GLx_ENB is disabled for one clock cycle, and DUT values can be captured once it is
paused. This value can also be asserted through Active Probe write.

125

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Logically, the Step function is achieved by synchronizing and detecting the positive edge of the Active Probe
write signal. It is then sent to a multiplexer circuit that controls the value of GLx_ENB to switch over for one
clock period.

Controlled execution of this signal can extract valuable chronological data on the DUT and an output
waveform (similar to a simulation waveform) can be constructed by multiple clock cycle step executions.

Soft Reset Capabilities

This feature allows the user to reset the state of the FHB at any point in the design/debug process without
having to restart the DUT or chip. The Soft_Reset signal is asserted through Active Prove write.

Delayed Triggering Capabilities

With this feature, an input parameter induces a delay into the system response for the trigger. For example,
if the user wants to pause the DUT 20 clock cycles after observing a certain output or a counter value, he
can input 20 into the delay register in the FHB IP by using an Active Probe write command. Once the event
is triggered and the appropriate signal is sent, the delayed trigger then waits for 20 clock cycles before de-
asserting the GLx_ENB and INT signals that would Halt/pause the DUT.

The user can also choose not to induce any delay into the trigger mechanism to Halt the DUT, in which case
the trigger goes through without any delay. If the user wants to delay the pulse, the minimum possible delay
is four clock cycles due to the presence of three additional registers in the counter path. The mechanism to
implement the delay logic is accomplished through a “down counter”. With a zero value as the default delay,
the input pulse is always sent through without any delay. Through SmartDebug, the user can choose to write
in a non-zero value as the delay using Active Probe write, and the subsequent trigger will be delayed by the
specified number of clock cycles. The output pulse is a “NOR” of all the bits of the count. Therefore, once
the count is zero, a pulse is generated to be the output. However, the required inclusion of the NOR gate in
the path of the trigger will lead to a higher propagation and routing delay due to the inclusion of the LUT in
the path. Unless the user chooses to add a delay, for a 50MHz signal, there will not be any delay in
triggering.

Global Halt Capabilities

A single FHB block can produce a single GLXEB signal. This signal can be used to control one or more GLx
signals in an FCCC Module. However, if the user wants to have a different control signal for each different
clock in the design, they can instantiate more than one FHB module to accomplish this. To enable this global
halt capability, all the FHB blocks’ Halt signals are tied together to the Live Probe feedback signal.

The Halt signal from the Liveprobe module is given controlled access to the FHB through the MuxA and
MuxB settings. The FHB can be “armed” or “disarmed” with these settings. Therefore, to implement the
global halt capabilities, the user can set all the muxes in the design to select the Liveprobe Halt feature.
Once this mode is selected, all FHB blocks will respond to a positive edge from this path.

CLK INT Mux Selection

The following figure shows CLK INT Mux selection connections.
This block accommodates the user’'s GLX_ENB signal, if it is used.

126

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

i posc s FCCC L)

e L0 N o —|

Figure 60 - CLK INT Mux Selection Connections

FHB Halt Status Monitor

The FHB Interrupt monitor is logic that must be added to either each individual FHB module or to a single
monitor for the whole design. The Interrupt monitor lets the user monitor which clocks are paused and which
clocks are active. This logic should be able to communicate with SmartDebug through the JTAG interface
without interrupting or interfering with normal FHB operation. Therefore, ActiveProbe reads cannot be used
to monitor all of the INT register values, as that may possibly break existing LiveProbe connections.

For this function, all INT bits from all FHB modules in the design are written into a single USRAM block, and
SmartDebug reads to the USRAM location by using the Sll bus. This will not terminate the Liveprobe
connection, because it uses a different bus. External logic to the FHB modules must be implemented, and all
INT signals must be connected to it. This logic uses one USRAM block and additional LUTs and registers for
the user logic.

127

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Figure 61 - Halt Status Monitor Connections
Note: The INT monitor block and all of its subsequent connections are external to all FHB modules, because
each individual block is connected and this monitor block cannot be placed inside a FHB module. The total
number of FHB blocks is dependent on the number of FCCC clocks the user has in their design.
Additionally, any unused inputs to this block are tied “low”. For these reasons, the INT monitor block is
placed external to all FHB modules, as shown in the diagram above.

