
Application Note AC236
Fusion FlashROM

Table Of Contents

Introduction
The Microsemi Fusion® family, based on the highly successful ProASIC3 flash field programmable gate
array (FPGA) architecture, is designed as a high-performance, programmable, mixed-signal platform.
Fusion supports many peripherals, including embedded Flash memory, analog-to-digital converter
(ADC), high-drive outputs, RC and crystal oscillators, and real-time-counter (RTC). The functionality of
the Flash array blocks is similar to that of a large single-port synchronous RAM.

To allow using the devices in diverse system applications, Fusion devices have a dedicated non-volatile
FlashROM memory of 1,024 bits in addition to the Flash array, which provides a unique feature in the
FPGA market. The FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface;
however, it can be read but not modified from the FPGA core. The FlashROM is physically organized as
8×128 bits and logically organized as 8 pages of 16 bytes. Figure 1 shows the Fusion device
architecture.

Introduction . 1
FlashROM Architecture and Applications . 3
FlashROM Security . 4
Programming and Accessing FlashROM . 5
FlashROM Design Flow . 7

FlashROM Generation and Instantiation in the Design .8

Simulation of FlashROM Design . 10

Programming File Generation for FlashROM Design . 10

Custom Serialization Using FlashROM . 13
Conclusion . 13
Related Documents . 13
List of Changes . 14
March 2016 1
© 2016 Microsemi Corporation

Introduction
Figure 1 • Fusion Device Architecture Overview (AFS600) Fusion

Flash Array Flash ArrayADC

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

VersaTile

CCC/PLL

I/Os

OSC

CCC

ISP AES
Decryption

User Nonvolatile
FlashROM

Charge Pumps

Bank 0

B
an

k
4 B

an
k 2

Bank 1

Bank 3

RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
2

Fusion Security
FlashROM Architecture and Applications
Microsemi Fusion devices have 1 kbit of user accessible, non-volatile FlashROM on-chip. The
FlashROM is logically organized as 8 pages of 16 bytes (128 bits per page). Figure 2 shows the
FlashROM logical level structure. The SmartGen core generator is used to configure FlashROM content.
You can configure each page independently. SmartGen enables you to create and modify regions within
a page; these regions can be from 1 to 16 bytes long.

The FlashROM content may be changed independently of the FPGA core content. It may be easily
accessed and programmed via JTAG, depending on the security settings of the device. The SmartGen
core generator enables each region to be independently updated (described in the "Programming and
Accessing FlashROM" section on page 5). This enables you to change the FlashROM content on a
per-part basis while keeping some regions "constant" for all parts. These features allow the FlashROM to
be used in diverse system applications. Consider the following possible uses of FlashROM:

• Internet protocol (IP) addressing (wireless or fixed)

• System-calibration settings

• Restoring configuration after unpredictable system power-down

• Device serialization and/or inventory control

• Subscription-based business models (for example, set-top boxes)

• Secure key storage

• Asset management tracking

• Date stamping

• Version management

Figure 2 • FlashROM Configuration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7
6
5
4
3
2
1
0

Byte Number in Page

P
a
g

e
 N

u
m

b
e
r

3

FlashROM Security
FlashROM Security
Fusion devices have an on-chip Advanced Encryption Standard (AES) decryption core, combined with
an enhanced version of the Microsemi Flash-based lock technology (FlashLock®). Together, they provide
unmatched levels of security in a programmable logic device. This security applies to both the FPGA
core and FlashROM content. Fusion devices use the 128-bit AES (Rijndael) algorithm to encrypt
programming files for secure transmission to the on-chip AES decryption core. The same algorithm is
then used to decrypt the programming file. This key size provides approximately 3.4 x 1038 possible
128-bit keys. A computing system that could find a DES key in a second would take approximately 149
trillion years to crack a 128-bit AES key. The 128-bit FlashLock feature in Fusion works via a FlashLock
security Pass Key mechanism, where the user locks or unlocks the device with a user-defined key.

If the device is locked with certain security settings, functions such as device read, write, and erase are
disabled. This unique feature helps to protect against invasive and noninvasive attacks. Without the
correct Pass Key, access to the FPGA is denied. In order to gain access to the FPGA, the device first
must be unlocked using the correct Pass Key. During programming of the FlashROM and/or the FPGA
core, you can generate the security header programming file, which is used to program the AES key
and/or FlashLock Pass Key. The security header programming file can also be generated independently
of the FlashROM and FPGA core content. The FlashLock Pass Key is not stored in the FlashROM.

