ZLE30267 Evaluation Board

PCB Revision B Hardware Guide

December 2015

List of Figures
List of Tables
Supported Devices5
Related Documents5
Hardware Overview5
Hardware Feature Summary5
Major Components5
Hardware Features5
Power Supply7
USB Interface7
Hardware Configuration 7
Hardware Configuration
Top Level Configurations
Connections and Settings Tables
Reset, SPI Bus and GPIO Settings
Local Oscillator
DUT Mode Bits
Input Clocks
Output Clocks
GPIO Header and Status LEDs
Connecting Off-Board Devices
Discrete Component Options for Input and Output Clocks
Oscillator / Crystal Daughter Card24
Daughter Card Overview
Oscillator Daughter Card Assembly
Crystal Daughter Card Assembly
Daughter Card Installation
Document Revision History

List of Figures

6
8
8
9
9
10
10
11
11
25
25
25
26
27

List of Tables

Table 1 · Serial Bus DIP Switch and Jumper Configurations	12
Table 2 · Power Connections and Settings	15
Table 3 · Reset, SPI bus and PC Interface Hardware Configuration	16
Table 4 · XA Pin Oscillator Configurable Hardware	17
Table 5 · DUT XA Pin Source Selection Jumper Settings	17
Table 6 · DUT Reset: Mode Bit Settings	18
Table 7 · Input Clock Hardware Configuration	20
Table 8 · Input Clock Differential/Single-Ended Mode Selection Settings	20
Table 9 · Output Clock Hardware Configuration	22
Table 10 · JP1 Serial Header Pin Assignments	23
Table 11 · JP5 Serial Header Pin Assignments	23
Table 12 · Discrete Component Options for Clocks	23

This page left blank

ZLE30267 Hardware Guide

Supported Devices

The ZLE30267 evaluation board supports the following Microsemi timing and synchronization devices: ZL30260 to ZL30267 and ZL40250 to ZL40253.

Related Documents

- ZLE30267 Evaluation Board Rev B Schematic
- ZLE30267 Evaluation Board Rev B Bill of Materials
- Datasheets for the ZL30267 and the other part numbers listed in the Supported Devices section

Hardware Overview

The ZLE30267 Evaluation Board is a test and demonstration platform with support for the full feature sets of the family of timing ICs.

Hardware Feature Summary

A top side image of the board is shown in Figure 1.

Throughout this document, the abbreviation "DUT" is used to refer to "Device Under Test", meaning the Microsemi timing IC on the board.

The ZLE30267 board includes the following major components and hardware features:

Major Components

- Timing IC (DUT)
- Low noise linear regulators
- USB Interface for optional connection to PC with GUI software
- External EEPROM for timing device configuration storage (ZL30260, ZL30262, ZL30264, ZL30266, ZL40250, ZL40252)
- SMA connectors for access to all DUT clocks
- Serial bus switch

Hardware Features

- Single 5VDC external power interface with connector for AC/DC wall adapter
- Fully configurable DUT power options
- DUT reset switch
- Standalone (DIP switch) operation or GUI Interface
- USB interface with USB-B connector for PC GUI connection
- Pin headers with direct access to board's SPI/I2C bus. Off-board DUT, EEPROM, or SPI master device can interface with on-board devices.
- Status LEDs
- Oscillator options: on board or pluggable TCXOs, XOs or XTALs
- SMA connectors on all input and output clocks
- Jumper-configurable input clocks
- Additional discrete component configuration options for advanced users

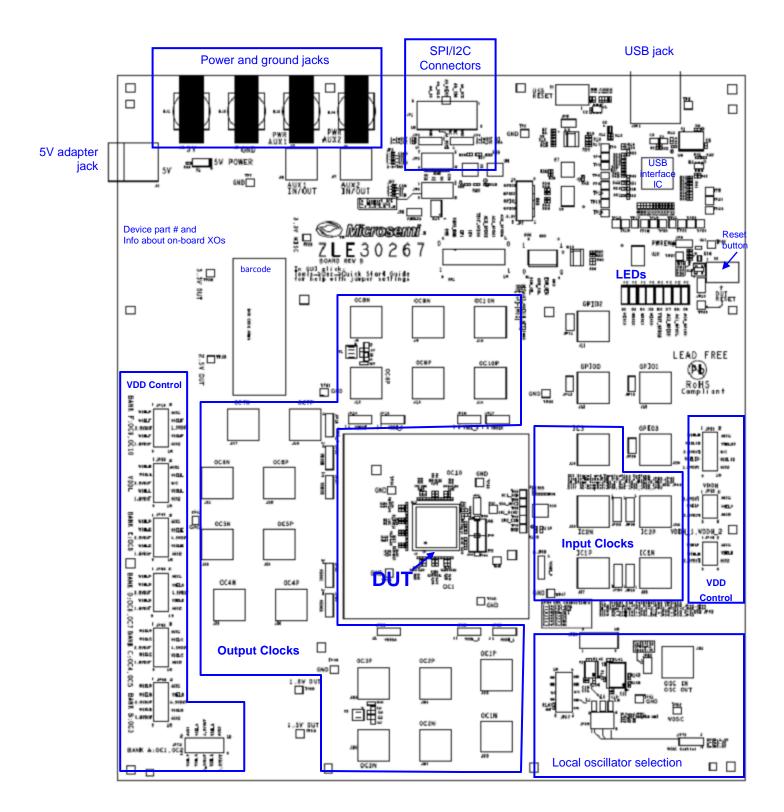


Figure 1 · Board Floor Plan

Power Supply

The board is normally powered via connector J5 using the provided AC-wall-plug 5VDC power supply. Red LED D1 illuminates to indicate that the board is powered. Advanced power options for lab experimentation are also provisioned on the board.

USB Interface

The Windows®-based ZLE30267 GUI software communicates with the board via USB connector JDR1.

Hardware Configuration

Top Level Configurations

The ZLE30267 Evaluation Board supports several operational modes of DUTs, including

- SPI/I2C slave (with or without internal EEPROM)
- SPI master with external EEPROM

To provide flexibility to users, the board supports a multiplicity of configurations, some of which require software supervision via the USB link, some of which allow the board to operate as a standalone unit, and others which provide external device access points to the board's serial bus by means of pin headers.

