
UG0638
User Guide

SmartFusion2, IGLOO2, RTG4 SmartDebug
 Software v12.1

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 1

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does
Microsemi assume any liability whatsoever arising out of the application or use of any product or
circuit. The products sold hereunder and any other products sold by Microsemi have been
subject to limited testing and should not be used in conjunction with mission-critical equipment
or applications. Any performance specifications are believed to be reliable but are not verified,
and Buyer must conduct and complete all performance and other testing of the products, alone
and together with, or installed in, any end-products. Buyer shall not rely on any data and
performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility
to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is” and with all faults,
and the entire risk associated with such information is entirely with the Buyer. Microsemi does
not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights,
whether with regard to such information itself or anything described by such information.
Information provided in this document is proprietary to Microsemi, and Microsemi reserves the
right to make any changes to the information in this document or to any products and services
at any time without notice.

About Microsemi
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for aerospace & defense, communications, data center and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; enterprise storage and communication
solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-
over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi
is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally.
Learn more at www.microsemi.com.

5-02-00638-4/12.18

Microsemi Corporate
Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks and
service marks are the property of
their respective owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 2

Table of Contents

Table of Contents... 2

Welcome to SmartDebug .. 4
Introduction to SmartDebug ... 4
Use Models .. 4
Supported Families, Programmers, and Operating Systems .. 5
Supported Tools ... 5

Getting Started with SmartDebug .. 6
Using SmartDebug ... 6
Running SmartDebug in Demo Mode .. 6
Create Standalone SmartDebug Project ... 7

SmartDebug User Interface ... 10
Standalone SmartDebug User Interface .. 10
Programming Connectivity and Interface ... 11
Selecting Devices for Debug .. 14
View Device Status .. 14
Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only) 16

Debugging .. 19
Debug FPGA Array .. 19
Hierarchical View ... 19
Netlist View .. 21
Live Probes .. 22
Active Probes ... 24
Probe Grouping (Active Probes Only).. 26
Memory Blocks ... 30
Probe Insertion (Post-Layout) .. 35
Event Counter .. 37
Frequency Monitor ... 41
FPGA Hardware Breakpoint Auto Instantiation ... 46
User Clock Frequencies ... 52
Pseudo Static Signal Polling .. 52
Debug SERDES (SmartFusion2, IGLOO2, and RTG4) ... 56
Debug SERDES – Loopback Test ... 57
Debug SERDES – PRBS Test ... 59
Debug SERDES – PHY Reset ... 64

Tcl Commands ... 65

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 3

Frequently Asked Questions .. 66
Embedded Flash Memory (NVM) - Failure when Programming/Verifying 66
Analog System Not Working as Expected ... 66
ADC Not Sampling the Correct Value .. 66
How do I unlock the device security so I can debug? .. 67
How do I export a report? .. 67
How do I generate diagnostic reports for my target device? ... 67
How do I monitor a static or pseudo-static signal? .. 67
How do I force a signal to a new value? .. 68
How do I count the transitions on a signal? ... 69
How do I monitor or measure a clock? .. 70
How do I perform simple PRBS and loopback tests? .. 72
How do I read LSRAM or USRAM content? .. 72
How do I change the content of LSRAM or USRAM? ... 74
How do I read the health check of the SERDES? ... 75
Where can I find files to compare my contents/settings? .. 75
What is a UFC file? What is an EFC file? .. 75
Is my FPGA fabric enabled? .. 76
Is my Embedded Flash Memory (NVM) programmed? ... 76
How do I display Embedded Flash Memory (NVM) content in the Client partition? 76
How do I know if I have Embedded Flash Memory (NVM) corruption? 76
Why does Embedded Flash Memory (NVM) corruption happen? ... 76
How do I recover from Embedded Flash Memory corruption? .. 77
What is a JTAG IR-Capture value? .. 77
What does the ECC1/ECC2 error mean? .. 77
What happens if invalid firmware is loaded into eNVM in SmartFusion2 devices? 77
Can I compare serialization data? ... 77
Can I tell what security options are programmed in my device? ... 77
How do I interpret data in the Device Status report? ... 77

Device Status Report: IDCode .. 78

Device Status Report: User Info ... 78

Device Status Report: Device State ... 79

Device Status Report: Factory Data ... 79

Device Status Report: Security .. 79

How do I interpret data in the Flash Memory (NVM) Status Report? 81

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 4

Welcome to SmartDebug

Introduction to SmartDebug
Design debug is a critical phase of FPGA design flow. Microsemi’s SmartDebug tool complements design
simulation by allowing verification and troubleshooting at the hardware level. SmartDebug provides access to
non-volatile memory (eNVM), SRAM, SERDES, and probe capabilities. Microsemi SmartFusion2 System-on-chip
(SoC) field programmable gate array (FPGA), IGLOO2 FPGA, and RTG4 FPGA devices have built-in probe logic
that greatly enhance the ability to debug logic elements within the device. SmartDebug accesses the built-in
probe points through the Active Probe and Live Probe features, which enables designers to check the state of
inputs and outputs in real-time without re-layout of the design.

Use Models
SmartDebug can be run in the following modes:
• Integrated mode from the Libero Design Flow
• Standalone mode
• Demo mode

Integrated Mode
When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug FPGA
Array.
To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click SmartDebug
Design.

Standalone Mode
SmartDebug can be installed separately in the setup containing FlashPro Express and Job Manager. This
provides a lean installation that includes all the programming and debug tools to be installed in a lab environment
for debug. In this mode, SmartDebug is launched outside of the Libero Design Flow. When launched in
standalone mode, you must to go through SmartDebug project creation and import a Design Debug Data
Container (DDC) file, exported from Libero, to access all debug features in the supported devices.
Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified I/O.

Demo Mode
Demo mode allows you to experience SmartDebug features (Active Probe, Live Probe, Memory Blocks,
SERDES) without connecting a board to the system running SmartDebug.
Note: SmartDebug demo mode is for demonstration purposes only, and does not provide the functionality of
integrated mode or standalone mode.
Note: You cannot switch between demo mode and normal mode while SmartDebug is running.

Standalone Mode Use Model Overview
In the main use model for standalone SmartDebug, the DDC file must be generated from Libero and imported into
a SmartDebug project to obtain full access to the device debug features. Alternatively, SmartDebug can be used
without a DDC file with a limited feature set.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 5

Supported Families, Programmers, and Operating Systems
Programming and Debug: SmartFusion2, IGLOO2, and RTG4
Programmers: FlashPro, FlashPro3, FlashPro4, and FlashPro5
Operating Systems: Windows XP, Windows 7, Windows 10, and RHEL 6.x

Supported Tools
The following table lists device family support for SmartDebug tools.

SmartDebug Support per Device Family SmartFusion2 IGLOO2 RTG4

Live Probes X X X

Active Probes X X X

Memory Debug X X X

Probe Insertion (available only through Libero flow) X X X

View Flash Memory Content X X

Debug SERDES X X X

FPGA Hardware Breakpoint (Needs FHB Auto Instantiation) X X X

Event Counter (Needs FHB Auto Instantiation) X X X

Frequency Monitor (Needs FHB Auto Instantiation) X X X

Note: "X" indicates the tool is supported.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 6

Getting Started with SmartDebug

This topic introduces the basic elements and features of SmartDebug. If you are already familiar with the user
interface, proceed to the Solutions to Common Issues Using SmartDebug or Frequently Asked Questions
sections.
SmartDebug enables you to use JTAG to interrogate and view embedded silicon features and device status
(FlashROM, Security Settings, Embedded Flash Memory (NVM)).
See Using SmartDebug for an overview of the use flow.
You can use the debugger to:
• Get device status and view diagnostics
• Use the Embedded Flash Memory Debug GUI to read out and compare your content with your original files

Using SmartDebug
The most common flow for SmartDebug is:
1. Create your design. You must have a FlashPro programmer connected to use SmartDebug.
2. Expand Debug Design and double-click Smart Debug Design in the Design Flow window. SmartDebug

opens for your target device.
3. Click View Device Status to view the device status report and check for issues.
4. Examine individual silicon features, such as FPGA debug.

Running SmartDebug in Demo Mode
Demo mode allows you to experience SmartDebug features (Active Probe, Live Probe, Memory Blocks,
SERDES) without connecting a board to the system running SmartDebug.
Note: SmartDebug demo mode is for demonstration purposes only, and does not provide the functionality of
integrated mode or standalone mode.
Note: You cannot switch between demo mode and normal mode while SmartDebug is running.
If programming hardware is not detected when you invoke SmartDebug, you will see the following.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 7

See Also
Active Probes
Live Probes
Memory Blocks
Debug SERDES - Loopback Test
Debug SERDES - PRBS Test

Create Standalone SmartDebug Project
A standalone SmartDebug project can be configured in two ways:
• Import DDC files exported from Libero
• Construct Automatically

From the SmartDebug main window, click Project and choose New Project. The Create SmartDebug Project
dialog box opens.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 8

Figure 1 · Create SmartDebug Project Dialog Box

Import from DDC File (created from Libero)
When you select the Import from DDC File option in the Create SmartDebug Project dialog box, the Design
Debug Data of the target device and all hardware and JTAG chain information present in the DDC file exported in
Libero are automatically inherited by the SmartDebug project. The programming file information loaded onto other
Microsemi devices in the chain is also transferred to the SmartDebug project.
Debug data is imported from the DDC file (created through Export SmartDebug Data in Libero) into the debug
project, and the devices are configured using data from the DDC file.

Construct Automatically
When you select the Construct Automatically option, a debug project is created with all the devices connected
in the chain for the selected programmer. This is equivalent to Construct Chain Automatically in FlashPro.

Configuring a Generic Device
For Microsemi devices having the same JTAG IDCODE (i.e., multiple derivatives of the same Die—for example,
M2S090T, M2S090TS, and so on), the device type must be configured for SmartDebug to enable relevant
features for debug. The device can be configured by loading the programming file, by manually selecting the
device using Configure Device, or by importing DDC files through Programming Connectivity and Interface. When
the device is configured, all debug options are shown.
For debug projects created using Construct Automatically, you can use the following options to debug the
devices:
• Load the programming file – Right-click the device in Programming Connectivity and Interface.
• Import Debug Data from DDC file – Right-click the device in Programming Connectivity and Interface.

The appropriate debug features of the targeted devices are enabled after the programming file or DDC file is
imported.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 9

Connected FlashPRO Programmers
The drop-down lists all FlashPro programmers connected to the device. Select the programmer connected to the
chain with the debug device. At least one programmer must be connected to create a standalone SmartDebug
project.
Before a debugging session or after a design change, program the device through Programming Connectivity and
Interface.

