
SmartFusion2
DDR Controller and Serial High Speed Controller

Initialization Methodology

SmartFusion2 DDR Controller and Serial High Speed Controller Initialization Methodology

2

Table of Contents

Introduction . 3

1 Theory of Operation . 4

2 Using System Builder to Create a Design Using DDR and SERDESIF Blocks 10
System Builder Device Features Page . 11

System Builder Memory Page . 12

System Builder Peripherals Page . 13

SERDESIF Configuration . 15

3 Using SmartDesign to Create a Design Using DDR and SERDESIF Blocks. 17
DDR Controller Configuration . 17

SERDESIF Configuration . 17

Creating the FPGA Design Initialization Sub-System . 18

System Reset (SYSRESET) Instantiation . 22

Overall Connectivity . 22

4 Creating and Compiling the Firmware Application . 26

5 BFM Files Used for Simulating the Design. 27

A Product Support . 28
Customer Service . 28

Customer Technical Support Center . 28

Technical Support . 28

Website . 28

Contacting the Customer Technical Support Center . 28

ITAR Technical Support . 29

3

Introduction

When creating a design using a SmartFusion2 device, if you use one of the two DDR controllers (FDDR
or MDDR) or any of the Serial High speed controller (SERDESIF) blocks, you must initialize the
configuration registers of these blocks at run-time before they can be used. For example, for the DDR
controller, you must set the DDR mode (DDR3/DDR2/LPDDR), PHY width, burst mode and ECC.
Similarly, for the SERDESIF block used as a PCIe endpoint, you must set the PCIE BAR to AXI (or AHB)
window.

This document describes the steps necessary to create a Libero design that automatically initializes the
DDR controller and SERDESIF blocks at power up. It also describes how to generate the firmware code
from Libero SOC that is used in the embedded design flow.

A detailed description of the theory of operations is provided first.

The next section describes how to create such a design using the Libero SoC System Builder, a powerful
design tool that, among other features, creates the 'initialization' solution for you if you are using DDR or
SERDESIF blocks in your design.

The next section describes how to put a complete 'initialization' solution together without using the
SmartFusion2 System Builder. This helps explain what needs to be done if you do not wish to use the
System Builder, and also describes what the System Builder tool actually generates for you. This section
addresses:

• The creation of the configuration data for DDR controller and SERDESIF configuration registers

• The creation of the FPGA logic required to transfer the configuration data to the different ASIC
configuration registers

Finally we describe the generated files related to:

• The creation of firmware 'initialization' solution.

• The simulation of the design for the DDR 'initialization' solution.

For details about the DDR controller and SERDESIF configuration registers, refer to the Microsemi
SmartFusion2 High Speed Serial and DDR Interfaces User's Guide.

http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf

1 – Theory of Operation

The Peripheral initialization solution uses the following major components:

• The CMSIS SystemInit() function, which runs on the Cortex-M3 and orchestrates the initialization
process.

• The CoreConfigP soft IP core, which initializes the peripherals' configuration registers.

• The CoreResetP soft IP core, which manages the reset sequence of the MSS, DDR controllers,
and SERDESIF blocks..

The peripheral initialization process works as follows:

1. Upon reset, the Cortex-M3 runs the CMSIS SystemInit() function. This function is automatically
executed before the application's main() function is executed.

The CoreResetP output signal MSS_HPMS_READY is asserted at the beginning of the
initialization process, indicating that the MSS and all the peripherals (except MDDR) are ready for
communication.

2. The SystemInit() function writes configuration data to the DDR controllers and SERDESIF
configuration registers via the MSS FIC_2 APB3 bus. This interface is connected to the soft
CoreConfigP core instantiated in the FPGA fabric.

3. After all the registers are configured, the SystemInit() function writes to the CoreConfigP control
registers to indicate the completion of the register configuration phase; the CoreConfigP output
signals CONFIG1_DONE and CONIG2_DONE are then asserted.

There are two phases of register configuration (CONFIG1 and CONFIG2) depending upon the
peripherals used in the design.

4. If one or both of MDDR/FDDR are used, and none of the SERDESIF blocks are used in the
design, there is only one register configuration phase. Both the CoreConfigP output signals
CONFIG1_DONE and CONIG2_DONE are asserted one after the other without any wait/delay.

If one or more SERDESIF blocks in non-PCIe mode are used in the design, there is only one
phase of register configuration. CONFIG1_DONE and CONIG2_DONE are asserted one after the
other without any wait/delay.