Top level configuration defines the following aspects of board set up:

- A connection between a serial bus master device and serial bus slave device. The serial bus master may be the USB interface controller (U8), DUT (U17), or an external controller connected into a pin header (JP1 or JP5) on the board. The serial bus slave device may be the DUT, on-board EEPROM (U10), or an external EEPROM or DUT on a separate board, connected to a pin header (JP1 or JP5).
- Control of serial bus switch, which may be either via DIP switches or the USB interface controller
- Control of DUT GPIO pins by means of DIP switches

The following block diagram shows a simplified topology of the hardware elements relating to high-level board configuration. Annotations identify significant board components associated with objects in the image. At the core of the board's design is a serial bus switch. The switch allows point-to-point serial bus connections to be made between the USB interface, DUT, and on board EEPROM, with additional options for connecting user devices to a pin header. Hardware settings on the board may be configured by DIP switches, or, in set-ups in which the board is under software control, the software controls some DIP switch settings, and monitors others.

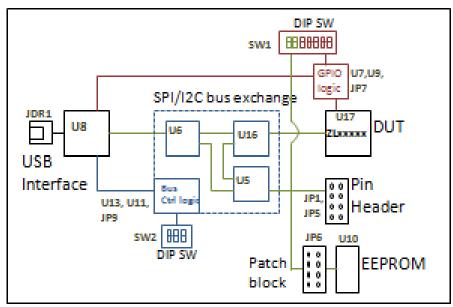


Figure 2 · Configuration Topology with Annotations

Each of the possible configurations is portrayed in the following series of Figures 3 through 9. The active serial bus and hardware control elements of the configuration are depicted by heavy lines. Active blocks are also identified with bold text. Two of the switches on SW1 are shown in green to differentiate them from GPIO controls. These represent settings for signals IF1 and IF0, which act through the SPI bus and are used in DUT configuration on reset.

In Configuration 1, the USB interface is SPI master with the DUT as bus slave.

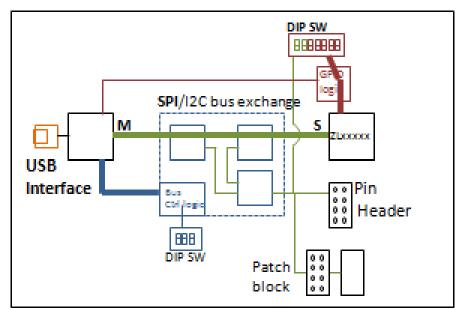


Figure 3 · Board Configuration 1

In Configurations 2 and 3, the USB device is SPI master. The USB master can interface with an on-board EEPROM as in Configuration 2, or an "external SPI device" as in Configuration 3. The external SPI device could be either an EEPROM or a DUT mounted on another board. The physical form the external device takes would typically be an independently powered board connected by cable interface to JP1 or JP5. In configurations in which an external device is connected to the board, voltage level compatibility should be checked prior to proceeding with connections.

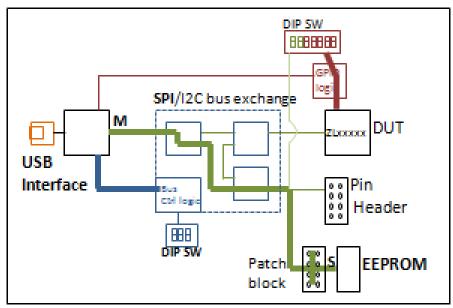


Figure 4 · Board Configuration 2

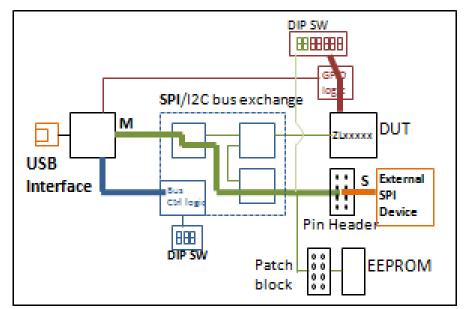


Figure 5 · Board Configuration 3

In Configurations 4 and 5, The DUT is set up as a SPI master with external EEPROM. The difference between the two configurations is that in Configuration 4 the on-board EEPROM is referenced and in Configuration 5, a header-connected external EEPROM is referenced. Note that these configurations apply only to DUTs which do not have internal EEPROMs.

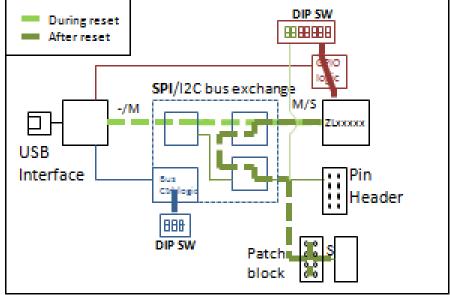


Figure 6 · Board Configuration 4

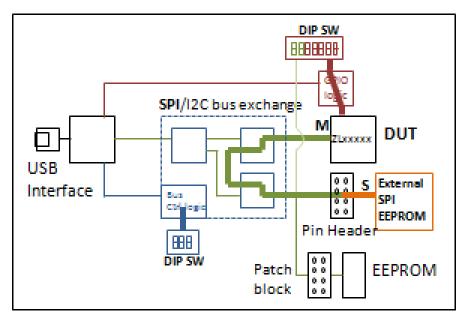


Figure 7 · Board Configuration 5

Configurations 6 and 7 depict scenarios in which an external serial bus master device is connected to the DUT. One Figure shows the topology for the two configurations because they are differentiated only by switch settings. Configuration 6 is SPI serial bus mode, whereas Configuration 7 is an I2C serial bus.

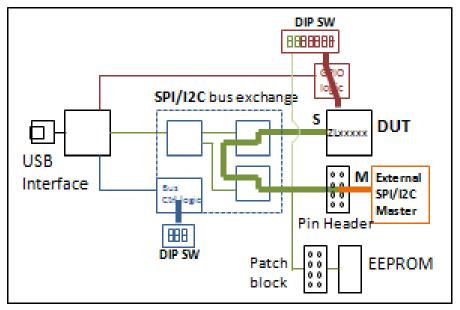


Figure 8 · Board Configurations 6 and 7

Finally, Configuration 8 depicts an external device interfacing with the on-board EEPROM over the serial bus.