Fusion devices with AES-based security allow for secure remote field updates over public networks such
as the Internet, and ensure that valuable intellectual property (IP) remains out of the hands of IP thieves.
Figure 3 shows the flow diagram.

Figure 3 • Programming FlashROM Using AES

Fusion

AES
Encryption

Encrypted Data

AES-128
Decryption

Core

Encrypted Data

FlashROM

FPGA Core

Programming
Data

Untrusted
Medium

Same AES Key
4

Fusion Security
Programming and Accessing FlashROM
The FlashROM content can only be programmed via JTAG, but it can be read back selectively through
the JTAG programming interface, the UJTAG interface, or via direct FPGA core addressing. The pages of
the FlashROM can be made secure to prevent read back via JTAG. In that case, read back on these
secured pages is only possible by the FPGA core fabric or via UJTAG.

A 7-bit address from the FPGA core defines which of the 8 pages (3 MSBs) is being read, and which of
the 16 bytes within the selected page (4 LSBs) are being read. The FlashROM content can be read on a
random basis; the access time is 10 ns for a device supporting commercial specifications. The FPGA
core will be powered down during writing of the FlashROM content. FPGA power-down during
FlashROM programming is managed on-chip, and FPGA core functionality is not available during
programming of the FlashROM. Table 1 summarizes various FlashROM accessing scenarios.

Figure 4 shows the accessing of the FlashROM using the UJTAG macro. This is similar to FPGA core
access, where the 7-bit address defines which of the 8 pages (three MSBs) is being read and which of
the 16 bytes within the selected page (four LSBs) are being read.

Figure 5 on page 6 and Figure 6 on page 6 show the FlashROM access from the JTAG port. The
FlashROM content can be read on a random basis. The three-bit address defines which page is being
read or updated.

Table 1 • FlashROM Read/Write Capabilities by Access Mode

Access Mode FlashROM Read FlashROM Write

JTAG Yes Yes

UJTAG Yes No

FPGA core Yes No

Figure 4 • Block Diagram of Using UJTAG to Read FlashROM Contents

FlashROM

Addr [6:0]

Data[7:0]
CLK

Enable

SDO

SDI

RESET

Addr [6:0]

Data [7:0]

TDI

TCK

TDO

TMS

TRST
UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB

UIREG [7:0]

Control

UJTAG
Address Generation and

Data Serialization
5

Programming and Accessing FlashROM
Figure 5 • Accessing FlashROM Using FPGA Core

Figure 6 • Accessing FlashROM Using JTAG Port

01234567

7
6
5

4
3
2
1
0

89101112131415

Word Number in Page 4 LSB of ADDR (READ)

Pag
e N

u
m

b
er

3 M
SB

 o
f

A
D

D
R

 (R
EA

D
)

3-Bit Page Address

111

1110000
7-Bit Address from Core

0000

4-B
it W

o
rd

 A
d

d
ress

8-Bit Data

8-Bit Data
to FPGA Core

8-Bit Data from Page 7 Word 0

01234567

7
6
5

4
3
2
1
0

89101112131415

Word Number in Page 4 LSB of ADDR (READ)

Pag
e N

u
m

b
er

3 M
SB

 o
f

A
D

D
R

 (R
EA

D
)

4-Bit Page Address
from JTAG Interface

To/From JTAG Interface

...........................00001:128 Bit Data
6

Fusion Security
FlashROM Design Flow
The Microsemi Libero® System-on-Chip (SoC) Integrated Design Environment (IDE) software has
extensive FlashROM support, including FlashROM generation, instantiation, simulation, and
programming. Figure 7 shows the user flow diagram. In the design flow, there are three main steps:

1. FlashROM generation and instantiation in the design

2. Simulation of FlashROM design

3. Programming file generation for FlashROM design

Figure 7 • FlashROM Design Flow

Simulator

FlashPoint

SmartGen

Programmer

Synthesis

Designer

Security
Header
Options

Programming
Files

UFC
File

FlashROM
Netlist

User
Design

User
Netlist

Core
Map

MEM
File

Back-
Annotated

Netlist
7

FlashROM Design Flow
FlashROM Generation and Instantiation in the Design
The SmartGen core generator, available in Libero IDE and Designer software, is the only tool that can be
used to generate the FlashROM content. SmartGen has several user-friendly features to help generate
the FlashROM contents. Instead of selecting each byte and assigning values, you can create a region
within a page, modify the region, and assign properties to that region. The FlashROM user interface,
shown in Figure 8, includes the configuration grid, existing regions list, and properties field. The
Properties field specifies the region-specific information and defines the data used for that region. You
can assign values to the following properties:

1. Static Fixed Data – Enables you to fix the data so that it cannot be changed during programming
time. This option is useful when you have fixed data stored in this region, which is required for the
operation of the design in the FPGA. Key storage is one example.