Event Counter and Frequency Monitor

The Event Counter and Frequency Monitor operations can be performed by a block that is placed external to
the main FHB module, and can be used to count the number of “events” or toggles of a given signal within a
user-specified time period. Using the Liveprobe feedback macro, the user selects a signal during real
time/debug time to connect to the Event Counter. These blocks are free running counters that count the

128

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

number of edges of the input signal. Therefore, in conjunction with the Active Probe read feature, this can be
quickly used to determine the pseudo-staticity of a signal, or to find any “stuck-at” errors.

The Frequency Monitor block can be used to calculate the frequency of a fabric clock in real time. This block
uses Live Probe to route the clock that the user wants to calculate the frequency of to the Frequency Monitor
block. The frequency is measured through two free running counters, one at 50 MHz and the other
connected through Live Probe. Using internal control logic, both counters start running when an input clock
has been detected through the Liveprobe feedback macro. The software is programmed to automatically
stop the count operation after a specified period of time and calculate the ratio between the two counts (i.e.,
the unknown clock’s count with respect to the 50MHz clock source). This calculates the frequency of an
unknown signal.

The connections to this block are as follows:

aL
- FCCC_0 YO
(K S—
= Y1
POWER_OM_RESET_N 1
i 500H2_CLK_IN
RESET_N
oL) CLE_IMND
50MHz OSC | FCCC_3 vo CLK_IN1
-l GL1 .
¥1
CLK_INZ2

GLK_INZ3

EVENT_COUNTER_IN

LIVEFRDBE_CLK_IN

EVENT_COUNTER
FREQ METER
INT_1 INT MOMNITOR

INT_2
INT_3

INT D

[[
:l Y Y VY ALK

INT_4

INT &

Figure 62 - Event Counter, Frequency Monitor, and INT Monitor Merged in One Block

129

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

LIVEFRUBE A

RESET_N_IN

[:;._

S0 MHr RO 085G

INT 23

g ™ J\n_nm[?sa]

Figure 63 - Clock Counter Connections for Frequency Monitor and Event Counter

Input/Output Port Descriptions

The inputs and the outputs of the block are summarized in the following tables.
Table 8 - Input Signals of FHB IP

INPUT SIGNAL DESCRIPTION
(All signals in blue are Probewr signals
that are sent through the JTAG)

Halt A signal that can be issued from the JTAG to manually override the internal
“Triggers” to halt the clock of the DUT

1:Posedge-Set backdoor input value of pulse synchronizer H to ‘1’
0:Negedge-Set backdoor input value of pulse synchronizer H to ‘0’

Run A signal that restores the DUT clock and asserts the value of GLX_ENB to ‘1.
This is used to bring the circuit out of the Spatial Debug mode and restore
functionality. This signal can be manipulated along with the Step signal for
Multi-Snapshot Debugging

1: Posedge-Set backdoor input value of pulse synchronizer | to ‘1’

0: Negedge-Set backdoor input value of pulse synchronizer | to ‘0’

Edge Select A bit that can be used to change the polarity of the trigger. The user can
program either 1 or O onto this select bit through Active Probe write command
and the edge is triggered accordingly.

By default FHB is triggered on the positive edge of the input pulse

‘0’ to make the circuit trigger on the positive edge of the input pulse

‘1’ to make the circuit trigger on the negative edge of the input pulse

130

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Step This signal can be used to halt the DUT Clock by just one clock cycle. (i.e.
turning off GLx_ENB to ‘0’ for a period of just one clock cycle).

1: Posedge-Set backdoor input value of pulse synchronizer J to ‘1’

0: Negedge-Set backdoor input value of pulse synchronizer J to ‘0’

Pulse Delay This is a feature that can be customized by the user to control the number of
clock cycles before which the clock is frozen after the trigger is applied. This is
very useful when the user wishes to apply the trigger before the snapshot
needs to be taken. For example, if the user wishes to take the snapshot 20
clock cycles after a certain event has occurred, he can customize this value to
disable the GLx_ENB signal accordingly.

Parameterized input value that can be set by the user to range from 0-256. The
parameter value bits also have to pass through the synchronizer logic before
they can be used in the circuit.

CLKINT_MUX_SEL This register is used to switch control of the GLx_ENB signal between the user

logic and the FHB module. It is tied to “Low” by default, hence enabling the user
controlled GLx_ENB to take effect. Once it is overwritten by Smartdebug
through Activeprobe write to be “high”, and then it gives control to FHB.

