
UG0754
User Guide

PolarFire FPGA Tcl Commands

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

PolarFire FPGA Tcl Commands User Guide

 3

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does Microsemi
assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must
conduct and complete all performance and other testing of the products, alone and together with,
or installed in, any end-products. Buyer shall not rely on any data and performance specifications
or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party
any patent rights, licenses, or any other IP rights, whether with regard to such information itself or
anything described by such information. Information provided in this document is proprietary to
Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and
system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization
devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions;
security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet
ICs and midspans; as well as custom design capabilities and services. Microsemi is
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

5-02-00754-1/01.17

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
www.microsemi.com

©2017 Microsemi Corporation. All
rights reserved. Microsemi and
the Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks
and service marks are the
property of their respective
owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

 PolarFire FPGA Tcl Commands User Guide

4

Table of Contents

Introduction to Tcl Scripting ... 7
Tcl Command Documentation Conventions .. 8
Basic Syntax .. 10
Types of Tcl commands ... 12
Running Tcl Scripts from the GUI .. 17
Running Tcl Scripts from the Command Line .. 18
Exporting Tcl Scripts .. 20
extended_run_lib .. 21
Sample Tcl Script - Project Manager ... 24
Tcl Flow in the Libero SoC ... 25

Project Manager Tcl Commands .. 27
add_file_to_library .. 28
add_library ... 29
add_modelsim_path ... 30
add_profile ... 31
associate_stimulus ... 32
change_link_source ... 33
check_fdc_constraints ... 34
check_hdl ... 35
check_ndc_constraints .. 36
check_pdc_constraints .. 37
check_sdc_constraints ... 38
close_design .. 39
close_project .. 40
configure_tool (SmartFusion2, IGLOO2, RTG4, PolarFire) ... 41
create_links .. 43
defvar_get .. 44
defvar_set .. 45
delete_files ... 46
download_core ... 47
edit_profile .. 48
export_as_link .. 49
export_bsdl_file (SmartFusion2, IGLOO2, RTG4, PolarFire) .. 50
export_design_summary .. 51
export_netlist_file (SmartFusion2, IGLOO2, RTG4, PolarFire) ... 52
export_pin_reports (SmartFusion2, IGLOO2, RTG4, PolarFire) ... 53
export_profiles .. 54
export_script ... 55
generate_sdc_constraint_coverage (SmartFusion2, IGLOO2, RTG4, and PolarFire) 56

 PolarFire FPGA Tcl Commands User Guide

 5

import_files (Libero SoC) ... 57
new_project .. 60
open_project .. 65
organize_constraints .. 66
organize_sources ... 67
organize_tool_files (SmartFusion2, IGLOO2, RTG4, PolarFire) ... 69
project_settings .. 70
refresh .. 72
remove_core .. 73
remove_library ... 74
remove_profile ... 75
rename_file .. 76
rename_library ... 77
run_tool (SmartFusion2, IGLOO2, RTG4, PolarFire) .. 78
save_project_as ... 81
save_log ... 83
save_project ... 84
select_profile .. 85
set_actel_lib_options.. 86
set_as_target ... 87
set_device (Project Manager) .. 88
set_modelsim_options ... 89
set_option ... 92
set_root .. 93
set_user_lib_options .. 94
unlink .. 95
unset_as_target ... 96
use_file ... 97
use_source_file .. 98

SmartPower Tcl Commands ... 99
smartpower_add_new_scenario .. 100
smartpower_add_pin_in_domain ... 101
smartpower_battery_settings ... 102
smartpower_change_clock_statistics .. 103
smartpower_change_setofpin_statistics .. 105
smartpower_commit ... 106
smartpower_compute_vectorless .. 107
smartpower_create_domain .. 108
smartpower_edit_scenario ... 109
smartpower_import_vcd ... 110
smartpower_init_do .. 113
smartpower_init_set_clocks_options ... 116
smartpower_init_set_combinational_options ... 117
smartpower_init_set_enables_options... 118

 PolarFire FPGA Tcl Commands User Guide

6

smartpower_init_set_primaryinputs_options ... 119
smartpower_init_set_registers_options ... 120
smartpower_init_setofpins_values ... 121
smartpower_remove_all_annotations .. 122
smartpower_remove_file .. 123
smartpower_remove_pin_probability ... 124
smartpower_remove_scenario ... 125
smartpower_set_mode_for_analysis ... 126
smartpower_set_mode_for_pdpr ... 127
smartpower_set_operating_condition .. 128
smartpower_set_operating_conditions .. 129
smartpower_set_pin_probability .. 131
smartpower_set_process ... 132
smartpower_set_scenario_for_analysis .. 133
smartpower_set_temperature_opcond .. 134
smartpower_set_voltage_opcond .. 135
smartpower_temperature_opcond_set_design_wide .. 136
smartpower_temperature_opcond_set_mode_specific ... 137
smartpower_voltage_opcond_set_design_wide .. 138
smartpower_voltage_opcond_set_mode_specific ... 139

SmartTime Tcl Commands .. 141
create_set .. 142
expand_path .. 144
list_paths .. 146
read_sdc .. 148
remove_set .. 150
report .. 151
save .. 155
set_options (SmartFusion2, IGLOO2, RTG4, and PolarFire) .. 156

Command Tools ... 159
COMPILE (SmartFusion2, IGLOO2, RTG4, PolarFire) – Enhanced Constraint Flow 160
CONFIGURE_CHAIN (SmartFusion2, IGLOO2, RTG4, PolarFire) 164
PLACEROUTE (SmartFusion2, IGLOO2, RTG4, PolarFire) ... 165
SYNTHESIZE (SmartFusion2, IGLOO2, RTG4, PolarFire) ... 168
VERIFYPOWER (SmartFusion2, IGLOO2, RTG4, PolarFire) ... 173
VERIFYTIMING (SmartFusion2, IGLOO2, RTG4, PolarFire) .. 174

 PolarFire FPGA Tcl Commands User Guide

7

Introduction to Tcl Scripting

Tcl, the Tool Command Language, pronounced tickle, is an easy-to-learn scripting language that is
compatible with Libero SoC and Designer software. You can run scripts from either the Windows or UNIX
command line or store and run a series of commands in a *.tcl batch file.
This section provides a quick overview of the main features of Tcl:
• Basic syntax
• Types of Tcl commands
• Variables
• Command substitution
• Quotes and braces
• Lists and arrays
• Control structures
• Handling exceptions
• Print statement and Return values
• Running Tcl scripts from the command line
• Running Tcl scripts from the GUI
• Exporting Tcl scripts
• Extended_run_gui
• Extended_run_shell
• Sample Tcl scripts
• Project Manager Tcl Commands
• Designer Tcl Commands

For complete information on Tcl scripting, refer to one of the books available on this subject. You can also
find information about Tcl at web sites such as http://www.tcl.tk.

http://www.tcl.tk/

 PolarFire FPGA Tcl Commands User Guide

8

 Tcl Command Documentation Conventions
The following table shows the typographical conventions used for the Tcl command syntax.

Syntax Notation Description

command -
argument

Commands and arguments appear in Courier New typeface.

variable Variables appear in blue, italic Courier New
typeface. You must substitute an appropriate value
for the variable.

[-argumentvalue]
[variable]+

Optional arguments begin and end with a square bracket with
one exception: if the square bracket is followed by a plus sign
(+), then users must specify at least one argument. The plus
sign (+) indicates that items within the square brackets can
be repeated. Do not enter the plus sign character.

Note: All Tcl commands are case sensitive. However, their arguments are not.

Examples
Syntax for the get_clocks command followed by a sample command:

get_clocks variable

get_clocks clk1

Syntax for the backannotate command followed by a sample command:

backannotate -name file_name -format format_type -language language -dir directory_name [-
netlist] [-pin]

backannotate -dir \

 {..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \

-netlist

Wildcard Characters
You can use the following wildcard characters in names used in Tcl commands:

Wildcard What it Does

\ Interprets the next character literally

? Matches any single character

* Matches any string

[] Matches any single character among those listed between brackets
(that is, [A-Z] matches any single character in the A-to-Z range)

Note: The matching function requires that you add a slash (\) before each slash in the port, instance, or net

name when using wildcards in a PDC command and when using wildcards in the Find feature of the
MultiView Navigator. For example, if you have an instance named “A/B12” in the netlist, and you
enter that name as “A\\/B*” in a PDC command, you will not be able to find it. In this case, you must
specify the name as A\\\\/B*.

 PolarFire FPGA Tcl Commands User Guide

 9

Special Characters [], { }, and \
Sometimes square brackets ([]) are part of the command syntax. In these cases, you must either enclose
the open and closed square brackets characters with curly brackets ({ }) or precede the open and closed
square brackets ([]) characters with a backslash (\). If you do not, you will get an error message.
For example:
pin_assign -port {LFSR_OUT[0]} -pin 15

or

pin_assign -port LFSR_OUT\[0\] -pin 180

Note: Tcl commands are case sensitive. However, their arguments are not.

Entering Arguments on Separate Lines
To enter an argument on a separate line, you must enter a backslash (\) character at the end of the
preceding line of the command as shown in the following example:
backannotate -dir \

{..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \

-netlist

See Also
Introduction to Tcl scripting
Basic syntax

Project Manager Tcl Command Reference
A Tcl (Tool Command Language) file contains scripts for simple or complex tasks. You can run scripts from
either the Windows or UNIX command line or store and run a series of Tcl commands in a *.tcl batch file.
You can also run scripts from within the GUI in Project Manager.
Note: Tcl commands are case sensitive. However, their arguments are not.

 PolarFire FPGA Tcl Commands User Guide

10

Basic Syntax
Tcl scripts contain one or more commands separated by either new lines or semicolons. A Tcl command
consists of the name of the command followed by one or more arguments. The format of a Tcl command is:
command arg1 ... argN

The command in the following example computes the sum of 2 plus 2 and returns the result, 4.
expr 2 + 2

The expr command handles its arguments as an arithmetic expression, computing and returning the result
as a string. All Tcl commands return results. If a command has no result to return, it returns an empty string.
To continue a command on another line, enter a backslash (\) character at the end of the line. For example,
the following Tcl command appears on two lines:
import -format "edif" -netlist_naming "Generic" -edif_flavor "GENERIC" {prepi.edn}

Comments must be preceded by a hash character (#). The comment delimiter (#) must be the first character
on a line or the first character following a semicolon, which also indicates the start of a new line. To create a
multi-line comment, you must put a hash character (#) at the beginning of each line.
Note: Be sure that the previous line does not end with a continuation character (\). Otherwise, the comment

line following it will be ignored.

Special Characters
Square brackets ([]) are special characters in Tcl. To use square brackets in names such as port names,
you must either enclose the entire port name in curly braces, for example, pin_assign -port {LFSR_OUT[15]}
-iostd lvttl -slew High, or lead the square brackets with a slash (\) character as shown in the following
example:
pin_assign -port LFSR_OUT\[15\] -iostd lvttl -slew High

Sample Tcl Script
#Set up a new design

new_design -name "multiclk" -family "Axcelerator" -path {.}

Set device, package, speed grade, default I/O standard and

operating conditions

set_device -die "AX1000" -package "BG729" -speed "-3" \

-voltage "1.5" -iostd "LVTTL" -temprange "COM" -voltrange "COM"

Import the netlist

import -format "verilog" {multiclk.v}

Compile the netlist

compile

Import a PDC file

import_aux -format "pdc" {multiclk.pdc}

Run standard layout

layout -incremental "OFF"

Generate backannotated sdf and netlist file

backannotate -name {multiclk_ba} -format "sdf" -language "Verilog"

Generate timing report

 PolarFire FPGA Tcl Commands User Guide

 11

report -type "timing" -sortby "actual" -maxpaths "100" {report_timing.txt}

Generate programming file

export -format "AFM" -signature "ffff" {multiclk.afm}

 PolarFire FPGA Tcl Commands User Guide

12

Types of Tcl commands
There are three types of Tcl commands:

• Built-in commands
• Procedures created with the proc command
• Commands built into the Designer software

Built-in commands
Built-in commands are provided by the Tcl interpreter. They are available in all Tcl applications. Here are
some examples of built-in Tcl commands:

• Tcl provides several commands for manipulating file names, reading and writing file attributes, copying
files, deleting files, creating directories, and so on.

• exec - run an external program. Its return value is the output (on stdout) from the program, for example:

set tmp [exec myprog]

puts stdout $tmp

• You can easily create collections of values (lists) and manipulate them in a variety of ways.
• You can create arrays - structured values consisting of name-value pairs with arbitrary string values for

the names and values.
• You can manipulate the time and date variables.
• You can write scripts that can wait for certain events to occur, such as an elapsed time or the

availability of input data on a network socket.

Procedures created with the proc command
You use the proc command to declare a procedure. You can then use the name of the procedure as a Tcl
command.
The following sample script consists of a single command named proc. The proc command takes three
arguments:
• The name of a procedure (myproc)
• A list of argument names (arg1 arg2)
• The body of the procedure, which is a Tcl script
proc myproc { arg1 arg2 } {

procedure body

}

myproc a b

Commands built into the software
Many functions that you can perform through the software's GUI interface, you can also perform using an
equivalent Tcl command. For example, the backannotate command is equivalent to executing the Back-
Annotate command from Designer's Tools menu. For a list of Tcl commands supported in the Designer
software, see "Tcl Commands."

Variables
With Tcl scripting, you can store a value in a variable for later use. You use the set command to assign
variables. For example, the following set command creates a variable named x and sets its initial value to
10.
set x 10

 PolarFire FPGA Tcl Commands User Guide

 13

A variable can be a letter, a digit, an underscore, or any combination of letters, digits, and underscore
characters. All variable values are stored as strings.
In the Tcl language, you do not declare variables or their types. Any variable can hold any value. Use the
dollar sign ($) to obtain the value of a variable, for example:
set a 1

set b $a

set cmd expr

set x 11

$cmd $x*$x

The dollar sign $ tells Tcl to handle the letters and digits following it as a variable name and to substitute the
variable name with its value.

Global Variables
Variables can be declared global in scope using the Tcl global command. All procedures, including the
declaration can access and modify global variables, for example:
global myvar

Command substitution
By using square brackets ([]), you can substitute the result of one command as an argument to a
subsequent command, as shown in the following example:
set a 12

set b [expr $a*4]

Tcl handles everything between square brackets as a nested Tcl command. Tcl evaluates the nested
command and substitutes its result in place of the bracketed text. In the example above, the argument that
appears in square brackets in the second set command is equal to 48 (that is, 12* 4 = 48).
Conceptually,
set b [expr $a * 4]

expands to
set b [expr 12 * 4]

and then to
set b 48

Quotes and braces
The distinction between braces ({ }) and quotes (" ") is significant when the list contains references to
variables. When references are enclosed in quotes, they are substituted with values. However, when
references are enclosed in braces, they are not substituted with values.

Example

 With Braces With Double Quotes

 set b 2 set b 2

 set t { 1 $b 3 } set t " 1 $b 3 "

 set s { [expr $b + $b] } set s " [expr $b + $b] "

 puts stdout $t puts stdout $t

 puts stdout $s puts stdout $s

 PolarFire FPGA Tcl Commands User Guide

14

will output
1 $b 3 vs. 1 2 3
[expr $b + $b] 4

Filenames
In Tcl syntax, filenames should be enclosed in braces { } to avoid backslash substitution and white space
separation. Backslashes are used to separate folder names in Windows-based filenames. The problem is
that sequences of “\n” or “\t” are interpreted specially. Using the braces disables this special interpretation
and specifies that the Tcl interpreter handle the enclosed string literally. Alternatively, double-backslash “\\n”
and “\\t” would work as well as forward slash directory separators “/n” and “/t”.For example, to specify a file
on your Windows PC at c:\newfiles\thisfile.adb, use one of the following:
{C:\newfiles\thisfile.adb}

C:\\newfiles\\thisfile.adb

"C:\\newfiles\\thisfile.adb"

C:/newfiles/thisfile.adb

"C:/newfiles/thisfile.adb"

If there is white space in the filename path, you must use either the braces or double-quotes. For example:
C:\program data\thisfile.adb

should be referenced in Tcl script as
{C:\program data\thisfile.adb} or "C:\\program data\\thisfile.adb"

If you are using variables, you cannot use braces { } because, by default, the braces turn off all special
interpretation, including the dollar sign character. Instead, use either double-backslashes or forward slashes
with double quotes. For example:
 "$design_name.adb"

Note: To use a name with special characters such as square brackets [], you must put the entire name
between curly braces { } or put a slash character \ immediately before each square bracket.

The following example shows a port name enclosed with curly braces:
 pin_assign -port {LFSR_OUT[15]} -iostd lvttl -slew High

The next example shows each square bracket preceded by a slash:
pin_assign -port LFSR_OUT\[15\] -iostd lvttl -slew High

Lists and arrays
A list is a way to group data and handle the group as a single entity. To define a list, use curly braces { } and
double quotes “ “. For example, the following set command {1 2 3 }, when followed by the list command,
creates a list stored in the variable "a." This list will contain the items "1," "2," and "3."
set a { 1 2 3 }

Here's another example:
set e 2

set f 3

set a [list b c d [expr $e + $f]]

puts $a

displays (or outputs):
b c d 5

Tcl supports many other list-related commands such as lindex, linsert, llength, lrange, and lappend. For
more information, refer to one of the books or web sites available on this subject.

Arrays
An array is another way to group data. Arrays are collections of items stored in variables. Each item has a
unique address that you use to access it. You do not need to declare them nor specify their size.

 PolarFire FPGA Tcl Commands User Guide

 15

Array elements are handled in the same way as other Tcl variables. You create them with the set command,
and you can use the dollar sign ($) for their values.
set myarray(0) "Zero"

set myarray(1) "One"

set myarray(2) "Two"

for {set i 0} {$i < 3} {incr i 1} {

Output:
Zero

One

Two

In the example above, an array called "myarray" is created by the set statement that assigns a value to its
first element. The for-loop statement prints out the value stored in each element of the array.

Special arguments (command-line parameters)
You can determine the name of the Tcl script file while executing the Tcl script by referring to the $argv0
variable.
puts “Executing file $argv0”

To access other arguments from the command line, you can use the lindex command and the argv
variable:
To read the the Tcl file name:
lindex $argv 0

To read the first passed argument:
lindex $argv 1

Example
puts "Script name is $argv0" ; # accessing the scriptname

puts "first argument is [lindex $argv 0]"

puts "second argument is [lindex $argv 1]"

puts "third argument is [lindex $argv 2]"

puts "number of argument is [llength $argv]"

set des_name [lindex $argv 0]

puts "Design name is $des_name"

Control structures
Tcl control structures are commands that change the flow of execution through a script. These control
structures include commands for conditional execution (if-then-elseif-else) and looping (while, for, catch).
An "if" statement only executes the body of the statement (enclosed between curly braces) if the Boolean
condition is found to be true.

if/else statements
if { “$name” == “paul” } then {

…

body if name is paul

} elseif { $code == 0 } then {

…

body if name is not paul and if value of variable code is zero

} else {

…

body if above conditions is not true

}

 PolarFire FPGA Tcl Commands User Guide

16

for loop statement
A "for" statement will repeatedly execute the body of the code as long as the index is within a specified limit.
for { set i 0 } { $i < 5 } { incr i } {

…

body here

}

while loop statement
A "while" statement will repeatedly execute the body of the code (enclosed between the curly braces) as
long as the Boolean condition is found to be true.
while { $p > 0 } {

…

}

catch statement
A "catch" statement suspends normal error handling on the enclosed Tcl command. If a variable name is
also used, then the return value of the enclosed Tcl command is stored in the variable.
catch { open “$inputFile” r } myresult

Print statement and Return values

Print Statement
Use the puts command to write a string to an output channel. Predefined output channels are “stdout” and
“stderr.” If you do not specify a channel, then puts display text to the stdout channel.
Note: The STDIN Tcl command is not supported by Microsemi SoC tools.
Example:
set a [myprog arg1 arg2]

puts "the answer from myprog was $a (this text is on stdout)"

puts stdout “this text also is on stdout”

Return Values
The return code of a Tcl command is a string. You can use a return value as an argument to another
function by enclosing the command with square brackets [].
Example:
set a [prog arg1 arg2]

exec $a

The Tcl command “exec” will run an external program. The return value of “exec” is the output (on stdout)
from the program.
Example:

set tmp [exec myprog]

puts stdout $tmp

 PolarFire FPGA Tcl Commands User Guide

 17

Running Tcl Scripts from the GUI
Instead of running scripts from the command line, you can use Execute Script dialog box to run a script in
the software.

To run a Tcl script from the GUI:
1. In Libero SoC, from the File menu choose Execute Script.

Figure 1 · Execute Script Dialog Box

2. Click Browse to display the Open dialog box, in which you can navigate to the folder containing the
script file to open. When you click Open, the software enters the full path and script filename into the
Execute Script dialog box for you.

3. In the Arguments edit box, enter the arguments to pass to your Tcl script as shown in the following
sample Execute Script dialog box. Separate each argument by a space character. For information
about accessing arguments passed to a Tcl script, see "Running Scripts from the command line."

Figure 2 · Execute Script Dialog Box Example

4. Click Run.

Specify your arguments in the Execute Script dialog box. To get those argument values from your Tcl script,
use the following:
puts "Script name: $argv0"

puts "Number of arguments: $argc"

set i 0

foreach arg $argv {

puts "Arg $i : $arg"

incr i
}

 PolarFire FPGA Tcl Commands User Guide

18

Running Tcl Scripts from the Command Line
You can run Tcl scripts from your Windows or Unix command line as well as pass arguments to scripts from
the command line.