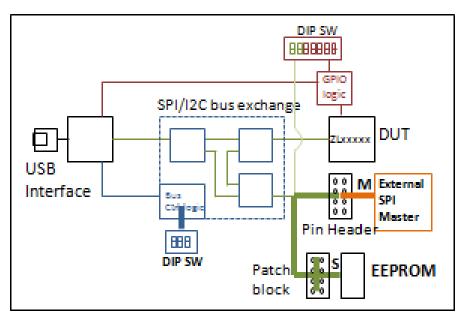


Figure 9 · Board Configuration 8

Switch and Jumper Configurations, Detailed Listing

Each of the possible board configurations illustrated above is implemented as a collection of settings. The settings are comprised of jumper assignments, DIP switch settings, and/or software-controlled bit port logic (1=high, 0=low). This section provides a comprehensive listing of all the board settings for each configuration. It is important to note that for configurations in which the DUT is an active element, settings must be applied prior to and held during the DUT reset cycle so that the DUT starts up in a state which is synchronized with the board.

Table 1 lists the configurations and their associated settings. References to the configuration topology diagrams in the preceding section are shown in column 1. A summary listing of the Jumpers and switches referenced in Table 1 can be found in Table 3.

The reader is referred to applicable device datasheets for further information about DUT reset and configuration. Some signals, typically GPIOs, may change once DUT has initialized. Note: at this time not all configurations are fully supported by software.

Board Config. Number	Serial Bus Master	Serial Bus Slave	Description	Switch and Jumper Settings	USB Controller IO Pin Settings
1	USB (SPI)	DUT	GUI/PC is master of SPI bus, and controls serial bus configuration settings. DIP switch settings control DUT GPIOs. DUT loads configuration from internal ROM or EEPROM (device- dependent).	JP9 = on ZL30260/2/4/6, ZL40250/2: SW1.IF0 = 0 (ROM auto-config) SW1.IF0 = 1 (EEPROM auto- config) ZL30261/3/5/7, ZL40251/3: SW1.IF0 = 1 Plus: SW1.IF1 = 1 SW1.TEST_GPIO3 = 0 SW1.PUPD_ENB = 0 [SW1.AC2_GPIO2, SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0] = select ROM or EEPROM configuration # 0 to 7	On RESET, FT_DSW_SEL = 1; plus: FT_FSW_OEB = 0 FT_HW_SEL = 0 FT_SPI_SEL = 0 FT_ESW_SEL = 1 FT_ESW_OEB = 0 FT_PUPD_ENB = hi-Z FT_AC0_GPIO0 = hi-Z FT_AC1_GPIO1 = hi-Z FT_AC2_GPIO2 = hi-Z FT_TEST_GPIO3 = hi-Z After DUT auto-config, set FT_DSW_SEL = 0
2	USB (SPI)	EEPROM (U10)	GUI/PC Is master of SPI bus connection with on-board EEPROM, and controls serial bus configuration settings If DUT is running, GPIO DIPs should be left as configured.	JP9=on JP6: shunt pins 1-2, 3-4, 5-6, 7-8 SW1.IF0 = 1 SW1.IF1 = 1 SW1.PUPD_ENB = 0	$FT_FSW_OEB = 0$ $FT_HW_SEL = 0$ $FT_SPI_SEL = 1$ $FT_DSW_SEL = x$ $FT_ESW_SEL = 0$ $FT_ESW_OEB = 0$ $FT_PUPD_ENB = hi-Z$ $FT_AC0_GPIO0 = hi-Z$ $FT_AC1_GPIO1 = hi-Z$ $FT_AC2_GPIO2 = hi-Z$ $FT_TEST_GPIO3 = hi-Z$ $FT_GPIO3 = hi-Z$

Table 1 · Serial Bus DIP Switch and Jumper Configurations

Board Config. Number	Serial Bus Master	Serial Bus Slave	Description	Switch and Jumper Settings	USB Controller IO Pin Settings
3	USB (SPI)	JP1 or JP5	GUI/PC controls external EEPROM connected at header, or external DUT via SPI cable, and serial bus configuration. If DUT is running, GPIO DIPs should be left as configured.	JP9 = on JP6: all open SW1.IF0 = 1 SW1.IF1 = 1 SW1.PUPD_ENB = 0	$FT_FSW_OEB = 0$ $FT_HW_SEL = 0$ $FT_SPI_SEL = 1$ $FT_DSW_SEL = x$ $FT_ESW_SEL = 0$ $FT_ESW_OEB = 0$ $FT_PUPD_ENB = hi-Z$ $FT_AC0_GPIO0 = hi-Z$ $FT_AC1_GPIO1 = hi-Z$ $FT_AC2_GPIO2 = hi-Z$ $FT_TEST_GPIO3 = hi-Z$ $FT_GPIO3 = hi-Z$
4	DUT (SPI)	EEPROM	ZL30260/2/4/6 and ZL40250/2 DUT loads from on-board EEPROM (standalone board operation). ZL30261/3/5/7 and ZL40251/3 DUT will not load from external EEPROM device.	JP9 = open JP6: shunt pins 1-2, 3-4, 5-6, 7-8 SW1.IF0 = 1 SW1.IF1 = 1 SW1.TEST_GPIO3 = 0 SW2.DSW_SEL = 0 SW2.DSW_SEL = 1 SW2. ESW_OEB = 0 SW2. ESW_SEL = 1 [SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0] = select EEPROM configuration # 0 to 7	N/A
5	DUT (SPI)	JP1 or JP5 Header	ZL30260/2/4/6 and ZL40250/2 DUT loads from external EEPROM connected to header. ZL30261/3/5/7 and ZL40251/3 DUT will not load from external EEPROM device.	JP9 = open JP6: open SW1.IF0 = 1 SW1.IF1 = 1 SW1.TEST_GPIO3 = 0 SW1.PUPD_ENB = 0 SW2.DSW_SEL = 1 SW2. ESW_OEB = 0 SW2.ESW_SEL = 1 SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0 = select EEPROM configuration # 0 to 7	N/A