If one or more SERDESIF blocks in PCIe mode are used in the design, there are two phases of
register configuration. CONFIG1_DONE is asserted after the first phase of register configuration
is complete. SERDESIF system and lane registers are configured in this phase. If SERDESIF is
configured in a non-PCIE mode, CONFIG2_DONE signal is also asserted immediately.

5. The second phase of register configuration then follows (if SERDESIF is configured in PCIE
mode). The following are the different events that happen in the second phase:

– CoreResetP de-asserts PHY_RESET_N and CORE_RESET_N signals corresponding to
each of the SERDESIF blocks used. It also asserts an output signal SDIF_RELEASED after
all the SERDESIF blocks are out of reset. This SDIF_RELEASED signal is used to indicate to
the CoreConfigP that the SERDESIF core is out of reset and is ready for the second phase of
register configuration.

– Once the SDIF_RELEASED signal is asserted, the SystemInit() function starts polling for the
assertion of PMA_READY on the appropriate SERDESIF lane. Once the PMA_READY is
asserted, the second set of SERDESIF registers (PCIE registers) are configured/written by
the SystemInit() function.

6. After all the PCIE registers are configured, the SystemInit() function writes to the CoreConfigP
control registers to indicate the completion of the second phase of register configuration; the
CoreConfigP output signal CONIG2_DONE is then asserted.

7. Apart from the above signal assertions/de-assertions, CoreResetP also manages the initialization
of the various blocks by performing the following functions:

– De-asserting the FDDR core reset

– De-asserting the SERDESIF blocks PHY and CORE resets
4

– Monitoring of the FDDR PLL (FPLL) lock signal. The FPLL must have locked to guarantee
that the FDDR AXI/AHBLite data interface and the FPGA fabric can communicate correctly.

– Monitoring of the SERDESIF block PLL (SPLL) lock signals. The SPLL must have locked to
guarantee that the SERDESIF blocks AXI/AHBLite interface (PCIe mode) or XAUI interface
can communicate properly with the FPGA fabric.

– Waiting for the external DDR memories to settle and be ready to be accessed by the DDR
controllers.

8. When all peripherals have completed their initialization, CoreResetP asserts the INIT_DONE
signal; the CoreConfigP internal register INIT_DONE is then asserted.

If one or both of MDDR/FDDR are used, and the DDR initialization time is reached, CoreResetP
output signal DDR_READY is asserted. Assertion of this signal DDR_READY can be monitored
as an indication that the DDR (MDDR/FDDR) is ready for communication.

If one or more SERDESIF blocks are used, and the second phase of register configuration is
successfully completed, CoreResetP output signal SDIF_READY is asserted. Assertion of this
signal SDIF_READY can be monitored as an indication that all the SERDESIF blocks are ready
for communication.

9. The SystemInit() function, which has been waiting for INIT_DONE to be asserted, completes, and
the application's main() function is executed. At that time, all used DDR controllers and
SERDESIF blocks have been initialized, and the firmware application and the FPGA fabric logic
can reliably communicate with them.

The methodology described in this document relies on the Cortex-M3 executing the initialization process
as part of the system initialization code executed before the application's main()function.

See the Flow Charts in Figure 1-1, Figure 1-2 and Figure 1-3 for the Initialization steps of FDDR/MDDR,
SEREDES(non-PCIe mode) and SERDES (PCIe mode).

Figure 1-4 shows a Peripheral Initialization timing diagram.
5

Figure 1-1 • MDDR/FDDR Initialization (No SERDESIF) Initialization Flow Chart
6

Figure 1-2 • SERDESIF (Non-PCIe) Initialization Flow Chart
7

Figure 1-3 • SERDESIF (PCIe) Initialization Flow Chart
8

The initialization procedure described in this document requires you to run Cortex-M3 during the
initialization process, even if you are not planning on running any code on the Cortex-M3. You must
create a basic firmware application that does nothing (a simple loop, for example) and load that
executable in the embedded Non Volatile Memory (eNVM) so the DDR controllers and SERDESIF blocks
are initialized when the Cortex-M3 boots.

Figure 1-4 • Peripheral Initialization Timing Diagram
9

2 – Using System Builder to Create a Design
Using DDR and SERDESIF Blocks

The SmartFusion2 System Builder is a powerful design tool that helps you capture your system-level
requirements and produces a design implementing those requirements. A very important function of the
System Builder is the automatic creation of the Peripheral Initialization sub-system. "Using SmartDesign
to Create a Design Using DDR and SERDESIF Blocks" on page 17 describes in detail how to create
such a solution without the System Builder.