Global Halt This is a signal that is added to implement a “Global Halt” when multiple FHB
Blocks are implemented in a design. If the user intends to use multiple clock
domains, they will have to use a different FHB block for each clock, but they
can use this signal to halt all the clocks and debug them individually as
necessary. To enter this mode, the following Mux settings need to be
implemented:

MuxA to 1

MuxB to O

POWERUP_RESETN (Active low) This is the master reset of the IP block which is used to reset all the
synchronous elements in the block to ensure that there are no unknown or tri-
state values in the design that may be propagated to cause jitter and meta
stability in the circuit. This signal needs to be driven by POR (Power on Reset)
of the SmartFusion2 Device.

50MHz OSC The 50MHz OSC is used to run the FHB Halt circuit. This is not the same clock
that controls the DUT. Maximum operating frequency of the IP is 50MHz, but
that can be timing close for the DUT+FHB IP.

Table 9 - Output Signals of FHB IP

OUTPUT SIGNAL DESCRIPTION

GLx_ENB The control signal for the DUT clock which is used to halt the clocks in the DUT
to enable the user to take a snapshot of all the synchronous elements in the
DUT when triggered. This is sent as a select signal for the glitchless mux as
already described.

1: Posedge-Set the 2" input value of MuxA to ‘1’
0: Negedge-Set the 2" input value of MuxA to ‘1’

INT This is an Interrupt signal that is sent to the interrupt monitor block to inform the
software if the clock has been paused or not.
CLKINT_MUX_SEL The CLKINT_MUX_SEL signal can be used to switch control of the GLx_ENB

signal between the user logic and the FHB module. This is only used in the
case where there is a user driven logic also controlling the GLx_ENB signal.
Without any selection, the user is still capable of using the FHB’s GLx_ENB
signal since it is logically coupled (AND gate) with the user driven signal. This
selection is necessary only when the user wants to use the Step functionality of
the FHB i.e. when they want to run the DUT by a single clock pulse at a time.
For this to work, any user DUT signal cannot interfere with the GLx_ENB signal.

0: Default value, control is given to both user driven GLx_ENB and FHB driven

131

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

value

1: Removes control of the user driven GLx_ENB and gives sole control to the
FHB module for implementing the Step functionality

STEP_CLK YO The “step” function controls the GLX_ENB signal to perform the
execution of the DUT by 1 DUT clock cycle at a time. To generate this
single clock pulse in the correct frequency, the corresponding ungated
clock (Yx) of the FCCC is connected to the FHB.

The required outputs can be achieved by manipulating these input signals. The final result is to achieve
control over the DUT clock through the manipulation of GLx_ENB.

High Level Block Diagram

I - Pulse Delay
PosEdge synchronizer or
FIIACES n Detector pulse-shaper
Control NAPSHOTMODE
. Detector S l BEGIN
TriggerMuxA_Set N
TriggerMuxB_Set e ’_@—@ NAPSII;E)SMODE
TriggerMuxA_Reset Conimt
TriggerMuxB_Reset Lok pre
Mode
Control
Powerup_ Reset N ——¢ (e
50MHz RC 0SC ———] oo
! Global Halt u
GLx_ENB
Halt -
1
Run ’D—D
Step —_— J
I—bf i ul;
EDGE_SEL IN D—D E
L
Soft Reset —————¢ =] 1
] o
B
Step_Clock (Yx) a CLKINT MUX
Clkint_Mux_Sel > [1 171D SEL

Figure 64 - FHB IP Block Diagram

RTL Architecture

Clock Gating

As described previously, the concept of spatial debug relies on the technique of “pausing” the system in a
particular state and then capturing all the states through back-door logic embedded in the FPGA
architecture. Clock gating is used to achieve this pseudo-static state.

132

Triggering

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Clock gating uses a glitchless mux which multiplexes the clock signal with a “logical low” level input to give
the output GLx. This is the gated clock that drives the user design or the DUT. The timing diagram for clock,
GLx_ENB and output GLx is shown below in the following figure.

|
N1 M N+

CLOCK, ||'|||||

GLx_EMB : |

Figure 65 - Clock Gating Circuit Timing Diagram

The function of this circuit is the key to capturing the state of all the elements in the design. The trigger
signal GLx_ENB controls the functioning of this circuit. When this signal is triggered, the entire DUT is
paused. Therefore, this trigger signal must be chosen carefully by the user, so they can see the states of the
flip-flops and understand why bugs may have occurred.