See Also
Programming Connectivity and Interface
View Device Status
Export SmartDebug Data (from Libero)

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 10

SmartDebug User Interface

Standalone SmartDebug User Interface
You can start standalone SmartDebug from the Libero installation folder or from the FlashPRO installation folder.
Windows:
<Libero Installation folder>/Designer/bin/sdebug.exe
<FlashPRO Installation folder>/bin/sdebug.exe
Linux:
<Libero Installation folder>/ bin/sdebug
<FlashPRO Installation folder>/bin/sdebug

Figure 2 · Standalone SmartDebug Main Window

Project Menu
The Project menu allows you to do the following:
• Create new SmartDebug projects (Project > New Project)
• Open existing debug projects (Project > Open Project)

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 11

• Execute SmartDebug-specific Tcl scripts (Project > Execute Script)
• Export SmartDebug-specific commands to a script file (Project > Export Script File)
• See a list of recent SmartDebug projects (Project > Recent Projects).

Log Window
SmartDebug displays the Log window by default when it is invoked. To suppress the Log window display, click the
View menu and toggle View Log.
The Log window has four tabs:

Messages – displays standard output messages
Errors – displays error messages
Warnings – displays warning messages
Info – displays general information

Tools Menu
The Tools menu includes Programming Connectivity and Interface and Programmer Settings options, which are
enabled after creating or opening a SmartDebug project.

Programming Connectivity and Interface
To open the Programming Connectivity and Interface dialog box, from the standalone SmartDebug Tools menu,
choose Programming Connectivity and Interface. The Programming Connectivity and Interface dialog box
displays the physical chain from TDI to TDO.

Figure 3 · Programming Connectivity and Interface Dialog Box – Project created using Import from DDC File

All devices in the chain are disabled by default when a standalone SmartDebug project is created using the
Construct Automatically option in the Create SmartDebug Project dialog box.

Figure 4 · Programming Connectivity and Interface window – Project created using Construct Automatically

The Programming Connectivity and Interface dialog box includes the following actions:

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 12

• Construct Chain Automatically - Automatically construct the physical chain.
Running Construct Chain Automatically in the Programming Connectivity and Interface removes all
existing debug/programming data included using DDC/programming files. The project is the same as a
new project created using the Construct Chain Automatically option.

• Scan and Check Chain – Scan the physical chain connected to the programmer and check if it matches the
chain constructed in the scan chain block diagram.

• Run Programming Action – Option to program the device with the selected programming procedure.
When two devices are connected in the chain, the programming actions are independent of the device.
For example, if M2S090 and M2GL010 devices are connected in the chain, and the M2S090 device is to
be programmed and t
he M2GL010 device is to be erased, both actions can be done at the same time using the Run
Programming Action option.

• Zoom In – Zoom into the scan chain block diagram.
• Zoom Out – Zoom out of the scan chain block diagram.

Hover Information
The device tooltip displays the following information if you hover your cursor over a device in the scan chain block
diagram:
• Name: User-specified device name. This field indicates the unique name specified by the user in the Device

Name field in Configure Device (right-click Properties).
• Device: Microsemi device name.
• Programming File: Programming file name.
• Programming action: The programming action selected for the device in the chain when a programming

file is loaded.
• IR: Device instruction length.
• TCK: Maximum clock frequency in MHz to program a specific device; standalone SmartDebug uses this

information to ensure that the programmer operates at a frequency lower than the slowest device in the
chain.

Device Chain Details
The device within the chain has the following details:
• User-specified device name
• Device name

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 13

• Programming file name
• Programming action – Select Enable Device for Programming to enable the device for programming.

Enabled devices are green, and disabled devices are grayed out.

Right-click Properties
The following options are available when you right-click a device in the Programming Connectivity and Interface
dialog box.

Set as Libero Design Device - The user needs to set Libero design device when there are multiple identical
Libero design devices in the chain.
Configure Device - Ability to reconfigure the device.
• Family and Die: The device can be explicitly configured from the Family, Die drop-down.
• Device Name: Editable field for providing user-specified name for the device.

Enable Device for Programming - Select to enable the device for programming. Enabled devices are shown in
green, and disabled devices are grayed out.
Load Programming File - Load the programming file for the selected device.
Select Programming Procedure/Actions- Option to select programming action/procedures for the devices
connected in the chain.
• Actions: List of programming actions for your device.
• Procedures: Advanced option; enables you to customize the list of recommended and optional procedures

for the selected action.
Import Debug Data from DDC File - Option to import debug data information from the DDC file.
Note: This option is supported when SmartDebug is invoked in standalone mode.
The DDC file selected for import into device must be created for a compatible device. When the DDC file is
imported successfully, all current device debug data is removed and replaced with debug data from the imported
DDC file.
The JTAG Chain configuration from the imported DDC file is ignored in this option.
If a programming file is already loaded into the device prior to importing debug data from the DDC file, the
programming file content is replaced with the content of the DDC file (if programming file information is included in
the DDC file).

Debug Context Save
Debug context refers to the user selections in debug options such as Debug FPGA Array, Debug SERDES, and
View Flash Memory Content. In standalone SmartDebug, the debug context of the current session is saved or
reset depending on the user actions in Programming Connectivity and Interface.
The debug context of the current session is retained for the following actions in Programming Connectivity and
Interface:

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 14

• Enable Device for Programming
• Select Programming Procedure/Actions
• Scan and Check Chain
• Run Programming Action

The debug context of the current session is reset for the following actions in Programming Connectivity and
Interface:
• Auto Construct – Clears all the existing debug data. You need to reimport the debug data from DDC file.
• Import Debug Data from DDC file
• Configure Device – Renaming the device in the chain
• Configure Device – Family/Die change
• Load Programming File

Selecting Devices for Debug
Standalone SmartDebug provides an option to select the devices connected in the JTAG chain for debug. The
device debug context is not saved when another debug device is selected.

View Device Status
Click View Device Status in the standalone SmartDebug main window to display the Device Status Report. The
Device Status Report is a complete summary of IDCode, device certificate, design information, programming
information, digest, and device security information. Use this dialog box to save or print your information for future
reference.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 15

Figure 5 · Device Status Report

IdCode
IDCode read from the device under debug.

Device Certificate
Device certificate displays Family and Die information if device certificate is installed on the device.
If the device certificate is not installed on the device, a message indicating that the device certificate may not have
been installed is shown.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 16

Design Information
Design Information displays the following:
• Design Name
• Design Checksum
• Design Version
• Back Level (SmartFusion2 and IGLOO2 only)
• Operating Voltage (SmartFusion2 and IGLOO2 only)
• Internal Oscillator (SmartFusion2 and IGLOO2 only)

Digest Information
Digest Information displays Fabric Digest, eNVM_0 Digest and eNVM_1 Digest (for M2S090 and M2S150
devices only) computed from the device during programming. eNVM Digest is shown when eNVM is used in the
design.

Device Security Settings
Note: For RTG4 devices, only Lock Bit information is displayed.
Device Security Settings indicate the following:
• Factory test mode access
• Power on reset delay
• System Controller Suspend Mode

In addition, if custom security options are used, Device Security Settings indicate:
• User Lock segment is protected
• User Pass Key 1/2 encrypted programming is enforced for the FPGA Array
• User Pass Key 1/2 encrypted programming is enforced for the eNVM_0 and eNVM_1
• SmartDebug write access to Active Probe and AHB mem space
• SmartDebug read access to Active Probe, Live Probe & AHB mem space
• UJTAG access to fabric

Programming Information
Programming Information displays the following:
• Cycle Count
• VPP Range
• Temp Range
• Algorithm Version
• Programmer
• Software Version
• Programming Software
• Programming Interface Protocol
• Programming File Type

Embedded Flash Memory (NVM) Content Dialog Box
(SmartFusion2 and IGLOO2 Only)

The NVM content dialog box is divided into two sections:
• View content of Flash Memory pages (as shown in the figure below)

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 17

• Check page status and identify if a page is corrupted or if the write count limit has exceeded the 10-year
retention threshold

Choose the eNVM page contents to be viewed by specifying the page range (i.e., start page and the end page)
and click Read from Device to view the values.
You must click Read from Device each time you specify a new page range to update the view.
Specify a page range if you wish to examine a specific set of pages. In the Retrieved Data View, you can enter an
Address value (such as 0010) in the Go to Address field and click the corresponding button to go directly to that
address. Page Status information appears to the right.

Contents of Page Status
• ECC1 detected and corrected
• ECC2 detected
• Write count of the page
• If write count has exceeded the threshold
• If the page is used as ROM (first page lock)
• Overwrite protect (second page lock)
• Flash Freeze state (deep power down)

Figure 6 · Flash Memory Dialog Box for a SmartFusion2 Device (SmartDebug)

The page status gets updated when you:
• Click Page Range
• Click a particular cell in the retrieved eNVM content table
• Scroll pages from the keyboard using the Up and Down arrow keys
• Click Go to Address (hex)

The retrieved data table displays the content of the page range selection. If content cannot be read (for example,
pages are read-protected, but security has been erased or access to eNVM private sectors), Read from Device
reports an error.
Click View Detailed Status for a detailed report on the page range you have selected.
For example, if you want to view a report on pages 1-3, set the Start Page to 1, set the End Page to 3, and click
Read from Device. Then click View Detailed Status. The figure below is an example of the data for a specific
page range.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 18

Figure 7 · Flash Memory Details Dialog Box (SmartDebug)

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 19

Debugging

Debug FPGA Array
In the Debug FPGA Array dialog box, you can view your Live Probes, Active Probes, Memory Blocks, and Insert
Probes (Probe Insertion).
The Debug FPGA Array dialog box includes the following four tabs:
• Live Probes
• Active Probes
• Memory Blocks
• Probe Insertion

Hierarchical View
The Hierarchical View lets you view the instance level hierarchy of the design programmed on the device and
select the signals to add to the Live Probes, Active Probes, and Probe Insertion tabs in the Debug FPGA Array
dialog box. Logical and physical Memory Blocks can also be selected.
• Instance – Displays the probe points available at the instance level.
• Primitives – Displays the lowest level of probeable points in the hierarchy for the corresponding component

—i.e., leaf cells (hard macros on the device).
You can expand the hierarchy tree to see lower level logic.
Signals with the same name are grouped automatically into a bus that is presented at instance level in the
instance tree.
The probe points can be added by selecting any instance or the leaf level instance in the Hierarchical View.
Adding an instance adds all the probe able points available in the instance to Live Probes, Active Probes, and
Probe Insertion.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 20

Figure 8 · Hierarchical View

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 21

Search
In Live Probes, Active Probes, Memory Blocks, and the Probe Insertion UI, a search option is available in the
Hierarchical View. You can use wildcard characters such as * or ? in the search column for wildcard matching.
Probe points of leaf level instances resulting from a search pattern can only be added to Live Probes, Active
Probes, and the Probe Insertion UI. You cannot add instances of search results in the Hierarchical View.