To execute a Tcl script file in the Libero SoC Project Manager software from a shell command line:
At the prompt, type the path to the Microsemi SoC software followed by the word "SCRIPT" and a colon, and
then the name of the script file as follows:
<location of Microsemi SoC software>\bin\libero SCRIPT:<filename>

where <location of Microsemi SoC software> is the root directory in which you installed the
Microsemi SoC software, and <filename> is the name, including a relative or full path, of the Tcl
script file to execute. For example, to run the Tcl script file "myscript.tcl", type:
C:\libero\designer\bin\libero SCRIPT:myscript.tcl

If myscript.tcl is in a particular folder named "mydesign", you can use SCRIPT_DIR to change the current
working directory before calling the script, as in the following example:
C:\libero\designer\bin\libero SCRIPT:myscript.tcl "SCRIPT_DIR:C:\actelprj\mydesign"

To execute a Tcl script file in the Designer software from a shell command line:
At the prompt, type the path to the Microsemi SoC software followed by the word "SCRIPT" and a colon, and
then the name of the script file as follows:
<location of Microsemi SoC software>\bin\designer SCRIPT:<filename>

where <location of Microsemi SoC software> is the root directory in which you installed the
Microsemi SoC software, and <filename> is the name, including a relative or full path, of the
Tcl script file to execute.

For example, to run the Tcl script file named "myscript.tcl" from the command line, you
can type:

C:\libero\designer\bin\designer SCRIPT:myscript.tcl

If myscript.tcl is in a particular folder named "mydesign", you can use SCRIPT_DIR to change the current
working directory before calling the script, as in the following example:
C:\libero\designer\bin\designer SCRIPT:myscript.tcl "SCRIPT_DIR:C:\actelprj\mydesign"

To pass arguments from the command line to your Tcl script file:
At the prompt, type the path to the Microsemi SoC software followed by the SCRIPT argument:

<location of Microsemi SoC software>\bin\designer "SCRIPT:<filename arg1 arg2 ...>" <-- For Designer
<location of Microsemi SoC software>\bin\designer SCRIPT:<filename "arg1 arg2 ...>" <--
For Libero
where <location of Microsemi SoC software> is the root directory in which you installed the
Microsemi SoC software, and <filename arg1 arg2 ...>is the name, including a relative or
full path, of the Tcl script file and arguments you are passing to the script file.
For example,
Through Designer:
C:\libero\designer\bin\designer "SCRIPT:myscript.tcl one two three"

Through Libero:
C:\libero\designer\bin\designer SCRIPT:myscript.tcl SCRIPT_ARGS:”one two three"

Note: In Designer, quotes are needed around the entire command. In Libero, quotes are needed around
the arguments only.

To obtain the output from the log file:
At the prompt, type the path to the Microsemi SoC software followed by the SCRIPT and LOGFILE
arguments.
<location of Microsemi SoC software> SCRIPT:<filename> SCRIPT_ARGS:"a b c"
LOGFILE:<output.log>

where

 PolarFire FPGA Tcl Commands User Guide

 19

• location of Microsemi SoC software is the root directory in which you installed the Microsemi
SoC software

• filename is the name, including a relative or full path, of the Tcl script file
• SCRIPT_ARGS are the arguments you are passing to the script file
• output.log is the name of the log file

For example,
C:\libero\designer\bin\designer SCRIPT:testTCLparam.tcl SCRIPT_ARGS:"a b c"
LOGFILE:testTCLparam.log

 PolarFire FPGA Tcl Commands User Guide

20

Exporting Tcl Scripts
You can write out a Tcl script file that contains the commands executed in the current session. You can then
use this exported Tcl script to re-execute the same commands interactively or in batch. You can also use
this exported script to become more familiar with Tcl syntax.
You can export Tcl scripts from the Project Manager or Designer; the actions are the same.

To export a Tcl session script from the Project Manager or Designer:
1. From the File menu, choose Export Script File. The Export Script dialog box appears.
2. Click OK. The Script Export Options dialog box appears:

Figure 3 · Script Export Options

3. Check the Include Commands from Current Design [Project] Only checkbox. This option applies
only if you opened more than one design or project in your current session. If so, and you do not check
this box, Project Manager / Designer exports all commands from your current session.

4. Select the radio button for the appropriate filename formatting. To export filenames relative to the
current working directory, select Relative filenames (default) formatting. To export filenames that
include a fully specified path, select Qualified filenames (full path; including directory name)
formatting.

Choose Relative filenames if you do not intend to move the Tcl script from the saved location, or
Qualified filenames if you plan to move the Tcl script to another directory or machine.

5. Click OK.

Project Manager / Designer saves the Tcl script with the specified filename.
Note: Notes:

• When exporting Tcl scripts, Project Manager and Designer always encloses filenames in curly braces
to ensure portability.

• Libero SoC software does not write out any Tcl variables or flow-control statements to the exported Tcl
file, even if you had executed the design commands using your own Tcl script. The exported Tcl file
only contains the tool commands and their accompanying arguments.

 PolarFire FPGA Tcl Commands User Guide

 21

extended_run_lib
Note: This is not a Tcl command; it is a shell script that can be run from the command line.

The extended_run_lib Tcl script enables you to run the multiple pass layout in batch mode from a
command line.

$ACTEL_SW_DIR/bin/libero script:$ACTEL_SW_DIR/scripts/extended_run_lib.tcl logfile:extended_run.log
“script_args:-root path/designer/module_name [-n numPasses] [-starting_seed_index numIndex]
[-compare_criteria value] [-c clockName] [-analysis value] [-slack_criteria value] [-stop_on_success]
[-timing_driven|-standard] [-power_driven value] [-placer_high_effort value]”

Note:
There is no option to save the design files from all the passes. Only the (Timing or Power) result reports
from all the passes are saved.

Arguments
-root path/designer/module_name

The path to the root module located under the designer directory of the Libero project.
[-n numPasses]

Sets the number of passes to run. The default number of passes is 5.
[-starting_seed_index numIndex]

Indicates the specific index into the array of random seeds which is to be the starting point for the passes.
Value may range from 1 to 100. If not specified, the default behavior is to continue from the last seed
index that was used.
[-compare_criteria value]

Sets the criteria for comparing results between passes. The default value is set to frequency when the –c
option is given or timing constraints are absent. Otherwise, the default value is set to violations.

Value Description

frequency Use clock frequency as criteria for comparing the results between passes.
This option can be used in conjunction with the -c option (described below).

violations Use timing violations as criteria for comparing the results between passes.
This option can be used in conjunction with the -analysis, -slack_criteria and
-stop_on_success options (described below).

power Use total power as criteria for comparing the results between passes, where
lowest total power is the goal.

[-c clockName]

Applies only when the clock frequency comparison criteria is used. Specifies the particular clock that is to
be examined. If no clock is specified, then the slowest clock frequency in the design in a given pass is
used. The clock name should match with one of the Clock Domains in the Summary section of the Timing
report.
[-analysis value]

Applies only when the timing violations comparison criteria is used. Specifies the type of timing violations
(the slack) to examine. The following table shows the acceptable values for this argument:

Value Description

max Examines timing violations (slack) obtained from maximum delay analysis. This
is the default.

 PolarFire FPGA Tcl Commands User Guide

22

Value Description

min Examines timing violations (slack) obtained from minimum delay analysis.

[-slack_criteria value]

Applies only when the timing violations comparison criteria is used. Specifies how to evaluate the timing
violations (slack). The type of timing violations (slack) is determined by the -analysis option. The following
table shows the acceptable values for this argument:

Value Description

worst Sets the timing violations criteria to Worst slack. For each pass obtains the most
amount of negative slack (or least amount of positive slack if all constraints are
met) from the timing violations report. The largest value out of all passes will
determine the best pass. This is the default.

tns Sets the timing violations criteria to Total Negative Slack (tns). For each pass it
obtains the sum of negative slack values from the first 100 paths from the timing
violations report. The largest value out of all passes determines the best pass. If
no negative slacks exist for a pass, then the worst slack is used to evaluate that
pass.

[-stop_on_success]

Applies only when the timing violations comparison criteria is used. The type of timing violations (slack) is
determined by the -analysis option. Stops running the remaining passes if all timing constraints have been
met (when there are no negative slacks reported in the timing violations report).
[-timing_driven|-standard]

Sets layout mode to timing driven or standard (non-timing driven). The default is -timing_driven or the
mode used in the previous layout command.
[-power_driven value]

Enables or disables power-driven layout. The default is off or the mode used in the previous layout
command. The following table shows the acceptable values for this argument:

Value Description

off Does not run power-driven layout.

on Enables power-driven layout.

[-placer_high_effort value]

Sets placer effort level. The default is off or the mode used in the previous layout command. The following
table shows the acceptable values for this argument:

Value Description

off Runs layout in regular effort.

on Activates high effort layout mode.

Return
A non-zero value will be returned on error.

 PolarFire FPGA Tcl Commands User Guide

 23

Exceptions
None

Example
D:/Libero_11_3_SP1/Designer/bin/libero
script:D:/Libero_11_3_SP1/Designer/scripts/extended_run_lib.tcl logfile:extended_run.log
"script_args:-root E:/designs/centralfpga/designer/centralfpga -n 3 -slack_criteria tns -
stop_on_success"

See Also
Place and Route
Multiple Pass Layout
Multiple Pass Layout

 PolarFire FPGA Tcl Commands User Guide

24

Sample Tcl Script - Project Manager
The following Tcl commands create a new project named proj1 and sets your project options.
#Create new project

new_project -name proj1 -location c:/actelprj -family fusion –die AFS090 -package "108
QFN" -hdl VHDL

#Import HDL source file named hdlsource1.vhd

import_files -hdl_source c:\hdlsource1.vhd

#Run synthesis and create a logfile named synth1.

run_synthesis -logfile synth.log

he default ADB file, run Compile, run Layout

run_designer -logfile designer_log -adb new -compile TRUE -layout TRUE -export_ba TRUE

 PolarFire FPGA Tcl Commands User Guide

 25

Tcl Flow in the Libero SoC
Use the following commands to manage and build your project in the Libero SoC.

Design Flow in the Project Manager
The Tcl commands below outline the entire design flow. Once you create a project in the Project Manager
you can use the commands below to complete every operation from synthesis to generating an HDL netlist.
Click any command to go to the command definition.
run_synthesis [-logfile name]

run_simulation [-logfile name]

check_hdl -file filename

check_schematic -file filename

create_symbol [-module module]

export_io_constraints_from_adb -adb filename -output outputfilename

generate_ba_files -adb filename

generate_hdl_from_schematic [-module modulename]

generate_hdl_netlist [-netlist filename] [-run_drc "TRUE | FALSE"]

rollback_constraints_from_adb -adb filename -output output_filename

run_designer [-logfile filename] [-script "script to append"] [-append_commands "commands
to execute"] [-adb "new | open | default"] [-compile "TRUE | FALSE"] [-layout "TRUE |
FALSE"] [-export_ba "TRUE | FALSE"]

run_drc [-netlist file] [-gen_hdl "TRUE | FALSE"]

Manage Profiles in the Project Manager
add_profile -name profilename -type "synthesis | simulation | stimulus | flashpro |
physynth | coreconfig" -tool profiletool -location tool_location [-args tool_parameters]
[-batch "TRUE | FALSE"]

edit_profile -name profilename -type "synthesis | simulation | stimulus | flashpro |
physynth | coreconfig" -tool profiletool -location tool_location [-args tool_parameters]
[-batch "TRUE | FALSE"] [-new_name name]

export_profiles -file name [-export "predefined | user | all"]

remove_profile -name profile_name

select_profile -name profile_name

Linking Files
change_link_source -file filename -path pathname

create_links [-hdl_source file]* [-stimulus file]* [-sdc file]* [-pin file]* [-dcf file]*
[-gcf file]* [-pdc file]* [-crt file]* [-vcd file]*

export_as_link -file filename -path link_path

unlink -file file [-local local_filename]

Set Simulation Options in the Project Manager
add_modelsim_path -lib library_name [-path library_path] [-remove " "]

Set Device in the Project Manager
set_device [-family family] [-die die] [-package package]

 PolarFire FPGA Tcl Commands User Guide

26

Miscellaneous Operations in the Project Manager
project_settings [-hdl "VHDL | VERILOG"] [-auto_update_modelsim_ini "TRUE | FALSE"] [-
auto_update_viewdraw_ini "TRUE | FALSE"] [-block_mode "TRUE | FALSE"] [-
auto_generate_synth_hdl "TRUE | FALSE"] [-auto_run_drc "TRUE | FALSE"] [-
auto_generate_viewdraw_hdl "TRUE | FALSE"] [-auto_file_detection "TRUE | FALSE"]

refresh

set_option [-synth "TRUE | FALSE"] [-module "module_name"]

remove_core -name core_name

Manage Profiles in the Project Manager
add_profile -name profilename -type "synthesis | simulation | stimulus | flashpro |
physynth | coreconfig" -tool profiletool -location tool_location [-args tool_parameters]
[-batch "TRUE | FALSE"]

edit_profile -name profilename -type "synthesis | simulation | stimulus | flashpro |
physynth | coreconfig" -tool profiletool -location tool_location [-args tool_parameters]
[-batch "TRUE | FALSE"] [-new_name name]

export_profiles -file name [-export "predefined | user | all"]

remove_profile -name profile_name

select_profile -name profile_name

Linking Files
change_link_source -file filename -path pathname

create_links [-hdl_source file]* [-stimulus file]* [-sdc file]* [-pin file]* [-dcf file]*
[-gcf file]* [-pdc file]* [-crt file]* [-vcd file]*

export_as_link -file filename -path link_path

unlink -file file [-local local_filename]

Set Simulation Options in the Project Manager
add_modelsim_path -lib library_name [-path library_path] [-remove " "]

Set Device in the Project Manager
set_device [-family family] [-die die] [-package package]

Miscellaneous Operations in the Project Manager
project_settings [-hdl "VHDL | VERILOG"] [-auto_update_modelsim_ini "TRUE | FALSE"] [-
auto_update_viewdraw_ini "TRUE | FALSE"] [-block_mode "TRUE | FALSE"] [-
auto_generate_synth_hdl "TRUE | FALSE"] [-auto_run_drc "TRUE | FALSE"] [-
auto_generate_viewdraw_hdl "TRUE | FALSE"] [-auto_file_detection "TRUE | FALSE"]

refresh

set_option [-synth "TRUE | FALSE"] [-module "module"]

remove_core -name core_name

 PolarFire FPGA Tcl Commands User Guide

 27

Project Manager Tcl Commands

 PolarFire FPGA Tcl Commands User Guide

28

add_file_to_library
Tcl command; adds a file to a library in your project.

add_file_to_library
-library name
-file name

Arguments
-library name

Name of the library where you wish to add your file.
-file name

Specifies the new name of the file you wish to add (must be a full pathname).

Example
Add a file named foo.vhd from the ./project/hdl directory to the library 'my_lib'
add_file_to_library -library my_lib -file ./project/hdl/foo.vhd

See Also
add_library

remove_library

rename_library

 PolarFire FPGA Tcl Commands User Guide

 29

add_library
Tcl command; adds a VHDL library to your project.

add_library
-library name

Arguments
-library name

Specifies the name of your new library.

Example
Create a new library called 'my_lib'.
add_library –library my_lib

See Also
remove_library

rename_library

 PolarFire FPGA Tcl Commands User Guide

30

add_modelsim_path
Tcl command; adds a ModelSim simulation library to your project.

add_modelsim_path -lib library_name [-path library_path] [-remove " "]

Arguments
-lib library_name

Name of the library you want to add.
-path library_path

Path to library that you want to add.
-remove " "

Name of library you want to remove (if any).

Example
Add the ModelSim library 'msim_update2' located in the c:\modelsim\libraries directory and remove the
library 'msim_update1':
add_modelsim_path -lib msim_update2 [-path c:\modelsim\libraries] [-remove msim_update1]

 PolarFire FPGA Tcl Commands User Guide

 31

add_profile
Tcl command; sets the same values as the Add or Edit Profile dialog box.

add_profile -name profilename -type value -tool profiletool -location tool_location [-args
tool_parameters] [-batch value]

Arguments
-name profilename

Specifies the name of your new profile.
-type value

Specifies your profile type, where value is one of the following:

Value Description

synthesis New profile for a synthesis tool

simulation New profile for a simulation tool

stimulus New profile for a stimulus tool

flashpro New FlashPro tool profile

-tool profiletool

Name of the tool you are adding to the profile.
-location tool_location

Full pathname to the location of the tool you are adding to the profile.
-args tool_parameters

Profile parameters (if any).
-batch value

Runs the tool in batch mode (if TRUE). Possible values are:

Value Description

TRUE Runs the profile in batch mode

FALSE Does not run the profile in batch mode

Example
Create a new FlashPro tool profile called 'myflashpro' linked to a FlashPro installation in my
c:\programs\actel\flashpro\bin directory
new_profile -name myflashpro -type flashpro -tool flashpro.exe -location
c:\programs\actel\flashpro\bin\flashpro.exe -batch FALSE

 PolarFire FPGA Tcl Commands User Guide

32

associate_stimulus
Tcl command; associates a stimulus file in your project.

-associate_stimulus
[-file name]*
[-mode value]
-module value

Arguments
-file name

Specifies the name of the file to which you want to associate your stimulus files.
-mode value

Specifies whether you are creating a new stimulus association, adding, or removing; possible values are:

Value Description

new Creates a new stimulus file association

add Adds a stimulus file to an existing association

remove Removes an stimulus file association

-module value

Sets the module, where value is the name of the module.

Example
The example associates a new stimulus file 'stim.vhd' for stimulus.
-associate_stimulus -file stim.vhd -mode new -module stimulus

 PolarFire FPGA Tcl Commands User Guide

 33

change_link_source
Tcl command; changes the source of a linked file in your project.

change_link_source -file filename -path new_source_path

Arguments
-file filename

Name of the linked file you want to change.
-path new_source_path

Location of the file you want to link to.

Example
Change the link to a file 'sim1.vhd' in your project and link it to the file in
c:\microsemi\link_source\simulation_test.vhd
change_link_source -file sim1.vhd -path c:\microsemi\link_source\simulation_test.vhd

 PolarFire FPGA Tcl Commands User Guide

34

check_fdc_constraints
This Tcl command checks FDC constraints files associated with the Synthesis tool. This command is for the
Enhanced Constraint Flow only.

check_fdc_constraints –tool {synthesis}

Arguments
-tool {synthesis}

Example
check_fdc_constraints –tool {synthesis}

Return Value
This command returns “0” on success and “1” on failure.

 PolarFire FPGA Tcl Commands User Guide

 35

check_hdl
Tcl command; checks the HDL in the specified file.

check_hdl -file filename

Arguments
-file filename

Name of the HDL file you want to check.

Example
Check HDL on the file hdl1.vhd.
check_hdl -file hdl1.vhd

 PolarFire FPGA Tcl Commands User Guide

36

check_ndc_constraints
This Tcl command checks NDC constraints files associated with the Synthesis tool (for the Enhanced
Constraint Flow only). NDC constraints are used to optimize the post-synthesis netlist with the Libero SoC
Compile engine.

check_ndc_constraints –tool {synthesis}

Arguments
-tool {synthesis}

Example
check_ndc_constraints –tool {synthesis}

See Also
set_ioff

 PolarFire FPGA Tcl Commands User Guide

 37

check_pdc_constraints
This Tcl command checks PDC constraints files associated with the Libero Place and Route tool. This
command is for the Enhanced Constraint Flow only.

check_pdc_constraints –tool {designer}

Arguments
-tool {designer}

Example
check_pdc_constraints –tool {designer}

Return Value
This command returns “0” on success and “1” on failure.

 PolarFire FPGA Tcl Commands User Guide

38

check_sdc_constraints
This Tcl command checks SDC constraints files associated with the Libero tools: designer, synthesis, or
timing. This command is for the Enhanced Constraint Flow only.

check_sdc_constraints –tool {tool_name}

Arguments
-tool {synthesis|designer|timing}

Example
This command checks the SDC constraint files associated with Timing Verifcation.
check_sdc_constraints –tool {timing}

This command checks the SDC constraint files associated with Place and Route.
check_sdc_constraints –tool {designer}

This command checks the SDC constraint files associated with Synthesis.
check_sdc_constraints –tool {synthesis}

Return Value
The command returns “0” on success and “1” on failure.

 PolarFire FPGA Tcl Commands User Guide

 39

close_design
Tcl command; closes the current design and brings Designer to a fresh state to work on a new design.
This is equivalent to selecting the Close command from the File menu.

close_design

Arguments
None

Example
if { [catch { close_design }] {

 Puts “Failed to close design”

 # Handle Failure

} else {

 puts “Design closed successfully”

 # Proceed with processing a new design

}

See Also
open_design

close_design

new_design

 PolarFire FPGA Tcl Commands User Guide

40

close_project
Tcl command; closes the current project in Libero SoC. Equivalent to clicking the File menu, and choosing
Close Project.

close_project

Arguments
None

Example
close_project

See Also
open_project

 PolarFire FPGA Tcl Commands User Guide

 41

configure_tool (SmartFusion2, IGLOO2, RTG4, PolarFire)
configure_tool is a general-purpose Tcl command to set the parameters for any tool called by Libero for the
SmartFusion2, IGLOO2, RTG4, PolarFire families. The command requires the name of the tool and one or
more parameters in the format tool_parameter:value. These parameters are separated and passed to the
tool to set up its run.

configure_tool
-name {<tool_name>} # Each tool_name has its own set of parameters
-params {<parameter>:<value>} # List of parameters and values

tool_name ::= COMPILE | SYNTHESIZE | PLACEROUTE | GENERATEPROGRAMMINGDATA | PROGRAMDEVICE
| PROGRAM_OPTIONS | PROGRAMMER_INFO |IO_PROGRAM_STATE | SPM | FLASH_FREEZE |
PROGRAM_RECOVERY | USER_PROG_DATA | VERIFYTIMING | INIT_LOCK

Supported tool_names
The following table lists the supported tool_names.

tool_name Parameter (-params) Description

COMPILE See the topic for parameter
names and values.

See the topic for
description.

SYNTHESIZE See the topic for parameter
names and values.

See the topic for
description.

PLACEROUTE See the topic for parameter
names and values.

See the topic for
description.

GENERATEPROGRAMMINGDATA See the topic for parameter
names and values.

See the topic for
description.

See the topic for parameter
names and values.

See the topic for
description.