If you are using System Builder, you must perform the following tasks to create a design that initializes
your DDR controllers and SERDESIF blocks at power up:

1. In the Device Features page (Figure 2-1), specify which DDR controllers are used and how many
SERDESIF blocks are used in your design.

2. In the Memory page, specify the type of DDR (DDR2/DDR3/LPDDR) and the configuration data
for your external DDR memories. See the Memory Page section for details.

3. In the Peripherals page, add fabric masters configured as AHBLite/AXI to the Fabric DDR
Subsystem and/or MSS DDR FIC Subsystem (optional).

4. In the Clock Settings page, specify the clock frequencies for the DDR sub-systems.

5. Complete your design specification and click Finish. This generates the System Builder created
design, including the logic necessary for the 'initialization' solution.

6. If you are using SERDESIF blocks, you must instantiate the SERDESIF blocks in your design and
connect their initializations ports to those of the System Builder generated core.
10

System Builder Device Features Page
In the Device Features page, specify which DDR controllers (MDDR and/or FDDR) are used and how
many SERDESIF blocks are used in your design (Figure 2-1).

Figure 2-1 • System Builder Device Features Page
11

System Builder Memory Page
To use the MSS DDR (MDDR) or Fabric DDR (FDDR), select the Memory Type from the drop-down list
(Figure 2-2).

You must:

1. Select the DDR type (DDR2, DDR3 or LPDDR).

2. Define the DDR memory settling time. Consult your external DDR Memory Specifications to set
the correct memory setting time. The DDR memory may fail to initialize correctly if the memory
settling time is not correctly set.

3. Either import the DDR register configuration data or set your DDR Memory Parameters. For
details, refer to the Microsemi SmartFusion2 High Speed Serial and DDR Interfaces User's
Guide.

This data is used to generate the DDR register BFM and firmware configuration files as described in the
"Creating and Compiling the Firmware Application" on page 26 and "BFM Files Used for Simulating the
Design" on page 27. For details on DDR controller configuration registers, refer to the Microsemi
SmartFusion2 High Speed Serial and DDR Interfaces User's Guide.

Figure 2-2 • MSS External Memory
12

http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf

An example of the configuration file syntax is shown in Figure 2-3. The register names used in this file
are the same as those described in the Microsemi SmartFusion2 High Speed Serial and DDR Interfaces
User's Guide.

System Builder Peripherals Page
In the Peripherals page, for each DDR controller a separate subsystem is created (Fabric DDR
Subsystem for FDDR and MSS DDR FIC Subsystem for MDDR). You can add a Fabric AMBA Master
(configured as AXI/AHBLite) core to each of these subsystems to enable fabric master access to the
DDR controllers. Upon generation, System Builder automatically instantiates bus cores (depending on
the type of AMBA Master added) and exposes the master BIF of the bus core and the clock and reset
pins of the corresponding subsystems (FDDR/MDDR) under appropriate pin groups, to the top. All you
have to do is connect the BIFs to the appropriate Fabric Master cores that you would instantiate in the
design. In the case of MDDR, it is optional to add a Fabric AMBA Master core to the MSS DDR FIC
Subsystem; Cortex-M3 is a default master on this subsystem. Figure 2-4 shows the System Builder
Peripherals Page.

Figure 2-3 • Configuration File Syntax Example
13

http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf

System Builder Clock Settings Page

In the Clock Settings page, for each DDR controller, you must specify the clock frequencies related to
each DDR (MDDR and/or FDDR) sub-system.

For MDDR, you must specify:

• MDDR_CLK - This clock determines the operating frequency of the DDR Controller and should
match the clock frequency you wish your external DDR memory to run at. This clock is defined as
a multiple of the M3_CLK (Cortex-M3 and MSS Main Clock, Figure 2-5). The MDDR_CLK must
be less than 333 MHz.

• DDR_FIC_CLK - If you have chosen to also access the MDDR from the FPGA fabric, you need to
specify the DDR_FIC_CLK. This clock frequency is defined as ratio of the MDDR_CLK and
should match the frequency at which the FPGA fabric sub-system that accesses the MDDR is
running.

For FDDR, you must specify:

• FDDR_CLK - Determines the operating frequency of the DDR Controller and should match the
clock frequency at which you wish your external DDR memory to run. Note that this clock is
defined as a multiple of the M3_CLK (MSS and Cortex-M3 clock, Figure 2-5). The FDDR_CLK
must be within 20 MHz and 333 MHz.