Netlist View
The Netlist View displays a flattened net view of all the probe-able points present in the design, along with the
associated cell type.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 22

Figure 9 · Netlist View

Search
A search option is available in the Netlist View for Live Probes, Active Probes, and Probe Insertion. You can use
wildcard characters such as * or ? in the search column for wildcard matching.

Live Probes
Live Probes is a design debug option that uses non-intrusive real time scoping of up to two probe points with no
design changes.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 23

The Live Probes tab in the Debug FPGA Array dialog box displays a table with the probe names and pin types.

Note: SmartFusion2 and IGLOO2 support two probe channels, and RTG4 supports one probe channel.

SmartFusion2 and IGLOO2
Two probe channels (ChannelA and ChannelB) are available. When a probe name is selected, it can be assigned
to either ChannelA or ChannelB.
You can assign a probe to a channel by doing either of the following:
• Right-click a probe in the table and choose Assign to Channel A or Assign to Channel B.
• Click the Assign to Channel A or Assign to Channel B button to assign the probe selected in the table to

the channel. The buttons are located below the table.
When the assignment is complete, the probe name appears to the right of the button for that channel, and
SmartDebug configures the ChannelA and ChannelB I/Os to monitor the desired probe points. Because there are
only two channels, a maximum of two internal signals can be probed simultaneously.
Click the Unassign Channels button to clear the live probe names to the right of the channel buttons and
discontinue the live probe function during debug.
Note: At least one channel must be set; if you want to use both probes, they must be set at the same time.

Figure 10 · Live Probes Tab (SmartFusion2 and IGLOO2) in SmartDebug FPGA Array Dialog Box

RTG4
One probe channel (Probe Read Data Pin) is available for RTG4 for debug. When a probe name is selected, it
can be assigned to the Probe Channel (Probe Read Data Pin).
You can assign a probe to a channel by doing either of the following:
• Right-click a probe in the table and choose Assign to Probe Read Data Pin.
• Click the Assign to Probe Read Data Pin button to assign the probe selected in the table to the channel.

The button is located below the table.
Click the Unassign probe read data pin button to clear the live probe name to the right of the channel button
and discontinue the live probe function during debug.
The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 24

Figure 11 · Live Probes Tab (RTG4) in SmartDebug FPGA Array Dialog Box

Live Probes in Demo Mode
You can assign and unassign Live Probes ChannelA and ChannelB in Demo Mode.

Active Probes
Active Probes is a design debug option to read and write to one or many probe points in the design through
JTAG.
In the left pane of the Active Probes tab, all available Probe Points are listed in instance level hierarchy in the
Hierarchical View. All Probe Names are listed with the Name and Type (which is the physical location of the flip-
flop) in the Netlist View.
Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them to the
Active Probes UI. You can also add the selected probe points by clicking the Add button. The probes list can be
filtered with the Filter box.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 25

Figure 12 · Active Probes Tab in SmartDebug FPGA Array Dialog Box

When you have selected the desired probe, points appear in the Active Probe Data chart and you can read and
write multiple probes (as shown in the figure below).
You can use the following options in the Write Value column to modify the probe signal added to the UI:
• Drop-down menu with values ‘0’ and ‘1’ for individual probe signals
• Editable field to enter data in hex or binary for a probe group or a bus

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 26

Figure 13 · Active Probes Tab - Write Value Column Options

Active Probes in Demo Mode
In demo mode, a temporary probe data file with details of current and previous values of probes added in the
active probes tab is created in the designer folder. The write values of probes are updated to this file, and the GUI
is updated with values from this file when you click Write Active Probes. Data is read from this file when you click
Read Active Probes. If there is no existing data for a probe in the file, the read value displays all 0s. The value is
updated based on your changes.

Probe Grouping (Active Probes Only)
During the debug cycle of the design, designers often want to examine the different signals. In large designs,
there can be many signals to manage. The Probe Grouping feature assists in comprehending multiple signals as
a single entity. This feature is applicable to Active Probes only. Probe nets with the same name are automatically
grouped in a bus when they are added to the Active Probes tab. Custom probe groups can also be created by
manually selecting probe nets of a different name and adding them into the group.
The Active Probes tab provides the following options for probe points that are added from the Hierarchical
View/Netlist View:
• Display bus name. An automatically generated bus name cannot be modified. Only custom bus names can

be modified.
• Expand/collapse bus or probe group
• Move Up/Down the signal, bus, or probe group
• Save (Active Probes list)
• Load (already saved Active Probes list)
• Delete (applicable to a single probe point added to the Active Probes tab

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 27

• Delete All (deletes all probe points added to the Active Probes tab)
• In addition, the context (right-click) menu provides the following operations:

o Create Group, Add/Move signals to Group, Remove signals from Group,
o Ungroup
o Reverse bit order, Change Radix for a bus or probe group
o Read, Write, or Delete the signal or bus or probe group

Figure 14 · Active Probes Tab

• Green entries in the “Write Value” column indicate that the operation was successful.
• Blue entries in the “Read Value” column indicate values that have changed since the last read.

Context Menu of Probe Points Added to the Active Probes UI
When you right-click a signal or bus, you will see the following menu options:
For individual signals that are not part of a probe group or bus:
• Read

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 28

• Write
• Delete
• Poll
• Create Group
• Add to Group
• Move to Group

For individual signals in a probe group:
• Read
• Delete
• Poll
• Create Group
• Add to Group
• Move to Group
• Remove from Group

For individual signals in a bus:
• Read
• Delete
• Poll
• Create Group
• Add to Group

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 29

For a bus:
• Delete
• Reverse Bit Order
• Change Radix to Binary
• Poll
• Create Group

For a probe group:
• Delete
• Reverse Bit Order
• Change Radix to Binary
• Poll
• Create Group
• Ungroup

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 30

Differences Between a Bus and a Probe Group
A bus is created automatically by grouping selected probe nets with the same name into a bus. A bus cannot be
ungrouped.
A Probe Group is a custom group created by adding a group of signals in the Active Probes tab into the group.
The members of a Probe Group are not associated by their names. A Probe Group can be ungrouped.
In addition, certain operations are also restricted to the member of a bus, whereas they are allowed in a probe
group.
The following operations are not allowed in a bus:
• Move to Group: Moving a signal to a probe group
• Remove from Group: Removing a signal from a probe group

Memory Blocks
The Memory Blocks tab in the Debug FPGA Array dialog box shows the hierarchical view of all memory blocks in
the design. The depth and width of blocks shown in the logical view are determined by the user in SmartDesign,
RTL, or IP cores using memory blocks.
Notes:
• RAM is not accessible to the user when SmartDebug is accessing RAM blocks.
• RAM is not accessible to the user during a read or write operation.

o During a single location write, the RAM block is not accessible. If multiple locations are written, the
RAM block is accessed and released for each write.

o When each write is completed, access returns to the user, so the access time is a single write
operation time.

The example figure that follows shows the hierarchical view of the Memory Blocks tab. You can view logical

blocks and physical blocks. Logical blocks are shown with an L (), and physical blocks are shown with a P (
).

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 31

Figure 15 · Memory Blocks Tab - Hierarchical View

You can only select one block at a time. You can select and add blocks in the following ways:
• Right-click the name of a memory block and click Add as shown in the following figure.

Figure 16 · Adding a Memory Block

• Click on a name in the list and then click Select.
• Select a name, drag it to the right, and drop it into the Memory Blocks tab.
• Enter a memory block name in the Filter box and click Search or press Enter. Wildcard search is supported.

Note: Only memory blocks with an L or P icon can be selected in the hierarchical view.

Memory Block Fields
The following memory block fields appear in the Memory Blocks tab.

User Design Memory Block
The selected block name appears on the right side. If the block selected is logical, the name from top of the block
is shown.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 32

Data Width
If a block is logical, the depth and width is retrieved from each physical block, consolidated, and displayed. If the
block is physical, the width is 9-bits, and the depth is 128 for uSRAM blocks and 2048 for LSRAM blocks.

Port Used
This field is displayed only in the logical block view. Because configurators can have asymmetric ports, memory
location can have different widths. The port shown can either be Port A or Port B. For TPSRAM, where both ports
are used for reading, Port A is used. This field is hidden for physical blocks, as the values shown will be
irrespective of read ports.
The following figure shows the Memory Blocks tab fields for a logical block view.

Figure 17 · Memory Blocks Tab Fields for Logical Block View

The following figure shows the Memory Blocks tab fields for a physical block view.

Figure 18 · Memory Blocks Tab Fields for Physical Block View

Read Block
Memory blocks can be read once they are selected. If the block name appears on the right-hand side, the Read
Block button is enabled. Click Read Block to read the memory block.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 33

Logical Block Read
A logical block shows three fields. User Design Memory Block and Depth X Width are read only fields, and the
Port Used field has options. If the design uses both ports, Port A and Port B are shown under options. If only one
port is used, only that port is shown.

Figure 19 · Logical Block Read

The data shown is in Hexadecimal format. In the example figure above, data width is 32. Because each
hexadecimal character has 4 bits of information, you can see 8 characters corresponding to 32 bits. Each row has
16 locations (shown in the column headers) which are numbered in hexadecimal from 0 to F.
Note: For all logical blocks that cannot be inferred from physical blocks, the corresponding icon does not contain
a letter.

Physical Block Read
When a Physical block is selected, only the User Design Memory Block and Depth X Width fields are shown.

Figure 20 · Physical Block Read

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 34

Write Block
Logical Block Write
A memory block write can be done on each location individually. A logical block shows each location of width. The
written format is hexadecimal numbers from 0 to F. Width is shown in bits, and values are shown in hexadecimal
format. If an entered value exceeds the maximum value, SmartDebug displays a pop-up message showing the
range of allowed values.

Figure 21 · Logical Block Write

Physical Block Write
Physical blocks have a fixed width of 9 bits. The maximum value that can be written in hexadecimal format is 1FF.
If an entered value exceeds the limit, SmartDebug displays a popup message showing the range of values that
can be entered.

