
Solving Time Synchronization in Windows-
Based Networks

White paper

Windows_Timekeeping7/16

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com
www.microsemi.com

© 2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

Solving Time Synchronization in Windows-Based
Networks

The Windows W32Time service is not designed to provide the sub-millisecond accuracy that is required
in many modern use cases. The solution? Microsemi's Domain Time II.

Many IT managers are surprised to learn that their Windows networks are considered out of sync, based
both on their use cases and on the two-part definition of "correct" time: accuracy and precision. Computer
clocks are accurate when they sync with the actual time-of-day and they are precise when they sync with
each other. However, most Windows computers are out of sync by seconds or even minutes, and do not
fully support the industry's network time protocol (NTP) designed to keep computers in sync.

Microsoft refers to this as "loose sync," and it can have consequences for how organizations use Windows
in regulatory compliance, virtual computing, distributed computing, computer forensics, and legal record-
keeping. An organization can decide that some use cases are not feasible or are significantly
compromised, but in order to handle situations worth the extra effort, organizations can deploy a different
computing platform (such as Linux) at the expense of deploying and maintaining another platform.

The ideal option is to replace the Windows W32Time service, which enables organizations to ensure more
stringent timekeeping requirements for those use cases that would benefit from better timekeeping and
monitoring.

Windows Timekeeping Must Be More Rigorous
Due to the proliferation of more powerful computers and cloud networks, organizations expect that their
users can do more with their machines. One trend is that critical tasks are now more widely dispersed
throughout the organization. Thus, tracking desktop systems, moment-by-moment activity for forensic,
compliance, and security purposes are now of great importance. Another trend is that desktops may now
perform tasks that previously required Linux servers (this includes tasks that relied on Linux servers'
superior timekeeping). The result of both trends is that what used to be "good enough" timekeeping in a
Windows environment no longer is acceptable.

Today's desktop timekeeping requirements are more rigorous in the following six areas.

• Accuracy: The accuracy of a computer clock is its offset from Universal Coordinated Time (UTC),
typically measured in milliseconds.

• Precision: The precision of a computer clock is the rate at which it ticks relative to other clocks (in
the frequency domain) or the interval between ticks (in the time domain) relative to other clocks.

• Scalability: As the demands on computers from various applications grow, so too does the need
for accuracy relative to UTC when logging the associated data.

• Reliability: If applications rely on good timekeeping, then the system timekeeping must be
reliable.

• Ease-of-management: The easier it is to deploy and administer precise and accurate time
synchronization across the network, the more likely it is that network timekeeping will be precise
and accurate.

• Security: One way to corrupt or take down applications on a network is to degrade its timing
infrastructure with denial of service (DoS) or other attacks.

What's different now is the extent to which these criteria matter due to the changing mix of Windows
applications and the requirements they impose.
3

Solving Time Synchronization in Windows-Based Networks
Why the Active Directory Needs Time
Active Directory provides a set of services to Windows domain networks, including:

• Authentication for all users and computers

• Enforcement of security policies for all computers

• Software updates

• Enforcement of roles (for example, user or administrator) at login

In early versions of Windows (for example, Windows NT 3.51 and 4.0), the task of processing all updates
(such as authorizing a new user) for a single domain was handled by the Primary Domain Controller
(PDC). In later versions of Windows, the Flexible Single Master Operation (FSMO) emulates the PDC so
the FSMO is not bound to a single domain controller.

One of the tasks of PDC emulator is to synchronize time as required by the Kerberos authentication
protocol. The time service ensures a hierarchical relationship in control of authority and prohibits loops.
Each PDC emulator role holder in a Windows domain is responsible for acquiring time from its upstream
"time partner" and distributing time to its downstream partner(s) in the hierarchy. The PDC emulator at the
top of the hierarchy has ultimate authority and should be configured to acquire time from an external
source.

The following illustration shows the Windows W32Time service hierarchy.

Figure 1 • Windows W32Time Service Hierarchy
4

Solving Time Synchronization in Windows-Based Networks
Why Not Just Use the Computer’s Clock?
The clocks that users see on their PCs are notorious for drifting. They are typically based on inexpensive
oscillator circuits and can easily drift seconds to minutes per day, accumulating significant errors over
time. That is why they constantly need to be reset, which occurs when the operating system requests time
from an authorized source such as an NTP server.

Windows Applications have Become More Sensitive to Time
Better timekeeping has become a bigger issue on Windows in five key areas: compliance, virtual
computing, distributed computing, forensics, and legal record-keeping. The following sections provide
examples of the important role timekeeping plays in these areas.

Compliance
Many government regulations specify timekeeping requirements. One example is the Defense Federal
Acquisition Regulation Supplement (DFARS), a set of regulations that government acquisition officials
and DoD contractors must follow in the procurement of goods and services. Effective as of December 31,
2017, DFARS mandates that if an organization manages information subject to cyber incident reporting,
then its information system must synchronize clocks to an authoritative time source in order to generate
time stamps for audit records.