Board Config. Number	Serial Bus Master	Serial Bus Slave	Description	Switch and Jumper Settings	USB Controller IO Pin Settings
6	JP1 or JP5 Header	DUT	External connected device as SPI master, local DUT as SPI slave. External EEPROMs cannot be used with this configuration.	JP9 = open JP6: open ZL30260/2/4/6, ZL40250/2: SW1.IF0 = 0 ZL30261/3/5/7, ZL40251/3: SW1.IF0 = 1 Plus: SW1.IF1 = 1 SW1.TEST_GPIO3 = 0 SW1.PUPD_ENB = 0 SW2.DSW_SEL = 1 SW2. ESW_OEB = 0 SW2. ESW_OEB = 0 SW2. ESW_SEL = 1 SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0 = select ROM/ EEPROM configuration # 0 to 7	N/A
7	JP1 or JP5 Header	DUT	External connected device as I2C master, local DUT as I2C slave. External EEPROMs cannot be used with this configuration.	JP9 = open JP6: open SW1.IF1, SW1.IF0 = 12C device address - see datasheet SW1.TEST_GPIO3 = 0 SW1.PUPD_ENB = 0 SW2.DSW_SEL = 1 SW2. ESW_OEB = 0 SW2. ESW_SEL = 1 SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0 = select ROM/ EEPROM configuration # 0 to 7	N/A
8	JP1 or JP5 Header	EEPROM	External device SPI master programs and/or reads EEPROM	JP9 = open JP6: shunt pins 1-2, 3-4, 5-6, 7-8 SW1.IF0 = 1 SW1.IF1 = 1 SW1.PUPD_ENB = 0 SW2. ESW_OEB = 1	N/A

Connections and Settings Tables

The following sections provide detailed listings of the various evaluation board user interface components.

Power Supply

The board provides several options for evaluating device performance with respect to power supply configuration. DUT power configuration is highly customizable. A thorough understanding of the DUT and board operation should be developed prior to customizing power settings on the board. Table 2 summarizes the power supply related hardware connectors and their functions.

Silkscreen Reference	Device/ Function	Basic Setting	Schematic Sheet	Description
J1/BJ1	Power jack	Unconnected	4	Optional 5V Power interface
J2/BJ2 (GND)	Banana jack	Unconnected	4	Optional power interface GND
J5 (5V)	Power jack	Connect to 5V	4	5V Power adapter (2.1 mm x 5.5 mm barrel jack)
J3/BJ3 (PWR AUX1)	Banana jack	Unconnected	4	Direct DUT power interface AUX1
J4/BJ4 (PWR AUX2)	Banana jack	Unconnected	4	Direct DUT power option AUX2
J6 (PWR IN/OUT)	SMA	Unconnected	4	Power noise inject/monitor site to AUX1
J7 (PWR IN/OUT)	SMA	Unconnected	4	Power noise inject/monitor site to AUX2
JP32	6 pin header	Shunt pins 1-3	5	Selects VDDH_P DUT voltage source (3.3V LDO, 2.5V LDO, AUX1, AUX2)
JP46	6 pin header	Shunt pins 1-3	5	Selects VSELH voltage (same as VDDH_P, 2.5V LDO, AUX1, AUX2)
JP26	10 pin header	Shunt pins 1-3	5	Selects VDDL_1 DUT voltage source (VSELH, 2.5V LDO, 1.8V LDO, AUX1, AUX2)
JP21	10 pin header	Shunt pins 1-3	5	Selects VDDIO DUT voltage source (VSELH, 2.5V LDO, 1.8V LDO, AUX1, AUX2)
JP71	10 pin header	Shunt pins 1-3	5	Selects VDDOA DUT voltage source (VSELH, 2.5V LDO, 1.8V LDO, 1.5V LDO, AUX1, AUX2)
JP68	10 pin header	Shunt pins 1-3	5	Selects VDDOB DUT voltage source (VSELH, 2.5V LDO, 1.8V LDO, 1.5V LDO, AUX1, AUX2)
JP65	10 pin header	Shunt pins 1-3	5	Selects VDDOC DUT voltage source (VSELH, 2.5V LDO, 1.8V LDO, 1.5V LDO, AUX1, AUX2)
JP59	10 pin header	Shunt pins 1-3	5	Selects VDDOD DUT voltage source (VSELH, 2.5V LDO, 1.8V LDO, 1.5V LDO, AUX1, AUX2)
JP41	10 pin header	Shunt pins 1-3	5	Selects VDDOE DUT voltage source (VSELH, 2.5V LDO, 1.8V LDO, 1.5V LDO, AUX1, AUX2)
JP19	10 pin header	Shunt pins 1-2	5	Selects VDDOF DUT voltage source (VSELH, 2.5V LDO, 1.8V LDO, 1.5V LDO, AUX1, AUX2)
JP49	3-pin header	Not installed	5	Probe/configuration option for VDDH_P power pin
JP63	3-pin header	Not installed	5	Probe/configuration option for VDDH_1 power pin
JP15	3-pin header	Not installed	5	Probe/configuration option for VDDH_2 power pin
JP18	3-pin header	Not installed	5	Probe/configuration option for VDDL_1 power pin
JP62	3-pin header	Not installed	5	Probe/configuration option for VDDL_2 power pin
JP16	3-pin header	Not installed	5	Probe/configuration option for VDDL_3 power pin
JP17	3-pin header	Not installed	5	Probe/configuration option for VDDIO power pin
JP61	3-pin header	Not installed	5	Probe/configuration option for VDDOA power pin
JP60	3-pin header	Not installed	5	Probe/configuration option for VDDOB power pin
JP53	3-pin header	Not installed	5	Probe/configuration option for VDDOC power pin
JP27	3-pin header	Not installed	5	Probe/configuration option for VDDOD power pin

Table 2 · Power Connections and Settings

Silkscreen Reference	Device/ Function	Basic Setting	Schematic Sheet	Description
JP22	3-pin header	Not installed	5	Probe/configuration option for VDDOE power pin
JP14	3-pin header	Not installed	5	Probe/configuration option for VDDOF power pin
JP70 (VOSC)	3 pin header	Shunt pins 1-2	4	Sets oscillator voltage (shunt pins 1-2=3.3V, shunt pins 2-3= 2.5V, open = 1.8V)

Reset, SPI Bus and GPIO Settings

The board has a number of DUT variants and configurations, some of which support GUI/PC software and some of which are standalone operation. Table 3 lists the hardware interfaces which are related to SPI bus, resets, and DUT configuration. This table provides a physical description and summary of the configurable hardware components referenced in Table 1.