Figure 2-4 • System Builder Peripherals Page

Figure 2-5 • Cortex-M3 and MSS Main Clock; MDDR Clocks
14

• FDDR_SUBSYSTEM_CLK - This clock frequency is defined as a ratio of the FDDR_CLK and
should match the frequency at which the FPGA fabric sub-system that accesses the FDDR is
running.

SERDESIF Configuration
The SERDESIF blocks are not instantiated in the System Builder generated design. However, for all the
SERDESIF blocks, initialization signals are available at the interface of the System Builder core and can
be connected to the SERDESIF cores at the next level of hierarchy, as shown in Figure 2-7.

Similar to the DDR configuration registers, each SERDES block also has configuration registers that
must be loaded at runtime. You can either import these register values or use the High Speed Serial
Interface Configurator (Figure 2-8) to enter your PCIe or EPCS parameters and the register values are
automatically computed for you. For details, refer to the SERDES Configurator User's Guide.

Figure 2-6 • Fabric DDR Clocks

Figure 2-7 • SERDESIF Peripheral Initialization Connectivity
15

http://www.microsemi.com/products/fpga-soc/soc-fpga/sf2docs#documents

Once you have integrated your user logic with the System Builder block and SERDES block, you can
generate your top level SmartDesign. This generates all HDL and BFM files that are necessary to
implement and simulate your design. You can then proceed with the rest of the Design Flow.

Figure 2-8 • High Speed Serial Interface Configurator
16

3 – Using SmartDesign to Create a Design Using
DDR and SERDESIF Blocks

This section describes how to put a complete 'initialization' solution together without using the
SmartFusion2 System Builder. The goal is to help you understand what you must do if you do not wish to
use the System Builder. This section also describes what the System Builder tool actually generates for
you. This section describes how to:

• Input the configuration data for DDR controller and SERDESIF configuration registers.

• Instantiate and connect the Fabric Cores required to transfer the configuration data to the DDR
controllers and SERDESIF configuration registers.

DDR Controller Configuration
The MSS DDR (MDDR) and Fabric DDR (FDDR) controllers must be configured dynamically (at runtime)
to match the external DDR memory configuration requirements (DDR mode, PHY width, burst mode,
ECC, etc.). Data entered in MDDR/FDDR configurator is written to the DDR controller configuration
registers by the CMSIS SystemInit() function. The Configurator has three different tabs for entering
different types of configuration data:

• General data (DDR mode, Data Width, Clock Frequency, ECC, Fabric Interface, Drive Strength)

• Memory Initialization data (Burst Length, Burst Order, Timing Mode, Latency, etc.)

• Memory Timing data

Refer to the specifications of your external DDR memory and configure the DDR Controller to match the
requirements of your external DDR memory.

For details on DDR configuration, refer to the SmartFusion2 MSS DDR Configuration User Guide.

SERDESIF Configuration
Double-click the SERDES block in the SmartDesign canvas to open the Configurator to configure the
SERDES (Figure 3-1). You can either import these register values or use the SERDES configurator to
enter your PCIe or EPCS parameters and the register values is automatically computed for you. For
details, refer to the SERDES Configurator User's Guide.
17

http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS_MDDR/sf2_mss_mddr_config_ug_1.pdf
http://www.microsemi.com/products/fpga-soc/soc-fpga/sf2docs#documents

.

Creating the FPGA Design Initialization Sub-System
To initialize the DDR and SERDESIF blocks, you must create the initialization subsystem in the FPGA
fabric. The FPGA fabric initialization subsystem moves data from the Cortex-M3 to the DDR and
SERDESIF configuration registers, manages the reset sequences required for these blocks to be
operational and signals when these blocks are ready to communicate with the rest of your design. To
create the initialization subsystem, you must:

• Configure FIC_2 inside the MSS

• Instantiate and configure the CoreConfigP and CoreResetP cores

• Instantiate the on-chip 25/50MHz RC oscillator

• Instantiate the System Reset (SYSRESET) macro

• Connect these components to each peripheral's configuration interfaces, clocks, resets and PLL
lock ports

MSS FIC_2 APB Configuration
To configure the MSS FIC_2:

1. Open the FIC_2 configurator dialog box from the MSS configurator (Figure 3-2).

2. Select Initialize peripherals using Cortex-M3.

Figure 3-1 • High Speed Serial Interface Configurator
18

3. Depending on your system, check one or both of the following checkboxes:

– MSS DDR

– Fabric DDR and/or SERDES Blocks

4. Click OK and proceed to generate the MSS (you may defer this action until you have fully
configured the MSS to your design requirements). The FIC_2 ports (FIC_2_APB_MASTER,
FIC_2_APB_M_PCLK and FIC_2_APB_M_RESET_N) are now exposed at the MSS interface
and can be connected to the CoreConfigP and CoreResetP cores.