Triggering is a crucial part of the FHB technology, since this is the control signal that enables the entire
capture of the DUT. Triggering is user driven logic, and can be a signal from within the DUT, from the
testbench logic, from the firmware, or from an FPGA pin. This allows the user to select the triggers and halt
the process through various sources.

The trigger is supplied from FPGA fabric logic through Live Probe, which is labeled as “Trigger”. Therefore, a
small control and synchronization circuit must be designed to ensure that the correct trigger is selected and
sent through to halt the clock of the DUT. This logical element is labeled as “Trigger Mux Control Register
Logic,” as shown in the following figure.

S i Y |
TriggerMuxA_Set L
TriggerMuxB_Set . . E —11—‘u L
TriggerMuxA_Reset EB_DIJ.EI__D L
TriggerMuxB_Reset

Figure 66 - Trigger Mux Control Register Logic

The trigger mux control logic includes the following elements:

Synchronizer
Positive Edge Detector
Trigger Mux Control Registers

Synchronizer

The synchronizer circuit consists of a “pseudo-latch” followed by a clock synchronizer circuit that latches
onto the ‘probewr’ value and passes it through a series of flip-flops to ensure a glitchless operation. When

133

& Microsemi

SmartDebug for Libero SoC v11.8 User Guide

the JTAG command comes in, the back door logic writes the value onto the latch, and that is propagated
into the circuit. The latch logic is brought about by using a flip-flop with an always-high clock that ensures
that the input value is latched onto the output. This also does not induce any timing violations into the circuit
that might be seen with a latch, because the logic is implemented with a flip-flop. The same logic is applied
to both the Set and the Reset signals. The schematic of this circuit is as shown in the following figure.

Powerllp_FResetn
1
LOAD _WALUE

T

Figure 67 - Probewr Synchronizer Circuit

Positive Edge Detector

Once the probewr signal is synchronized and propagated through the synchronizer circuit, it is necessary to
make sure that the circuit detects a change in the value of the input. This is accomplished by using a
positive edge detector circuit. This is a fairly straightforward logical element with an “AND” gate logic used to
detect a change in the value of the input from “0” to “1”. Once the circuit determines a rising edge for either
the set (or the reset) signal, it is then propagated into the two multiplexers that control the final output.

Control Register

This part of the circuit has two multiplexers driving a flip-flop that gives the final output for the block. This
value is then sent to the external mux. The select bits of these two multiplexers are the Set and the Reset
outputs from the positive edge detector block, as shown in Figure 67. This logic block functions similar to
that of a JK Flip Flop. When the Set hit is ‘1’, the output of the block is ‘1’. When the Reset bit is ‘1", the
output of the block is ‘0’. If there is no input from either the Set or the Reset bits, the previous value of Q is
retained because of the feedback loop. It is not possible for both the Set and the Reset bits to be ‘1’.

Disarm Trigger

Once the FHB has been “armed” (i.e. it is ready to take a trigger input from the Liveprobe input to HALT the
DUT), it is also possible to “disarm” it. The disarm operation reverses the settings that make the FHB
sensitive to this input. It does not react to the Liveprobe signal. This option is useful when the user either
wishes to cancel the trigger due to inactivity or if they wish to change the trigger signal.

134

& Microsemi
SmartDebug for Libero SoC v11.8 User Guide

Utilization Figures
The utilization figures for the FHB module (including Event Counter, Frequency Monitor, delay block, and the
Interrupt Monitor) will vary, depending on the features that are implemented and used. The utilization figures
in the following table are for SmartFusion2 and IGLOO2 only.