Silkscreen	Silkscreen Schematic					
Reference	Device/ Function	Basic Setting	Sheet	Description		
JDR1 (USB)	USB connector	Connected to PC	2	Connects board to host computer		
JP9 (PWREN#)	2 pin header	Shunt installed	2	Enables USB interface controls on board		
JP2	2 pin header	Shunt installed	2	Serial bus voltage translator reference voltage		
S2 (DUT RESET)	Reset pushbutton	Inactive	2	Sends a reset signal to DUT.		
JP1	10 pin header	Unconnected	3	Can be used to connect an external SPI or I2C master to DUT or EEPROM on board		
JP6	8 pin header	Shunts on pins 1-2, 3-4, 5-6, 7-8	3	Connects EEPROM to switched SPI bus		
JP3	3 pin header	Shunt on pins 1-2	3	Configure JP1 as SPI SCLK or I2C SCL		
JP4	3 pin header	Shunt on pins 1-2	3	Configure JP1 as SPI SI or I2C SDA		
JP5	8 pin header	No shunts	3	Probe/test serial header for EEPROM or DUT		
JP7	10 pin header	No shunts	3	Test/ pull down header for DUT GPIO pins		
SW2	4 DIP switch	Depends on Configuration	3	SPI bus switch hardware configuration (may be overdriven by USB controller)		
SW1	8 DIP switch	Depends on Configuration	3	DUT hardware configuration pin and GPIO hardware configuration switches. GPIO switches may be overdriven by USB controller (not currently supported by GUI)		
TP35, TP36, TP38, TP40	Testpoints	N/A	3	Test points for probing SPI bus at DUT		
J15	SMA Connector		3	DUT AC0_GPIO0 connection point		
JP12	2 pin header	Shunt installed	3	Connect DUT AC0_GPIO0 to LEDs/local controller port		
J16	SMA Connector		3	DUT AC1_GPIO1 connection point		
JP13	2 pin header	Shunt installed	3	Connect DUT AC1_GPIO1 to LEDs/local controller port		
J11	SMA Connector		3	DUT AC2_GPIO2 connection point		
JP11	2 pin header	Shunt installed	3	Connect DUT AC2_GPIO2 to LEDs/local controller port		

Table 3 · Reset, SPI bus and PC Interface Hardware Configuration

Silkscreen Reference	Device/ Function	Basic Setting	Schematic Sheet	Description
J20	SMA Connector		3	DUT TEST_GPIO3 connection point
JP20	2 pin header	Shunt installed	3	Connect DUT TEST_GPIO3 to LEDs/local controller port

Local Oscillator

The board provides several options for driving the timing device's XA input pin from an on-board oscillator, crystal, or an external source. Table 4 summarizes the oscillator related hardware jumpers and connectors and functionality. Table 5 summarizes board jumper settings required to set up each clock source.

Silkscreen Reference	Device/ Function	Basic Setting	Schematic Sheet	Description
JP69	6 pin header	Shunt pins 5-6	7	2-pin shunt installed connects OSC power (see JP70) to one of three oscillators (pins 1-2= JP67 header for daughter card; pins 3-4 = Y2; pins 5-6= Y3)
JP67	10-pin receptacle for oscillator daughter board		7	Microsemi custom daughter board installs here.
JP64	10 pin header	Shunt pins 1-3	7	XA pin clock patch header. Shunt settings are as follows: pins 1-2: JP67 to J31 (monitor JP67) pins 1-3: JP67 to DUT XA pin pins 3-5: Y2 to DUT XA pin pins 5-7: Y2 to J31 (monitor Y2) pins 4-6: Y3 to DUT XA pin pins 6-8: Y3 toJ31 (monitor Y3) pins 2-4: J31 to DUT XA pin (external clock in)
J31	SMA connector		7	Access point for monitoring an oscillator on board, or providing DUT XA pin clock from an external clock source
JP66	2 pin header	Open	7	Open selects AC coupled clock connection to J31; shunt selects DC coupling to J31
JP72	6 pin header	Shunt pins 3-4	7	Header for mounting optional XTAL or oscillator device. Located on bottom side of board. Shunt on pins 3-4 patches oscillator signal from patch header JP64 to DUT XA pin

Table 4 · XA	Pin Oscillator	Configurable Hardware	ç
	1 III Obolilator	oornigarabio riarawara	-

	Table 5 · I	DUT XA	Pin Source	Selection .	Jumper Settings
--	-------------	--------	------------	-------------	-----------------

Clock Source	Jumper Settings
Y2 on-board 3.2mm x 2.5mm single-ended oscillator site	JP69 = shunt pin 3-4 JP64 = shunt pin 3-5 JP72 = shunt pin 3-4 JP70 = Osc voltage. Open=1.8V; shunt pins 1-2 =3.3V; shunt pins 2-3= 2.5V

Clock Source	Jumper Settings
Y3 on-board 5mm x7mm single-ended oscillator site	JP69 = shunt pin 5-6 JP64 = shunt pin 4-6 JP72 = shunt pin 3-4 JP70 = Osc voltage. Open=1.8V; shunt pins 1-2 =3.3V; shunt pins 2-3= $2.5V$
JP67 oscillator daughter card	JP67 = 10-pin custom oscillator daughter board JP69 = shunt pin 1-2 JP64 = shunt pin 1-3 JP72 = shunt pin 3-4 JP70 = Osc voltage. Open=1.8V; shunt pins 1-2 =3.3V; shunt pins 2-3= 2.5V
J31 external single-ended Input	JP69 = open JP64 = shunt pin 2-4 JP72 = shunt pin 3-4 JP66 = shunt for DC coupled; open for AC coupled JP70 = n/a
JP72 external daughter card xtal/osc site	JP69 = open JP72 = install custom daughter card JP70 = Osc voltage. Open=1.8V; shunt pins 1-2 =3.3V; shunt pins 2-3= 2.5V

DUT Mode Bits

The various combinations of GPIO[2,1,0] and IF[1,0] mode bits which apply during DUT reset are summarized in Table 6. As described in the timing device datasheets, these five bits determine the operating mode of the DUT with respect to its serial bus interface and configuration data fill selection. Serial bus steering must be coordinated with mode bits as described in Table1.