PROGRAMDEVICE See the topic for parameter
names and values.

See the topic for
description.

PROGRAM_OPTIONS See the topic for parameter
names and values.

See the topic for
description.

PROGRAMMER_INFO See the topic for parameter
names and values.

See the topic for
description.

IO_PROGRAMMING_STATE See the topic for parameter
names and values.

See the topic for
description.

SPM See the topic for parameter
names and values.

See the topic for
description.

FLASH_FREEZE See the topic for parameter
names and values.

See the topic for
description.

PROGRAM_RECOVERY See the topic for parameter
names and values.

See the topic for
description.

 PolarFire FPGA Tcl Commands User Guide

42

tool_name Parameter (-params) Description

USER_PROG_DATA See the topic for parameter
names and values.

See the topic for
description.

VERIFYTIMING See the topic for parameter
names and values.

See the topic for
description.

INIT_LOCK See the topic for parameter
names and values.

See the topic for
description.

See the SmartFusion2, IGLOO2, and RTG4 Tcl for SoC document for the full list of parameters and values.

Example
configure_tool -name {COMPILE} \

-params { DISPLAY_FANOUT_LIMIT:10}\

-params {MERGE_SDC:true}

configure_tool -name {SYNTHESIZE} -params {LANGUAGE_VHDL_2008:true}

configure_tool -name {PLACEROUTE} -params {PDPR:false} -params \

{TDPR:true} -{EFFORT_LEVEL:false} –params {INCRPLACEANDROUTE:false}

For example, the command:
configure_tool \

-name {COMPILE} -params {DISPLAY_FANOUT_LIMIT:10} \

-params {MERGE_SDC:true}

sets the COMPILE command options DISPLAY_FANOUT_LIMIT to 10 and MERGE_SDC to true.
There are alternative ways to write these commands to fit your coding style. The following three examples all
do the same thing.

Method 1 - single line

configure_tool -name {COMPILE} -params {DISPLAY_FANOUT_LIMIT:10} -params {MERGE SDC:true}

Method 2 - one statement, multiple lines
configure_tool \

-name {COMPILE} \

-params {DISPLAY_FANOUT_LIMIT:10} \

-params {MERGE_SDC:true}

Method 3 - multiple statements
configure_tool -name {COMPILE} -params {DISPLAY_FANOUT_LIMIT:10}

configure_tool -name {COMPILE} -params {MERGE_SDC:true}

See Also
Tcl documentation conventions

http://www.microsemi.com/document-portal/doc_download/132576-smartfusion2-igloo2-and-rtg4-tcl-for-soc-documentation

 PolarFire FPGA Tcl Commands User Guide

 43

create_links
Tcl command; creates a link (or links) to a file/files in your project.

create_links [-hdl_source file]* [-stimulus file]* [-sdc file]* [-pin file]* [-dcf file]* [-
gcf file]* [-pdc file]* [-crt file]* [-vcd file]*

Arguments
-hdl_source file

Name of the HDL file you want to link.
-stimulus file

Name of the stimulus file you want to link.
-sdc file

Name of the SDC file you want to link.
-pin file

Name of the PIN file you want to link.
-dcf file

Name of the DCF file you want to link.
-gcf file

Name of the GCF file you want to link.
-pdc file

Name of the PDC file you want to link.
-crt file

Name of the crt file you want to link.
-vcd file

Name of the VCD file you want to link.

Example
Create a link to the file hdl1.vhd.
create links [-hdl_source hdl1.vhd]

 PolarFire FPGA Tcl Commands User Guide

44

defvar_get
Tcl command; provides access to the internal variables within Libero and returns its value. This command
also prints the value of the variable on the Log window.

defvar_get -name variable

Arguments
variable

The internal variable.

Example
Example 1: Prints the design name on the log window.
 defvar_get -name “DESIGN”

set variableToGet "DESIGN"

set valueOfVariable [defvar_get $variableToGet]

puts "The value is $valueOfVariable"

See Also
defvar_set

 PolarFire FPGA Tcl Commands User Guide

 45

defvar_set
Tcl command; the defvar_set command sets an internal variable in the Libero system. You must specify at
least one argument for this command.

defvar_set -name variable -value value

Arguments
Variable must be a valid internal variable and could be accompanied by an optional value. If the value is
provided, the variable is set to the value. If the value is null the variable is reset.

Example
Example 1:
defvar_set -name “FORMAT” -value “VHDL”

Sets the FORMAT internal variable to VHDL.
Example 2:
set variableToSet "DESIGN"

set valueOfVariable “VHDL”

defvar_set $variableToSet $valueOfVariable

These commands set the FORMAT variable to VHDL, shows the use of variables for this command.

See Also
defvar_get

 PolarFire FPGA Tcl Commands User Guide

46

delete_files
Tcl command; deletes files in your Libero SoC project.

delete_files
-file value
-from_disk

Arguments
-file value

Specifies the file you wish to delete from the project. This parameter is required for this Tcl command. It
does not delete the file from the disk. Use the -from_disk flag to delete a file from the disk. Value is the
name of the file you wish to delete (including the full pathname).
-from_disk

Deletes a file from the disk.

Example
Delete the files file1.vhd and file2.vhd from the project, and delete the file top_palace.sdc from the disk.
delete_files –file ./project/hdl/file1.vhd –file ./project/hdl/file2.vhd

delete_files –from_disk –file ./project/phy_synthesis/top_palace.sdc

The following command deletes the core 'add1' from your disk and project (it is the same as the command
to delete an IP core from your disk and project).
delete_files -from_disk -file ./project/component/work/add1/add1.cxf

See Also
close_project

new_project

 PolarFire FPGA Tcl Commands User Guide

 47

download_core
Tcl command; downloads a core and adds it to your repository.

download_core [-vlnv "vlnv"]+ [-location "location"]

Arguments
-vlnv vlnv

Vendor, library, name and version of the core you want to download.
-location core_name

Location of the repository where you wish to add the core.

Example
Download the core CoreAXI to the repository www.actel-ip.com/repositories/SgCore:
download_core [-vlnv Actel.DirectCore.COREAXI.2.0.103] [-location www.actel-
ip.com/repositories/SgCore]

 PolarFire FPGA Tcl Commands User Guide

48

edit_profile
Tcl command; sets the same values as the Add or Edit Profile dialog box.

edit_profile -name profilename -type value -tool profiletool -location profilelocation [-args
parameters] [-batch value] [-new_name name]

Arguments
-name profilename

Specifies the name of your new profile.
-type value

Specifies your profile type, where value is one of the following:

Value Description

synthesis New profile for a synthesis tool

simulation New profile for a simulation tool

stimulus New profile for a stimulus tool

flashpro New FlashPro tool profile

-tool profiletool

Name of the tool you are adding to the profile.
-location profilelocation

Full pathname to the location of the tool you are adding to the profile.
-args parameters

Profile tool parameters (if any).
-batch value

Runs the tool in batch mode (if TRUE). Possible values are:

Value Description

TRUE Runs the profile in batch mode

FALSE Does not run the profile in batch mode

-new_name name

Name of new profile.

Example
Edit a FlashPro tool profile called 'myflashpro' linked to a new FlashPro installation in my
c:\programs\actel\flashpro\bin directory, change the name to updated_flashpro.
edit_profile -name myflashpro -type flashpro -tool flashpro.exe -location
c:\programs\actel\flashpro\bin\flashpro.exe -batch FALSE -new_name updated_flashpro

 PolarFire FPGA Tcl Commands User Guide

 49

export_as_link
Tcl command; exports a file to another directory and links to the file.

export_as_link -file filename -path link_path

Arguments
-file filename

Name of the file you want to export as a link.
-path link_path

Path of the link.

Example
Export the file hdl1.vhd as a link to c:\microsemi\link_source.
export_as_link -file hdl1.vhd -path c:\microsemi\link_source

 PolarFire FPGA Tcl Commands User Guide

50

export_bsdl_file (SmartFusion2, IGLOO2, RTG4, PolarFire)
Tcl command to export the BSDL to a specified file. The exported file has a *.bsd file name extension.

export_bsdl_file
-file {absolute path and name of BSDL file}

Arguments
-file {absolute path and name of BSDL file}

Specifies the *.bsd file.

Returns
Returns 0 on success, 1 on failure.

Example
export_bsdl_file\

-file {E:/designs/export/sd1.bsd}

 PolarFire FPGA Tcl Commands User Guide

 51

export_design_summary
This Tcl command exports an HTML file containing information about your root SmartDesign in your project.
The HTML report provides information on:
• Generated Files
• I/Os
• Hardware Instances
• Firmware
• Memory Map

export_design_summary –file {D: /Designs/test/sd1.html}

Returns
Returns 0 on success, 1 on failure.
.

 PolarFire FPGA Tcl Commands User Guide

52

export_netlist_file (SmartFusion2, IGLOO2, RTG4, PolarFire)
Tcl command to export the netlist after the compile state has completed. The netlist can be either Verilog
or VHDL. Microsemi recommends exporting the netlist after the compile state has successfully completed.

export_netlist_file
-file {absolute path and filename for netlist}
-vhdl {value}

Arguments
-file {absolute path and filename}

Specifies the path and name of netlist file.
-vhdl {value}

Generates the netlist in VHDL (when set to 1) or Verilog (when set to 0). Default is 0 (Verilog netlist).

Returns
Returns 0 on success, 1 on failure.

Example
export_netlist_files\

-file {E:/designs/export/sd1/sd1.v}\

-vhdl 0

 PolarFire FPGA Tcl Commands User Guide

 53

export_pin_reports (SmartFusion2, IGLOO2, RTG4, PolarFire)
Tcl command to configure and export a pin report file to a specified folder/directory location.

export_pin_reports
-export_dir {absolute path to folder location}
-pin_report_by_name {value}
-pin_report_by_pkg_pin {value}
-bank_report {value}}
-io_report {value}

Arguments
-export_dir {absolute or relative path to the folder for pin report file}

Specifies the folder.
-pin_report_by_name {value}

Set to 1 to have the pin report sorted by pin name. Default is 1.
- pin_report_by_pkg_pin {value}

Set to 1 to have pin report sorted by package pin number, 0 to not sort by package pin number. Default is
1.
- bank_report {value}

Set to 1 to generate the I/O bank report, 0 to not generate the report. Default is 1.
- io_report {value}

Set to 1 to generate the I/O report, 0 to not generate the report. Default is 1.
At least one argument must be specified for this command.

Returns
Returns 0 on success, 1 on failure.

Example
export_pin_reports\

-export_dir {E:/designs/export}\

-pin_report_by_name {1}\

-pin_report_by_pkg_pin {0}\

-bank_report {1}\

-io_report {1}

 PolarFire FPGA Tcl Commands User Guide

54

export_profiles
Tcl command; exports your tool profiles. Performs the same action as the Export Profiles dialog box.

export_profile -file name [-export value]

Arguments
-file name

Specifies the name of your exported profile.
-export value

Specifies your profile export options. The following table shows the acceptable values for this argument:

Value Description

predefined Exports only predefined profiles

user Exports only user profiles

all Exports all profiles

Example
The following command exports all profiles to the file 'all_profiles':
export_profiles -file all_profiles [-export all]

 PolarFire FPGA Tcl Commands User Guide

 55

export_script
Tcl command; export_script is a command that explicitly exports the Tcl command equivalents of the current
Libero session. You must supply a file name with the -file parameter. You may supply the optional -
relative_path parameter to specify whether an absolute or relative path is used in the exported script file.

export_script\
-file {<absolute or relative path to constraint file>} \
-relative_path <value> \

Arguments
-file {<absolute or relative path to constraint file>}

Specifies the absolute or relative path to the constraint file; there may be multiple -file arguments (see
example below).
-relative_path {<value>}

Sets your option to use a relative or absolute path in the exported script; use 1 for relative path, 0 for
absolute.

Example
export_script -file {./exported.tcl} -relative_path 1

 PolarFire FPGA Tcl Commands User Guide

56

generate_sdc_constraint_coverage (SmartFusion2, IGLOO2,
RTG4, and PolarFire)

Tcl command to generate the constraint coverage report. The constraint coverage report contains
information about the coverage of the paths from associated SDC constraints in the design. Two constraints
coverage reports can be generated, one for Place and Route and one for Timing Verification.
This command is available for the Enhanced Constraint Flow only. To run this command, there is no need to
run Place-and-Route first, but the design must be in the post-synthesis state. The generated constraint
coverage reports (*.xml) are listed in the Reports tab and are physically located in
<prj_folder>/designer/<module>/*constraints_coverage.xml.

generate_sdc_constraint_coverage –tool {PLACEROUTE | VERIFYTIMING}

Arguments
-tool {PLACEROUTE|VERIFYTIMING}

Specifies whether the constraint coverage report is based on the SDC constraint file associated with Place
and Route or associated with Timing Verification.

Returns
Returns 0 on success, 1 on failure.

Example
This command generates the SDC Constraint Coverage report for the SDC file associated with Place and
Route:
generate_sdc_constraint_coverage –tool {PLACEROUTE}

This command generates the SDC Constraint Coverage report for the SDC file associated with Timing
Verification:
generate_sdc_constraint_coverage –tool {VERIFYTIMING}

See Also
Understanding Constraints Coverage Reports

 PolarFire FPGA Tcl Commands User Guide

 57

import_files (Libero SoC)
Tcl command; enables you to import design source files and constraint files.
SmartFusion2, IGLOO2, RTG4, and PolarFire only: For importing constraint files, import_files has retired
the -pdc parameter for SmartFusion2 and IGLOO2. It has been replaced with two new parameters to match
the new design flow. Physical Design Constraints (PDC) Tcl must now be divided between I/O attribute and
pin information from all floorplanning and timing constraints. These commands must now reside in and be
imported as separate files. The new parameters specify the type of *.pdc file being imported.
Use of the -pdc parameter with Smartfusion2 or IGLOO2 families will cause an error. The path to the file can
be absolute or relative but must be enclosed in curly braces { }.
Use the -can_convert_EDN_to_HDL parameter to convert the EDIF file to HDL and then import the
converted HDL file.
Note: The EDIF File is not imported.

import_files
-schematic {file}
-symbol {file}
-smartgen_core {file}
-ccp {file}
-stimulus {file}
-hdl_source {file}
-io_pdc {<absolute or relative path to file>} # For PDC containing I/O attribute and pin info
-fp_pdc {<absolute or relative path to file>} # For PDC containing timing and placement info
-edif {file}
-sdc {file}
-pin {file}
-dcf {file}
-pdc {file}
-gcf {file}
-vcd {file}
-saif {file}
-crt {file}
-simulation {file}
-profiles {file}
-cxf {file}
-templates {file}
-ccz {file}
-wf_stimulus {file}
-modelsim_ini {file}
-can_convert_EDN_to_HDL {true | false

Arguments
-schematic {file}

Specifies the schematics you wish to import into your IDE project. Type parameter must be repeated for
each file.
-symbol {file}

Specifies the symbols you wish to import into your IDE project. Type parameter must be repeated for each
file.
-smartgen_core {file}

Specifies the cores you wish to import into your project. Type parameter must be repeated for each file.
-ccp {file}

Specifies the ARM or Cortex-M1 cores you wish to import into your project. Type parameter must be
repeated for each file.

 PolarFire FPGA Tcl Commands User Guide

58

-stimulus {file}

Specifies HDL stimulus files you wish to import into your project. Type parameter must be repeated for
each file.
-hdl_source {file}

Specifies the HDL source files you wish to import into your project. Type parameter must be repeated for
each file.
-io_pdc {<absolute or relative path to file>}

SmartFusion2 and IGLOO2 only - Specifies the PDC file that contains the I/O attribute and pin
information.
-fp_pdc {<absolute or relative path to file>}

SmartFusion2 and IGLOO2 only - Specifies the PDC file that contains the timing and placement
information.
-edif {file}

Specifies the EDIF files you wish to import into your project. Type parameter must be repeated for each
file. This is a mandatory option if you want to convert EDIF to HDL with the –can_convert_EDN_to_HDL
option.
-can_convert_EDN_to_HDL {true |false |1 | 0} #Boolean {true | false | 1 | 0}

The –edif option is mandatory. If the –edif option is not specified or the –can_convert_EDN_to_HDL is
used with another option, EDIF to HDL conversion will fail.
-constraint_sdc {file}

Specifies the SDC constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_pin {file}

Specifies the PIN constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_dcf {file}

Specifies the DCF constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_pdc {file}

Specifies the PDC constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_gcf {file}

Specifies the GCF constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_vcd {file}

Specifies the VCD constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_saif {file}

Specifies the SAIF constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_crt {file}

Specifies the CRT constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-simulation {file}

Specifies the simulation files you wish to import into your Libero SoC project. Type parameter must be
repeated for each file.
-profiles {file}

Specifies the profile files you wish to import into your Libero SoC project. Type parameter must be
repeated for each file.
-cxf {file}

Specifies the CXF file (such as SmartDesign components) you wish to import into your Libero SoC
project. Type parameter must be repeated for each file.

 PolarFire FPGA Tcl Commands User Guide

 59

-templates {file}

Specifies the template file you wish to import into your IDE project.
-ccz {file}

Specifies the IP core file you wish to import into your project.
-wf_stimulus {file}

Specifies the WaveFormer Pro stimulus file you wish to import into your project.
-modelsim_ini {file}

Specifies the ModelSIM INI file that you wish to import into your project.

Example
The command below imports the HDL source files file1.vhd and file2.vhd:
import_files -hdl_source file1.vhd –hdl_source file2.vhd

 PolarFire FPGA Tcl Commands User Guide

60

new_project
Tcl command; creates a new project in Libero SoC. If you do not specify a location, Libero SoC saves the
new project in your current working directory.

new_project -name project_name\
–use_enhanced_constraint_flow {1 | 0} \
-location project_location -family family_name\
-project_description brief text description of project\
–die device_die -package package_name -hdl HDL_type\
-speed speed_grade -die_voltage value\
-standalone_peripheral_initialization {1 | 0}\
-block_mode {1 | 0}\
-adv_options value

Arguments
-name project_name

The name of the project. This is used as the base name for most of the files generated from Libero SoC.
-use_enhanced_constraint_flow {1 | 0}

Set to 1 to use the Enhanced Constraint Flow or 0 to use the Classic Constraint Flow. Libero SoC’s
Enhanced Constraint Flow provides a single centralized view for you to import, link, edit, check, and
create design constraints and associate the constraints to different design tools in Libero. SoC.
-location project_location

The location of the project. Must not be an existing directory.
-project_description project_description

A brief text description of the design in your project.
-family family_name

The Microsemi SoC device family for your targeted design.
-die device_die

Die for your targeted design.
-package package_name

Package for your targeted design.
-hdl HDL_type

Sets the HDL type for your new project.

Value Description

VHDL Sets your new projects HDL type to VHDL

VERILOG Sets your new projects to Verilog

-speed speed_grade

Sets the speed grade for your project. Possible values depend on your device, die and package. See your
device datasheet for details.
-die_voltage value

Sets the die voltage for your project. Possible values depend on your device. See your device datasheet
for details.
-standalone_peripheral_initialization {1 | 0} (for SmartFusion2 and IGLOO2 only)

Set this option to 1 if you want to build your own peripheral initialization logic in SmartDesign to initialize
each of the peripherals (MDDR/FDDR/SERDES) independently. Set this option to 0 to instruct System
Builder to build the initialization circuitry for MDDR/FDDR/SERDES peripherals.

 PolarFire FPGA Tcl Commands User Guide

 61

-block_mode {1 | 0}

Enter "1" to enable or "0" (default) to disable design block creation.
-adv_options value

Sets your advanced options, such as operating conditions.

Value Description

IO_DEFT_STD:LVTTL Sets your I/O default value to LVTTL.
This value defines the default I/O
technology to be used for any I/Os that
the user does not explicitly set a
technology for in the I/O Editor. It could
be any of :

• LVTTL
• LVCMOS 3.3V
• LVCMOS 2.5V
• LVCMOS 1.8V
• LVCMOS 1.5V
• LVCMOS 1.2V

DSW_VCCA_VOLTAGE_RAMP_RATE (SmartFusion2 and IGLOO2 only)
This value defines the Maximum VDD
and VPP power supply ramp rate .
Power-up management circuitry is
designed into every SmartFusion2 and
IGLOO2 SoC FPGA. These circuits
ensure easy transition from the
powered-off state to powered-up state
of the device. The SmartFusion2,
IGLOO2 system controller is
responsible for systematic power-on
reset whenever the device is powered
on or reset. All the I/Os are held in a
high-impedance state by the system
controller until all power supplies are at
their required levels and the system
controller has completed the reset
sequence. The power-on reset circuitry
in SmartFusion2 and IGLOO2 devices
requires the VDD and VPP supplies to
ramp monotonically from 0 V to the
minimum recommended operating
voltage within a predefined time. There
is no sequencing requirement on VDD
and VPP.
Four ramp rate options are available
during design generation:

• 50 μs
• 1 ms
• 10 ms
• 100 ms

Each selection represents the
maximum ramp rate to apply to VDD

 PolarFire FPGA Tcl Commands User Guide

62

Value Description

and VPP.

PLL_SUPPLY (SmartFusion2, IGLOO2 only)
This value sets the voltage for the
power supply you plan to connect to all
the PLLs in your design, such as
MDDR, FDDR, SERDES and FCCC.
Two Values are available:

• 2.5
• 3.3

RESTRICTPROBEPINS (SmartFusion2, IGLOO2 and RTG4
only)
This value reserves your pins for
probing if you intend to debug using
SmartDebug. Two values are available:

• 1 (Probe pins are reserved)
• 0 (No probe pins are reserved)

RESTRICTSPIPINS (RTG4 only)
Check this box to reserve pins for SPI
functionality in Programming. This
reserved SPI pin option is displayed in
the Compile Report when the compile
process completes.