IP Fabric |Fabric Interface Interface Single- uSRAM 1K |PLLs and
4LUT DFF 4LUT DFF Ended I/0 CCCs

FHB 77 218 0 0 0 0 0

Halt status [227 162 36 36 0 1 0
Monitor,
Event
Counter,
and
Frequency
Monitor

135

	Table of Contents
	Welcome to SmartDebug
	Introduction to SmartDebug
	Use Models
	Integrated Mode
	Standalone Mode
	Standalone Mode Use Model Overview

	Supported Families, Programmers, and Operating Systems
	Supported Tools

	Getting Started with SmartDebug
	Using SmartDebug with SmartFusion and Fusion
	Using SmartDebug with SmartFusion2, IGLOO2, and RTG4
	Create Standalone SmartDebug Project
	Import from DDC File (created from Libero)
	Construct Automatically
	Configuring a Generic Device
	Connected FlashPRO Programmers
	See Also

	SmartDebug User Interface
	Standalone SmartDebug User Interface
	Programming Connectivity and Interface
	Hover Information
	Device Chain Details
	Right-click Properties
	Debug Context Save
	Selecting Devices for Debug

	View Device Status (SmartFusion2, IGLOO2, and RTG4 Only)
	IdCode
	Device Certificate
	Design Information
	Digest Information
	Device Security Settings
	Programming Information

	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only)
	Contents of Page Status

	Debugging
	Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4 Only)
	Hierarchical View
	Netlist View
	Live Probes (SmartFusion2, IGLOO2, and RTG4)
	Active Probes (SmartFusion2, IGLOO2, and RTG4)
	Probe Grouping (Active Probes Only)
	Context Menu of Probe Points Added to the Active Probes UI
	Differences Between a Bus and a Probe Group

	Memory Blocks (SmartFusion2, IGLOO2, and RTG4)
	Memory Block Fields
	User Design Memory Block
	Data Width
	Port Used

	Read Block
	Logical Block Read
	Physical Block Read

	Write Block
	Logical Block write
	Physical Block Write

	Unsupported Memory Blocks

	Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4
	Introduction
	Probe Insertion
	Probe Deletion
	Reverting to the Original Design

	Event Counter
	Activating the Event Counter
	Running the Event Counter
	Stopping the Event Counter
	See Also

	Frequency Monitor
	Activating the Frequency Monitor
	Running the Frequency Monitor
	Stopping the Frequency Monitor
	See Also

	FPGA Hardware Breakpoint Auto Instantiation
	FPGA Hardware Breakpoint Operations
	Live Probe Halt
	Force Halt
	Play
	Step
	Waveform Capture
	Reset

	Assumptions and Limitations

	User Clock Frequencies
	See Also

	Pseudo Static Signal Polling
	Scalar Signal Polling
	Vector Signal Polling

	Debug SERDES (SmartFusion2, IGLOO2, and RTG4)
	Debug SERDES – Loopback Test
	Debug SERDES – PRBS Test
	Test Type
	Pattern
	Bit Error Rate

	Debug SERDES – PHY Reset
	Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3 Only)
	Device Status Report (SmartFusion and Fusion Only)
	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion and Fusion Only)
	Embedded Flash Memory: Browse Retrieved Data (SmartFusion and Fusion Only)
	Embedded Flash Memory: Compare Memory Client (SmartFusion and Fusion Only)
	FlashROM Content Dialog Box (Fusion and SmartFusion Only)
	Analog Block Configuration Dialog Box (SmartFusion and Fusion Only)
	SmartDebug Tcl Commands
	SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTG4)
	Device Debug / SmartDebug Tcl Commands (SmartFusion, IGLOO, ProASIC3, and Fusion Only)
	add_probe_insertion_point
	Arguments
	Supported Families
	Example

	add_to_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	check_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	compare_analog_config
	Arguments
	Supported Families
	Exceptions
	Example

	compare_flashrom_client
	Arguments
	Supported Families
	Exceptions
	Example

	compare_memory_client
	Arguments
	Supported Families
	Exceptions
	Example

	create_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	delete_active_probe
	Arguments
	Supported Families
	Example

	ddr_read (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example
	Returns

	ddr_write (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example
	Returns

	event_counter
	Arguments
	Supported Families
	Example

	export_smart_debug_data (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	fhb_control
	Arguments
	Supported Families
	Examples

	frequency_monitor
	Arguments
	Supported Families
	Example

	get_programmer_info
	Supported Families
	Example

	load_active_probe_list
	Arguments
	Supported Families
	Example

	loopback_test (SmartFusion2, IGLOO2, RTG4)
	Arguments
	Supported Families
	Example

	move_to_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	prbs_test (SmartFusion2, IGLOO2, RTG4)
	Arguments
	Supported Families
	Example

	program_probe_insertion
	Supported Families

	read_active_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	read_analog_block_config
	Arguments
	Supported Families
	Exceptions
	Example

	read_device_status
	Arguments
	Supported Families
	Exceptions
	Example

	read_id_code
	Arguments
	Supported Families
	Exceptions
	Example

	read_flashrom
	Arguments
	Supported Families
	Exceptions
	Example

	read_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	read_lsram (SmartFusion2, IGLOO2, and RTG4)
	Physical block
	Arguments
	Exceptions
	Example