2. Static Modifiable Data – Select this option when the data in a particular region is expected to be
static data (such as a version number, which remains the same for a long duration but could
conceivably change in the future). This option enables you to avoid changing the value every time
you enter new data.

3. Read from File – This provides the full flexibility of FlashROM usage to the customer. If you have
a customized algorithm for generating the FlashROM data, you can specify this setting. You can
then generate a text file with data for as many devices as you wish to program and load that into
the FlashPoint programming file generation software to get programming files that include all the
data. SmartGen will optionally pass the location of the file where the data is stored, if the file is
specified in SmartGen. Each text file has only one type of data format (binary, decimal, Hex, or
ASCII text). The length of each data file must be shorter than or equal to the selected region
length. If the data is shorter then the selected region length, the most significant bits shall be
padded with 0s. For multiple text files for multiple regions, the first lines are for the first device. In
SmartGen, the Load Sim. Value From File allows you to load the first device data in the MEM file
for simulation.

4. Auto Increment/Decrement – This scenario is useful when you specify the contents of
FlashROM for a large number of devices in a series. You can specify the step value for the serial
number and a maximum value for inventory control. During programming file generation, the
actual number of devices to be programmed is specified and a start value is input to the software.

Figure 8 • SmartGen GUI for the FlashROM
8

Fusion Security
SmartGen allows you to generate the FlashROM netlist in VHDL, Verilog, or EDIF formats. After the
FlashROM netlist is generated, the core can be instantiated in the main design like other SmartGen
cores. Note that the macro library name for FlashROM is UFROM. The following is a sample FlashROM
VHDL netlist that can be instantiated in the main design.

library ieee;
use ieee.std_logic_1164.all;
library fusion;

entity FROM_a is
 port(ADDR : in std_logic_vector(6 downto 0); DOUT : out
 std_logic_vector(7 downto 0)) ;
end FROM_a;

architecture DEF_ARCH of FROM_a is

 component UFROM
 generic (MEMORYFILE:string);
 port(DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7 : out
 std_logic; ADDR0, ADDR1, ADDR2, ADDR3, ADDR4, ADDR5,
 ADDR6 : in std_logic := 'U') ;
 end component;

 component GND
 port(Y : out std_logic);
 end component;

 signal U_7_PIN2 : std_logic ;
 begin

 GND_1_net : GND port map(Y => U_7_PIN2);
 UFROM0 : UFROM
 generic map(MEMORYFILE => "FROM_a.mem")
 port map(DO0 => DOUT(0), DO1 => DOUT(1), DO2 => DOUT(2),
 DO3 => DOUT(3), DO4 => DOUT(4), DO5 => DOUT(5), DO6 =>
 DOUT(6), DO7 => DOUT(7), ADDR0 => ADDR(0), ADDR1 =>
 ADDR(1), ADDR2 => ADDR(2), ADDR3 => ADDR(3), ADDR4 =>
 ADDR(4), ADDR5 => ADDR(5), ADDR6 => ADDR(6));
end DEF_ARCH;
9

FlashROM Design Flow
SmartGen generates the following files along with the netlist. These are located in the SmartGen folder
for the Libero IDE project.

1. MEM (Memory Initialization) file

2. UFC (User Flash Configuration) file

3. Log file

The MEM file is used for simulation, as explained in the "Simulation of FlashROM Design". The UFC file,
generated by SmartGen, has the FlashROM configuration for single or multiple devices and is used
during STAPL generation. It contains the region properties and simulation value. Note that any changes
on the mem file will not be reflected on the UFC file. Do not modify the UFC for changing FlashROM
content. Instead, use the SmartGen GUI to modify the FlashROM content. See the "Programming File
Generation for FlashROM Design" for a description of how the UFC file is used during the programming
file generation. The Log file has information regarding the file type and file location.