DUT Type	DUT Mode	Settings (DIP controlled)	Settings (GUI Controlled, on reset)
Internal ROM, optional external EEPROM	SPI slave, Load ROM configuration	SW1.IF0 = 0 SW1.IF1 = 1 ROM configuration select= [SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0]	$FT_CSN= 1 \text{ or HiZ}$ $FT_SO = 1 \text{ or HiZ}$ $FT_AC2_GPIO2 = HiZ$ $FT_AC1_GPIO1 = HiZ$ $FT_AC0_GPIO0 = HiZ$
Internal ROM, optional external EEPROM	SPI slave, Load external EEPROM	SW1.IF0 = 1 SW1.IF1 = 1 EEPROM configuration select= [SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0]	$FT_CSN= 1 \text{ or HiZ}$ $FT_SO = 1 \text{ or HiZ}$ $FT_AC2_GPIO2 = HiZ$ $FT_AC1_GPIO1 = HiZ$ $FT_AC0_GPIO0 = HiZ$
Internal EEPROM	SPI slave, Load internal EEPROM configuration	SW1.IF0 = 1 SW1.IF1 = 1 EEPROM configuration select= [SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0]	$FT_CSN=1 \text{ or HiZ}$ $FT_SO = 1 \text{ or HiZ}$ $FT_AC2_GPIO2 = HiZ$ $FT_AC1_GPIO1 = HiZ$ $FT_AC0_GPIO0 = HiZ$
Internal ROM	I2C Slave	I2C address: [SW1.IF1,SW1.IF0] = [0,0] or [0,1] EEPROM configuration select= [SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0]	N/A, not supported by GUI

Table 6 · DUT Reset: Mode Bit Settings

DUT Type	DUT Mode	Settings (DIP controlled)	Settings (GUI Controlled, on reset)		
Internal EEPROM	I2C Slave	I2C address: [SW1.IF1,SW1.IF0] = [0,0] or [0,1] or [1,0] EEPROM configuration select= [SW1.AC2_GPIO2, SW1.AC1_GPIO1, SW1.AC0_GPIO0]	N/A, not supported by GUI		
Notes For all DUT modes, TEST_GPIO3 = 0 whether by DIP control or GUI control. See Table 1 for further details on configuration modes.					

Input Clocks

The board's IC1 and IC2 clock inputs can be configured to accept either a differential or single-ended signal using jumpers. When configured as a differential input, IC1 or IC2 can be configured as either AC-coupled or DC-coupled. IC3 is a single-ended input by definition, and can be configured to be either AC-coupled or DC-coupled. Table 7 summarizes the input clock related hardware connectors and functionality. Table 8 shows how to configure the ICx jumpers for either a differential or single-ended input.

Silkscreen Reference	Device/ Function	Basic Setting	Schematic Sheet	Description
J27 (IC1P) J28 (IC1N)	SMA connectors	Differential clock input	7	IC1 differential or single-ended input. Various configurations are created using JP54, JP55, JP44, JP45
JP54, JP55	3-pin headers	Shunt pins 2-3	7	JP54 applies to IC1P. JP55 applies to IC1N. Settings: Open = AC coupled input Shunt pins 1-2 = AC-couple DUT pin to GND (unused) Shunt pins 2-3 = DC-coupled signal
JP44, JP45				JP44: shunt (default) terminates IC1P/N as 100 ohms differential. Remove for single ended operation. JP45: normally open. Shunt to terminate IC1P as 50 ohms to GND (and optionally IC1N if JP44 is installed)
J24 (IC2P) J23 (IC2N)	SMA connectors	Differential clock input	7	IC2 differential or single-ended input. Various configurations are created using JP36, JP35, JP39, JP40
JP36, JP35	3-pin headers	Open	7	JP36 applies to IC2P. JP35 applies to IC2N. Settings: Open = AC coupled input Shunt pins 1-2 = AC-couple DUT pin to GND (unused) Shunt pins 2-3 = DC-coupled signal
JP39, JP40	2-pin headers	Shunt JP30	7	JP39: shunt (default) terminates IC2P/N as 100 ohms differential. Remove for single ended operation.JP40: normally open. Shunt to terminate IC2P as 50 ohms to GND (and optionally IC2N if JP39 is installed)
J19 (IC3)	SMA connector	AC coupled clock input	7	Single ended clock input with configuration options
JP31	2-pin header	Shunt pins 1-2	7	Header open connects DUT IC3 pin to J31 SMA jack as AC coupled Shunt connects DUT IC3 pin to J31 SMA as DC coupled

Table 7 · Input Clock Hardware Configuration

Table 8 · Input Clock Differential/Single-Ended Mode Selection Settings

Input Clock	Mode	Coupling	Jumper Settings
IC1	Differential	AC (100 ohms differential load)	JP54 = open JP55 = open JP45 = open JP44 = installed

Input Clock	Mode	Coupling	Jumper Settings
		DC (100 ohms differential load)	JP54 = shunt pins 2-3 JP55 = shunt pins 2-3 JP45 = open JP44 = installed
		DC (50 ohms to GND, P and N)	JP54 = shunt pins 2-3 JP55 = shunt pins 2-3 JP45 = installed JP44 = installed
	Single-ended	AC	JP54 = open JP55 = shunt pins 1-2 JP45 = open JP44 = open
	(IC1P only)	DC	JP54 = shunt pins 2-3 JP55 = shunt pins 1-2 JP45 = optional: install for 50 ohm termination JP44 = open
	Differential Single-ended (IC2P only)	AC (100 ohms differential load)	JP36 = open JP35 = open JP40 = open JP39 = installed
		DC (100 ohms differential load)	JP36 = shunt pins 2-3 JP35 = shunt pins 2-3 JP40 = open JP39 = installed
IC2		DC (50 ohms to GND, P and N)	JP36 = shunt pins 2-3 JP35 = shunt pins 2-3 JP40 = installed JP39 = installed
		AC	JP36 = open JP35 = shunt pins 1-2 JP40 = open JP39 = open
		DC	JP36 = shunt pins 2-3 JP35 = shunt pins 1-2 JP40 = optional: install for 50 ohm termination JP39 = open
IC3	Single ended	AC	JP31 = open
100	Single-ended	DC	JP31 = installed

Output Clocks

The board supports evaluation of all device output clocks using SMA connectors. Table 8 summarizes the output clock hardware connectors. To limit parasitic circuit loads, there are no jumper options on output clocks. Configurations can be modified only by means of discrete component substitutions.