Figure 22 · Physical Block Write

Unsupported Memory Blocks
If RTL is used to configure memory blocks, it is recommended that you follow RAM block inference guidelines
provided by Microsemi. See Inferring Microsemi SmartFusion2 RAM Blocks for more information.
SmartDebug may or may not be able to support logical view for memory blocks that are inferred using RTL coding
not specified in the above document.

http://www.microsemi.com/document-portal/doc_view/129966-inferring-microsemi-smartfusion2-ram-blocks-app-note

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 35

Memory Blocks in Demo Mode
A temporary memory data file is created in the designer folder for each type of RAM selected. All memory data of
all instances of USRAM, LSRAM, and other RAM types is written to their respective data files. The default value
of all memory locations is shown as 0s, and is updated based on your changes.
Both physical block view and logical block view are supported.

Probe Insertion (Post-Layout)
Introduction

Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be routed to
unused I/Os. Nets are selected and assigned to probes using the Probe Insertion window in SmartDebug. The
rerouted design can then be programmed into the FPGA, where an external logic analyzer or oscilloscope can be
used to view the activity of the probed signal.
Note: This feature is not available in standalone mode because of the need to run incremental routing.

Figure 23 · Probe Insertion in the Design Process

The Probe Insertion debug feature is complementary to Live Probes and Active Probes. Live Probes and Active
Probes use a special dedicated probe circuitry.

Probe Insertion
1. Double-click SmartDebug Design in the Design Flow window to open the SmartDebug main window.

Note: FlashPro Programmer must be connected for SmartDebug.
2. Select Debug FPGA Array and then select the Probe Insertion tab.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 36

Figure 24 · Probe Insertion Tab

In the left pane of the Probe Insertion tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are shown with the Name and Type in the Netlist View.

3. Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them to the
Active Probes UI. You can also add the selected probe points by clicking the Add button. The probes list
can be filtered with the Filter box.
Each entry has a Net and Driver name which identifies that probe point.
The selected net(s) appear in the Probes table in the Probe Insertion tab, as shown in the figure below.
SmartDebug automatically generates the Port Name for the probe. You can change the Port Name from the
default if desired.

4. Assign a package pin to the probe using the drop-down list in the Package Pin column. You can assign the
probe to any unused package pin (spare I/O).

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 37

Figure 25 · Debug FPGA Array > Probe Insertion > Add Probe

5. Click Run.
This triggers Place and Route in incremental mode, and the selected probe nets are routed to the selected
package pin. After incremental Place and Route, Libero automatically reprograms the device with the added
probes.
The log window shows the status of the Probe Insertion run.

Probe Deletion
To delete a probe, select the probe and click Delete. To delete all probes, click Delete All.
Note: Deleting probes from the probes list without clicking Run does not automatically remove the probes from
the design.

Reverting to the Original Design
To revert to the original design after you have finished debugging:
1. In SmartDebug, click Delete All to delete all probes.
2. Click Run.
3. Wait until the action has completed by monitoring the activity indicator (spinning blue circle). Action is

completed when the activity indicator disappears.
4. Close SmartDebug.

Event Counter
The Event Counter counts the signals that are assigned to Channel A through the Live Probe feature. This feature
can track events from the MSS or the board. When the Event Counter is activated, and a signal is assigned to
Channel A, the counter starts counting the rising edge transitions. The counter must be stopped to get the final

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 38

signal transition count. During the count, you cannot assign another signal to Channel A/Channel B or go to any
other tab on the window.

Figure 26 · Event Counter Tab/UI

Activating the Event Counter
You can activate the Event Counter in either of the following two ways:
• Click Activate Event Counter and then assign a signal to Live Probe Channel A.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 39

Figure 27 · Activating the Event Counter

• Assign a signal to Probe Channel A and then click Activate Event Counter.

Figure 28 · Activating the Event Counter - Assign Probe Channel

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 40

Running the Event Counter
Event Counter automatically runs the counter, which is indicated by a green LED. The counts are updated every
second, and are shown next to Total Events. FPGA Array debug data and the control tabs in the Event Counter
panel are disabled while Event Counter is running. When a signal is assigned, the signal name appears next to
Signal.

Figure 29 · Running the Event Counter

Stopping the Event Counter
The only button enabled when Event Counter is running is the “Stop” button. Click button to stop counting. A red
LED is shown to indicates the Event Counter has stopped. FPGA Array debug data and the control tabs in the
Event Counter panel are enabled when Event Counter is not running.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 41

Figure 30 · Stopping the Event Counter

Note: When a DC signal (signal tied to logic ‘0’) is assigned to Live Probe Channel A, or if there are no transitions
on the signal assigned to Live Probe Channel A with initial state ‘0’, the Event Counter value is updated as ‘1’
when the counter is stopped. This is a limitation of the FHB IP, and will be fixed in upcoming releases.

See Also
"Frequency Monitor" on page 41
"User Clock Frequencies" on page 52

Frequency Monitor
The Frequency Monitor calculates the frequency of any signal in the design that can be assigned to Live Probe
channel A. The Frequency Monitor must be activated before or after the signal is assigned to Live Probe Channel
A. You can enter the time to monitor the signal. The accuracy of results increases as the monitor time increases.
The unit of measurement is displayed in Megahertz (MHz). During the run, progress is displayed in the pane.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 42

Figure 31 · Frequency Monitor Tab/UI

In the Frequency Monitor tab, you can activate the Frequency Monitor, change the monitor time (delay to
calculate frequency), reset the monitor, and set the frequency in megahertz (MHz). Click the drop-down list to
select monitor time value. During the frequency calculation, all tabs on the right side of the window are disabled,
as well as the tabs in the FPGA Hardware Breakpoint (FHB) pane.

Activating the Frequency Monitor
You can activate the Frequency Monitor in either of the following two ways:
• Click Activate Frequency Monitor, and then click the Live Probe tab and assign a signal to Channel A

(Channel B is not configured for spatial debug operations).

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 43

Figure 32 · Activating the Frequency Monitor - Assign a Signal

• Click the Live Probe tab and assign a signal to Channel A, and then click the Frequency Monitor tab and

check the Activate Frequency Monitor checkbox.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 44

Figure 33 · Activating the Frequency Monitor

Running the Frequency Monitor
The Frequency Monitor runs automatically, and is indicated by a green LED. While it is running, FPGA Array
debug data and the control tabs in the panel are disabled. A progress bar shows the monitor time progress when
it is 1 second and above (as shown in the following figure). The Reset button is also disabled during the run.
When a signal is assigned, the signal name appears next to Signal.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 45

Figure 34 · Running the Frequency Monitor

Stopping the Frequency Monitor
The Frequency Monitor stops when the specified monitor time has elapsed. This is indicated by a red LED. The
result appears next to Frequency. The window and the tabs on the control panel are enabled. The Reset button is
also enabled to reset the Frequency to 0 to start over the next iteration. The progress bar is hidden when the
Frequency Monitor stops.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 46

Figure 35 · Stopping the Frequency Monitor

See Also
"Event Counter" on page 37
"User Clock Frequencies" on page 52

FPGA Hardware Breakpoint Auto Instantiation
The FPGA Hardware Breakpoint (FHB) Auto Instantiation feature automatically instantiates an FHB instance per
clock domain that is using gated clocks (GL0/GL1/GL2/GL3) from an FCCC instance. The FHB instances gate the
clock domain they are instantiated on. These instances can be used to force halt the design or halt the design
through a live probe signal. Once a selected clock domain or all clock domains are halted, you can play or step on
the clock domains, either selectively or all at once. The FPGA Hardware Breakpoint controls in the SmartDebug
UI allow you to control the debugging cycle.
To enable this option, select the Enable FHB Auto Instantiation check box in the Design flow tab of the Project
Settings dialog box (Libero > File > Project Settings). See the example figure that follows.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 47

Figure 36 · Enable FHB Auto Instantiation in Project Settings Dialog Box: Design flow Tab

FPGA Hardware Breakpoint (FHB) controls appear in the Debug FPGA Array dialog box when there is an auto-
instantiated FHB instance in the design. See the example figure that follows.

Figure 37 · FPGA Hardware Breakpoint (FHB) Controls

You can choose Operate on All Clock Domains or Operate on Selected Clock Domain by selecting the
appropriate radio button. Selecting either of these modes sets the FHB instances to the respective mode. Once
you assign the Live Probe PROBE_A connection and click Arm Trigger, the DUT halts on the next positive edge
that occurs on the signal connected to Live Probe PROBE_A.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 48

When you choose Operate on Selected Clock Domain mode, the Select Clock Domain combo box is enabled,

and all available clock domains are listed. The Halt (Pause) , Play , and Step buttons are
associated for that clock domain. If you switch between clock domains in this mode, previous clock domain
settings are not retained.
Note: The Operate on Selected Clock Domain mode is not supported for RTG4 devices.
When you choose Operate on All Clock Domains mode, the Select Clock Domain combo box is disabled. The
Halt, Play, and Step buttons are associated for all clock domains.
The Trigger Signal is shown as Not Connected until a live probe is assigned. See the example figure that follows.

When a probe is assigned to Live Probe PROBE_A, the Trigger Signal updates.
If you require a certain number of clock cycles before halting the clock domain after triggering, a value between 0
and 255 must be entered for Delay Cycles Before Halt before you click Arm Trigger. This sets the FHBs to
trigger after the specified delay from the rising edge trigger.
Delay is not applied to a forced Halt. See the example figure that follows.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 49

When a live probe connection is made and you click Arm Trigger, FPGA Hardware Breakpoint functionality is
disabled until the trigger is disarmed automatically or the design is force halted.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 50

Trigger Input
You can use the trigger input signal if you want an event in the DUT to trigger the FHB IP (for example, a
particular state in the FSM or counter value, and so on) when this signal is asserted. If the trigger signal is already
asserted (or HIGH) at the time of arming the FHB, the DUT is halted immediately.
Force Halt/Play/Step is done using the FPGA Hardware Breakpoint controls (see the example figure that follows).
Once the clock domain is halted, you can either force Play the clock domain or Step the clock domain by 1 clock
cycle.
You can save the waveform view of the selected active probes using Export Waveform by specifying the number
of clock cycles to capture. The waveform is saved to a .vcd file.