Two Values are available:
1 (means SPI pins are
reserved)
0 (means no SPI pins are
reserved)

SYSTEM_CONTROLLER_SUSPEND_MODE (SmartFusion2, IGLOO2 only)
Enables SmartFusion2 and IGLOO2
designers to suspend operation of the
System Controller. Enabling this bit
instructs the System Controller to place
itself in a reset state once the device is
powered up. This effectively suspends
all system services from being
performed. For a list of system
services, refer to the SmartFusion2 or
IGLOO2 System Controller user's guide
for your device on the Microsemi
website.
Two values are available:

• 1 (System Controller Suspend
Mode is enabled)

• 0 (System Controller Suspend
Mode is disabled

The following options are for Analysis Operating Conditions (SmartFusion2, IGLOO2,

 PolarFire FPGA Tcl Commands User Guide

 63

Value Description

and RTG4) so that Timing and Power analysis can be performed at different operating
conditions.

TEMPR Sets your default temperature range for
operating condition analysis; can be

• COM (Commercial)
• MIL (Military)
• IND (Industrial).

VCCI_1.2_VOLTR Sets the Default I/O Voltage Range for
1.2V which could be

• COM
• IND
• MIL
• Custom

These settings are propagated to Verify
Timing, Verify Power and
Backannotated Netlist to perform
Timing/Power Analysis

VCCI_1.5_VOLTR Sets the Default I/O Voltage Range for
1.5V which could be

• COM
• IND
• MIL
• Custom

These settings are propagated to Verify
Timing, Verify Power and
Backannotated Netlist to perform
Timing/Power Analysis

VCCI_1.8_VOLTR Sets the Default I/O Voltage Range for
1.8V which could be

• COM
• IND
• MIL
• Custom

These settings are propagated to Verify
Timing, Verify Power and
Backannotated Netlist to perform
Timing/Power Analysis

VCCI_2.5_VOLTR Sets the Default I/O Voltage Range for
2.5V which could be

• COM
• IND
• MIL
• Custom

 PolarFire FPGA Tcl Commands User Guide

64

Value Description

These settings are propagated to Verify
Timing, Verify Power and
Backannotated Netlist to perform
Timing/Power Analysis

VCCI_3.3_VOLTR Sets the Default I/O Voltage Range for
3.3V which could be

• COM
• IND
• MIL
• Custom

These settings are propagated to Verify
Timing, Verify Power and
Backannotated Netlist to perform
Timing/Power Analysis

VOLTR Sets the core voltage range for
operating condition analysis; These
settings are propagated to Verify
Timing, Verify Power and
Backannotated Netlist to perform
Timing/Power Analysis. Can be one of
the following:

• COM (Commercial)
• MIL (Military)
• IND (Industrial)

PART_RANGE Sets your default temperature range for
your project; can be COM
(Commercial), MIL (Military) or IND
(Industrial).

Example
Creates a new project in the directory ./designs/mydesign, with the HDL type Verilog for the SmartFusion2
family.
new_project -location {./designs/mydesign} -name {mydesign}

-use_enhanced_constraint_flow 1

-standalone_peripheral_initialization 1 -hdl {VERILOG} -family

{SmartFusion2} -die {M2S150TS} -package {FCS536} -speed {-1} -die_voltage {1.2}

-adv_options {DSW_VCCA_VOLTAGE_RAMP_RATE:100_MS} -adv_options

{IO_DEFT_STD:LVCMOS 2.5V} -adv_options {PLL_SUPPLY:PLL_SUPPLY_25} -adv_options

{RESTRICTPROBEPINS:1} -adv_options {SYSTEM_CONTROLLER_SUSPEND_MODE:0}

-adv_options {TEMPR:IND} -adv_options {VCCI_1.2_VOLTR:IND} -adv_options

{VCCI_1.5_VOLTR:IND} -adv_options {VCCI_1.8_VOLTR:IND} -adv_options

{VCCI_2.5_VOLTR:IND} -adv_options {VCCI_3.3_VOLTR:IND} -adv_options {VOLTR:IND}

 PolarFire FPGA Tcl Commands User Guide

 65

open_project
Tcl command; opens an existing Libero SoC project.

open_project project_name-do_backup_on_convert value-backup_file backup_filename

Arguments
project_name

Must include the complete path to the PRJ file. If you do not provide the full path, Libero SoC infers that
you want to open the project from your current working directory.
-do_backup_on_convert value

Sets the option to backup your files if you open a project created in a previous version of Libero SoC.

Value Description

TRUE Creates a backup of your original project before opening

FALSE Opens your project without creating a backup

-backup_file backup_filename

Sets the name of your backup file (if you choose to do_backup_on_convert).

Example
Open project.prj from the c:/netlists/test directory.
open_project c:/netlists/test/project.prj

See Also
close_project

new_project

save_project

 PolarFire FPGA Tcl Commands User Guide

66

organize_constraints
Tcl command; organizes the constraint files in your project.

-organize_constraints
[-file name]*
[-mode value]
-designer_view name
-module value
-tool value

Arguments
-file name

Specifies the name of the file to which you want to associate your stimulus files.
-mode value

Specifies whether you are creating a new stimulus association, adding, or removing; possible values are:

Value Description

new Creates a new stimulus file association

add Adds a stimulus file to an existing association

remove Removes an stimulus file association

-designer_view name

Sets the name of the Designer View in which you wish to add the constraint file, where name is the name
of the view (such as impl1).
-module value

Sets the module, where value is the name of the module.
-tool value

Identifies the intended use for the file, possible values are:

Value Description

synthesis File to be used for synthesis

designer File to be used in Designer

phsynth File to be used in physical synthesis

Example
The example adds the constraint file delta.vhd in the Designer View impl2 for the Designer tool.
-organize_constraints -file delta.vhd -mode new -designer_view impl2 -module constraint
-tool designer

 PolarFire FPGA Tcl Commands User Guide

 67

organize_sources
Tcl command; organizes the source files in your project.

Arguments
-organize_sources
[-file name]*
[-mode value]
-module value
-tool value
[-use_default value]

Arguments
-file name

Specifies the name of the file to which you want to associate your stimulus files.
-mode value

Specifies whether you are creating a new stimulus association, adding, or removing; possible values are:

Value Description

new Creates a new stimulus file association

add Adds a stimulus file to an existing association

remove Removes an stimulus file association

-module value

Sets the module, where value is the name of the module.
-tool value

Identifies the intended use for the file, possible values are:

Value Description

synthesis File to be used for synthesis

simulation File to be used for simulation

-use_default value

Uses the default values for synthesis or simulation; possible values are:

Value Description

TRUE Uses default values for synthesis or simulation.

FALSE Uses user-defined values for synthesis or simulation

Example
The example organizes a new stimulus file 'stim.vhd' using default settings.

 PolarFire FPGA Tcl Commands User Guide

68

-organize_sources -file stim.vhd -mode new -module stimulus -tool synthesis -use_default
TRUE

 PolarFire FPGA Tcl Commands User Guide

 69

organize_tool_files (SmartFusion2, IGLOO2, RTG4, PolarFire)
This Tcl command is used to specify specific constraint files to be passed to and used by a Libero tool.

organize_tool_files \
-tool {tool_name}
-params {tool parameters}
-file {<absolute or relative path to constraint file>} \
-module {$design::work} \
-input_type {value}

Arguments
-tool {<tool_name>}

Specifies the name of the tool files you want to organize. Valid values are:
SYNTHESIZE | SIM_PRESYNTH | SIM_POSTSYNTH | SIM_POSTLAYOUT | VERIFYTIMING
-file {<absolute or relative path to constraint file>}

Specifies the absolute or relative path to the constraint file; there may be multiple -file arguments (see
example below).
-module {<design::work>}

Module definition, format is <$design:work>.
-input_type {<constraint>}

Specifies type of input file. Possible values are: constraint | source | simulation | stimulus |
unknown

Example
The following command organizes the test_derived.sdc and user.sdc files of SDC file type for the tool
VERIFYTIMING for the sd1: work design.
organize_tool_files \
 -tool {VERIFYTIMING} \
 -file {D:/Designs/my_proj/constraints/test_derived.sdc} \
 -file {D:/Designs/my_proj/constraints/user.sdc} \
 -module {sd1::work} \
 -input_type {constraint}

 PolarFire FPGA Tcl Commands User Guide

70

 project_settings
This Tcl command modifies project flow settings for your Libero SoC project.

project_settings [-hdl "VHDL | VERILOG"]\
[-verilog_mode {VERILOG_2K | SYSTEM_VERILOG}] \
[-vhdl_mode {VHDL_2008 | VHDL_93}]\
[-auto_update_modelsim_ini "TRUE | FALSE"]\
[-auto_update_viewdraw_ini "TRUE | FALSE"]\
[-block_mode "TRUE | FALSE"]\
[-vm_netlist_flow TRUE | FALSE | 1 | 0]\
[-auto_generate_synth_hdl "TRUE | FALSE"]\
[-auto_run_drc "TRUE | FALSE"]\
[-auto_generate_viewdraw_hdl "TRUE | FALSE"\
[-auto_file_detection "TRUE | FALSE"]\
 [-standalone_peripheral_initialization "1 | 0"]\
[-enable_design_separation “1|0”]\
[-enable_set_mitigation “1|0”]\
[-display_fanout_limit {integer}]

Arguments
-hdl "VHDL | VERILOG"

Sets your project HDL type.
-verilog_mode {VERILOG_2K | SYSTEM_VERILOG}

Sets the Verilog standard to Verilog-2001 or System Verilog.
-vhdl_mode {VHDL_2008 | VHDL_93}

Sets the VHDL standard to VHDL-2008 or VHDL-1993.
-auto_update_modelsim_ini "TRUE | FALSE"

Sets your auto-update modelsim.ini file option. TRUE updates the file automatically.
-auto_update_viewdraw_ini "TRUE | FALSE"

Sets your auto-update viewdraw.ini file option. TRUE updates the file automatically.
-block_mode "TRUE | FALSE"

Puts the Project Manager in Block mode, enables you to create blocks in your project.
-vm_netlist_flow “TRUE | FALSE | 1 | 0” (SmartFusion 2 and IGLOO 2 only)

Sets to TRUE to generate Verilog netlist from Synthesis. Default is FALSE.
-auto_generate_synth_hdl "TRUE | FALSE"

Auto-generates your HDL file after synthesis (when set to TRUE).
-auto_run_drc "TRUE | FALSE"

Auto-runs the design rule check immediately after synthesis (when set to TRUE).
-auto_generate_viewdraw_hdl "TRUE | FALSE"

Auto-generates your HDL netlist after a Save & Check in ViewDraw (when set to TRUE).
-auto_file_detection "TRUE | FALSE"

Automatically detects when new files have been added to the Libero SoC project folder (when set to
TRUE).
-standalone_peripheral_initialization “1|0”

When set to 1, this option instructs System Builder not to build the initialization circuitry for your
Peripherals. Set this option to 1 if you want to build your own peripheral initialization logic in SmartDesign
to initialize each of the peripherals (MDDR/FDDR/SERDES) independently.
-enable_design_separation “1|0”

Set it to “1” if your design is for security and safety critical applications and you want to make your
design’s individual subsystems (design blocks) separate and independent (in terms of physical layout and

 PolarFire FPGA Tcl Commands User Guide

 71

programming) to meet your design separation requirements. When set to “1”, Libero generates a
parameter file (MSVT.param) that details design blocks present in the design and the number of signals
entering and leaving a design block. Microsemi provides a separate tool, known as Microsemi Separation
Verification Tool (MSVT), which checks the final design place and route result against the MSVT.param
file and determines whether the design separation meets your requirements.
-enable_set_mitigation “1|0”

This option controls the mitigation of Single Event Transient (SET) in the FPGA fabric. When set to 1, the
SET filters are turned on globally to help mitigate radiation-induced transients. The default is “0”. This
option is available for RTG4 devices only.
-display_fanout_limit {integer}

Use this option to set the limit of high fanout nets to be displayed; the default value is 10. This means the
top 10 nets with the highest fanout will appear in the <root>_compile_netlist.log file.

Example
The following example sets your project to VHDL, disables the auto-update of the ModelSim INI or
ViewDraw INI files, enables the auto-generation of HDL after synthesis, enables auto-detection for files, sets
the display of high fanout nets to the top 12 high fanout nets, enables SET filters to mitigate radiation-
induced transients, and enables design separation methodology for the design.
project_settings -hdl "VHDL" \

-auto_update_modelsim_ini "FALSE" \

-auto_update_viewdraw_ini "FALSE"\

-block_mode "FALSE" -auto_generate_synth_hdl "TRUE”\

-auto_file_detection "TRUE"\

-display_fanout_limit {12}\

-enable_set_mitigation {1}\

-enable_design_separation {1}

 PolarFire FPGA Tcl Commands User Guide

72

refresh
Tcl command; refreshes your project, updates the view and checks for updated links and files.

refresh .

Example
refresh

 PolarFire FPGA Tcl Commands User Guide

 73

remove_core
Tcl command; removes a core from your project.

remove_core -name core_name

Arguments
-name core_name

Name of the core you want to remove.

Example
Remove the core ip-beta2:
remove_core -name ip-beta2.ccz

 PolarFire FPGA Tcl Commands User Guide

74

remove_library
Tcl command; removes a VHDL library from your project.

remove_library
-library name

Arguments
-library name

Specifies the name of the library you wish to remove.

Example
Remove (delete) a library called 'my_lib'.
remove_library –library my_lib

See Also
add_library

rename_library

 PolarFire FPGA Tcl Commands User Guide

 75

remove_profile
Tcl command; deletes a tool profile.

remove_profile -name profilename

Arguments
-name profilename

Specifies the name of the profile you wish to delete.

Example
The following command deletes the profile 'custom1':
remove_profile -name custom1

 PolarFire FPGA Tcl Commands User Guide

76

rename_file
This Tcl command renames a constraint file specified by the –file parameter to a different name specified
by the –target parameter.

rename_file -file {filename} -target {new_filename}

Arguments
-file {filename}

Specifies the original name of the file.
-target {new_filename}

Specifies the new name of the file.

Example
This command renames the file a.sdc to b.sdc.
rename_file -file {c:/user/a.sdc} -target {c:/user/b.sdc}

Return Value
This command returns 0 on success and 1 on failure.

 PolarFire FPGA Tcl Commands User Guide

 77

rename_library
Tcl command; renames a VHDL library in your project.

rename_library
-library name
 -name name

Arguments
-library name

Identifies the current name of the library that you wish to rename.
-name name

Specifies the new name of the library.

Example
Rename a library from 'my_lib' to 'test_lib1'
rename_library –library my_lib -name test_lib1

See Also
add_library

remove_library

 PolarFire FPGA Tcl Commands User Guide

78

run_tool (SmartFusion2, IGLOO2, RTG4, PolarFire)
run_tool starts the specified tool. For tools that support command files, an optional command file can be
supplied through the -script parameter.

run_tool
-name {<tool_name >} \
-script {<absolute or relative path to script file>}

-script is an optional parameter.
tool_name ::= SYNTHESIZE | COMPILE | SIM_PRESYNTH | SIM_POSTSYNTH | SIM_POSTLAYOUT |
PLACEROUTE | VERIFYTIMING | VERIFYPOWER | GENERATEPROGRAMMINGFILE | GENERATE_MEMORY_MAP
| PROGRAMDEVICE | CONFIGURE_CHAIN | SMARTDEBUG | SSNANALYZER | UPDATE_ENVM |
UPDATE_UPROM

Return
run_tool returns 0 on success and 1 on failure.

Supported tool_names
The following table lists tool_names for run_tool –name {tool_name}.

tool_name Parameter Description

SYNTHESIZE -script
{script_fi
le}

Runs synthesis on your design.

COMPILE N/A Runs Compile with default or configured settings.

SIM_PRESYNTH N/A Runs pre-synthesis simulation with your default
simulation tool

SIM_POSTSYNT
H

N/A Runs post-synthesis simulation with your default
simulation tool.

SIM_POSTLAYO
UT

N/A Runs post-layout simulation with your default
simulation tool.

PLACEROUTE N/A Runs Layout with default or configured settings.

VERIFYTIMING -script
{script_fi
le}

Runs timing analysis with default
settings/configured settings in script_file.

VERIFYPOWER -script
{script_fi
le}

Runs power analysis with default
settings/configured settings in script_file.

GENERATEPRO
GRAMMINGFILE

N/A Generates the bitstream used for programming
within Libero.

GENERATE_ME
MORY_MAP

N/A Exports an XML file in <prj_folder>
component/work/<design>
/<design>_DataSheet.xml. The file contains
information about your root SmartDesign in your
project.

 PolarFire FPGA Tcl Commands User Guide

 79

tool_name Parameter Description

PROGRAMDEVI
CE

N/A Programs your device with configured
parameters.

CONFIGURE_C
HAIN

-script
{script_fi
le}

Takes a script that contains FlashPro-specific Tcl
commands and passes them to FlashPro
Express for execution.

SMARTDEBUG -script
{script_fi
le}

Takes a script that contains SmartDebug-specific
Tcl commands and passes them to SmartDebug
for execution.

SSNANALYZER -script
{script_fi
le}

Takes a script that contains Simultaneous
Switching Noise (SSN)-specific Tcl commands
and passes them to the SSN tool for execution.
Simultaneous Switching Noise (SSN) is a Libero
SoC tool that analyzes and generates a Nosie
Margin report for I/Os after layout.

UPDATE_ENVM
(SmartFusion2
and IGLOO2
only)

-script
{update_co
nfig_file}

Takes a script file that updates the client(s) in the
ENVM. In the script file, the client(s) to be
updated may be a serialization client or a data
storage client or a mix of serialization clients and
data storage clients.

UPDATE_UPRO
M (RTG4 Only)

-script
{update_co
nfig_file}

Takes a script that updates the data storage
client(s) in RTG4 UPROMs.

-script {absolute or relative path to script file}

Script file location.

Example
run_tool \

-name {COMPILE}

run_tool \

-name {SYNTHESIZE} -script {./control_synopsys.tcl}

#control _synopsys.tcl contains the synthesis-specific Tcl commands
run_tool \

-name {VERIFYTIMING} \

-script {./SmartTime.tcl}

Script file contains SmartTime-specific Tcl commands
run_tool \

-name {VERIFYPOWER} \

-script {./SmartPower.tcl}

Script file contains SmartPower-specific Tcl commands
run_tool \

-name {SMARTDEBUG}

-script {./sd_test.tcl}

Script file contains SmartDebug-specific Tcl commands
run_tool \

 PolarFire FPGA Tcl Commands User Guide

80

-name {SSNANALYZER}

-script {<full_path>/ssn.tcl}

Script file contains the SSN-specific Tcl commands

Note
Where possible, the value of tool_name corresponds to the name of the tool in Libero SoC.
Invoking some tools will cause Libero SoC to automatically run some upstream tools in the design flow. For
example, invoking Place and Route will invoke Synthesis (if not already run) before it runs Place and Route.

 PolarFire FPGA Tcl Commands User Guide

 81

save_project_as
Tcl command; the save_project_as command saves the current project in Libero SoC with a different
name and in a specified directory. You must specify a location with the -location parameter.

save_project_as
-name project_name
-location project_location
-files value
-designer_views value
-replace_links value

Arguments
-name project_name

Specifies the name of your new project.
-location project_location

Must include the complete path of the PRJ file. If you do not provide the full path, Libero SoC infers that
you want to save the project to your current working directory. This is a required parameter.
 -files value

Specifies the files you want to copy into your new project.

Value Description

all Copies all your files into your new project

project Copies only your Libero SoC project files into your new project

source Copies only the source files into your new project

none Copies none of the files into your new project; useful if you wish to manually
copy only specific project files

-designer_views value

Specifies the Designer views you wish to copy into your new project.

Value Description

all Copies all your Designer views into your new project

current Copies only your current Designer fiew files into your new project

none Copies none of your views into your new project

-replace_links value

Specifies whether or not you want to update your file links in your new project.

Value Description

true Replaces (updates) the file links in your project during your save

 PolarFire FPGA Tcl Commands User Guide

82

Value Description

false Saves your project without updating the file links

Example
Saves your current Libero SoC project as mydesign.prj in the c:/netlists/testprj/mydesign directory:
save_project_as -location c:/netlists/testprj/mydesign -name mydesign.prj

See Also
new_project

open_project

save_project

 PolarFire FPGA Tcl Commands User Guide

 83

save_log
Tcl command; saves your Libero SoC log file.

save_log -file value

Arguments
-file value

Value is your name for the new log file.

Example
Save the log file file_log.
save_log -file file_log

See Also
close_project

new_project

 PolarFire FPGA Tcl Commands User Guide

84

save_project
Tcl command; the save_project command saves the current project in Libero SoC.

save_project

Arguments
None

Example
Saves the project in your current working directory:
save_project

See Also
new_project

open_project

 PolarFire FPGA Tcl Commands User Guide

 85

select_profile
Tcl command; selects a profile to use in your project.

select_profile -name profilename

Arguments
-name profilename

Specifies the name of the profile you wish to use.

Example
The following command selects the profile 'custom1':
select_profile -name custom1

 PolarFire FPGA Tcl Commands User Guide

86

set_actel_lib_options
Tcl command; the set_actel_lib_options command sets your simulation library to default, or to another
library (when you specify a path.

set_actel_lib_options -use_default_sim_path value -sim_path {path}

Arguments
-use_default_sim_path value

Possible values are:

Value Description

TRUE Uses the default simulation library.

FALSE Disables the default simulation library; enables you to specify a different
simulation library with the -sim_path {path} option.

-sim_path {path}

Specifies the path to your simulation library.

Example
Uses a simulation library in the directory c:\sim_lib\test.
set_actel_lib_options -use_default_sim_path FALSE -sim_path {c:\sim_lib\test}

 PolarFire FPGA Tcl Commands User Guide

 87

set_as_target
This Tcl command sets a SDC, PDC or FDC file as the target file to receive and store new constraints.

set_as_target -type {constraint_file_type} \
-file {constraint_file_path}

Arguments
-type {sdc | pdc | fdc}

Specifies the file type: SDC, PDC, or FDC.