Another example is Europe's Markets in Financial Instruments Directive 2 (MiFID 2), which goes into effect
from January 2018. The directive mandates that high-frequency trading systems must be synced to within
100 microseconds of UTC with 1-microsecond precision granularity. For non-human intervention trading,
the mandate is 1 millisecond of UTC. Modern Windows operating systems can support sub-microsecond
timing and most Windows versions supports sub-millisecond-range time, provided they have a sufficiently
capable Windows time synchronization solution.

Other compliance examples include the Health Insurance Portability and Accountability Act of 1996
(HIPAA), Sarbanes-Oxley, and 21 CFR Part 11. The FDA's requirements for using electronic records and
signatures all mandate specific requirements regarding the accuracy of time stamps on records.

Virtual Computing
Unlike applications that run on physical machines and have dedicated access to host resources (including
interrupts and timers), applications running on Virtual Machines (each with its own W32Time service)
share host resources. The lack of dedicated or deterministic hardware counters can significantly magnify
Windows W32Time service errors, compromising performance in the other four areas discussed here.

Distributed Computing
Timekeeping is a significant performance issue for applications that employ a distributed computing
model, such as a micro services-based architecture or service-oriented architecture. Unlike monolithic
applications where all code is executed in a single run time, distributed applications are comprised of
discrete self-contained services that interact with each other through Application Programming Interfaces
(APIs). These services can run on the same machine, different machines in a cluster, or even in
geographically dispersed machines. The major strengths of distributed computing is that each service can
be highly optimized (for example, by running it on the best available hardware, by programming it using
the most qualified team, or by using the most appropriate programming language). One of the
weaknesses of distributed computing is its vulnerability to timing issues. If services are out of sync by even
a few hundred milliseconds, the application may falter. Furthermore, monitoring tools designed to
diagnose faults must be synchronized at even finer levels of granularity than the services they are
monitoring in order to detect timing problems and to show along a consistent timeline when services were
called and executed.
5

Solving Time Synchronization in Windows-Based Networks
Forensics
Accurate and precise timekeeping also plays a significant role in ordering events and troubleshooting root-
cause problems. By definition, all computer networks are comprised of distributed resources that interact
in order for applications to run properly. When an error occurs due to either technical glitches or cyber-
attacks, network administrators examine server log files to investigate the cause and effect of various
events organized by their time stamps. That includes events related to firewall and VPN security-related
activity, bandwidth usage, logging, management, authentication, authorization, and accounting functions.

Because server logs are a compilation of information from different hosts, it is essential that all the time
stamps in these hosts’ respective log files be synced so their data (such as centrally logged configuration
events and system error messages, router configuration changes, interface up/down status, security
alerts, environmental conditions, trace backs, and CPU process overloads) can be analyzed on the same
timeline.

Legal Record-keeping
Time stamps on emails, corporate documents, and other electronic evidence have become an
increasingly important part of legal proceedings to determine when and in what order events occurred.
Accurate and verifiable time stamps are therefore essential to establish the traceability of events and the
admissibility of evidence.

These use cases are good examples of when organizations need quality timekeeping, regardless of which
operating systems they run. However, they are also good use cases for using Windows. So, what's wrong
with the Windows time service?

W32Time Only Provides Loose Timing
According to Microsoft, the W32Time service was not designed to be a full-featured NTP solution for
synchronizing nodes on a network. With a target accuracy of only two minutes, it is not feasible for many
time critical applications where the time sync is in seconds or microseconds range. So why does Windows
include W32Time in the first place? The purpose of W32Time is to enable Kerberos Version 5
authentication. Kerberos is a security protocol that prevents Windows clients from logging to a Windows
server if the client violates certain rules. One of those rules is that the time on the client must agree with
the time on the server (within certain limits).

W32Time is software that runs on clients and servers in a network hierarchy (see Figure 1). Servers
reference time from an external source, such as a GPS receiver or a time server found on the Internet.
Clients and downstream servers receive the time by sending requests that are authenticated and
acknowledged by upstream servers through a W32Time's NTP variant. Kerberos then checks all incoming
client packets to see if their time stamps agree (approximately) with the server's clock. If not, the packets
are dropped.

As a time service, W32Time is bare bones. For example, setup and configuration are done through a basic
command line interface, so adjustments to time can take up to 10 hours to propagate. Furthermore, no
alerts are provided if issues (such as loss of a referenced time source) occur, and there is no auto failover
(where W32Time instances take over for each other if one fails).

Of course, the quality of the time available from any time service is only as good as the referenced time
source. Because W32Time timing accuracy is only measured in seconds at best, many organizations see
little advantage in investing in an NTP server capable of millisecond performance, and so reference some
NTP server found on the Internet. This can pose significant problems. First, such NTP servers may be
unreliable, unsecured, and are commonly exposed to DoS attacks. Second, there can also be asymmetric
propagation delays from when the timing packet is sent until it is received, causing the NTP time offset
calculation to be significantly different from the server. Finally, NTP packets coming from outside the
firewall can expose the network to threats such as packet spoofing or DoS attacks.
6

Solving Time Synchronization in Windows-Based Networks
To mitigate these risks to their Windows environment, organizations often choose to replace their
W32Time service with one built to support today's more rigorous timekeeping requirements for accuracy,
precision, scalability, reliability, manageability, and security.