Simulation of FlashROM Design
The MEM file has 128 rows of 8 bits, each representing the contents of the FlashROM that is used for
simulation. For example, the first row represents page 0, byte 0; the next row is page 0, byte 1; and so
the pattern continues. Note that the three MSBs of the address define the page number, and the four
LSBs define the byte number. So, if you send address 0000100 to FlashROM, this corresponds to the
page 0 and byte 4 location, which is the fifth row in the MEM file. SmartGen defaults to 0s for any
unspecified locations of the FlashROM memory. Besides using the MEM file generated by SmartGen,
you can create a binary file with 128 rows of 8 bits each and use this as a MEM file. Microsemi
recommends that you use different file names if you plan to generate multiple MEM files. During
simulation, Libero IDE passes the MEM file that is used as the generic file in the netlist, along with the
design files and testbench. If you want to use different MEM files during simulation, you need to modify
the generic file reference in the netlist.

…………………

UFROM0: UFROM

--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_a.mem")

--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_b.mem")

…………………….

The VITAL and Verilog simulation models accept the generics passed by the netlist, read the MEM file,
and perform simulation with the data in the file.

Programming File Generation for FlashROM Design
FlashPoint is the programming software used to generate the programming files for Fusion devices.
Depending on the applications, you can use the FlashPoint software to generate a STAPL file with
different FlashROM contents. In each case optional AES decryption is available. In order to generate a
STAPL file that contains the same FPGA core content and different FlashROM contents, the FlashPoint
software needs an Array Map file for the core and UFC file(s) for the FlashROM. This final STAPL file
represents the combination of the logic of the FPGA core and FlashROM content.

FlashPoint generates the STAPL files that you can use to program the desired FlashROM page and/or
FPGA core of the FPGA device contents. FlashPoint supports the encryption of the FlashROM content
and/or the FPGA Array configuration data. In the case of using the FlashROM for device serialization, a
sequence of unique FlashROM contents will be generated. When generating a programming file with
multiple unique FlashROM contents, you can specify in FlashPoint whether to include all FlashROM
content in a single STAPL file or generate a different STAPL file for each FlashROM (Figure 9 on page
11). The programming software (FlashPro) handles the single STAPL file that contains the FlashROM
content from multiple devices. It enables you to program the FlashROM content into a series of devices
sequentially. See the FlashPro User Guide for information on serial programming.
10

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130809

Fusion Security
Figure 10 shows the programming file generator, which enables different STAPL file generation methods.
When you select Program FlashROM and choose the UFC file, the FlashROM Settings window
appears, as shown in Figure 11 on page 12. In this window, you can select the FlashROM page that you
want to program and the data value for the configured regions. This enables you to use a different page
for different programming files.

Figure 9 • Single or Multiple Programming File Generation

FlashPoint

FPGA Arrary
Map File

FPGA Arrary
Map File

Security SettingsSecurity Settings

UFC File for
Multiple FlashROM

Content

UFC File for
Single FlashROM

Content

FlashPoint

Single
STAPL

File

Single
STAPL

File

Single
STAPL

File

Figure 10 • Programming File Generator
11

FlashROM Design Flow
The programming hardware and software can load the FlashROM with the appropriate STAPL file.
Programming software handles the single STAPL file that contains multiple FlashROM contents for
multiple devices, and programs the FROMs in sequential order (for example, for device serialization).
This feature is supported in the programming software. After programming with the STAPL file, you can
run DEVICE_INFO to check the FlashROM content.

DEVICE_INFO displays the FlashROM content, serial number, Design Name, and checksum as shown
below:

EXPORT IDCODE[32] = 123261CF
EXPORT SILSIG[32] = 00000000
User information :
CHECKSUM: 61A0
Design Name: TOP
Programming Method: STAPL
Algorithm Version: 1
Programmer: UNKNOWN
===
FlashROM Information :
EXPORT Region_7_0[128] = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
===
Security Setting :
Encrypted FlashROM Programming Enabled.
Encrypted FPGA Array Programming Enabled.
===

The Libero IDE file manager recognizes the UFC and MEM files and displays them in the appropriate
view. Libero IDE also recognizes the multiple programming files, if you choose the option to generate
multiple files for multiple FlashROM content in Designer. These features enable a user-friendly flow for
the FlashROM generation and programming in Libero IDE.

Figure 11 • Setting FlashROM during Programming File Generation
12

Fusion Security
Custom Serialization Using FlashROM
You can use FlashROM for device serialization or inventory control by using the Auto Inc region or Read
From File region. FlashPoint will automatically generate the serial number sequence for the Auto Inc
region with the Start Value, Max Value, and Step Value provided. If you have a unique serial number
generation scheme that you prefer, the Read From File Region allows you to import the file with your
serial number scheme programmed into the region. See the FlashPro User Guide for custom
serialization file format information.