Example
This command sets the SDC file <project_folder> /constraints/user.sdc as the target to receive and store
new SDC commands.
set_as_target -type {sdc} -file {./constraint/user.sdc}

This command sets the PDC file <project_folder> /constraints/user.pdc as the target to receive and store
new PDC commands.
set_as_target -type {pdc} -file {./constraint/user.pdc}

Return Value
This command returns 0 on success and 1 on failure.

 PolarFire FPGA Tcl Commands User Guide

88

set_device (Project Manager)
Tcl command; sets your device family, die, and package in the Project Manager.

set_device [-family family] [-die die] [-package package].[-speed speed_grade] [-adv_options
value]

Arguments
-family family

Sets device family.
-die die

Sets device die.
-package package

Sets device package.
-speed speed_grade

Sets device speed grade.
-adv_options value

Sets your advanced options, such as temperature and voltage settings.

Value Description

IO_DEFT_STD:LVTTL Sets your I/O default value to LVTTL

TEMPR:COM Sets your default temperature range; can be COM
(Commercial), MIL (Military) or IND (industrial).

VCCI_1.5_VOLTR:COM Sets VCCI to 1.5 and voltage range to Commercial

VCCI_1.8_VOLTR:COM Sets VCCI to 1.8 and voltage range to Commercial

VCCI_2.5_VOLTR:COM Sets VCCI to 2.5 and voltage range to Commercial

VCCI_3.3_VOLTR:COM Sets VCCI to 3.3 and voltage range to Commercial

VOLTR:COM Sets your voltage range; can be COM (Commercial), MIL
(Military) or IND (industrial).

RESTRICTPROBEPINS:1 (For SmartFusion2, IGLOO2 and RTG4 only) Sets to 1 to
reserve your pins for probing if you intend to debug using
SmartDebug.

RESTRICTSPIPINS:1 (RTG4 only) Sets to 1 to reserve pins for SPI functionality
in Programming. This reserved SPI pin option is displayed
in the Compile Report when the compile process
completes.

RAD_EXPOSURE:100 (RTG4 only) Specifies the radiation exposure in Krad. Valid
range is 0 to 300.

Example
Set your device to Fusion, your die to AFS600, and your package to 484 FBGA
set_device [-family fusion] [-die afs600] [-package "484 FBGA"]

 PolarFire FPGA Tcl Commands User Guide

 89

set_modelsim_options
Tcl command; sets your ModelSim simulation options.

set_modelsim_options
[-use_automatic_do_file value]
[-user_do_file {path}]
[-sim_runtime {value}]
[-tb_module_name {value}]
[-tb_top_level_name {value}]
[-include_do_file value
[-included_do_file {value}]
[-type {value}]
[-resolution {value}]
[-add_vsim_options {value}]
[-display_dut_wave value]
[-log_all_signals value]
[-do_file_args value]
[-dump_vcd "TRUE | FALSE"]
[-vcd_file "VCD file name"]

Arguments
-use_automatic_do_file value

Uses an automatic.do file in your project. Possible values are:

Value Description

TRUE Uses the default automatic.do file in your project.

FALSE Uses a different *.do file; use the other simulation options to specify it.

-user_do_file {path}

Specifies the location of your user-defined *.do file.
-sim_runtime {value}

Sets your simulation runtime. Value is the number and unit of time, such as {1000ns}.
-tb_module_name {value}

Specifies your testbench module name, where value is the name.
-tb_top_level_name {value}

Sets the top-level instance name in the testbench, where value is the name.
-include_do_file value

Includes a *.do file; possible values are:

Value Description

TRUE Includes the *.do file.

FALSE Does not include the *.do file

-included_do_file {value}

Specifies the name of the included *.do file, where value is the name of the file.

 PolarFire FPGA Tcl Commands User Guide

90

-type {value}

Resolution type; possible values are:

Value Description

min Minimum

typ Typical

max Maximum

-resolution {value}
Sets your resolution value, such as {1ps}.
-add_vsim_options {value}

Adds more Vsim options, where value specifies the option(s).
-display_dut_wave value
Enables ModelSim to display signals for the tested design; possible values are:

Value Description

0 Displays the signal for the top_level_testbench

1 Enables ModelSim to display the signals for the tested design

-log_all_signals value
Enables you to log all your signals during simulation; possible values are:

Value Description

TRUE Logs all signals

FALSE Does not log all signals

-do_file_args value

Specifies *.do file command parameters.
-dump_vcd value

Dumps the VCD file when simulation is complete; possible values are:

Value Description

TRUE Dumps the VCD file

FALSE Does not dump the VCD file

-vcd_file {value}

Specifies the name of the dumped VCD file, where value is the name of the file.

Example
Sets ModelSim options to use the automatic *.do file, sets simulation runtime to 1000ns, sets the
testbench module name to "testbench", sets the testbench top level to <top>_0, sets simulation type to
"max", resolution to 1ps, adds no vsim options, does not log signals, adds no additional DO file
arguments, dumps the VCD file with a name power.vcd.

 PolarFire FPGA Tcl Commands User Guide

 91

set_modelsim_options -use_automatic_do_file 1 -sim_runtime {1000ns} -tb_module_name
{testbench} -tb_top_level_name {<top>_0} -include_do_file 0 -type {max} -resolution
{1ps} -add_vsim_options {} -display_dut_wave 0 -log_all_signals 0 -do_file_args {} -
dump_vcd 0 -vcd_file {power.vcd}

 PolarFire FPGA Tcl Commands User Guide

92

set_option
Tcl command; sets your synthesis options on a module.

set_option [-synth "TRUE | FALSE"] [-module "module_name"]

Arguments
-synth "TRUE | FALSE"

Runs synthesis (for a value of TRUE).
-module module_name

Identifies the module on which you will run synthesis.

Example
Run synthesis on the module test1.vhd:
set_option [-synth TRUE] [-module <module_name>]

 PolarFire FPGA Tcl Commands User Guide

 93

set_root
Tcl command; sets the module you specify as the root.

set_root module_name

Arguments
set_root module_name

Specifies the name the module you want to set as root.

Example
Set the module mux8 as root:
set_root mux8

 PolarFire FPGA Tcl Commands User Guide

94

set_user_lib_options
Tcl command; sets your user library options during simulation. If you do not use a custom library these
options are not available.

set_user_lib_options
-name {value}
-path {path}
-option {value}

Arguments
-name {value}

Sets the name of your user library.
-path {path}

Sets the pathname of your user library.
-option {value}

Sets your default compile options on your user library; possible values are:

Value Description

do_not_compile User library is not compiled

refresh User library is refreshed

compile User library is compiled

recompile User library is recompiled

refresh_and_compile User library is refreshed and compiled

Example
The example below sets the name for the user library to "test1", the path to
c:/actel_des_files/libraries/test1, and the compile option to "do not compile".
set_user_lib_options -name {test1} -path {c:/actel_des_files/libraries/test1} -option
{do_not_compile}

 PolarFire FPGA Tcl Commands User Guide

 95

unlink
Tcl command; removes a link to a file in your project.

unlink -file filename [-local local_filename]

Arguments
-file filename

Name of the linked (remote) file you want to unlink.
-local local_filename

Name of the local file that you want to unlink.

Example
Unlink the file hdl1.vhd from my local file test.vhd
unlink -file hdl1.vhd [-local test.vhd]

 PolarFire FPGA Tcl Commands User Guide

96

unset_as_target
This Tcl command unsets a target file in the Constraints view.

unset_as_target -file {filename}

Arguments
-file {filename}

Specifies the name of the file to be unset as a target.

Example
This command unsets the PDC file <project_folder> /constraints/user.pdc:
unset_as_target -file {c:/user/a_io.pdc}

Return Value
This command returns 0 on success and 1 on failure.

 PolarFire FPGA Tcl Commands User Guide

 97

use_file
Tcl command; specifies which file in your project to use.

use_file
-file value
 -module value
 -designer_view value

Arguments
-filevalue

Specifies the EDIF or ADB file you wish to use in the project. Value is the name of the file you wish use
(including the full pathname).
-module value

Specifies the module in which you want to use the file.
-designer_view value

Specifies the Designer View in which you wish to use the file.

Example
Specify file1.edn in the ./project/synthesis directory, in the module named top, in the Designer View
named impl1.
use_file –file “./project/synthesis/file1.edn” –module “top” –designer_view “Impl1”

See Also
use_source_file

 PolarFire FPGA Tcl Commands User Guide

98

use_source_file
Tcl command; defines a module for your project.

use_source_file
-file value
 -module value

Arguments
-file value

Specifies the Verilog or VHDL file. Value is the name of the file you wish use (including the full pathname).
-module value

Specifies the module in which you want to use the file.

Example
Specify file1.vhd in the ./project/hdl directory, in the module named top.
use_source_file –file “./project/hdl/file1.vhd” –module “top"

See Also
use_file

 PolarFire FPGA Tcl Commands User Guide

 99

SmartPower Tcl Commands

 PolarFire FPGA Tcl Commands User Guide

100

smartpower_add_new_scenario
Tcl command; creates a new scenario.

smartpower_add_new_scenario -name {value} -description {value} -mode {value}

Arguments
-name {value}

Specifies the name of the new scenario.
-description {value}

Specifies the description of the new scenario.
-mode {<operating mode>:<duration>}+

Specifies the mode(s) and duration(s) for the specified scenario.

Examples
This example creates a new scenario called myscenario:
smartpower_add_new_scenario -name "MyScenario" -mode "Custom_1:50.00"

"Custom_2:25.00" -mode "Active:25.00"

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 101

smartpower_add_pin_in_domain
Tcl command; adds a pin into a clock or set domain.

smartpower_add_pin_in_domain -pin_name {pin_name} -pin_type {value} –domain_name
{domain_name} -domain_type {value}

Arguments
-pin_name {pin_name}

Specifies the name of the pin to add to the domain.
-pin_type {value}

Specifies the type of the pin to add. The following table shows the acceptable values for this argument:

Value Description

clock The pin to add is a clock pin

data The pin to add is a data pin

-domain_name {domain_name}

Specifies the name of the domain in which to add the specified pin.
-domain_type {value}

Specifies the type of domain in which to add the specified pin. The following table shows the acceptable
values for this argument:

Value Description

clock The domain is a clock domain

set The domain is a set domain

Notes
• The domain_name must be a name of an existing domain.
• The pin_name must be a name of a pin that exists in the design.

Examples
The following example adds a clock pin to an existing Clock domain:
smartpower_add_pin_in_domain -pin_name { XCMP3/U0/U1:Y } -pin_type {clock} –domain_name
{clk1} -domain_type {clock}

The following example adds a data pin to an existing Set domain:
smartpower_add_pin_in_domain -pin_name {XCMP3/U0/U1:Y} -pin_type {data} -domain_name
{myset} -domain_type {set}

See Also
Tcl documentation conventions
smartpower_remove_pin_of_domain

 PolarFire FPGA Tcl Commands User Guide

102

smartpower_battery_settings
This SmartPower Tcl command sets the battery capacity in SmartPower. The battery capacity is used to
compute the battery life of your design.

smartpower_battery_settings -capacity {decimal value}

Parameters
-capacity {decimal value}

Value must be a positive decimal.
This parameter is mandatory.

Exceptions
None

Returns
This command does not return a value.

Usage
This section parameters for the command, their types, and the values they can be set to.

smartpower_battery_settings Type Value Description

capacity Decimal Positive decimal Specify the battery capacity in mA*Hours

Example
This example sets the battery capacity to 1800 mA * Hours.
smartpower_battery_settings –capacity {1800}

 PolarFire FPGA Tcl Commands User Guide

 103

smartpower_change_clock_statistics
Tcl command; changes the default frequencies and probabilities for a specific domain.

smartpower_change_clock_statistics -domain_name {value} -clocks_freq {value} -
clocks_proba {value} -registers_freq {value} -registers_proba {value} -set_reset_freq
{value} -set_reset_proba {value} -primaryinputs_freq {value} -primaryinputs_proba {value} -
combinational_freq {value} -combinational_proba {value}

Arguments
-domain_name{value}

Specifies the domain name in which to initialize frequencies and probabilities.
-clocks_freq {value}

Specifies the user input frequency in Hz, KHz, or MHz for all clocks.
-clocks_proba {value}

Specifies the user input probability in % for all clocks.
-registers_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-registers_proba {value}

Specifies the user input probability in % for all registers.
-set_reset_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-set_reset_proba {value}

Specifies the user input probability in % for all set/reset nets.
-primaryinputs_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-primaryinputs_proba {value}

Specifies the user input probability in % for all primary inputs.
-combinational_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-combinational_proba {value}

Specifies the user input probability in % for all combinational combinational output.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all clocks withs:
smartpower_change_clock_statistics -domain_name {my_domain} -clocks_freq {10 MHz} -
clocks_proba {20} -registers_freq {10 MHz} -registers_proba {20} -set_reset_freq {10
MHz} -set_reset_proba {20} -primaryinputs_freq {10 MHz} -primaryinputs_proba {20} -
combinational_freq {10 MHz} -combinational_proba {20}

 PolarFire FPGA Tcl Commands User Guide

104

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 105

smartpower_change_setofpin_statistics
Tcl command; changes the default frequencies and probabilities for a specific set.

smartpower_change_setofpin_statistics -domain_name {value} -data_freq {value} -
data_proba {value}

Arguments
-domain_name{value}

Specifies the domain name in which to initialize data frequencies and probabilities.
-data_freq {value}

Specifies the user input data frequency in Hz, KHz, or MHz for all sets of pins.
-data_proba {value}

Specifies the user input data probability in % for all sets of pins.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all clocks withs:
smartpower_change_setofpin_statistics -domain_name {my_domain} -data_freq {10 MHz} -
data_proba {20}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

106

smartpower_commit
Tcl command; saves the changes to the design (.adb) file.

smartpower_commit

Arguments
None

Examples
smartpower_commit

See Also
Tcl documentation conventions
smartpower_restore

 PolarFire FPGA Tcl Commands User Guide

 107

smartpower_compute_vectorless
This Tcl command executes a vectorless analysis of the current operating mode.

Arguments
None

Example
smartpower_compute_vectorless

See Also
Tcl Command Documentation Conventions

 PolarFire FPGA Tcl Commands User Guide

108

smartpower_create_domain
Tcl command; creates a new clock or set domain.

smartpower_create_domain -domain_type {value} -domain_name {domain_name}

Arguments
-domain_type {value}

Specifies the type of domain to create. The following table shows the acceptable values for this argument:

Value Description

clock The domain is a clock domain

set The domain is a set domain

-domain_name {domain_name}

Specifies the name of the new domain.

Notes
The domain name cannot be the name of an existing domain.
The domain type must be either clock or set.

Examples
The following example creates a new clock domain named "clk2":
smartpower_create_domain -domain_type {clock} -domain_name {clk2}

The following example creates a new set domain named "myset":
smartpower_create_domain -domain_type {set} -domain_name {myset}

See Also
Tcl documentation conventions
smartpower_remove_domain

 PolarFire FPGA Tcl Commands User Guide

 109

smartpower_edit_scenario
Tcl command; edits a scenario.

smartpower_edit_scenario -name {value} -description {value} -mode {value} -new_name {value}

Arguments
-name {value}

Specifies the name of the scenario.
-description {value}

Specifies the description of the scenario.
-mode {<operating mode>:<duration>}

Specifies the mode(s) and duration(s) for the specified scenario.
-new_name {value}

Specifies the new name for the scenario

Examples
This example edits the name of myscenario to finalscenario:
smartpower_edit_scenario -name myscenario -new_name finalscenario

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

110

smartpower_import_vcd
This SmartPower Tcl command imports into SmartPower a VCD file generated by a simulation tool.
SmartPower extracts the frequency and probability information from the VCD.

import_vcd -file "VCD file" [-opmode "mode name"] [-with_vectorless "TRUE | FALSE"] [-
partial_parse\ "TRUE | FALSE"] [-start_time "decimal value"] [-end_time "decimal value"]
\

[-auto_detect_top_level_name "TRUE | FALSE"] [-top_level_name "top level name"] [-
glitch_filtering\ "false | auto | true"] [-glitch_threshold "integer value"] [-stop_time
"decimal value"]

Parameters
-file "VCD file"

Value must be a file path. This parameter is mandatory.
[-opmode "mode name"]

Value must be a string. This parameter is optional.
[-with_vectorless "TRUE | FALSE"]

Value must be a boolean. This parameter is optional.
[-partial_parse "TRUE | FALSE"]

Value must be a boolean. This parameter is optional.
[-start_time "decimal value"]

Value must be a positive decimal. This parameter is optional.
[-end_time "decimal value"]

Value must be a positive decimal. This parameter is optional.
[-auto_detect_top_level_name "TRUE | FALSE"]

Value must be a boolean. This parameter is optional.
[-top_level_name "top level name"]

Value must be a string. This parameter is optional.
[-glitch_filtering "false | auto | true"]

Value must be one of false | auto | true. This parameter is optional.
[-glitch_threshold "integer value"]

Value must be a positive integer. This parameter is optional.

Exceptions
None

Returns
This command does not return a value.
Usage
This section lists all the parameters for the command, their types, and the values they can be set to. The
default value is always listed first.

smartpower_import_vcd Type Values Description

file String Path to a VCD file Path to a VCD file.

opmode String Operating mode
name “Active” by
default

Operating mode in
which the VCD will be
imported. If the mode

 PolarFire FPGA Tcl Commands User Guide

 111

smartpower_import_vcd Type Values Description

doesn’t exist, it will be
created.

with_vectorless Boolean TRUE|FALSE Specify the method to
set the frequency and
probability information
for signals not
annotated by the VCD
TRUE: use the
vectorless analysis
FALSE: use average
value computed from
the VCD.

partial_parse Boolean FALSE|TRUE Enable partial parsing of
the VCD. Start time and
end time need to be
specified when TRUE.

start_time Decimal
value

positive decimal
nanoseconds (ns)

Specify the starting
timestamp of the VCD
extraction in ns. It must
be lower than the
specified end_time. It
must be lower than the
last timestamp in the
VCD file.

end_time Decimal
value

positive decimal
nanoseconds (ns)

Specify the end
timestamp of the VCD
extraction in ns. It must
be higher than the
specified start_time.

auto_detect_top_level_name Boolean TRUE|FALSE Enable the auto
detection of the top level
name in the VCD file.
Top_level_name needs
to be specified when
FALSE .

top_level_name Boolean Full hierarchical
name

Specify the full
hierarchical name of the
instance of the design in
the VCD file.

glitch_filtering Boolean Auto|FALSE|TRUE AUTO: Enable glitch
filtering with predefined
thereshold based on the
family
TRUE: Enable glitch
filtering, glitch_threshold
must be specified
FALSE: Disable glitch
filtering.

 PolarFire FPGA Tcl Commands User Guide

112

smartpower_import_vcd Type Values Description

glitch_threshold Integer Positive integer Specify the threshold in
ps below which glitches
are filtered out.