FPGA Hardware Breakpoint Operations
Live Probe Halt
You can halt a selected clock domain or all clock domains in Live Probe Halt mode based on the mode selection
(Operate on All Clock Domains or Operate on Selected Clock Domain).
Assign a signal to Live Probe PROBE_A in the Live Probes tab of the UI, and then click the Active Probe tab to
see the FPGA Hardware Breakpoint controls.
Click Arm Trigger to arm the FHBs to look for a trigger on the signal connected to Live Probe PROBE_A.
Once the trigger occurs, the clock domains are halted.
Note: If only one clock domain is halted, other clock domains continue to run, and you should anticipate results
accordingly.
Note: Live Probe Halt can be delayed for a maximum of 255 clock cycles.
The actual delay realized on hardware is calculated by the following equation:
Actual delay cycles on hardware =
#Delay clock cycles before halt mentioned in smartdebug * (DUT clock frequency/FHB
clock frequency)
FHB clock frequency is device specific:

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 51

SmartFusion2: 50MHz
IGLOO2: 50MHz
RTG4: 100MHz
See Assumptions and Limitations for more information.

Force Halt
You can force halt a selected clock domain or all clock domains based on mode selection without having to wait
for a trigger from a live probe signal. Click the Halt button in the FPGA Hardware Breakpoint (FHB) controls.
In Operate on Selected Clock Domain mode, the state of the Halt button is updated based on the state of the
clock domain selected.
In Operate on all Clock Domains mode, the Halt button is disabled only when all clock domains are halted. Each
clock domain is halted sequentially in the order shown in the Select Clock Domain combo box.
 Note: If only one clock domain is halted, other clock domains continue to run, and you should anticipate results
accordingly.

Play
Once the clock domain is in a halted state (live probe halt or force halt), you can click Play in the FPGA Hardware
Breakpoint controls. This resumes the clock domain from the halted state.
In Operate on all Clock Domains mode, each clock domain runs sequentially in the order shown in the Select
Clock Domain combo box.

Step
Once the clock domain is in a halted state (live probe halt or force halt), you can click the Step button in the
FPGA Hardware Breakpoint controls. This advances the clock domain by one clock cycle and holds the state of
the clock domain.
In Operate on All Clock Domains mode, each clock domain steps sequentially in the order shown in the Select
Clock Domain combo box.

Waveform Capture
You can save the waveform view of the selected active probes using Export Waveform by specifying the number

of clock cycles to capture in text box and then clicking Capture Waveform . The waveform is saved to a
.vcd file.
You can view the waveforms by importing the .vcd file. The waveform file can be viewed in any waveform viewer
that supports vcd format.

Reset
You can reset a selected clock domain or all clock domains (based on the mode selection) by clicking RESET at
any time. This resets the FHBs on clock domains and instructs FHB muxes not to look for a trigger.

Assumptions and Limitations
• If you select the auto instantiation option in Libero, you need to rerun Synthesis (if already run) to get the

FHB related functionality.
• Supported for FCC driven gated clocks (GL0/GL1/GL2/GL3) only.
• CLKINT_PRESERVE – FHB is not auto-instantiated if the user design contains this macro.
• Designs that have Encrypted IPs are not supported.
• EDIF using constraints flow is not supported.
• Live Probe triggering occurs on the Positive Edge only.
• For imported verilog netlist files (.vm files), you must rerun synthesis to get FHB-related functionality. If

synthesis is disabled and the netlist is compiled directly, FHB functionality is not inferred.
• If only one clock domain is halted during operations, other clock domains continue to run, and you should

anticipate results accordingly.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 52

• FHB performance can only be characterized against the clock which it is running at (i.e. 50MHz).
o If the DUT clock is running at or less than 50MHz, the DUT clock will halt within one clock cycle (1

or less).
o For frequencies higher than 50MHz, the point at which the DUT halts cannot be guaranteed.

User Clock Frequencies
The User Clock Frequencies tab shows the frequencies that have been configured from the FCCC block. If
assigned, live probe channels are temporarily unassigned, and reassigned after user clock frequencies have been
calculated. The Refresh button recalculates frequencies if clocks have been changed.

Figure 38 · User Clock Frequencies Tab/UI

See Also
"Event Counter" on page 37
"Frequency Monitor" on page 41
UG0449- SmartFusion2 and IGLOO2 Clocking Resources User Guide
UG0586- RTG4 FPGA Clocking Resources User Guide

Pseudo Static Signal Polling
With Active Probes you can check the current state of any probe in the design. However, in most cases, you will
not able to time the active probe read to capture its intended value. For these cases, you can use Pseudo Static
Signal Polling, in which the SmartDebug software polls the signal at intervals of one second to check if the probe
has the intended value. This feature is useful in probing signals which reach the intended state and stay in that
state.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134406

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 53

From the Active Probes tab in the Debug FPGA Array dialog box, right-click a signal, bus, or group and choose
Poll.... See the example figure that follows.

Figure 39 · Debug FPGA Array Dialog Box - Poll Option

The Pseudo-static signal polling dialog box opens.

Scalar Signal Polling
Polling Setup
To poll scalar signals, select Poll for 0 or Poll for 1.
The selected signal is polled once per second. It should be used for pseudo-static signals that do not change
frequently. The elapsed time is shown next to Time Elapsed in seconds.
To begin polling, click Start Polling. See the following example figure.

Figure 40 · Pseudo-static signal polling Dialog Box (Scalar Signal Polling) - Start Polling

To end polling, click Stop Polling. See the following example figure.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 54

Figure 41 · Pseudo-static signal polling Dialog Box (Scalar Signal Polling) - Stop Polling

Note: You cannot change the poll value or close the polling dialog box while polling is in progress.
The elapsed time is updated in seconds until the polled value is found. When the polled value is found, User
value matched is displayed in green in the dialog box. See the following example figure.

Figure 42 · Pseudo-static signal polling Dialog Box (Scalar Signal Polling) - User Value matched

Vector Signal Polling
To poll vector signals, enter a value in the text box. The entered value is checked and validated. If an invalid value
is entered, start polling is disabled, and an example displays showing the required format. See the following
example figures.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 55

Figure 43 · Pseudo-static signal polling Dialog Box (Vector Signal Polling)

Figure 44 · Pseudo-static signal polling Dialog Box (Vector Signal Polling) -- After Validation

When you enter a valid value and click Start Polling is clicked, polling begins.
To end polling, click Stop Polling.
Note: You cannot change the poll value or close the polling dialog box while polling is in progress.
The elapsed time is updated in seconds until the polled value is found. When the polled value is found, User
value matched is displayed in green in the dialog box.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 56

Debug SERDES (SmartFusion2, IGLOO2, and RTG4)
 You can examine and debug the SERDES blocks in your design in the Debug SERDES dialog box (shown in the
figure below).
To Debug SERDES, expand SmartDebug in the Design Flow window and double-click Debug SERDES.
Debug SERDES Configuration is explained below. See the PRBS Test and Loopback Test topics for information
specific to those procedures.
SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select from the
list of SERDES blocks in your design.

Debug SERDES - Configuration
Configuration Report

The Configuration Report output depends on the options you select in your PRBS Test and Loopback Tests. The
default report lists the following for each Lane in your SERDES block:
Lane mode - Indicates the programmed mode on a SERDES lane as defined by the SERDES system register.
PMA Ready - Indicates whether PMA has completed its internal calibration sequence for the specific lane and
whether the PMA is operational. See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User Guide on
the Microsemi website for details.
TxPll status - Indicates the loss-of-lock status for the TXPLL is asserted and remains asserted until the PLL
reacquires lock.
RxPLL status - Indicates the CDR PLL frequency is not grossly out of range of with incoming data stream.
Click Refresh Report to update the contents of your SERDES Configuration Report. Changes to the specified
SERDES register programming can be read back to the report.

SERDES Register Read or Write
Script - Runs Read/Write commands to access the SERDES control/status register map using a script. Enter the
full pathname for the script location or click the browse button to navigate to your script file. Click Execute to run
the script.

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 57

Figure 45 · Debug SERDES - Configuration

Note: The PCIe and XAUI protocols only support PRBS7. The EPCS protocol supports PRBS7/11/23/31.

Debug SERDES – Loopback Test
Loopback data stream patterns are generated and checked by the internal SERDES block. These are used to
self-test signal integrity of the device. You can switch the device through predefined tests.
See the PRBS Test topic for more information about the PRBS test options.
SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select from the
list of SERDES blocks in your design.

SERDES Lanes
Select the Lane and Lane Status on which to run the Loopback test. Lane mode indicates the programmed mode
on a SERDES lane as defined by the SERDES system register.

Test Type
PCS Far End PMA RX to TX Loopback- This loopback brings data into the device and deserializes and
serializes the data before sending it off-chip. This loopback requires 0PPM clock variation between the TX and
RX SERDES clocks.
See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for
details.

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 58

Near End Loopback (On Die) - To enable, select the Near End Loopback (On Die) option and click Start. Click
Stop to disable. Using this option allows you to send and receive user data without sending traffic off-chip. You
can test design functionality without introducing other issues on the PCB.
See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for
details.

Figure 46 · Debug SERDES - Loopback Test

Running Loopback Tests in Demo Mode
You can run Loopback tests in demo mode. The SERDES demo mode is provided to demonstrate the GUI
features of SERDES. All channels are enabled. Properly working channels and channels with connectivity issues
are shown so you can see the available GUI options. See the following example figure.

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 59

Debug SERDES – PRBS Test
PRBS data stream patterns are generated and checked by the internal SERDES block. These are used to self-
test signal integrity of the device. You can switch the device through several predefined patterns.
View Loopback Test settings in the Debug SERDES - Loopback Test topic.
SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select from the
list of SERDES blocks in your design.

SERDES Lanes
 Check the box or boxes to select the lane(s) on which to run the PRBS test. Then select the Lane Status, test
type, and pattern for each lane you have selected. Lane mode indicates the programmed mode on a SERDES
lane as defined by the SERDES system register. See the examples below.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 60

Figure 47 · SERDES Lanes - Single Lane Selected

Figure 48 · SERDES Lanes - Multiple Lanes Selected

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 61

Test Type
Near End Serial Loopback (On-Die) enables a self-test of the device. The serial data stream is sent internally
from the SERDES TX output and folded back onto the SERDES RX input.
Serial Data (Off-Die) is the normal system operation where the data stream is sent off chip from the TX output
and must be connected to the RX input via a cable or other type of electrical interconnection.
If more than one SERDES Lane has been selected, the test type can be selected per lane. In the following
example, Near End Serial Loopback (On-Die) has been selected for Lane 0 and Lane 3, and Serial Data (Off-Die)
has been selected for Lane 1 and Lane 2.

Figure 49 · Test Type Example

Pattern
The SERDESIF includes an embedded test pattern generator and checker used to perform serial diagnostics on
the serial channel, as shown in the table below. If more than one lane is selected, the PRBS pattern can be
selected per lane.