Note that OC3 and OC8 have on-board balun circuitry. See schematic sheet 6 for details.

Silkscreen Reference	Device/ Function	Basic Setting	Schematic Sheet	Description	
J32(OC1P) J35 (OC1N)	OC1 Output	Differential	6	Output clocks, referenced to VDDOA	
J34 (OC2P) J37 (OC2N)	OC2 Output	Differential	6	Output clocks, referenced to VDDOA	
J33 (OC3P) J36 (OC3N)	OC3 Output	Differential, balun *	6	Output clocks, referenced to VDDOB	
J30 (OC4P) J29 (OC4N)	OC4 Output	Differential	6	Output clocks, referenced to VDDOC	
J26 (OC5P) J25 (OC5N)	OC5 Output	Differential	6	Output clocks, referenced to VDDOC	
J22 (OC6P) J21 (OC6N)	OC6 Output	Differential	6	Output clocks, referenced to VDDOD	
J18 (OC7P) J17 (OC7N)	OC7 Output	Differential	6	Output clocks, referenced to VDDOD	
J12 (OC8P) J8 (OC8N)	OC8 Output	Differential, balun *	6	Output clocks, referenced to VDDOE	
J13 (OC9P) J9 (OC9N)	OC9 Output	HCSL	6	Output clocks, referenced to VDDOF	
J14 (OC10P) J10 (OC10N)	OC10 Output	2xCMOS	6	Output clocks, referenced to VDDOF	

* OC3 and OC8 have a discrete component option to wire in a balun. The default configuration is balun wired in. A single ended clock appears only on the "P" connector of the pair with this option.

All output clocks include a 100 ohm differential resistor across the P and N pins and should be configured to run in LVDS mode unless discrete components values are adapted to other output formats.

GPIO Header and Status LEDs

The device's bi-directional GPIO pins are accessible on the 10-pin header JP7. The header pins are labeled for easy identification. The present states of GPIO0, GPIO1, GPIO2, and GPIO3 are indicated by LEDs D9, D8, D7 and D6, respectively. LEDs D2 through D5 are not defined and may be used by the GUI/PC software application as needed.

Connecting Off-Board Devices

Two pin headers provide direct access to the ZLE30267 switched serial bus. JP1 and JP5 connect in to the serial bus signals on the board. JP1 is a 10-pin shrouded and keyed header which is compatible with the Aardvark brand USB to SPI/I2C adapter interface cable. JP5 is a more generic 8-pin open body header. Various configurations supported by headers JP1 and JP5 are listed in Table 1.

Possible uses for the headers include the following:

- Load DUT from and/or program EEPROMs in a separate socketed board
- Connect the GUI to a DUT in a customer's board via cabled SPI bus connection
- Interface a controller in a customer's board with the ZLE30267 board DUT to assist software development and debugging.

Table 10 and Table 11 list all of the pin assignments of JP1 and JP5.

Signal	Pin Number	Pin Number	Signal	
SCL	1	2	GND	
SDA	3	4	N.C.	
MISO	5	6	N.C.	
SCLK	7	8	MOSI	
CSB	9	10	GND	
Notes: SCL and SDA pins require changes to shunts on headers JP3 and JP4 to connect on board.				

Table 10 ·	JP1	Serial Header	Pin	Assignments
------------	-----	---------------	-----	-------------

Table 11	 JP5 Serial 	Header Pin	Assignments
----------	--------------------------------	------------	-------------

Signal	Pin Number	Pin Number	Signal
CSN	1	2	GND
MISO	3	4	GND
MOSI	5	6	GND
SCLK	7	8	GND

Discrete Component Options for Input and Output Clocks

This section identifies components on clock circuits that an advanced user would most likely consider modifying. A sampling of settings is summarized in Table 12 below.

Clock Net	Components	Basic Setting	Schematic Sheet	Description/ Alternate Values
IC3	R108, R109	R108=0, R109= not installed	7	R values can be used to create a voltage divider, receiver bias, or end termination
OC1P	R138, R132, R183	LVDS and programmable differential modes: R138= 0 ohms, R132= not installed, R183 = 100 ohms	6	CMOS mode: install a series termination resistor as R138 if required; remove R183 HCSL mode: install a series termination resistor R138 if required; remove R183
OC1N	R139, R133	LVDS and programmable differential modes: R139= 0 ohms, R133= not installed	6	CMOS mode: : install a series termination resistor as R139 if required HCSL mode: install a series termination resistor R139 if required

Table 12 ·	Discrete Component Options for Clocks
------------	---------------------------------------

Clock Net	Components	Basic Setting	Schematic Sheet	Description/ Alternate Values
OC3P		LVDS and programmable differential modes, differential to single ended with on-board balun. R134=0 R128=dni C15=100nF C14=dni R146=0	6	AC coupled differential outputs (bypass balun): C15= dni, R146=dni , C14 = 100nF, plus basic settings for R128, R134, R185
	R128, R134, C14, C15, R146, R185			DC coupled differential outputs (bypass balun): C15= dni, R146=dni , C14 = 0 ohms, plus basic settings for R128, R134, R185
				HCSL: change R134 to a termination resistor value if required
OC3N R129, R135, C16, C17	LVDS and programmable differential modes, differential to single		AC coupled differential outputs (bypass balun): C16= dni, C17 = 100nF, plus basic settings for R129, R135	
		ended with on-board balun. R135=0 R129=dni C16=100nF C17=dni	6	DC coupled differential outputs (bypass balun): C16= dni, C17 = 0 ohms, plus basic settings for R129, R135
				HCSL: change R135 to a termination resistor value if required

Notes

Settings for OC1 can be used as a template for OC2, OC4, OC5, OC6, OC7, OC9, and OC10. Please refer to ZLE30267 schematic.

Settings for OC3 can be used as a template for OC8.

OC9 is factory-configured for HCSL with R191 not populated and R90=0 and R91=0.

OC10 is factory-configured for 2xCMOS with R192 not populated and R92=30 Ω and R93=30 Ω .