 Examples
The Tcl command below imports the power.vcd file generated by the simulator into SmartPower:
smartpower_import_vcd –file “../../simulation/power.vcd”

The Tcl command below extracts information between 1ms and 2ms in the simulation, and stores the
information into a custom mode:
smartpower_import_vcd –file “../../simulation/power.vcd” –partial_parse TRUE –start_time
1000000 –end_time 2000000 –opmode “power_1ms_to_2ms”

 PolarFire FPGA Tcl Commands User Guide

 113

smartpower_init_do
Tcl command; initializes the frequencies and probabilities for clocks, registers, set/reset nets, primary
inputs, combinational outputs, enables and other sets of pins, and selects a mode for initialization.

smartpower_init_do -with {value} -opmode {value} -clocks {value} -registers {value} -
set_reset {value} -primaryinputs {value} -combinational {value} -enables {value} -othersets
{value}

Arguments
-with{value}

This sets the option of initializing frequencies and probabilities with vectorless analysis or with fixed
values. The following table shows the acceptable values for this argument:

Value Description

vectorless Initializes frequencies and probabilities with vectorless analysis

fixed Initializes frequencies and probabilities with fixed values

-opmode {value}

Optional; specifies the mode in which to initialize frequencies and probabilities. The value must be Active
or Flash*Freeze.
-clocks {value}

This sets the option of initializing frequencies and probabilities for all clocks. The following table shows the
acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all clocks

false Does not initialize frequencies and probabilities for all clocks

-registers {value}

This sets the option of initializing frequencies and probabilities for all registers. The following table shows
the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all registers

false Does not initialize frequencies and probabilities for all registers

-set_reset {value}

This sets the option of initializing frequencies and probabilities for all set/reset nets. The following table
shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all set/reset nets

false Does not initialize frequencies and probabilities for all set/reset nets

 PolarFire FPGA Tcl Commands User Guide

114

-primaryinputs{value}

This sets the option of initializing frequencies and probabilities for all primary inputs. The following table
shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all primary inputs

false Does not initialize frequencies and probabilities for all primary inputs

-combinational {value}

This sets the option of initializing frequencies and probabilities for all combinational outputs. The following
table shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all combinational outputs

false Does not initialize frequencies and probabilities for all combinational
outputs

-enables {value}

This sets the option of initializing frequencies and probabilities for all enable sets of pins. The following
table shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all enable sets of pins

false Does not initialize frequencies and probabilities for all enable sets of
pins

-othersets {value}

This sets the option of initializing frequencies and probabilities for all other sets of pins. The following table
shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all other sets of pins

false Does not initialize frequencies and probabilities for all other sets of
pins

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all clocks with:
smartpower_init_do -with {vectorless} -opmode {my_mode} -clocks {true} -registers {true}
-asynchronous {true} -primaryinputs {true} -combinational {true} -enables {true} -
othersets {true}

 PolarFire FPGA Tcl Commands User Guide

 115

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

116

smartpower_init_set_clocks_options
Tcl command; initializes the clock frequency options of all clock domains.

smartpower_init_set_clocks_options -with_clock_constraints {value} -
with_default_values {value} -freq {value} -duty_cycle {value}

Arguments
-with_clock_constraints {value}

This sets the option of initializing the clock frequencies with frequency constraints from SmartTime. The
following table shows the acceptable values for this argument:

Value Description

true Sets initialize clock frequencies with clock constraints ON

false Sets initialize clock frequencies with clock constraints OFF

-with_default_values {value}

This sets the option of initializing the clock frequencies with a user input default value. The following table
shows the acceptable values for this argument:

Value Description

true Sets initialize clock frequencies with default values ON

false Sets initialize clock frequencies with default values OFF

-freq {value}

Specifies the user input frequency in Hz, KHz, or MHz.
-duty_cycle {value}

Specifies the user input duty cycles in %.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all clocks after executing smartpower_init_do with -clocks {true}:
smartpower_init_set_clocks_options -with_clock_constraints {true} -with_default_values
{true} -freq {10 MHz} -duty_cycle {20}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 117

smartpower_init_set_combinational_options
Tcl commands; initializes the frequency and probability of all combinational outputs.

smartpower_init_set_combinational_options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-proba {value}

Specifies the user input probability in %.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all combinational signals after executing smartpower_init_do with -
combinational {true}:
smartpower_init_set_combinational_options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

118

smartpower_init_set_enables_options
Tcl command; initializes the clock frequency of all enable clocks with the initialization options.

smartpower_init_set_enables_options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz).
-proba {value}

Specifies the user input probability in %.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all clocks after executing smartpower_init_do with -enables
{true}:
smartpower_init_set_enables_options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 119

smartpower_init_set_primaryinputs_options
Tcl command; initializes the frequency and probability of all primary inputs.

smartpower_init_set_primaryinputs_options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-proba {value}

Specifies the user input probability in %.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all primary inputs after executing smartpower_init_do with -
primaryinputs {true}:
smartpower_init_set_primaryinputs_options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

120

smartpower_init_set_registers_options
Tcl command; initializes the frequency and probability of all register outputs.

smartpower_init_set_registers_options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-proba {value}

Specifies the user input probability in %.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all register outputs after executing smartpower_init_do with -
registers {true}:
smartpower_init_set_registers_options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 121

smartpower_init_setofpins_values
Tcl command; initializes the frequency and probability of all sets of pins.

smartpower_init_setofpins_values -domain_name {name} -freq {value} -proba {value}

Arguments
-domain_name{name}

Specifies the set of pins that will be initialized. The following table shows the acceptable values for this
argument:

Value Description

IOsEnableSet Specifies that the IOsEnableSet set of pins will be
initialized

MemoriesEnableSet Specifies that the MemoriesEnableSet set of pins will
be initialized

-freq {value}

Specifies the user input frequency in Hz, MHz, or KHz.
-proba {value}

Specifies the user input probability in %.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all primary inputs after executing smartpower_init_do with -
othersets {true}:
smartpower_init_setofpins_values -domain_name {IOsEnableSet} -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

122

smartpower_remove_all_annotations
Tcl command; removes all initialization annotations for the specified mode.

smartpower_remove_all_annotations -opmode {value}

Arguments
-opmode {value}

Removes all initialization annotations for the specified mode, where value must be Active or
Flash*Freeze.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all clocks with opmode Acitve:
smartpower_remove_all_annotations -opmode {Active}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 123

smartpower_remove_file
Tcl command; removes a VCD file from the specified mode or all operating mode. Frequency and probability
information of signals annotated by the VCD are set back to the default value..

remove_file
-file {value} \
-format {value} \
-opmode {value} \

Arguments
-file {value}

Specifies the file to be removed. This is mandatory.
-format VCD

Specifies that the type to be removed is a VCD file. This is mandatory.
[-opmode {value}]

Specifies the operating mode. This is optional. The following table shows the acceptable values for this
argument:

Value Description

Active The operating mode is set to active

Standby The operating mode is set to static

Flash*Freeze The operating mode is set to Flash*Freeze

Examples
This example removes the file test.vcd from the Active mode.
smartpower_remove_file -file "test.vcd" -format VCD -opmode "Active"

This example removes the VCD file power1.vcd from all operating modes:
smartpower_remove_file –file “power1.vcd” –format VCD

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

124

smartpower_remove_pin_probability
Tcl command; removes the probability value associated with a specific pin. This pin will have a default
probability based on the domain set it belongs to.

smartpower_remove_pin_probability –pin_name {pin_name}

Arguments
-pin_name {pin_name}

Specifies the name of the pin with the probability to remove. This pin must be the direct driver of an
enable pin.

Examples
The following example removes the probability of the pin driving the enable pin of a bidirectional I/O:
Smartpower_remove_pin_probability –pin_name mybibuf/U0/U1:EOUT

See Also
Tcl documentation conventions
smartpower_set_pin_probability

 PolarFire FPGA Tcl Commands User Guide

 125

smartpower_remove_scenario
Tcl command; removes a scenario from the current design.

smartpower_remove_scenario -name {value}

Arguments
-name {value}

Specifies the name of the scenario.

Examples
This example removes a scenario from the current design:
smartpower_remove_scenario -name myscenario

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

126

smartpower_set_mode_for_analysis
Tcl command; sets the mode for cycle-accurate power analysis.

smartpower_set_mode_for_analysis -mode {value}

Arguments
-mode {value}

Specifies the mode for cycle-accurate power analysis.

Value Description

Active The operating mode is set to Active

Standby The operating mode is set to Standby

Flash*Freeze The operating mode is set to Flash*Freeze

Examples
The following example sets the mode for analysis to active:
smartpower_set_mode_for_analysis -mode {active}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 127

smartpower_set_mode_for_pdpr
This SmartPower Tcl command sets the operating mode used by the Power Driven Place and Route
(PDPR) tool during power optimization.

smartpower_set_mode_for_pdpr -opmode { value}

Parameters
-opmode {value}

Value must be a valid operating mode.
This parameter is mandatory.
Sets the operating mode for your power driven place and route.

Exceptions
None

Return Value
This command does not return a value.

Examples
This example sets the Active mode as the operating mode for Power Driven Place and Route.
set_mode_for_pdpr -opmode "Active"

This example creates a custom mode and set it to be used by Power Driven Place and Route (PDPR).
smartpower_add_new_custom_mode –name “MyCustomMode” \

–description “for PDPR” –base_mode “Active”

smartpower_set_mode_for_pdpr –opmode “MyCustomMode

See Also
Tcl Command Documentation Conventions

 PolarFire FPGA Tcl Commands User Guide

128

smartpower_set_operating_condition
Tcl command; sets the operating conditions used in SmartPower to one of the pre-defined types.

smartpower_set_operating_condition -opcond {value}

Arguments
-opcond {value}

Specifies the value of the operating condition. The following table shows the acceptable values for this
argument:

Value Description

best Sets the operating conditions to best

typical Sets the operating conditions to typical

worst Sets the operating conditions to worst

Examples
This example sets the operating conditions to best:
smartpower_set_operating_condition -opcond {best}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 129

smartpower_set_operating_conditions
Tcl command; sets the operating conditions used in SmartPower.

smartpower_set_operating_conditions "still_air | 1.0_mps | 2.5_mps | custom" -heatsink
"None | custom | 10mm_Low_Profile | 15mm_Medium_Profile | 20mm_High_Profile" -boardmodel
"None_Conservative | JEDEC_2s2p" [-teta_ja "decimal value"] [-teta_sa "decimal value"]

Arguments
-still_air {value}

Specifies the value for the still air operating condition. The following table shows the acceptable values for
this argument:

Value Description

1.0_mps Sets the operating conditions to best

2.5_mps Sets the operating conditions to typical

custom Sets the operating conditions to worst

-heatsink {value}

Specifies the value of the operating condition. The following table shows the acceptable values for this
argument:

Value Description

none No heat sink

custom Sets a custom heat sink size

10mm_Low_Profile 10 mm heat sink

15mm_Low_Profile 15 mm heat sink

20mm_High_Profile 20 mm heat sink

-boardmodel {value}

Specifies your board model. The following table shows the acceptable values for this argument:

Value Description

None_Conservative No board model, conservative routing

JEDEC_2s2p JEDEC 2s2p board model

-teta_ja {decimal_value}

Optional; sets your teta ja value; must be a positive decimal
-teta_sa {decimal_value}

Optional; sets your teta sa value; must be a positive decimal.

 PolarFire FPGA Tcl Commands User Guide

130

Examples
This example sets the operating conditions to best:

set_operating_conditions -airflow "still_air" -heatsink "None" -boardmodel
"None_Conservative "

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 131

smartpower_set_pin_probability
Enables you to set the probability value of a pin driving an enable pin. For I/Os, if you do not use this
command, the probability of the IOEnableSet is used. For memories, if you do not use this command, the
probability of the MemoriesEnableSet is used.

smartpower_set_pin_probability -pin_name {pin_name} –pin_enable_rate {value}

Arguments
-pin_name {pin_name}

Specifies the name of a pin for which the probability will be set. This pin must be the direct driver of an
enable pin.
-pin_proba {value}

Specifies the value of the pin probability as a percentage, which can be any positive decimal between 0
and 100, inclusive.

Exceptions
• None

Examples
The following example sets the probability of the pin driving the enable pin of a bidirectional I/O
smartpower_set_pin_probability -pin_name mybibuf/U0/U1:EOUT \

–pin_proba 50.4

See Also
smartpower_remove_pin_probability

 PolarFire FPGA Tcl Commands User Guide

132

smartpower_set_process
Tcl command; sets the process used in SmartPower to one of the pre-defined types.

smartpower_set_process -process {value}

Arguments
-process {value}

Specifies the value of the operating condition. The following table shows the acceptable values for this
argument:

Value Description

Typical Sets the process for SmartPower to typical

Maximum Sets the process for SmartPower to maximum

Examples
This example sets the operating conditions to typical:
smartpower_set_process -process {Typical}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 133

smartpower_set_scenario_for_analysis
Tcl command; sets the scenario for cycle-accurate power analysis.

smartpower_set_scenario_for_analysis -scenario{value}

Arguments
-scenario {value}

Specifies the mode for cycle-accurate power analysis.

Examples
The following example sets the scenario for analysis to my_scenario:
smartpower_set_scenario_for_analysis -scenario {my_scenario}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

134

smartpower_set_temperature_opcond
Tcl command; sets the temperature in the operating conditions to one of the pre-defined types.

smartpower_set_temperature_opcond -use{value}

Arguments
-use{value}

Specifies the temperature in the operating conditions. The following table shows the acceptable values for
this argument:

Value Description

oprange Sets the temperature in the operating conditions as
specified in your Project Settings.

design Sets the temperature in the operating conditions as
specified in the SmartPower design-wide operating range.
Applies to SmartPower only.

mode Sets the temperature in the operating conditions as
specified in the SmartPower mode-specific operating
range. Applies to SmartPower only.

Examples
This example sets the temperature in the operating conditions as specified in the custom mode-settings:
smartpower_set_temperature_opcond -use{mode}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 135

smartpower_set_voltage_opcond
Tcl command; sets the voltage in the operating conditions.

smartpower_set_voltage_opcond -voltage{value} -use{value}

Arguments
-voltage{value}

Specifies the voltage supply in the operating conditions. The following table shows the acceptable values
for this argument:

Value Description

VDD Sets the voltage operating conditions for VDD

VDDI 2.5 Sets the voltage operating conditions fo r VDDI 2.5

VPP Sets the voltage operating conditions for VPP

-use{value}

Specifies the voltage in the operating conditions for each voltage supply. The following table shows the
acceptable values for this argument:

Value Description

oprange Sets the voltage in the operating conditions as specified in
your Project Settings.

design Sets the voltage in the operating conditions as specified in
the SmartPower design-wide operating range. Applies to
SmartPower only.

mode Sets the voltage in the operating conditions as specified in
the SmartPower mode-specific operating range. Applies to
SmartPower only.

Examples
This example sets the VCCA as specified in the SmartPower mode-specific settings:
smartpower_set_voltage_opcond -voltage{vcca} -use{mode}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

136

smartpower_temperature_opcond_set_design_wide
Tcl command; sets the temperature for SmartPower design-wide operating conditions.

smartpower_temperature_opcond_set_design_wide -best{value} -typical{value} -worst{value} -
thermal_mode{value}

Arguments
-best{value}

Specifies the best temperature (in degrees Celsius) used for design-wide operating conditions.
-typical{value}

Specifies the typical temperature (in degrees Celsius) used for design-wide operating conditions.
-worst{value}

Specifies the worst temperature (in degrees Celsius) used for design-wide operating conditions.
-thermal_mode{value}

Specifies the mode in which the junction temperature is computed. The following table shows the
acceptable values for this argument:

Value Description

ambient The junction temperature will be iteratively computed with
total static power

opcond The junction temperature will be given as one of the
operating condition range values specified in the device
selection

Examples
This example sets the temperature for design-wide operating conditions to Best 20, Typical 30, and Worst
60:
smartpower_temperature_opcond_set_design_wide -best{20} -typical{30} -worst{60}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 137

smartpower_temperature_opcond_set_mode_specific
Tcl command; sets the temperature for SmartPower mode-specific operating conditions.

smartpower_temperature_opcond_set_mode_specific -opmode{value} -thermal_mode{value} -
best{value} -typical{value} -worst{value} -thermal_mode{value}

Arguments
-opmode {value}

Specifies the operating mode. The following table shows the acceptable values for this argument:

Value Description

Active The operating mode is set to Active

Standby The operating mode is set to Standby

Flash*Freeze The operating mode is set to Flash*Freeze

-thermal_mode{value}

Specifies the mode in which the junction temperature is computed. The following table shows the
acceptable values for this argument:

Value Description

ambient The junction temperature will be iteratively computed with
total static power

opcond The junction temperature will be given as one of the
operating condition range values specified in the device
selection

-best{value}

Specifies the best temperature (in degrees Celsius) for the selected mode.
-typical{value}

Specifies the typical temperature (in degrees Celsius) for the selected mode.
-worst{value}

Specifies the worst temperature (in degrees Celsius) for the selected mode.

Examples
This example sets the temperature for mode-specific operating conditions for mode1:
smartpower_temperature_opcond_set_mode_specific -mode{mode1} -best{20} -typical{30} -
worst{60}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

138

smartpower_voltage_opcond_set_design_wide
Tcl command; sets the voltage settings for SmartPower design-wide operating conditions.

smartpower_voltage_opcond_set_design_wide -voltage{value} -best{value} -typical{value} -
worst{value}

Arguments
-voltage{value}

Specifies the voltage supply in the operating conditions. The following table shows the acceptable values
for this argument:

Value Description

VDD Sets the voltage operating conditions for VDD

VDDI 2.5 Sets the voltage operating conditions for VDDI 2.5

VPP Sets the voltage operating conditions for VPP

VCCA Sets the voltage operating conditions for VCCA

VCCI 3.3 Sets the voltage operating conditions for VCCI 3.3

VCCI 2.5 Sets the voltage operating conditions for VCCI 2.5

VCCI 1.8 Sets the voltage operating conditions for VCCI 1.8

VCCI 1.5 Sets the voltage operating conditions for VCCI 1.5

VCC33A Sets the voltage operating conditions for VCC33A

VCCDA Sets the voltage operating conditions for VCCDA

-best{value}

Specifies the best voltage used for design-wide operating conditions.
-typical{value}

Specifies the typical voltage used for design-wide operating conditions.
-worst{value}

Specifies the worst voltage used for design-wide operating conditions.

Examples
This example sets VCCA for design-wide to best 20, typical 30 and worst 40:
smartpower_voltage_opcond_set_design_wide -voltage{VCCA} -best{20} -typical{30} -
worst{40}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 139

smartpower_voltage_opcond_set_mode_specific
Tcl command; sets the voltage settings for SmartPower mode-specific use operating conditions.

smartpower_voltage_opcond_set_mode_specific -opmode{value} -voltage{value} -best{value} -
typical{value} -worst{value}

Arguments
-opmode {value}

Use this option to specify the mode from which the operating conditions are extracted to generate the
report.

Value Description

Active The operating mode is set to Active

Standby The operating mode is set to Standby

Flash*Freeze The operating mode is set to Flash*Freeze

-voltage{value}

Specifies the voltage in the operating conditions. The following table shows the acceptable values for this
argument:

Value Description

VDD Sets the voltage operating conditions for VDD

VDDI 2.5 Sets the voltage operating conditions for VDDI 2.5

VPP Sets the voltage operating conditions for VPP

VCCA Sets the voltage operating conditions for VCCA

VCCI 3.3 Sets the voltage operating conditions for VCCI 3.3

VCCI 2.5 Sets the voltage operating conditions for VCCI 2.5

VCCI 1.8 Sets the voltage operating conditions for VCCI 1.8

VCCI 1.5 Sets the voltage operating conditions for VCCI 1.5

VCC33A Sets the voltage operating conditions for VCC33A

VCCDA Sets the voltage operating conditions for VCCDA

-best{value}

Specifies the best voltage used for mode-specific operating conditions.
-typical{value}

Specifies the typical voltage used for mode-specific operating conditions.
-worst{value}

Specifies the worst voltage used for mode-specific operating conditions.

 PolarFire FPGA Tcl Commands User Guide

140

Examples
This example sets the voltage for the static mode and sets best to 20, typical to 30 and worst to 40:
smartpower_voltage_opcond_set_mode_specific -opmode{active} -voltage{VCCA} -best{20} -
typical{30} -worst{40}

See Also
Tcl documentation conventions

 PolarFire FPGA Tcl Commands User Guide

 141

SmartTime Tcl Commands

 PolarFire FPGA Tcl Commands User Guide

142

create_set
Tcl command; creates a set of paths to be analyzed. Use the arguments to specify which paths to include.
To create a set that is a subset of a clock domain, specify it with the -clock and -type arguments. To
create a set that is a subset of an inter-clock domain set, specify it with the -source_clock and -
sink_clock arguments. To create a set that is a subset (filter) of an existing named set, specify the set to be
filtered with the -parent_set argument.

create_set\ -name <name>\ -parent_set <name>\ -type <set_type>\ -clock <clock name>\ -
source_clock <clock name>\ -sink_clock <clock name>\ -in_to_out\ -source <port/pin pattern>\
-sink <port/pin pattern>

Arguments
-name <name>

Specifies a unique name for the newly created path set.
-parent_set <name>

Specifies the name of the set to filter from.
-clock <clock_name>

Specifies that the set is to be a subset of the given clock domain. This argument is valid only if you also
specify the -type argument.
-type <value>

Specifies the predefined set type on which to base the new path set. You can only use this argument with
the -clock argument, not by itself.

Value Description

reg_to_reg Paths between registers in the design

async_to_reg Paths from asynchronous pins to registers

reg_to_async Paths from registers to asynchronous pins

external_recovery The set of paths from inputs to asynchronous pins

external_removal The set of paths from inputs to asynchronous pins

external_setup Paths from input ports to registers

external_hold Paths from input ports to registers

clock_to_out Paths from registers to output ports

-in_to_out

Specifies that the set is based on the “Input to Output” set, which includes paths that start at input ports
and end at output ports.
-source_clock <clock_name>

Specifies that the set will be a subset of an inter-clock domain set with the given source clock. You can
only use this option with the -sink_clock argument.
-sink_clock <clock_name>

Specifies that the set will be a subset of an inter-clock domain set with the given sink clock. You can only
use this option with the -source_clock argument.
-source <port/pin_pattern>

Specifies a filter on the source pins of the parent set. If you do not specify a parent set, this option filters
all pins in the current design.

 PolarFire FPGA Tcl Commands User Guide

 143

-sink <port/pin_pattern>

Specifies a filter on the sink pins of the parent set. If you do not specify a parent set, this option filters all
pins in the current design.

Examples
create_set -name { my_user_set } –source { C* } –sink { D* }

create_set -name { my_other_user_set } –parent_set { my_user_set } –source { CL* }

create_set -name { adder } –source { ALU_CLOCK } –type { REG_TO_REG } -sink { ADDER*}

create_set -name { another_set } –source_clock { EXTERN_CLOCK } –sink_clock {
MY_GEN_CLOCK }

 PolarFire FPGA Tcl Commands User Guide

144

expand_path
Tcl command; displays expanded path information (path details) for paths. The paths to be expanded are
identified by the parameters required to display these paths with list_paths. For example, to expand the first
path listed with list_paths -clock {MYCLOCK} -type {register_to_register}, use the command expand_path -
clock {MYCLOCK} -type {register_to_register}. Path details contain the pin name, type, net name, cell name,
operation, delay, total delay, and edge as well as the arrival time, required time, and slack. These details are
the same as details available in the SmartTime Expanded Path window.

expand_path
-index value
-set name
-clock clock name
-type set_type
-analysis {max| min}
-format {csv | text}
-from_clock clock name
-to_clock clock name

Arguments
-index value

Specify the index of the path to be expanded in the list of paths. Default is 1.
-analysis {max | min}

Specify whether the timing analysis is done is max-delay (setup check) or min-delay (hold check). Valid
values: max or min.
-format {csv | text}

Specify the list format. It can be either text (default) or csv (comma separated values). The former is
suited for display the latter for parsing.
-set name

Displays a list of paths from the named set. You can either use the -set option to specify a user set by its
name or use both -clock and -type to specify a set.
-clock clock name

Displays the set of paths belonging to the specified clock domain. You can either use this option along
with -type to specify a set or use the -set option to specify the name of the set to display.
-type set_type

Specifies the type of paths in the clock domain to display in a list. You can only use this option with the -
clock option. You can either use this option along with -clock to specify a set or use the -set option to
specify a set name.

Value Description

reg_to_reg Paths between registers in the design

external_setup Path from input ports to registers

external_hold Path from input ports to registers

clock_to_out Path from registers to output ports

reg_to_async Path from registers to asynchronous pins

external_recovery Set of paths from inputs to asynchronous pins

external_removal Set of paths from inputs to asynchronous pins

 PolarFire FPGA Tcl Commands User Guide

 145

Value Description

async_to_reg Path from asynchronous pins to registers

-from_clock clock_name

Displays a list of timing paths for an inter-clock domain set belonging to the source clock specified. You
can only use this option with the -to_clock option, not by itself.
-to_clock clock_name

Displays a list of timing paths for an inter-clock domain set belonging to the sink clock specified. You can
only use this option with the -from_clock option, not by itself.
-analysis name

Specifies the analysis for the paths to be listed. The following table shows the acceptable values for this
argument.