Pattern Type

PRBS7 Pseudo-Random data stream of 2^7 polynomial sequences

PRBS11 Pseudo-Random data stream of 2^11 polynomial sequences

PRBS23 Pseudo-Random data stream of 2^23 polynomial sequences

PRBS31 Pseudo-Random data stream of 2^31 polynomial sequences

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 62

Cumulative Error Count
Lists the number of cumulative errors after running your PRBS test. To reset the error count to zero, select the
lane(s) and click Reset. By default, Cumulative Error Count = 0, the Data Rate text box is blank, and Bit Error
Rate = NA.

Figure 50 · Debug SERDES - PRBS Test

Note: If the design uses SERDES PCIe, PRBS7 is the only available option for PRBS tests.

Bit Error Rate
The Bit Error Rate is displayed per lane. If you did not specify a Data Rate, the Bit Error Rate displays the default
NA. When the PRBS test is started, the Cumulative Error Count and Bit Error Rate are updated every second.
You can select specific lanes and click Reset Error Count to clear the Cumulative Error Count and Bit Error Rate
fields of the selected lanes.
In the example below, the Bit Error Rate is displayed for all lanes.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 63

Figure 51 · Bit Error Rate Example - All Lanes

In the example below, Lane 1 and Lane 2 are selected and Reset Error Count is clicked.

Figure 52 · Reset Error Count Example

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 64

Running PRBS Tests in Demo Mode
You can run Multi Lane PRBS tests in demo mode. The SERDES demo mode is provided to demonstrate the GUI
features of SERDES. All channels are enabled. Properly working channels and channels with connectivity issues
are shown so you can see the available GUI options. See the following example figure.

Notes:
The formula for calculating the BER is as follows:

 BER = (#bit errors+1)/#bits sent
 #bits sent = Elapsed time/bit period

When clicked on Start:
• The BER is updated every second for the entered data rate and errors observed.
• If no data rate is entered by the user, the BER is set to the default NA.

When clicked on Stop:
• The BER resets to default.

When clicked on Reset:
• The BER resets to default.
• If no test is in progress, the BER remains in the default value.
• If the PRBS test is in progress, the BER calculation restarts.

Debug SERDES – PHY Reset
SERDES PMA registers (for example, TX_AMP_RATIO) modified using a TCL script from the Configuration tab
require a soft reset for the new values to be updated. Lane Reset for individual lanes achieves this functionality.
Depending on the SERDES lanes used in the design, the corresponding Lane Reset buttons are enabled.
Lane Reset Behavior for SERDES Protocols Used in the Design
• EPCS: Reset is independent for individual lanes. Reset to Lane X (where X = 0,1,2,3) resets the Xth lane.
• PCIe: Reset to Lane X (where X = 0,1,2,3) resets all lanes present in the PCIe link and PCIe controller.

For more information about soft reset, refer to the SmartFusion2 and IGLOO2 High Speed Serial Interfaces User
Guide.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 65

Tcl Commands

For details about the Tcl commands supported by SmartDebug, refer to the Libero SoC Tcl Commands
Reference Guide.

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 66

Frequently Asked Questions

Embedded Flash Memory (NVM) - Failure when
Programming/Verifying

If the Embedded Flash Memory failed verification when executing the PROGRAM_NVM, VERIFY_NVM or
PROGRAM_NVM_ACTIVE_ARRAY action, the failing page may be corrupted. To confirm and address this issue:
1. In the Inspect Device window click View Flash Memory Content.
2. Select the Flash Memory block and client (or page range) to retrieve from the device.
3. Click Read from Device; the retrieved data appears in the lower part of the window.
4. Click View Detailed Status.

Note: You can use the check_flash_memory and read_flash_memory Tcl commands to perform
diagnostics similar to the commands outlined above.

5. To reset the corrupted NVM pages, either re-program the pages with your original data or ‘zero-out’ the
pages by using the Tcl command recover_flash_memory.

If the Embedded Flash Memory failed verification when executing a VERIFY_NVM or
VERIFY_NVM_ACTIVE_ARRAY action, the failure may be due to the change of content in your design. To
confirm this, repeat steps 1-3 above.

Note: NVM corruption is still possible when writing from user design. Check NVM status for confirmation.

Analog System Not Working as Expected
If the Analog System is not working correctly, it may be due the following:
1. System supply issue. To troubleshoot:
• Physically verify that all the supplies are properly connected to the device and they are at the proper level.

Then confirm by running the Device Status.
• Physically verify that the relevant channels are correctly connected to the device.

2. Analog system is not properly configured. You can confirm this by examining the Analog System.

ADC Not Sampling the Correct Value
If the ADC is sampling all zero values then the wrong analog pin may be connected to the system, or the analog
pin is disconnected. If that is not the case and the ADC is not sampling the correct value, it may be due to the
following:
1. System supply issues - Run the device status to confirm.
2. Analog system is not configured at all - To confirm, read out the ACM configuration and verify if the ACM

content is all zero.
3. Analog system is not configured correctly - To confirm, read out the ACM configuration and verify that the

configuration is as expected.

Once analog block configuration has been confirmed, you can use the sample_analog_channel Tcl
command for debug sampling of the analog channel with user-supplied sampling parameters.

If you have access to your Analog System Builder settings project (<Libero IDE
project>/Smartgen/AnalogBlock), you may use the compare function provided by the tool.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 67

How do I unlock the device security so I can debug?
You must provide the PDB file with a User Pass Key in order to unlock the device and continue debugging.
If you do not have a PDB with User Pass Key, you can create a PDB file in FlashPro (if you know the Pass Key
value).

How do I export a report?
You can export three reports from the SmartDebug GUI: Device Status, Client Detailed Status from the NVM, or
the Compare Client Content report from the NVM. Each of those reports can be saved and printed.
For more information about Tcl commands supported by SmartDebug, see SmartDebug Tcl Commands.

How do I generate diagnostic reports for my target device?
A set of diagnostic reports can be generated for your target device depending on which silicon feature you are
debugging. A set of Tcl commands are available to export those reports. The following is a summary of those Tcl
commands based on the silicon features.
When using the –file parameter, ensure that you use a different file name for each command so you do not
overwrite the report content. If you do not specify the –file option in the Tcl, the output results will be directed to
the FlashPro log window.
For the overall device:

read_device_status

read_id_code

For FlashROM:
compare_flashrom_client

read_flashrom

For Embedded Flash Memory (NVM):
compare_memory_client

check_flash_memory

read_flash_memory

For Analog Block:
read_analog_block_config

compare_analog_config

sample_analog_channel

To execute the Tcl command, from the File menu choose Run Script.

How do I monitor a static or pseudo-static signal?
To monitor a static or pseudo-static signal:
1. Add the signal to the Active Probes tab.
2. Select the signal in the Active Probes tab, right-click, and choose Poll....

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 68

3. In the Pseudo-static Signal Polling dialog box, choose a value in Polling Setup and click Start Polling.

How do I force a signal to a new value?
To force a signal to a new value:
1. In the SmartDebug window, click Debug FPGA Array.
2. Click the Active Probes tab.
3. Select the signal from the selection panel and add it to Active Probes tab.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 69

1. Click Read Active Probe to read the value.
2. In the Write Value column, enter the value to write to the signal and then click Write Active Probes.

How do I count the transitions on a signal?
If FHB IP is auto-instantiated in the design, you can use the Event Counter in the Live Probes tab to count the
transitions on a signal.
To count the transitions on a signal:
1. Assign the desired signal to Live Probe Channel A.
2. Click the Event Counter tab and check the Activate Event Counter checkbox.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 70

See Also
Event Counter

How do I monitor or measure a clock?
You can monitor a clock signal from the Live Probe tab when the design is synthesized and compiled with FHB
Auto Instantiation turned on in Project Settings dialog box (Enhanced Constraint Flow).
In the Live Probe tab, SmartDebug allows you to:
1. Measure all the FABCCC GL clocks by clicking the User Clock Frequencies tab, as shown in the figure

below.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 71

2. Monitor frequencies of any probe points by:

a. Assigning the desired signal to Live Probe Channel A.
b. Selecting the Frequency Monitor tab as shown in the following figure and checking the Activate

Frequency Meter checkbox.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 72

How do I perform simple PRBS and loopback tests?
You can perform PRBS and loopback tests using the Debug SERDES option in SmartDebug.
To perform a PRBS test, in the Debug SERDES dialog box, select PRBS Test to run a PRBS test on-die or off-
die For more information, see "Debug SERDES – PRBS Test" on page 59.
To perform a PRBS test, in the Debug SERDES dialog box, select PRBS Test to run a PRBS test on-die or off-
die. For more information, see "Debug SERDES – PRBS Test" on page 59.
To perform a loopback test, in the Debug SERDES dialog box, select Loopback Test to run a near end serial
loopback /far end PMA Rx to Tx loopback test. For more information, see "Debug SERDES – Loopback Test" on
page 57.

How do I read LSRAM or USRAM content?
To read RAM content:
1. In the Debug FPGA Array dialog box, click the Memory Blocks tab.
2. Select the memory block to be read from the selection panel on the left of the window.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 73

An "L" in the icon next to the block name indicates that it is a logical block, and a "P" in the icon indicates that it is
a physical block. A logical block displays three fields in the Memory Blocks tab: User Design Memory Blocks,
Data Width, and Port Used. A physical block displays two fields in the Memory Blocks tab: User Design Memory
Block and Data Width.
3. Add the block in one of the following ways:

a. Click Select.
b. Right-click and choose Add.
c. Drag the block to the Memory Blocks tab.

4. Click Read Block to read the content of the block.

See Also
"Memory Blocks (SmartFusion2, IGLOO2, RTG4)" on page 30"Memory Blocks (SmartFusion2, IGLOO2, RTG4)"
on page 30

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 74

How do I change the content of LSRAM or USRAM?
To change the content of LSRAM or USRAM:
1. In the SmartDebug window, click Debug FPGA Array.
2. Click the Memory Blocks tab.
3. Select the memory block from the selection panel on the left of the window.

An "L" in the icon next to the block name indicates that it is a logical block, and a "P" in the icon indicates that it is
a physical block. A logical block displays three fields in the Memory Blocks tab: User Design Memory Blocks,
Data Width, and Port Used. A physical block displays two fields in the Memory Blocks tab: User Design Memory
Block and Data Width.
4. Add the memory block in one of the following ways:

a. Click Select.
b. Right-click and choose Add.
c. Drag the block to the Memory Blocks tab.