Oscillator / Crystal Daughter Card

Daughter Card Overview

The ZLE30267 evaluation board provides an on-board, low-jitter oscillator which can be used as the reference clock for evaluating device features and output clock jitter performance. Applications requiring a more detailed evaluation with a specific reference source can take advantage of the ZLE30267 oscillator / crystal daughter card. This plug-in card provides an easy method to evaluate alternate oscillator and crystal options without the need to re-work the ZLE30267 evaluation board.

The schematic for the ZLE30267 oscillator / crystal daughter card is shown in Figure 10. The card contains two circuits, one circuit on each side of connector JP1. The left side circuit is the oscillator circuit. This circuit can be used to evaluate 7mm x 5mm and 3mm x 2.5 mm surface mount oscillators. The oscillator is powered through connector JP1 by a power supply located on the ZLE30267 evaluation board. This supply can be configured to a voltage of 3.3V, 2.5V or 1.8V using evaluation board jumper JP70. The right side circuit is the crystal resonator circuit. This circuit can be used to evaluate 3.2mm x 2.5mm and 2.5mm x 2mm surface mount crystal resonators.

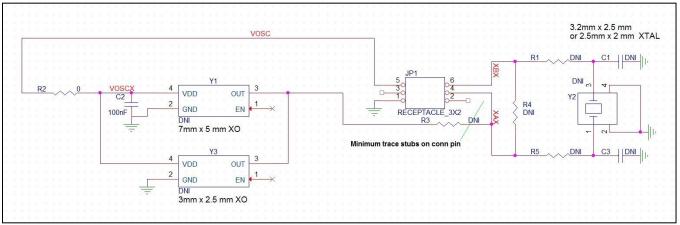


Figure 10 · ZLE30267 Oscillator / Crystal Daughter Card Schematic

The assembly drawing for the ZLE30267 oscillator / crystal daughter card is shown in Figure 11. The physical layout of the card layout is similar to the schematic with connector JP1 located in the center of the board, all oscillator circuit components located on the left side of JP1, and all crystal resonator circuit components located on the right of JP1. When an XO or crystal daughter card assembly is built, only one of these two circuits is populated.

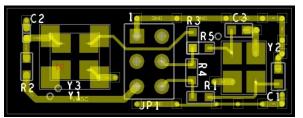


Figure 11 · ZLE30267 Oscillator / Crystal Daughter Assembly Drawing

Oscillator Daughter Card Assembly

The ZLE30267 oscillator / crystal daughter is provided with components JP1, C2, and R2 pre-installed. An oscillator daughter card assembly is built by installing two additional components. The first component is the oscillator to be evaluated which is installed at site Y1 or Y3 based on its package size. The second component is resistor R3 which is the series source termination resistor for the oscillator output clock signal. The value of R3 is chosen such the total impedance of the oscillator output driver and R3 is 50 Ω . An example of an oscillator daughter card assembly is shown in Figure 12. The installed components are indicated in red.

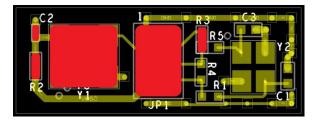


Figure 12 · ZLE30267 Oscillator / Crystal Daughter Assembly Drawing

Crystal Daughter Card Assembly

The ZLE30267 oscillator / crystal daughter is provided with components JP1, C2, and R2 pre-installed. The crystal oscillator circuit does not use components C2 and R2. These components have no impact on the circuit performance and can remain installed. A crystal daughter card assembly is built by installing components R1, R5, and Y2. Resistors R1 and R5 are each a fixed value of 0 Ω . Crystal Y2 is chosen based on the specifications detailed in the device data sheet. An example of a crystal resonator daughter card assembly is shown in Figure 13. The installed components are indicated in red.

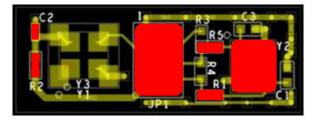


Figure 13 · ZLE30267 Oscillator / Crystal Daughter Assembly Drawing

Daughter Card Installation

The ZLE30267 oscillator / crystal daughter card is installed on the ZLE30267 evaluation board 3x2 pin header JP72 located on the bottom side of the board. Prior to installation, the jumper installed on JP72 pins 3-4 must be removed. The remaining ZLE30267 evaluation board configuration for using the daughter card is:

JP70 = shunt installed on pin 1-2 for 3.3V supply oscillator or crystal; shunt on pins 2-3 for 2.5V supply; not installed for 1.8V supply oscillator

JP69 = Not installed

JP72 = ZLE30267 oscillator / crystal daughter card

JP64 = Not installed

An example of a ZLE30267 oscillator / crystal daughter card installed on header JP72 is shown in Figure 14. When the daughter card is not installed, a jumper must be installed on JP72 pins 3-4.

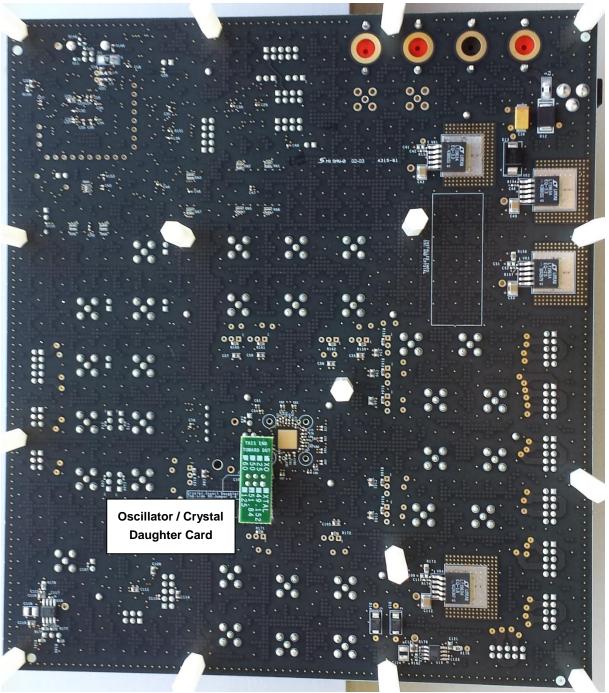


Figure 14 · ZLE30267 Oscillator / Crystal Daughter installed on header JP72

Document Revision History

November 2015. First Version December 2015. Minor updates, back page, Table 1

Microsemi Corporate Headquarters One Enterprise Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

©2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any endproducts. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.