Value Description

maxdelay Maximum delay analysis

mindelay Minimum delay analysis

-index list_of_indices

Specifies which paths to display. The index starts at 1 and defaults to 1. Only values lower than the
max_paths option will be expanded.
-format value

Specifies the file format of the output. The following table shows the acceptable values for this argument:

Value Description

text ASCII text format

csv Comma separated value file format

Examples
Note: The following example returns a list of five paths:
puts [expand_path –clock { myclock } –type {reg_to_reg }]

puts [expand_path –clock {myclock} –type {reg_to_reg} –index { 1 2 3 } –format text]

See Also
list_paths

 PolarFire FPGA Tcl Commands User Guide

146

list_paths
Tcl command; returns a list of the n worst paths matching the arguments. The number of paths returned can
be changed using the set_options -limit_max_paths <value> command.

list_paths
-analysis <max | min>
-format <csv | text>
-set <name>
-clock <clock name>
-type <set_type>
-from_clock <clock name>
-to_clock <clock name>
-in_to_out
-from <port/pin pattern>
-to <port/pin pattern>

Arguments
-analysis <max | min>

Specifies whether the timing analysis is done for max-delay (setup check) or min-delay (hold check). Valid
values are: max or min.
-format < text | csv >

Specifies the list format. It can be either text (default) or csv (comma separated values). Text format is
better for display and csv format is better for parsing.
-set <name>

Returns a list of paths from the named set. You can either use the -set option to specify a user set by its
name or use both -clock and -type to specify a set.
-clock <clock name>

Returns a list of paths from the specified clock domain. This option requires the -type option.
-type <set_type>

Specifies the type of paths to be included. It can only be used along with -clock. Valid values are:
reg_to_reg -- Paths between registers
external_setup -- Path from input ports to data pins of registers
external_hold -- Path from input ports to data pins of registers
clock_to_out -- Path from registers to output ports
reg_to_async -- Path from registers to asynchronous pins of registers
external_recovery -- Path from input ports to asynchronous pins of registers
external_removal -- Path from input ports to asynchronous pins of registers
async_to_reg -- Path from asynchronous pins to registers
-from_clock <clock name>

Used along with -to_clock to get the list of paths of the inter-clock domain between the two clocks.
-to_clock <clock name>

Used along with -from_clock to get the list of paths of the inter-clock domain between the two clocks.
-in_to_out

Used to get the list of path between input and output ports.
-from <port/pin pattern>

Filter the list of paths to those starting from ports or pins matching the pattern.
-to <port/pin pattern>

Filter the list of paths to those ending at ports or pins matching the pattern.

 PolarFire FPGA Tcl Commands User Guide

 147

Example
The following command displays the list of register to register paths of clock domain clk1:
puts [list_paths -clock clk1 -type reg_to_reg]

See Also
create_set
expand_path
set_options

 PolarFire FPGA Tcl Commands User Guide

148

read_sdc
The read_sdc Tcl command evaluate an SDC file, adding all constraints to the specified scenario (or the
current/default one if none is specified). Existing constraints are removed if -add is not specified.

read_sdc
-add
-scenario scenario_name
-netlist (user | optimized)
-pin_separator (: | /)
file name

Arguments
-add

Specifies that the constraints from the SDC file will be added on top of the existing ones, overriding them
in case of a conflict. If not used, the existing constraints are removed before the SDC file is read.
-scenario scenario_name

Specifies the scenario to add the constraints to. The scenario is created if none exists with this name.
-netlist (user | optimized)

Specifies whether the SDC file contains object defined at the post-synthesis netlist (user) level or physical
(optimized) netlist (used for timing analysis).
-pin_separator sep

Specify the pin separator used in the SDC file. It can be either ':' or '/'.
file name

Specify the SDC file name.

Example
The following command removes all constraints from the current/default scenario and adds all constraints
from design.sdc file to it:
read_sdc design.sdc

 PolarFire FPGA Tcl Commands User Guide

 149

See Also
write_sdc

 PolarFire FPGA Tcl Commands User Guide

150

remove_set
Tcl command; removes a set of paths from analysis. Only user-created sets can be deleted.

remove_set -name name

Parameters
-name name

Specifies the name of the set to delete.

Example
The following command removes the set named my_set:
remove_set -name my_set

See Also
create_set

 PolarFire FPGA Tcl Commands User Guide

 151

report
Tcl command; specifies the type of reports to generate and what to include in the reports.

report -type (timing|violations | datasheet|bottleneck | constraints_coverage |
combinational_loops)
 -analysis <max_or_min>\
 -format (csv|text)
 <filename>
 timing options
 -max_parallel_paths <number>
 -max_paths <number>
 -print_summary (yes|no)
 -use_slack_threshold (yes|no)
 -slack_threshold <double>
 -print_paths (yes|no)
 -max_expanded_paths <number>
 -include_user_sets (yes|no)
 -include_clock_domains (yes|no)
 -select_clock_domains <clock name list>
 -limit_max_paths (yes|no)
 -include_pin_to_pin (yes|no)
 bottleneck options
 -cost_type (path_count|path_cost)
 -max_instances <number>
 -from <port/pin pattern>
 -to <port/pin pattern>
 -set_type <set_type>
 -set_name <set name>
 -clock <clock name>
 -from_clock <clock name>
 -to_clock <clock name>
 -in_to_out

Arguments
-type

Value Description

timing Timing Report

violations Timing Violation Report

constraints_coverage Constraints Coverage Report

combinational_loops Combinational Loops Report

-analysis

Value Description

max Timing report considers maximum analysis (default).

min Timing report considers minimum analysis.

 PolarFire FPGA Tcl Commands User Guide

152

Value Description

text Generates a text report (default).

csv Generates the report in a comma-separated value format which you can import
into a spreadsheet.

-filename

Specifies the file name for the generated report.

Timing Options and Values

Parameter/Value Description

-max_parallel_paths
<number>

Specifies the max number of parallel paths. Parallel paths
are timing paths with the same start and end points.

-max_paths <number> Specifies the max number of paths to display for each set.
This value is a positive integer value greater than zero.
Default is 100.

-print_summary <yes|no> Yes to include and No to exclude the summary section in
the timing report.

-use_slack_threshold
<yes|no>

Yes to include slack threshold and no to exclude threshold
in the timing report. The default is to exclude slack
threshold.

-slack_threshold <double> Specifies the threshold value to consider when reporting
path slacks. This value is in nanoseconds (ns). By default,
there is no threshold (all slacks reported).

-print_paths (yes|no) Specifies whether the path section (clock domains and in-
to-out paths) will be printed in the timing report. Yes to
include path sections (default) and no to exclude path
sections from the timing report.

-max_expanded_paths
<number>

Specifies the max number of paths to expand per set. This
value is a positive integer value greater than zero. Default
is 100.

-include_user_sets
(yes|no)

If yes, the user set is included in the timing report. If no, the
user set is excluded in the timing report.

-include_clock_domains
(yes|no)

Yes to include and no to exclude clock domains in the
timing report.

-select_clock_domains
<clock_name_list>

Defines the clock domain to be considered in the clock
domain section. The domain list is a series of strings with
domain names separated by spaces. Both the summary
and the path sections in the timing report display only the
listed clock domains in the clock_name_list.

-limit_max_paths (yes|no) Yes to limit the number of paths to report. No to specify that
there is no limit to the number of paths to report (the
default).

 PolarFire FPGA Tcl Commands User Guide

 153

Parameter/Value Description

-include_pin_to_pin
(yes|no)

Yes to include and no to exclude pin-to-pin paths in the
timing report.

Bottleneck Options and Values

Parameter/Value Description

-cost_type
<path_count|path_cost>

Specifies the cost_type as either path_count or path_cost.
For path_count, instances with the greatest number of path
violations will have the highest bottleneck cost. For
path_cost, instances with the largest combined timing
violations will have the highest bottleneck cost.

-max_instances
<number>

Specifies the maximum number of instances to be reported.
Default is 10.

-from <port/pin pattern> Reports only instances that lie on violating paths that start at
locations specified by this option.

-to <port/pin pattern> Reports only instances that lie on violating paths that end at
locations specified by this option.

-clock <clock name> This option allows pruning based on a given clock domain.
Only instances that lie on these violating paths are reported.

-set_name <set name> Displays the bottleneck information for the named set. You
can either use this option or use both -clock and -type. This
option allows pruning based on a given set. Only paths that
lie within the named set will be considered towards
bottleneck.

-set_type <set_type> This option can only be used in combination with the -clock
option, and not by itself. The options allows you to filter
which type of paths should be considered towards the
bottleneck:

• reg_to_reg - Paths between registers in the design
• async_to_reg - Paths from asynchronous pins to

registers
• reg_to_async - Paths from registers to

asynchronous pins
• external_recovery - The set of paths from inputs to

asynchronous pins
• external_removal - The set of paths from inputs to

asynchronous pins
• external_setup - Paths from input ports to registers
• external_hold - Paths from input ports to registers
• clock_to_out - Paths from registers to output ports

-from_clock <clock
name>

Reports only bottleneck instances that lie on violating timing
paths of the inter-clock domain that starts at the source
clock specified by this option. This option can only be used

 PolarFire FPGA Tcl Commands User Guide

154

Parameter/Value Description

in combination with -to_clock.

-to_clock <clock name> Reports only instances that lie on violating paths that end at
locations specified by this option.

-in_to_out Reports only instances that lie on violating paths that begin
at input ports and end at output ports.

Example
The following example generates a timing violation report named timing_viol.txt. The report considers an
analysis using maximimum delays and does not filter paths based on slack threshold. It reports two paths
per section and one expanded path per section.
report –type timing_violations \

-analysis max –use_slack_threshold no \

-limit_max_paths –yes \

-max_paths 2 \

-max_expanded_paths 1\

timing_viol.txt

 PolarFire FPGA Tcl Commands User Guide

 155

save
Tcl command; saves all changes made prior to this command. This includes changes made on constraints,
options and sets.

save

Arguments
None

Example
The following script sets the maximum number of paths reported by list_paths to 10, reads an SDC file, and
save both the option and the constraints into the design project:
set_options -limit_max_paths 10

read_sdc somefile.sdc

save

See Also
set_options

 PolarFire FPGA Tcl Commands User Guide

156

set_options (SmartFusion2, IGLOO2, RTG4, and PolarFire)
SmartTime-specific Tcl command; sets options for timing analysis. Some options will also affect timing-
driven place-and-route. The same parameters can be changed in the SmartTime Options dialog box in the
SmartTime GUI.

set_options

 [-max_opcond value]
 [-min_opcond value]
 [-interclockdomain_analysis value]
 [-use_bibuf_loopbacks value]
 [-enable_recovery_removal_checks value]
 [-break_at_async value]
 [-filter_when_slack_below value]
 [-filter_when_slack_above value]
 [-remove_slack_filters]
 [-limit_max_paths value]
 [-expand_clock_network value]
 [-expand_parallel_paths value]
 [-analysis_scenario value]
 [-tdpr_scenario value]
 [-reset]

Arguments
-max_opcond value
Sets the operating condition to use for Maximum Delay Analysis. The following table shows the
acceptable values for this argument. Default is slow_lv.

 Value Description

slow_lv Use slow_lv conditions for Maximum Delay Analysis

slow_lv_lt Use slow_lv_lt conditions for Maximum Delay Analysis

fast_hv_lt Use fast_hv_lt conditions for Maximum Delay Analysis

-min_opcond value
Sets the operating condition to use for Minimum Delay Analysis. The following table shows the acceptable
values for this argument. Default is fast_hv_lt.

 Value Description

fast_hv_lt Use fast_hv_lt conditions for Maximum Delay Analysis

slow_lv_lt Use slow_lv_lt conditions for Maximum Delay Analysis

slow_lv Use slow_lv conditions for Maximum Delay Analysis

-interclockdomain_analysis value
Enables or disables inter-clock domain analysis. Default is yes.

Value Description

 PolarFire FPGA Tcl Commands User Guide

 157

Value Description

yes Enables inter-clock domain analysis

no Disables inter-clock domain analysis

-use_bibuf_loopbacks value
Instructs the timing analysis whether to consider loopback path in bidirectional buffers (D->Y, E->Y)as
false-path {no}. Default is yes; i.e., loopback are false paths.

Value Description

yes Enables loopback in bibufs

no Disables loopback in bibufs

-enable_recovery_removal_checks value
Enables recovery checks to be included in max-delay analysis and removal checks in min-delay analysis.
Default is yes.

Value Description

yes Enables recovery and removal checks

no Disables recovery and removal checks

-break_at_async value
Specifies whether or not timing analysis is allowed to cross asynchronous pins (clear, reset of sequential
elements). Default is no.

Value Description

yes Enables breaking paths at asynchronous ports

no Disables breaking paths at asynchronous ports

-filter_when_slack_below value
Specifies a minimum slack value for paths reported by list_paths. Not set by default.
-filter_when_slack_above value
Specifies a maximum slack value for paths reported by list_paths. Not set by default.
-remove_slack_filters
Removes the slack minimum and maximum set using -filter_when_slack_below and
filter_when_slack_above.
-limit_max_paths value
Specifies the maximum number of paths reported by list_paths. Default is 100.
-expand_clock_network value
Specify whether or not clock network details are reported in expand_path. Default is yes.

 PolarFire FPGA Tcl Commands User Guide

158

Value Description

yes Enables expanded clock network information in paths

no Disables expanded clock network information in paths

-expand_parallel_paths value
Specify the number of parallel paths {paths with the same ends} to include in expand_path. Default is 1.
-analysis_scenario value
Specify the constraint scenario to be used for timing analysis. Default is Primary, the default scenario.
 -tdpr_scenario value
Specify the constraint scenario to be used for timing-driven place-and-route. Default is Primary, the
default scenario.
-reset
Reset all options to the default values, except those for analysis and TDPR scenarios, which remain
unchanged.

Examples
The following script commands the timing engine to use best operating conditions for both max-delay
analysis and min-delay analysis:
set_options -max_opcond {best} -min_opcond {best}

The following script changes the scenario used by timing-driven place-and-route and saves the change in
the Libero project for place-and-route tools to see the change.
set_options -tdpr_scenario {My_TDPR_Scenario}

See Also
save

 PolarFire FPGA Tcl Commands User Guide

 159

Command Tools

 PolarFire FPGA Tcl Commands User Guide

160

COMPILE (SmartFusion2, IGLOO2, RTG4, PolarFire) –
Enhanced Constraint Flow

Note: COMPILE is a valid tool name when EDIF design source files are used in the Enhanced Constraint
Flow. For non-EDIF or HDL designs using the Enhanced Constraint Flow, the COMPILE step is subsumed
under the SYNTHESIZE tool.
COMPILE is a command tool used in configure_tool and run_tool. Configure_tool allows you to configure the
tool’s parameters and values prior to executing the tool. Run_tool executes the tool with the configured
parameters.
To compile the design in Libero SoC, first configure the compile tool with the configure_tool command, and
then execute the COMPILE command with the run_tool command.

configure_tool -name {COMPILE}
-params {name:value}
[-params {name:value}]
run_tool -name {COMPILE}

The following tables list the parameter names and values.

configure_tool –name {COMPILE} parameter:value pair

Name Value Description

PDC_IMPORT_HARDERROR Boolean {true | false | 1 | 0} Set to true or 1 if you
want the COMPILE
command to abort
when errors are
found in the physical
design constraints.
Default is false.

BLOCK_PLACEMENT_CONFLICTS String
{ERROR|KEEP|LOCK|DISCARD}

Instructs the
COMPILE engine
what to do when the
software encouters a
placement conflict.
When set to:
ERROR - Compile
errors out if any
instance from a
Designer block
becomes unplaced.
This is the default.
KEEP - If some
instances get
unplaced for any
reason, the non-
conflicting elements
remaining are
preserved but not
locked. Therefore,
the placer can move
them into another
location if necessary.
LOCK - If some
instances get

 PolarFire FPGA Tcl Commands User Guide

 161

Name Value Description

unplaced for any
reason, the non-
conflicting elements
remaining are
preserved and
locked. DISCARD –
Discards any
placement from the
block, even if there
are no conflicts.

BLOCK_ROUTING_CONFLICTS String
{ERROR|KEEP|LOCK|DISCARD}

Instructs the
COMPILE engine
what to do when the
software encounters
a routing conflict.
When set to:
ERROR - Compile
errors out if any
route in any
preserved net from a
Designer block is
deleted. This is the
default. KEEP – If a
route is removed
from a net for any
reason, the routing
for the non-
conflicting nets is
kept unlocked. The
router can re-route
these nets. LOCK –
If routing is removed
from a net for any
reason, the routing
for the non-
conflicting nets is
kept as locked, and
the router will not
change them.
DISCARD - Discards
any routing from the
block, even if there
are no conflicts.

PA4_GB_MAX_RCLKINT_INSERTION Integer Specifies the
maximum number of
global nets that could
be demoted to row-
globals. Default is
16, Min is 0 and Max
is 50.

PA4_GB_MIN_GB_FANOUT_TO_USE_RCLKINT Integer Specifies the
Minimum fanout of

 PolarFire FPGA Tcl Commands User Guide

162

Name Value Description

global nets that could
be demoted to row-
globals. Default is
300. Min is 25 and
Max is 5000.

PA4_GB_MAX_FANOUT_DATA_MOVE Integer Specifies the
Minimum fanout of
non-clock nets to be
kept on globals.
Default is 5000. Min
is 300 and Max is
200,000.

PA4_GB_COUNT Integer The number of
available global nets
is reported. Minimum
for all dies is “0”.
Default and
Maximum values are
die-dependent:
005/010 die: Default
= Max = 8
025/050/060/090/150
die: Default=Max=16
RT4G075/RT4G150:
Default=24, Max=48.
Note: For RTG4,
default is 48.

BLOCK_MODE Boolean {true | false | 1 | 0} Set to true or 1 when
you have blocks in
your design and you
want to enable the
Block mode. Set it to
false or 0 if you don’t
have blocks in your
design. Default is
false or 0.

run_tool –name {COMPILE} Parameter:value pair

Name Value Description

NONE

Example
configure_tool -name {COMPILE}

-params {BLOCK_MODE:false}

-params {BLOCK_PLACEMENT_CONFLICTS:ERROR}

-params {BLOCK_ROUTING_CONFLICTS:ERROR}

-params {PA4_GB_MAX_RCLKINT_INSERTION:16}\

 PolarFire FPGA Tcl Commands User Guide

 163

-params {PA4_GB_MIN_GB_FANOUT_TO_USE_RCLKINT:30}\

-params {PA4_GB_MAX_FANOUT_DATA_MOVE:2000}\

-params {PA4_GB_COUNT:8}\

-params {PDC_IMPORT_HARDERROR:true}

run_tool –name {COMPILE} #Takes no parameters

Return
configure_tool -name {COMPILE}

Returns 0 on success and 1 on failure.
run_tool -name {COMPILE}

Returns 0 on success and 1 on failure.

 PolarFire FPGA Tcl Commands User Guide

164

CONFIGURE_CHAIN (SmartFusion2, IGLOO2, RTG4, PolarFire)
CONFIGURE_CHAIN is a command tool used in run_tool. The command run_tool -name
{CONFIGURE_CHAIN} takes a script file that contains FlashPro-specific Tcl commands and passes them to
FlashPro Express for execution.

run_tool -name {CONFIGURE_CHAIN} –script {fpro_cmds.tcl}

fpro_cmds.tcl is a Tcl script that contains FlashPro-specific Tcl commands to configure JTAG chain. For
details on JTAG chain programming Tcl commands, refer to the Tcl commands section in FlashPro’s Online
Help.
Do not include any FlashPro project-management commands such as open_project, save_project, or
close_project in this fpro_cmds.tcl script file. The run_tool –name {CONFIGURE_CHAIN} command
generates these project-management commands for you.
Note: For a new Libero project without a JTAG chain, executing this command causes Libero to first add the
existing design device to the JTAG chain and then execute the commands from the FlashPro script. If, for
example, the FlashPro script fpro_cmds.tcl contains commands to add four devices, executing the
command run_tool –name {CONFIGURE_CHAIN} -script {fpro_cmds.tcl} will create a JTAG chain of the
Libero design device and the four devices. For existing Libero projects that already have a JTAG chain, the
command is executed on the existing JTAG chain.

Example
run_tool –name {CONFIGURE_CHAIN} –script {d:/fpro_cmds.tcl}

#Example fpro_cmds.tcl command file for the –script parameter
add_actel_device \

-file {./sd_prj/sp_g3/designer/impl1/sd1.stp} \

-name {dev1}

enable_device -name {M2S050TS_5} -enable 0

add_non_actel_device \

-ir 2 \

-tck 1.00 \

-name {Non-Microsemi Device}

add_non_actel_device \

-ir 2 \

-tck 1.00 \

-name {Non-Microsemi Device (2)}

remove_device -name {Non-Microsemi Device}

set_device_to_highz -name {M2S050TS_5} -highz 1

add_actel_device \

-device {M2S050TS} \

-name {M2S050TS (3)}

select_libero_design_device -name {M2S050TS (3)}

Return
Returns 0 on success and 1 on failure.

 PolarFire FPGA Tcl Commands User Guide

 165

PLACEROUTE (SmartFusion2, IGLOO2, RTG4, PolarFire)
PLACEROUTE is a command tool used in configure_tool and run_tool. Configure_tool allows you to
configure the tool’s parameters and values prior to executing the tool. Run_tool executes the
PLACEROUTE command tool with the configured parameters.
To place and route the design in Libero SoC, you must first configure the PLACEROUTE tool with the
configure_tool command and then execute the PLACEROUTE command with the run_tool command.

configure_tool -name {PLACEROUTE}
-params {name:value}
-params {name:value}
-params {name:value}
-params {name:value}
run_tool -name {PLACEROUTE}

The following tables list the parameter names and values.

configure_tool –name {PLACEROUTE} parameter:value pair

Name Value Description

TDPR Boolean {true | false | 1 | 0} Set to true or 1 to enable Timing-Driven
Place and Route. Default is 1.