Microsemi's Domain Time II: A W32Time Replacement Model
A W32Time replacement model, such as Microsemi's Domain Time II, provides a real-world solution to
many of the problems posed by W32Time's shortcomings.

Microsemi's Domain Time II is:

• Accurate and precise- first and foremost, a model for W32Time replacement service must hold
network timing within the limits specified for Windows applications requiring millisecond
performance (see Table 1). In addition, it can perform very fast, smooth, and precise time
correction without jitter.

• Scalable- the service can distribute accurate and precise timing on any size network. It can also
manage time synchronization as easily on large networks as small networks.

• Reliable- on large Windows domain networks, the software servers automatically take over for
each other when one becomes unavailable, and clients automatically find alternate servers if a
failure occurs. Time components can also be set manually for multiple levels of fallback time
sources.

• Easy-to-manage- the replacement time service can replace W32Time in existing Windows time
hierarchies. The service runs as an automatic background system service and does not replace
any system executables or .dlls. The resource impact is very low and the footprint is small;
administrators simply turn off W32Time and install the new software on all clients and servers
from a single workstation (using a convenient GUI as opposed to a command line interface). The
time hierarchy automatically adjusts to changes in the network, assuring that clients have
continuing access to the correct time. Additional features include detailed event logging, alerts if
set thresholds are exceeded, and complete records of time sync accuracy on the network.

• Secure- to protect against fraud, users and other programs/services cannot change their own
time. Symmetric key authentication and Windows authentication are also supported.

The following table provides details of the W32Time and Domain Time II benchmarks.

Of course, you can't distribute what you can't acquire. That's why a strong Windows time distribution
service is incomplete without a sufficiently capable timing source. For example, a GPS-referenced NTP
server that delivers accurate and precise time even if GPS is unavailable will be under heavy load because
of responding to many client timing requests, and can become a target for DoS attacks.

Table 1 • W32Time and Domain Time II Benchmarks

Operating
system

Protocol used in
Domain Time II Syntonization

Synchronization
to the reference GPS
server Excursions

Win8.x, Server
2012
Win10, Server
2016

PTPv2 50 µs/sec 2 µs Rare

Server 2003, XP PTPv2 200 µs/sec >50 µs Occasional

Vista, Server
2008, Win7

PTPv2 300 µs/sec >100 µs Regular

Server 2003, XP,
Win8.x, Server
2012, Win10,
Server 2016

DT2 or NTP 1 ms/sec >500 µs Occasional

Vista, Server
2008, Win7

DT2 or NTP 100 ms/sec–1000 ms/sec 1 ms–100 ms Excessive
7

Solving Time Synchronization in Windows-Based Networks
In comparison, consider the Microsemi S600 NTP Time Server. It offers hardware time stamping capable
of handling 10,000 NTP requests per second with aggregate limiting of inbound packets across all ports
to mitigate DoS attacks. Its optional NTP Reflector hardware boosts the capacity to 120,000 NTP requests
per second (1 Gigabit Ethernet speed). The reflector provides port-by-port packet limiting and DoS
detection and alarming.

The following illustration shows an overview of the Microsemi Domain Time II.

The server provides <15 nanosecond accuracy to UTC while tracking GPS with 24-hour holdover,
depending on the server's oscillator. The oscillator types and their accuracies are as follows.

• Standard oscillator- 400 microseconds

• OCXO oscillator- 25 microseconds

• Rubidium oscillator- <1 microseconds (<3 microseconds at 3 days)

Holdover is the amount of error a clock accumulates if allowed to drift when its reference to GPS (or
another external time source) is lost. This level of accuracy is more than sufficient to support the
millisecond range use cases that Windows can support if W32Time is replaced.

Time Synchronization in Windows Networks is Critical
The fact is that for network and business operations, time synchronization is critical and the native
Windows W32Time service does a poor job, by design. The good news is that most versions of Windows
can handle millisecond-range (or better) use cases. Fortunately, implementing a trusted timekeeping
solution that synchronizes system clocks and manages and monitors the time across the network is easy
to deploy and very affordable. If network timing that is highly accurate, precise, scalable, reliable,
manageable, and secure is at all important to your network and business operations, then you should
seriously consider migrating from W32Time to a solution like Domain Time II that meets your
requirements.

Figure 2 • Domain Time II
8

	Solving Time Synchronization in Windows-Based Networks
	Windows Timekeeping Must Be More Rigorous
	Why the Active Directory Needs Time
	Why Not Just Use the Computer’s Clock?
	Windows Applications have Become More Sensitive to Time
	Compliance
	Virtual Computing
	Distributed Computing
	Forensics
	Legal Record-keeping

	W32Time Only Provides Loose Timing
	Microsemi's Domain Time II: A W32Time Replacement Model
	Time Synchronization in Windows Networks is Critical