5. Click Read Block. The memory content matrix is displayed.
6. Select the memory cell value that you want to change and update the value.
7. Click Write Block to write to the device.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 75

See Also
"Memory Blocks (SmartFusion2, IGLOO2, RTG4)" on page 30"Memory Blocks (SmartFusion2, IGLOO2, RTG4)"
on page 30
SmartDebug for Libero SoC User Guide

How do I read the health check of the SERDES?
You can read the SERDES health check using the following Debug SERDES options:
1. Review the Configuration Report, which returns PMA Ready, TxPLL status, and RxPLL status. For

SERDES to function correctly, PMA ready should be true, and TxPLL and RxPLL status should be locked.
The Configuration Report can be found in the Debug SERDES dialog box under Configuration. See Debug
SERDES (SmartFusion2, IGLOO2, and RTG4).

2. Run the PRBS Test, which is a Near End Serial Loopback tests on selected lanes. This should result in 0

errors in the Cumulative Error Count column. See "Debug SERDES – PRBS Test" on page 59.

Where can I find files to compare my contents/settings?

FlashROM
You can compare the FlashROM content in the device with the data in the PDB file. You can find the PDB in the
<Libero IDE project>/Designer/Impl directory.

Embedded Flash Memory (NVM)
You can compare the Embedded Flash Memory content in the device with the data in the PDB file. You can find
the PDB in the <Libero IDE project>/Designer/Impl directory.

What is a UFC file? What is an EFC file?
UFC is the User FlashROM Configuration file, generated by the FlashROM configurator; it contains the partition
information set by the user. It also contains the user-selected data for region types with static data.
However, for AUTO_INC and READ_FROM_FILE, regions the UFC file contains only:
• Start value, end value, and step size for AUTO_INC regions, and

https://coredocs.s3.amazonaws.com/Libero/11_8_4/Tool/smartdebug_ug.pdf

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 76

• File directory for READ_FROM_FILE regions
EFC is the Embedded Flash Configuration file, generated by the Flash Memory Builder in the Project Manager
Catalog; it contains the partition information and data set by the user.
Both UFC and EFC information is embedded in the PDB when you generate the PDB file.

Is my FPGA fabric enabled?
When your FPGA fabric is programmed, you will see the following statement under Device State in the Device
Status report:

FPGA Array Status: Programmed and Enabled

If the FPGA fabric is not programmed, the Device State shows:
FPGA Array Status: Not Enabled

Is my Embedded Flash Memory (NVM) programmed?
To figure out if your NVM is programmed, read out and view the NVM content or perform verification with the PDB
file.
To examine the NVM content, see the FlashROM Memory Content Dialog Box.

How do I display Embedded Flash Memory (NVM) content in the
Client partition?

You must load your PDB into your FlashPro project in order to view the Embedded Flash Memory content in the
Client partition. To view NVM content in the client partition:
1. Load your PDB into your FlashPro project.
2. Click Inspect Device.
3. Click View Flash Memory Content.
4. Choose a block from the drop-down menu.
5. Select a client.
6. Click Read from Device. The Embedded Flash Memory content from the device appears in the Flash

Memory dialog box.

How do I know if I have Embedded Flash Memory (NVM)
corruption?

When Embedded Flash Memory is corrupted, checking Embedded Flash Memory may return with any or all of the
following page status:
• ECC1/ECC2 failure
• Page write count exceeds the 10-year retention threshold
• Page write count is invalid
• Page protection is set illegally (set when it should not be)

See the How do I interpret data in the Flash Memory (NVM) Status Report? topic for details.
If your Embedded Flash Memory is corrupted, you can recover by reprogramming with original design data.
Alternatively, you can ‘zero-out’ the pages by using the Tcl command recover_flash_memory.

Why does Embedded Flash Memory (NVM) corruption happen?
Embedded Flash Memory corruption occurs when Embedded Flash Memory programming is interrupted due to:
• Supply brownout; monitor power supplies for brownout conditions. For SmartFusion monitor the

VCC_ENVM/VCC_ROSC voltage levels; for Fusion, monitor VCC_NVM/VCC_OSC.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 77

• Reset signal is not properly tied off in your design. Check the Embedded Memory reset signal.

How do I recover from Embedded Flash Memory corruption?
Reprogram with original design data or ‘zero-out’ the pages by using the Tcl command
recover_flash_memory.

What is a JTAG IR-Capture value?
JTAG IR-Capture value contains private and public device status values. The public status value in the value read
is ISC_DONE, which indicates if the FPGA Array is programmed and enabled.
The ISC_DONE signal is implemented as part of IEEE 1532 specification.

What does the ECC1/ECC2 error mean?
ECC is the Error Correction Code embedded in each Flash Memory page.
ECC1 – One bit error and correctable.
ECC2 – Two or more errors found, and not correctable.

What happens if invalid firmware is loaded into eNVM in
SmartFusion2 devices?

When invalid firmware is loaded into eNVM in SmartFusion2 devices, Cortex-M3 will not be able to boot and
issues reset to MSS continuously. eNVM content using View Flash Memory content will read zeroes in
SmartDebug.
To verify that your FlashROM is programmed, read out and view the FlashROM content or perform verification
with the PDB file by selecting the VERIFY or VERIFY_FROM action in FlashPro.

Can I compare serialization data?
To compare the serialization data, you can read out the FlashROM content and visually check data in the
serialization region. Note that a serialization region can be an AUTO_INC or READ_FROM_FILE region.
For serialization data in the AUTO_INC region, check to make sure that the data is within the specified range for
that region.
For READ_FROM_FILE region, you can search for a match in the source data file.

Can I tell what security options are programmed in my device?
To determine the programmed security settings, run the Device Status option from the Inspect Device dialog and
examine the Security Section in the report.
This section lists the security status of the FlashROM, FPGA Array and Flash Memory blocks.

How do I interpret data in the Device Status report?
The Device Status Report generated from the FlashPro SmartDebug Feature contains the following sections:
• IDCode (see below)
• User Information
• Device State
• Factory Data
• Security Settings

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 78

Device Status Report
Device Status Report: IDCode

The IDCode section shows the raw IDCode read from the device. For example, in the Device Status report for an
AFS600 device, you will find the following statement:

IDCode (HEX): 233261cf

The IDCode is compliant to IEEE 1149.1. The following table lists the IDCode bit assignments:
Table 1 · IDCode Bit Assignments

Bit Field (little
endian)

Example Bit Value for AFS600
(HEX)

Description

Bit [31-28] (4 bits) 2 Silicon Revision

Bit [27-12] (16 bits) 3326 Device ID

Bit [11-0] (12 bits) 1cf IEEE 1149.1 Manufacturer ID for
Microsemi

Device Status Report: User Info
The User Information section reports the information read from the User ROW (UROW) of IGLOO, ProASIC3,
SmartFusion and Fusion devices. The User Row includes user design information as well as troubleshooting
information, including:
• Design name (10 characters max)
• Design check sum (16-bit CRC)
• Last programming setup used to program/erase any of the silicon features.
• FPGA Array / Fabric programming cycle count

For example:
User Information:

UROW data (HEX): 603a04e0a1c2860e59384af926fe389f

Programming Method: STAPL

Programmer: FlashPro3

Programmer Software: FlashPro vX.X

Design Name: ABCBASICTO

Design Check Sum: 603A

Algorithm Version: 19

Array Prog. Cycle Count: 19

Table 2 · Device Status Report User Info Description

Category Field Description

User Row Data (Example)
UROW data (HEX):
603a04e0a1c2860e59384af926fe389f

Raw data from User Row (UROW)

Programming
Troubleshooting
Info

(Example)
Programming Method: STAPL
Programmer: FlashPro3
Programmer Software: FlashPro v8.6
Algorithm Version: 19

Known programming setup used.
This includes: Programming
method/file, programmer and
software. It also includes
programming Algorithm version
used.

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 79

Category Field Description

Design Info (Example)
Design Name: ABCASICTO
Design Check Sum: 603A

Design name (limited to 10
characters) and check sum.

Design check sum is a 16-bit CRC
calculated from the fabric (FPGA
Array) datastream generated for
programming. If encrypted
datastream is generated selected,
the encrypted datastream is used for
calculating the check sum.

Device Status Report: Device State
The device state section contains:.
• IR-Capture register value, and
• The FPGA status

The IR-Capture is the value captured by the IEEE1149.1 instruction register when going through the IR-Capture
state of the IEEE 1149.1 state machine. It contains information reflecting some of the states of the devices that is
useful for troubleshooting.
One of the bits in the value captured is the ISC_DONE value, specified by IEEE 1532 standard. When the value is
‘1’ it means that the FPGA array/fabric is programmed and enabled. This is available for IGLOO, ProASIC3,
SmartFusion and Fusion devices.
For example:

Device State:

IRCapture Register (HEX): 55

FPGA Array Status: Programmed and enabled

For a blank device:
Device State:

IRCapture Register (HEX): 51

FPGA Array Status: Not enabled

Device Status Report: Factory Data
The Factory Data section lists the Factory Serial Number (FSN).
Each of the IGLOO, ProASIC3, SmartFusion and Fusion devices has a unique 48-bit FSN.

Device Status Report: Security
The security section shows the security options for the FPGA Array, FlashROM and Flash Memory (NVM) block
that you programmed into the device.
For example, using a Fusion AFS600 device:

Security:

Security Register (HEX): 0000000088c01b

FlashROM

Write/Erase protection: Off

Read protection: Off

Encrypted programming: Off

FPGA Array

Write/Erase protection: Off

Verify protection: Off

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 80

Encrypted programming: Off

FlashMemory Block 0

Write protection: On

Read protection: On

Encrypted programming: Off

FlashMemory Block 1

Write protection: On

Read protection: On

Encrypted programming: Off

Table 3 · Device Status Report - Security Description

Security Status
Info

Description

Security
Register (HEX)

Raw data captured from the device's security status register

Write/Erase
Protection

Write protection is applicable to FlashROM, FPGA Array (Fabric)and Flash Memory
(NVM) blocks. When On, the Silicon feature is write/erase protected by user passkey.

Read Protection Read protection is applicable to FlashROM and Flash Memory (NVM) blocks. When
On, the Silicon feature is read protected by user passkey.

Verify Protection Verify Protection is only applicable to FPGA Array (Fabric) only. When On, the FPGA
Array require user passkey for verification.

Reading back from the FPGA Array (Fabric) is not supported.

Verification is accomplished by sending in the expected data for verification.

Encrypted
Programming

Encrypted Programming is supported for FlashROM, FPGA Array (Fabric) and Flash
Memory (NVM) blocks. When On, the silicon feature is enable for encrypted
programmed. This allows field design update with encrypted datastream so the user
design is protected.

Encrypted Programming
To allow encrypted programming of the features, the target feature cannot be Write/Erase protected by user
passkey.
The security settings of each silicon feature when they are enabled for encrypted programming are listed below.