PDPR Boolean {true | false | 1 | 0} Set to true or 1 to enable Power-Driven
Place and Route. Default is false or 0.

EFFORT_LEVEL Boolean {true | false | 1 | 0} Set to true or 1 to enable High Effort
Layout to optimize design performance.
Default is false or 0.

INCRPLACEANDROUTE Boolean {true | false | 1 | 0} Set to true or 1 to use previous placement
data as the initial placement for the next
run. Default is false or 0.

REPAIR_MIN_DELAY Boolean {true | false | 1 | 0} Set to 1 to enable Repair Minimum Delay
violations for the router when TDPR option
is set to true or 1. Default is false.

NUM_MULTI_PASSES Integer value {“1” through
“25”}

Specifies the number of passes to run.
The default is 5. Maximum is 25.

START_SEED_INDEX Integer from “1” to “101” Indicates the specific index into the array
of random seeds which is to be the
starting point for the passes. Its value
should range from 1 to 100. If not
specified, the default behavior is to
continue from the last seed index which
was used.

MULTI_PASS_LAYOUT Boolean {true | false | 1 | 0} Set to true or 1 to enable Multi-Pass
Layout Mode for Place and Route. Default
is false or 0.

MULTI_PASS_CRITERIA {SLOWEST_CLOCK” |
SPECIFIC_CLOCK |

Specifies the criteria used to run multi-
pass layout:

 PolarFire FPGA Tcl Commands User Guide

166

Name Value Description

VIOLATIONS |
TOTAL_POWER}

• SLOWEST ClOCK: Use the
slowest clock frequency in the
design in a given pass as the
performance reference for the
layout pass.

• SPECIFIC_CLOCK: Use a
specific clock frequency as the
performance reference for all
layout passes.

• VIOLATIONS: Use the pass that
best meets the slack or timing-
violations constraints. This is the
default.

• TOTAL POWER:Specifies the
best pass to be the one that has
the lowest total power (static +
dynamic) out of all layout passes.

SPECIFIC_CLOCK {Name_of_clock} Applies only when
MULTI_PASS_CRITERIA is set to
SPECIFIC_CLOCK. It specifies the name
of the clock in the design used for Timing
Violation Measurement.

DELAY_ANALYSIS max | min Used only when MULTI_PASS_CRITERIA
is set to “VIOLATIONS”. Specifies the type
of timing violations (slacks) to be
examined. The default is 'max'.

• max: Use timing violations
(slacks) obtained from maximum
delay analysis

• min: Use timing violations
(slacks) obtained from minimum
delay analysis.

STOP_ON_FIRST_PASS Boolean {true | false | 1 | 0} Applies only when
MULTI_PASS_CRITERIA is set to
“VIOLATIONS”. It stops performing
remaining passes if all timing constraints
have been met (when there are no
negative slacks reported in the timing
violations report). Note: The type of timing
violations (slacks) used is determined by
the 'DELAY_ANALYSIS ' parameter.

SLACK_CRITERIA {WORST_SLACK |
TOTAL_NEGATIVE_SLACK}

Applies only when
MULTI_PASS_CRITERIA is set to
VIOLATIONS. Specifies how to evaluate
the timing violations (slacks). The default
is WORST_SLACK.

• WORST_SLACK: The largest
amount of negative slack (or
least amount of positive slack if
all constraints are met) for each

 PolarFire FPGA Tcl Commands User Guide

 167

Name Value Description

pass is identified and then the
largest value out of all passes will
determine the best pass. This is
the default.

• TOTAL_NEGATIVE_SLACK: The
sum of negative slacks from the
first 100 paths for each pass in
the Timing Violation report is
identified. The largest value out
of all passes will determine the
best pass. If no negative slacks
exist for a pass, then use the
worst slack to evaluate that pass.
Note: The type of timing
violations (slacks) used is
determined by the
'DELAY_ANALYSIS’ parameter.

run_tool –name {PLACEROUTE} Parameter:value pair

Name Value Description

NONE

Example
configure_tool -name {PLACEROUTE}\

-params {TDPR:true}\

-params {PDPR:false}\

-params {EFFORT_LEVEL:true}\

-params {INCRPLACEANDROUTE:false}\

run_tool –name {PLACEROUTE} #Takes no parameters

Return
configure_tool -name {PLACEROUTE}

Returns 0 on success and 1 on failure.
run_tool -name {PLACEROUTE}

Returns 0 on success and 1 on failure.

 PolarFire FPGA Tcl Commands User Guide

168

SYNTHESIZE (SmartFusion2, IGLOO2, RTG4, PolarFire)
SYNTHESIZE is a command tool used in configure_tool and run_tool. Configure_tool is a general-
purpose Tcl command that allows you to configure a tool’s parameters and values prior to executing the
tool. The run_tool Tcl command then executes the specified tool with the configured parameters.
To synthesize your design in Libero SoC, you first configure the synthesize tool with the configure_tool
command and then execute the command with the run_tool command.

configure_tool -name {SYNTHESIZE}
-params {name:value}
run_tool -name {SYNTHESIZE}

The following tables list the parameter names and values.

configure_tool –name {SYNTHESIZE} parameter:value pair

Name Value Description

CLOCK_ASYNC Integer Specifies the
threshold value for
asynchronous pin
promotion to a global
net. The default is
12.

CLOCK_GLOBAL Integer Specifies the
threshold value for
Clock pin promotion.
The default is 2.

CLOCK_DATA Integer value between 1000 and
200,000.

Specifies the
threshold value for
data pin promotion.
The default is 5000.

RAM_OPTIMIZED_FOR_POWER Boolean {true | false | 1 | 0} Set to true or 1 to
optimize RAM for
Low Power; RAMS
are inferred and
configured to ensure
the lowest power
consumption. Set to
false or 0 to optimize
RAM for High Speed
at the expense of
more FPGA
resources.

RETIMING Boolean {true | false | 1 | 0} Set to true or 1 to
enable Retiming
during synthesis. Set
to false or 0 to
disable Retiming
during synthesis.

SYNPLIFY_OPTIONS String Specifies additional

 PolarFire FPGA Tcl Commands User Guide

 169

Name Value Description

synthesis-specific
options. Options
specified by this
parameter override
the same options
specified in the user
Tcl file if there is a
conflict.

SYNPLIFY_TCL_FILE String Specifies the
absolute or relative
path name to the
user Tcl file
containing synthesis-
specific options.

BLOCK_MODE Boolean {true | false | 1 | 0} Set to true or 1 when
you have blocks in
your design and you
want to enable the
Block mode. Set it to
false or 0 if you don’t
have blocks in your
design. Default is
false or 0.

BLOCK_PLACEMENT_CONFLICTS String
{ERROR|KEEP|LOCK|DISCARD}

Instructs the
COMPILE engine
what to do when the
software encounters
a placement conflict.
When set to:
ERROR - Compile
errors out if any
instance from a
Designer block
becomes unplaced.
This is the default.
KEEP - If some
instances get
unplaced for any
reason, the non-
conflicting elements
remaining are
preserved but not
locked. Therefore,
the placer can move
them into another
location if necessary.
LOCK - If some
instances get
unplaced for any
reason, the non-
conflicting elements
remaining are

 PolarFire FPGA Tcl Commands User Guide

170

Name Value Description

preserved and
locked.
DISCARD –
Discards any
placement from the
block, even if there
are no conflicts.

BLOCK_ROUTING_CONFLICTS String
{ERROR|KEEP|LOCK|DISCARD}

Instructs the
COMPILE engine
what to do when the
software encounters
a routing conflict.
When set to:
ERROR - Compile
errors out if any
route in any
preserved net from a
Designer block is
deleted. This is the
default.
KEEP – If a route is
removed from a net
for any reason, the
routing for the non-
conflicting nets is
kept unlocked. The
router can re-route
these nets. LOCK –
If routing is removed
from a net for any
reason, the routing
for the non-
conflicting nets is
kept as locked, and
the router will not
change them.
DISCARD - Discards
any routing from the
block, even if there
are no conflicts.

PA4_GB_COUNT Integer The number of
available global nets
is reported. Minimum
for all dies is “0”.
Default and
Maximum values are
die-dependent:
005/010 die: Default
= Max = 8
025/050/060/090/150
die: Default=Max=16
RT4G075/RT4G150:

 PolarFire FPGA Tcl Commands User Guide

 171

Name Value Description

Default=24, Max=48.
Note: For RTG4,
default is 48.

PA4_GB_MAX_RCLKINT_INSERTION Integer Specifies the
maximum number of
global nets that could
be demoted to row-
globals. Default is
16, Min is 0 and Max
is 50.

PA4_GB_MIN_GB_FANOUT_TO_USE_RCLKINT Integer Specifies the
Minimum fanout of
global nets that could
be demoted to row-
globals. Default is
300. Min is 25 and
Max is 5000.

SEQSHIFT_TO_URAM Boolean {0,1} For PolarFire
Devices only.
Specifies whether
the Sequential-Shift
Registers are to be
mapped to Registers
or 64x12 RAMs. If
set to 1 (the default),
the logic mapping is
to RAMs. If set to 0,
the logic mapping is
to Registers.

LANGUAGE_SYSTEM_VLOG Boolean {true | false} Set to true if the
Verilog files contain
System Verilog
constructs.

LANGUAGE_VERILOG_2001 Boolean {true | false} Set to true if Verilog
files contain Verilog
2001 constructs.

LANGUAGE_VHDL_2008 Boolean {true | false} Set to true if VHDL
standard is VHDL
2008.

run_tool –name {SYNTHESIZE} Parameter:value pair

Name Value Description

NONE

 PolarFire FPGA Tcl Commands User Guide

172

Example
configure_tool -name {SYNTHESIZE} -params {BLOCK_MODE:false}\
 -params {BLOCK_PLACEMENT_CONFLICTS:ERROR} –params\
 {BLOCK_ROUTING_CONFLICTS:ERROR} -params {CLOCK_ASYNC:12}\
 -params {CLOCK_DATA:5010} -params {CLOCK_GLOBAL:2} –params\
 –params {PA4_GB_MAX_RCLKINT_INSERTION:16} –params\
 {PA4_GB_MIN_GB_FANOUT_TO_USE_RCLKINT:299} –params\
 {RAM_OPTIMIZED_FOR_POWER:false} -params {RETIMING:false}
 -params {SYNPLIFY_OPTIONS:
 set_option -run_prop_extract 1;
 set_option -maxfan 10000;
 set_option -clock_globalthreshold 2;
 set_option -async_globalthreshold 12;
 set_option -globalthreshold 5000;
 set_option -low_power_ram_decomp 0;}\
 -params {SYNPLIFY_TCL_FILE:C:/Users/user1/Desktop/tclflow/synthesis/test.tcl}

run_tool –name {SYNTHESIZE} #Takes no parameters

Return
configure_tool -name {SYNTHESIZE}

Returns 0 on success and 1 on failure.
run_tool -name {SYNTHESIZE}

Returns 0 on success and 1 on failure.

 PolarFire FPGA Tcl Commands User Guide

 173

VERIFYPOWER (SmartFusion2, IGLOO2, RTG4, PolarFire)
VERIFYPOWER is a command tool used in run_tool. The command run_tool passes a script file that
contains power-specific Tcl commands to the VERIFYPOWER command and executes it.

run_tool -name {VERIFYPOWER} –script {power_analysis.tcl}

where
<power_analysis.tcl> is a script that contains power-specific Tcl commands. You can include power-specific
Tcl commands to generate power reports. See the sample power_analysis Tcl Script below for details.

Return
Returns 0 on success and 1 on failure.

Example
run_tool –name {VERIFYPOWER} –script {<power_analysis.tcl>}

Sample power_analysis Tcl Script <power_analysis.tcl>
The following example changes SmartPower operating condition settings from the default to 40C junction
temperature and 1.25V VDD.
It then creates a report called A4P5000_uSRAM_POWER_64X18_power_report.txt.
Change from pre-defined temperature and voltage mode (COM,IND,MIL) to SmartPower custom
smartpower_set_temperature_opcond -use "design"

smartpower_set_voltage_opcond -voltage "VDD" -use "design"

Set the custom temperature to 40C ambient temperature.
smartpower_temperature_opcond_set_design_wide -typical 40 -best 40 -worst 40

Set the custom voltage to 1.25V
smartpower_voltage_opcond_set_design_wide -voltage "VDD" –typical 1.25 -best 1.25 -worst
1.25

 PolarFire FPGA Tcl Commands User Guide

174

VERIFYTIMING (SmartFusion2, IGLOO2, RTG4, PolarFire)
VERIFYTIMING is a command tool used in run_tool. Run_tool passes a script file that contains timing-
specific Tcl commands to the VERIFYTIMING command and executes it.

run_tool -name {VERIFYTIMING} –script {timing.tcl}

where
<timing.tcl> is a script that contains SmartTime-specific Tcl commands. You can include SmartTime-
specific Tcl commands to create user path sets and to generate timing reports. See sample the Sample
SmartTime Tcl Script below for details.

Example
run_tool –name {VERIFYTIMING} –script {<timing.tcl>}

Return
Returns 0 on success and 1 on failure.

Sample SmartTime Tcl Script <timing.tcl>
Create user path set -from B_reg

create_set -name from_B_reg \

-source {B_reg*[*]:CLK} \

-sink {*}

Create user set -from A, B, C

create_set -name from_in_ports \

-source {A B C} \

-sink {*}

Generate Timing Reports

Report \

-type timing \

-analysis min \

-format text \

-max_paths 10 \

-print_paths yes \

-max_expanded_paths 10 \

-include_user_sets yes \

min_timing.rpt

Export SDC

write_sdc -scenario {Primary} exported.sdc

#save the changes

save

	Table of Contents
	Tcl Command Documentation Conventions 8
	Basic Syntax 10
	Types of Tcl commands 12
	Running Tcl Scripts from the GUI 17
	Running Tcl Scripts from the Command Line 18
	Exporting Tcl Scripts 20
	extended_run_lib 21
	Sample Tcl Script - Project Manager 24
	Tcl Flow in the Libero SoC 25
	add_file_to_library 28
	add_library 29
	add_modelsim_path 30
	add_profile 31
	associate_stimulus 32
	change_link_source 33
	check_fdc_constraints 34
	check_hdl 35
	check_ndc_constraints 36
	check_pdc_constraints 37
	check_sdc_constraints 38
	close_design 39
	close_project 40
	configure_tool (SmartFusion2, IGLOO2, RTG4, PolarFire) 41
	create_links 43
	defvar_get 44
	defvar_set 45
	delete_files 46
	download_core 47
	edit_profile 48
	export_as_link 49
	export_bsdl_file (SmartFusion2, IGLOO2, RTG4, PolarFire) 50
	export_design_summary 51
	export_netlist_file (SmartFusion2, IGLOO2, RTG4, PolarFire) 52
	export_pin_reports (SmartFusion2, IGLOO2, RTG4, PolarFire) 53
	export_profiles 54
	export_script 55
	generate_sdc_constraint_coverage (SmartFusion2, IGLOO2, RTG4, and PolarFire) 56
	import_files (Libero SoC) 57
	new_project 60
	open_project 65
	organize_constraints 66
	organize_sources 67
	organize_tool_files (SmartFusion2, IGLOO2, RTG4, PolarFire) 69
	project_settings 70
	refresh 72
	remove_core 73
	remove_library 74
	remove_profile 75
	rename_file 76
	rename_library 77
	run_tool (SmartFusion2, IGLOO2, RTG4, PolarFire) 78
	save_project_as 81
	save_log 83
	save_project 84
	select_profile 85
	set_actel_lib_options 86
	set_as_target 87
	set_device (Project Manager) 88
	set_modelsim_options 89
	set_option 92
	set_root 93
	set_user_lib_options 94
	unlink 95
	unset_as_target 96
	use_file 97
	use_source_file 98
	smartpower_add_new_scenario 100
	smartpower_add_pin_in_domain 101
	smartpower_battery_settings 102
	smartpower_change_clock_statistics 103
	smartpower_change_setofpin_statistics 105
	smartpower_commit 106
	smartpower_compute_vectorless 107
	smartpower_create_domain 108
	smartpower_edit_scenario 109
	smartpower_import_vcd 110
	smartpower_init_do 113
	smartpower_init_set_clocks_options 116
	smartpower_init_set_combinational_options 117
	smartpower_init_set_enables_options 118
	smartpower_init_set_primaryinputs_options 119
	smartpower_init_set_registers_options 120
	smartpower_init_setofpins_values 121
	smartpower_remove_all_annotations 122
	smartpower_remove_file 123
	smartpower_remove_pin_probability 124
	smartpower_remove_scenario 125
	smartpower_set_mode_for_analysis 126
	smartpower_set_mode_for_pdpr 127
	smartpower_set_operating_condition 128
	smartpower_set_operating_conditions 129
	smartpower_set_pin_probability 131
	smartpower_set_process 132
	smartpower_set_scenario_for_analysis 133
	smartpower_set_temperature_opcond 134
	smartpower_set_voltage_opcond 135
	smartpower_temperature_opcond_set_design_wide 136
	smartpower_temperature_opcond_set_mode_specific 137
	smartpower_voltage_opcond_set_design_wide 138
	smartpower_voltage_opcond_set_mode_specific 139
	create_set 142
	expand_path 144
	list_paths 146
	read_sdc 148
	remove_set 150
	report 151
	save 155
	set_options (SmartFusion2, IGLOO2, RTG4, and PolarFire) 156
	COMPILE (SmartFusion2, IGLOO2, RTG4, PolarFire) – Enhanced Constraint Flow 160
	CONFIGURE_CHAIN (SmartFusion2, IGLOO2, RTG4, PolarFire) 164
	PLACEROUTE (SmartFusion2, IGLOO2, RTG4, PolarFire) 165
	SYNTHESIZE (SmartFusion2, IGLOO2, RTG4, PolarFire) 168
	VERIFYPOWER (SmartFusion2, IGLOO2, RTG4, PolarFire) 173
	VERIFYTIMING (SmartFusion2, IGLOO2, RTG4, PolarFire) 174

	Introduction to Tcl Scripting
	Examples
	Wildcard Characters
	Special Characters [], { }, and \
	Entering Arguments on Separate Lines
	See Also

	Project Manager Tcl Command Reference
	Special Characters
	Sample Tcl Script
	Built-in commands
	Procedures created with the proc command
	Commands built into the software

	Variables
	Global Variables

	Command substitution
	Quotes and braces
	Filenames

	Lists and arrays
	Arrays
	Special arguments (command-line parameters)

	Control structures
	if/else statements
	for loop statement
	while loop statement
	catch statement

	Print statement and Return values
	Print Statement
	Return Values
	Arguments
	Exceptions
	Example
	See Also

	Design Flow in the Project Manager
	Manage Profiles in the Project Manager
	Linking Files
	Set Simulation Options in the Project Manager
	Set Device in the Project Manager
	Miscellaneous Operations in the Project Manager
	Manage Profiles in the Project Manager
	Linking Files
	Set Simulation Options in the Project Manager
	Set Device in the Project Manager
	Miscellaneous Operations in the Project Manager

	Project Manager Tcl Commands
	Arguments
	Example
	See Also

	Arguments
	Example
	See Also

	Arguments
	Example
	Arguments
	Example
	Example
	Arguments
	Example
	Arguments
	Example
	Return Value
	Arguments
	Example
	Arguments
	Example
	See Also

	Arguments
	Example
	Return Value
	Arguments
	Example
	Return Value
	Arguments
	Example
	See Also

	Arguments
	Example
	Supported tool_names
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Returns
	Example
	Returns
	Arguments
	Returns
	Example
	Arguments
	Returns
	Example
	Arguments
	Example
	Arguments
	Arguments
	Returns
	Example
	See Also
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	See Also

	Arguments
	Example
	Arguments
	Arguments
	Example
	Arguments
	Arguments
	Example
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Return Value
	Arguments
	Example
	Return
	Supported tool_names
	Example
	Note
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Return Value
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Arguments
	Example
	Return Value
	Arguments
	Example
	Arguments
	Example

	SmartPower Tcl Commands
	Arguments
	Examples
	See Also

	Arguments
	Notes
	Examples
	See Also

	Parameters
	Exceptions
	Returns
	Usage
	Example
	Arguments
	Notes
	Examples
	See Also

	Arguments
	Notes
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Example
	Arguments
	Notes
	Examples
	See Also

	Arguments
	Examples
	See Also

	Parameters
	Exceptions
	Returns
	Examples
	Arguments
	Notes
	Examples
	See Also

	Arguments
	Notes
	Examples
	See Also

	Arguments
	Notes
	Examples
	See Also

	Arguments
	Notes
	Examples
	See Also

	Arguments
	Notes
	Examples
	See Also

	Arguments
	Notes
	Exceptions
	Examples
	See Also

	Arguments
	Notes
	Examples
	See Also

	Arguments
	Notes
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Parameters
	Exceptions
	Return Value
	Examples
	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Exceptions
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	Arguments
	Examples
	See Also

	SmartTime Tcl Commands
	Arguments
	Examples
	Arguments
	Examples
	See Also

	Arguments
	Example
	Arguments
	Example
	Parameters
	Example
	Arguments
	Timing Options and Values
	Bottleneck Options and Values

	Example
	Arguments
	Example
	See Also
	Arguments
	Examples

	Command Tools
	configure_tool –name {COMPILE} parameter:value pair
	run_tool –name {COMPILE} Parameter:value pair
	Return
	Example
	Return
	configure_tool –name {PLACEROUTE} parameter:value pair
	run_tool –name {PLACEROUTE} Parameter:value pair

	Return
	configure_tool –name {SYNTHESIZE} parameter:value pair
	run_tool –name {SYNTHESIZE} Parameter:value pair

	Example
	Return
	Return
	Example
	Sample power_analysis Tcl Script <power_analysis.tcl>

	Example
	Return
	Sample SmartTime Tcl Script <timing.tcl>