	Logical block
	Arguments
	Example

	read_usram (SmartFusion2, IGLOO2, and RTG4)
	Physical block
	Arguments
	Exceptions
	Example

	Logical block
	Arguments
	Example

	recover_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	remove_from_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	remove_probe_insertion_point
	Arguments
	Supported Families
	Example

	sample_analog_channel
	Arguments
	Supported Families
	Exceptions
	Example

	save_active_probe_list
	Arguments
	Supported Families
	Example

	select_active_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	serdes_lane_reset
	Arguments
	Supported Families
	Example
	Errors

	serdes_read_register (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	serdes_write_register (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example
	See Also

	set_debug_device
	Arguments
	Exceptions
	Example

	set_debug_programmer
	Arguments
	Exceptions
	Example

	set_live_probe (SmartFusion2, IGLOO2, RTG4)
	Arguments
	Supported Families
	Exceptions
	Example

	ungroup (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	unset_live_probe
	Arguments
	Supported Families
	Exceptions
	Example

	write_active_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	write_lsram (SmartFusion2, IGLOO2, and RTG4)
	Physical block
	Arguments
	Exceptions
	Example
	Arguments
	Example

	write_usram (SmartFusion2, IGLOO2, and RTG4)
	Physical block
	Arguments
	Exceptions
	Example
	Arguments
	Example

	Solutions to Common Issues Using SmartDebug
	Embedded Flash Memory (NVM) - Failure when Programming/Verifying
	Analog System Not Working as Expected
	ADC Not Sampling the Correct Value
	Frequently Asked Questions
	How do I unlock the device security so I can debug?
	How do I export a report?
	How do I generate diagnostic reports for my target device?
	How do I monitor a static or pseudo-static signal?
	How do I force a signal to a new value?
	How do I count the transitions on a signal?
	See Also

	How do I monitor or measure a clock?
	How do I perform simple PRBS and loopback tests?
	How do I read LSRAM or USRAM content?
	See Also

	How do I change the content of LSRAM or USRAM?
	See Also

	How do I read the health check of the SERDES?
	Where can I find files to compare my contents/settings?
	What is a UFC file? What is an EFC file?
	Is my FPGA fabric enabled?
	Embedded Flash Memory (NVM) Frequently Asked Questions
	Is my Embedded Flash Memory (NVM) programmed?
	How do I display Embedded Flash Memory (NVM) content in the Client partition?
	How do I know if I have Embedded Flash Memory (NVM) corruption?
	Why does Embedded Flash Memory (NVM) corruption happen?
	How do I recover from Embedded Flash Memory corruption?
	What is a JTAG IR-Capture value?
	What does the ECC1/ECC2 error mean?
	What happens if invalid firmware is loaded into eNVM in SmartFusion2 devices?
	How can I tell if my FlashROM is programmed?
	Can I compare serialization data?
	Can I tell what security options are programmed in my device?
	Is my analog system configured?
	How do I interpret data in the Device Status report?
	Device Status Report: IDCode
	Device Status Report: User Info
	Device Status Report: Device State
	Device Status Report: Analog Block
	Device Status Report: Factory Data
	Device Status Report: Security
	FPGA Array (Fabric)

	How do I interpret data in the Flash Memory (NVM) Status Report?
	Addendum - FHB IP Design Specification
	Introduction
	Features
	DUT Execution Control with Active Probe
	Halt
	Run
	Step

	Soft Reset Capabilities
	Delayed Triggering Capabilities
	Global Halt Capabilities
	CLK INT Mux Selection
	FHB Halt Status Monitor
	Event Counter and Frequency Monitor

	Input/Output Port Descriptions
	High Level Block Diagram
	RTL Architecture
	Clock Gating
	Triggering
	Synchronizer
	Positive Edge Detector
	Control Register

	Disarm Trigger
	Utilization Figures