FPGA Array (Fabric)
Write/Erase protection: Off

Verify protection: Off

Encrypted programming: On

Set automatically by Designer or FlashPro when you select to enable encrypted programming of the FPGA Array
(Fabric). This setting allows the FPGA Array (Fabric) to be programmed and verified with an encrypted
datastream.

FlashROM

Write/Erase protection: Off

Read protection: On

Encrypted programming: On

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 81

Set automatically by Designer or FlashPro when you select to enable encrypted programming of the FlashROM.
This setting allows the FlashROM to be programmed and verified with an encrypted datastream.
FlashROM always allows verification. If encrypted programming is set, verification has to be performed with
encrypted datastream.
Designer and FlashPro automatically set the FlashROM to be read protected by user passkey when encrypted
programming is enabled. This protects the content from being read out of the JTAG port after encrypted
programming.

Flash Memory (NVM) Block

Write/Erase protection: Off

Read protection: On

Encrypted programming: On

The above setting is set automatically set by Designer or FlashPro when you select to enable encrypted
programming of the Flash Memory (NVM) block. This setting allows the Flash Memory (NVM) block to be
programmed with an encrypted datastream.
The Flash Memory (NVM) block does not support verification with encrypted datastream.
Designer and FlashPro automatically set the Flash Memory (NVM) block to be read protected by user passkey
when encrypted programming is enabled. This protects the content from being read out of the JTAG port after
encrypted programming.

How do I interpret data in the Flash Memory (NVM) Status Report?
The Embedded Flash Memory (NVM) Status Report generated from the FlashPro SmartDebug feature consists of
the page status of each NVM page. For example:

Flash Memory Content [Page 34 to 34]

FlashMemory Page #34:

Status Register(HEX): 00090000

Status ECC2 check: Pass

Data ECC2 Check: Pass

Write Count: Pass (2304 writes)

Total number of pages with status ECC2 errors: 0

Total number of pages with data ECC2 errors: 0

Total number of pages with write count out of range: 0

FlashMemory Check PASSED for [Page 34 to 34]

The 'check_flash_memory' command succeeded.

The Execute Script command succeeded.

Table 4 · Embedded Flash Memory Status Report Description

Flash
Memory
Status

Info

Description

Status
Register
(HEX)

Raw page status register captured from device

Status
ECC2
Check

Check for ECC2 issue in the page status

 SmartFusion2, IGLOO2, RTG4 SmartDebug User Guide

 82

Flash
Memory
Status

Info

Description

Data
ECC2
Check

Check for ECC2 issue in the page data

Write
Count

Check if the page-write count is within the expected range.

The expected write count is greater than or equal to:

6,384 - SmartFusion devices
2,288 - Fusion devices

Note: Write count, if corrupted, cannot be reset to a valid value within the customer
flow;invalid write count will not prevent device from being programmed with the FlashPro
tool.

The write count on all good eNVM pages is set to be 2288 instead of 0 in the manufacturing
flow. The starting count of the eNVM is 2288. Each time the page is programmed or erased
the count increments by one. There is a Threshold that is set to 12288, which equals to 3 *
4096.

Since the threshold can only be set in multiples of 4096 (2^12), to set a 10,000 limit, the
Threshold is set to 12288 and the start count is set to 2288; and thus the eNVM has a 10k
write cycle limit. After the write count exceeds the threshold, the STATUS bit goes to 11
when attempting to erase/program the page.

	Table of Contents
	Introduction to SmartDebug 4
	Use Models 4
	Supported Families, Programmers, and Operating Systems 5
	Supported Tools 5
	Using SmartDebug 6
	Running SmartDebug in Demo Mode 6
	Create Standalone SmartDebug Project 7
	Standalone SmartDebug User Interface 10
	Programming Connectivity and Interface 11
	Selecting Devices for Debug 14
	View Device Status 14
	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only) 16
	Debug FPGA Array 19
	Hierarchical View 19
	Netlist View 21
	Live Probes 22
	Active Probes 24
	Probe Grouping (Active Probes Only) 26
	Memory Blocks 30
	Probe Insertion (Post-Layout) 35
	Event Counter 37
	Frequency Monitor 41
	FPGA Hardware Breakpoint Auto Instantiation 46
	User Clock Frequencies 52
	Pseudo Static Signal Polling 52
	Debug SERDES (SmartFusion2, IGLOO2, and RTG4) 56
	Debug SERDES – Loopback Test 57
	Debug SERDES – PRBS Test 59
	Debug SERDES – PHY Reset 64
	Embedded Flash Memory (NVM) - Failure when Programming/Verifying 66
	Analog System Not Working as Expected 66
	ADC Not Sampling the Correct Value 66
	How do I unlock the device security so I can debug? 67
	How do I export a report? 67
	How do I generate diagnostic reports for my target device? 67
	How do I monitor a static or pseudo-static signal? 67
	How do I force a signal to a new value? 68
	How do I count the transitions on a signal? 69
	How do I monitor or measure a clock? 70
	How do I perform simple PRBS and loopback tests? 72
	How do I read LSRAM or USRAM content? 72
	How do I change the content of LSRAM or USRAM? 74
	How do I read the health check of the SERDES? 75
	Where can I find files to compare my contents/settings? 75
	What is a UFC file? What is an EFC file? 75
	Is my FPGA fabric enabled? 76
	Is my Embedded Flash Memory (NVM) programmed? 76
	How do I display Embedded Flash Memory (NVM) content in the Client partition? 76
	How do I know if I have Embedded Flash Memory (NVM) corruption? 76
	Why does Embedded Flash Memory (NVM) corruption happen? 76
	How do I recover from Embedded Flash Memory corruption? 77
	What is a JTAG IR-Capture value? 77
	What does the ECC1/ECC2 error mean? 77
	What happens if invalid firmware is loaded into eNVM in SmartFusion2 devices? 77
	Can I compare serialization data? 77
	Can I tell what security options are programmed in my device? 77
	How do I interpret data in the Device Status report? 77

	Welcome to SmartDebug
	Introduction to SmartDebug
	Use Models
	Integrated Mode
	Standalone Mode
	Demo Mode
	Standalone Mode Use Model Overview

	Supported Families, Programmers, and Operating Systems
	Supported Tools

	Getting Started with SmartDebug
	Using SmartDebug
	Running SmartDebug in Demo Mode
	See Also

	Create Standalone SmartDebug Project
	Import from DDC File (created from Libero)
	Construct Automatically
	Configuring a Generic Device
	Connected FlashPRO Programmers
	See Also

	SmartDebug User Interface
	Standalone SmartDebug User Interface
	Programming Connectivity and Interface
	Hover Information
	Device Chain Details
	Right-click Properties
	Debug Context Save

	Selecting Devices for Debug
	View Device Status
	IdCode
	Device Certificate
	Design Information
	Digest Information
	Device Security Settings
	Programming Information

	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only)
	Contents of Page Status

	Debugging
	Debug FPGA Array
	Hierarchical View
	Netlist View
	Live Probes
	SmartFusion2 and IGLOO2
	RTG4
	Live Probes in Demo Mode

	Active Probes
	Active Probes in Demo Mode

	Probe Grouping (Active Probes Only)
	Context Menu of Probe Points Added to the Active Probes UI
	Differences Between a Bus and a Probe Group

	Memory Blocks
	Memory Block Fields
	User Design Memory Block
	Data Width
	Port Used
	Read Block
	Logical Block Read
	Physical Block Read
	Write Block
	Logical Block Write
	Physical Block Write
	Unsupported Memory Blocks
	Memory Blocks in Demo Mode

	Probe Insertion (Post-Layout)
	Introduction
	Probe Insertion
	Probe Deletion
	Reverting to the Original Design

	Event Counter
	Activating the Event Counter
	Running the Event Counter
	Stopping the Event Counter
	See Also

	Frequency Monitor
	Activating the Frequency Monitor
	Running the Frequency Monitor
	Stopping the Frequency Monitor
	See Also

	FPGA Hardware Breakpoint Auto Instantiation
	Trigger Input
	FPGA Hardware Breakpoint Operations
	Live Probe Halt
	Force Halt
	Play
	Step
	Waveform Capture
	Reset
	Assumptions and Limitations

	User Clock Frequencies
	See Also

	Pseudo Static Signal Polling
	Scalar Signal Polling
	Vector Signal Polling

	Debug SERDES (SmartFusion2, IGLOO2, and RTG4)
	Debug SERDES - Configuration

	Debug SERDES – Loopback Test
	SERDES Lanes
	Test Type
	Running Loopback Tests in Demo Mode

	Debug SERDES – PRBS Test
	SERDES Lanes
	Test Type
	Pattern
	Cumulative Error Count
	Bit Error Rate
	Running PRBS Tests in Demo Mode

	Debug SERDES – PHY Reset

	Tcl Commands
	Frequently Asked Questions
	Embedded Flash Memory (NVM) - Failure when Programming/Verifying
	Analog System Not Working as Expected
	ADC Not Sampling the Correct Value
	How do I unlock the device security so I can debug?
	How do I export a report?
	How do I generate diagnostic reports for my target device?
	How do I monitor a static or pseudo-static signal?
	How do I force a signal to a new value?
	How do I count the transitions on a signal?
	See Also

	How do I monitor or measure a clock?
	How do I perform simple PRBS and loopback tests?
	How do I read LSRAM or USRAM content?
	See Also

	How do I change the content of LSRAM or USRAM?
	See Also

	How do I read the health check of the SERDES?
	Where can I find files to compare my contents/settings?
	What is a UFC file? What is an EFC file?
	Is my FPGA fabric enabled?
	Is my Embedded Flash Memory (NVM) programmed?
	How do I display Embedded Flash Memory (NVM) content in the Client partition?
	How do I know if I have Embedded Flash Memory (NVM) corruption?
	Why does Embedded Flash Memory (NVM) corruption happen?
	How do I recover from Embedded Flash Memory corruption?
	What is a JTAG IR-Capture value?
	What does the ECC1/ECC2 error mean?
	What happens if invalid firmware is loaded into eNVM in SmartFusion2 devices?
	Can I compare serialization data?
	Can I tell what security options are programmed in my device?
	How do I interpret data in the Device Status report?
	Device Status Report
	Device Status Report: IDCode
	Device Status Report: User Info
	Device Status Report: Device State
	Device Status Report: Factory Data
	Device Status Report: Security
	Encrypted Programming
	FPGA Array (Fabric)
	FlashROM
	Flash Memory (NVM) Block

	How do I interpret data in the Flash Memory (NVM) Status Report?