The following steps describe how to perform device serialization or inventory control using FlashROM:

1. Generate FlashROM using SmartGen. From the Properties section in the FlashROM Settings
dialog box, select Auto Inc or Read From File region. For Auto Inc region, specify the desired
step value. You will not be able to modify this value in the FlashPoint software.

2. Go through the regular design flow and finish place-and-route.

3. Select Programming File in Designer and open Generate Programming File (Figure 10 on page
11).

4. Select Program FlashROM and browse to the UFC file and select Next. The FlashROM
Settings window appears, as shown in Figure 11 on page 12.

5. Select the FlashROM page you want to program and the data value for the configured regions.
The STAPL file generated will contain only the data that targets the selected FlashROM page.

6. Modify properties for the serialization.

– For Auto Inc region specify the Start and Max values.

– For Read From File region select the file name of the custom serialization file.

7. Select the FlashROM programming file type you want to generate from the two options below:

– Single programming file for all devices option: generates one programming file with all
FlashROM values.

– One programming file per device: generates a separate programming file for each FlashROM
value.

8. Enter the number of devices you want to program and generate the required programming file.

9. Open the programming software and load the programming file. The Fusion programming
software, FlashPro3 and Silicon Sculptor II, supports the device serialization feature. If for some
reason the device fails to program a part during serialization, the software allows you to reuse the
serial data or skip the serial data. See the FlashPro User Guide for details.

Conclusion
The Fusion families are the only FPGAs that offer on-chip FlashROM support. This application note
presented information on the FlashROM architecture, possible applications, programming, access
through the JTAG and UJTAG interface, and integration into your design. In addition, the Libero IDE tool
set enables easy creation and modification of the FlashROM content.

The non-volatile FlashROM block in the FPGA can be customized, enabling multiple applications.

Additionally, the security offered by the Fusion devices keeps both the contents of FlashROM and the
FPGA design safe from system over-builders, system cloners, and IP thieves.

Related Documents
FlashPro User Guide
13

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130809
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130809
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130809

List of Changes
List of Changes
The following table shows important changes made in this document for each revision.

Revision Changes Pages

Revision 1
(March 2016)

Non-technical updates. NA

Revision 0
(November 2005)

Initial release. NA

*The part number is located on the last page of the document.
14

Microse
One Ent
CA 9265

Within t
Outside
Sales: +
Fax: +1

E-mail:

ctor
trial
nal

and
ice

and
rnet
and
800

© 2016
rights r
Microse
Microse
tradema
property

n or
any
sold
 not
 are
and
 rely
er's
The
ntire
y or
uch
t is

 this
mi Corporate Headquarters
erprise, Aliso Viejo,
6 USA

he USA: +1 (800) 713-4113
 the USA: +1 (949) 380-6100
1 (949) 380-6136
(949) 215-4996

sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semicondu
and system solutions for communications, defense & security, aerospace and indus
markets. Products include high-performance and radiation-hardened analog mixed-sig
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing
synchronization devices and precise time solutions, setting the world’s standard for time; vo
processing devices; RF solutions; discrete components; Enterprise Storage
Communication solutions, security technologies and scalable anti-tamper products; Ethe
solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities
services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,
employees globally. Learn more at www.microsemi.com.

 Microsemi Corporation. All
eserved. Microsemi and the
mi logo are trademarks of
mi Corporation. All other
rks and service marks are the

Microsemi makes no warranty, representation, or guarantee regarding the information contained herei
the suitability of its products and services for any particular purpose, nor does Microsemi assume
liability whatsoever arising out of the application or use of any product or circuit. The products
hereunder and any other products sold by Microsemi have been subject to limited testing and should
be used in conjunction with mission-critical equipment or applications. Any performance specifications
believed to be reliable but are not verified, and Buyer must conduct and complete all performance
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
on any data and performance specifications or parameters provided by Microsemi. It is the Buy
responsibility to independently determine suitability of any products and to test and verify the same.
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the e
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitl
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to s
information itself or anything described by such information. Information provided in this documen
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in
51900113-1/3.16

 of their respective owners. document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	Fusion FlashROM
	Introduction
	FlashROM Architecture and Applications
	FlashROM Security
	Programming and Accessing FlashROM
	FlashROM Design Flow
	FlashROM Generation and Instantiation in the Design
	Simulation of FlashROM Design
	Programming File Generation for FlashROM Design

	Custom Serialization Using FlashROM
	Conclusion
	Related Documents
	List of Changes