CoreConfigP
To configure CoreConfigP:

1. Instantiate CoreConfigP into your SmartDesign (typically the one where the MSS is instantiated).
This core can be found in the Libero Catalog (under Peripherals).

2. Double-click the core to open the configurator.

Figure 3-2 • MSS FIC_2 Configurator
19

3. Configure the core to specify which peripherals need to be initialized (Figure 3-3)

CoreResetP
To configure CoreResetP:

1. Instantiate CoreResetP into your SmartDesign (typically the one where the MSS is instantiated).
This core can be found in the Libero Catalog, under Peripherals.

2. Double-click the core inside the SmartDesign Canvas to open the Configurator (Figure 3-4).

3. Configure the core to:

– Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four
options:
o EXT_RESET_OUT is never asserted
o EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) is asserted
o EXT_RESET_OUT is asserted if FAB_RESET_N is asserted
o EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) or

FAB_RESET_N is asserted

– Specify the Device Voltage. The selected value should match the voltage you selected in the
Libero Project Settings dialog box.

– Check the appropriate checkboxes to indicate which peripherals you are using in your design.

– Specify the external DDR memory setting time. This is the maximum value for all DDR
memories used in your application (MDDR and FDDR). Refer to the external DDR memory
vendor datasheet to configure this parameter. 200us is a good default value for DDR2 and
DDR3 memories running at 200MHz. This is a very important parameter to guarantee a
working simulation and a working system on silicon. An incorrect value for the settling time
may result in simulation errors. Refer to the DDR memory vendor datasheet to configure this
parameter.

– For each SERDES block in your design, check the appropriate boxes to indicate whether:
o PCIe is used
o Support for PCIe Hot Reset is required
o Support for PCIe L2/P2 is required

Figure 3-3 • CoreConfigP Dialog Box
20

Note: If you are using the 090 die(M2S090) and your design uses SERDESIF, you do not have to check
any of the following checkboxes: 'Used for PCIe', 'Include PCIe HotReset support' and 'Include
PCIe L2/P2 support'. If you are using any non-090 device and using one or more SERDESIF
blocks, you have to check all four checkboxes under the appropriate SERDESIF section.

Note: For details on the options available to you in this configurator, refer to the CoreResetP Handbook.

Figure 3-4 • CoreResetPConfigurator
21

http://www.actel.com/ipdocs/CoreResetP_HB.pdf

25/50MHz Oscillator Instantiation
CoreConfigP and CoreResetP are clocked by the on-chip 25/50MHz RC oscillator. You must instantiate
a 25/50MHz Oscillator and connect it to these cores.

1. Instantiate the Chip Oscillators core into your SmartDesign (typically the one where the MSS is
instantiated). This core can be found in the Libero Catalog under Clock & Management.

2. Configure this core such that the RC oscillator drives the FPGA fabric, as shown in Figure 3-5.

System Reset (SYSRESET) Instantiation
The SYSRESET macro provides device level reset functionality to your design. The
POWER_ON_RESET_N output signal is asserted/de-asserted whenever the chip is powered up or the
external pin DEVRST_N is asserted/de-asserted (Figure 3-6).

Instantiate the SYSRESET macro into your SmartDesign (typically the one where the MSS is
instantiated). This macro can be found in the Libero Catalog under Macro Library.No configuration of this
macro is necessary.

Overall Connectivity
After you have instantiated and configured the MSS, FDDR, SERDESIF, OSC, SYSRESET, CoreConfigP
and CoreResetP cores in your design, you need to connect them to form the Peripheral Initialization sub-
system. To simplify the connectivity description in this document, it is broken into the APB3 compliant

Figure 3-5 • Chip Oscillators Configurator

Figure 3-6 • SYSRESET Macro
22

configuration data path connectivity associated with the CoreConfigP and the CoreResetP related
connections.

Configuration Data Path Connectivity
Figure 3-7 shows how to connect the CoreConfigP to the MSS FIC_2 signals and the peripherals' APB3
compliant configuration interfaces.
23

Table 3-1 • Configuration Data Path Port/BIF Connections

FROM
Port/Bus Interface
(BIF)/ Component

TO
 Port/Bus Interface (BIF)/Component

APB_S_PRESET_N/

CoreConfigP

APB_S_PRESET_N/
SDIF<0/1/2/3>

APB_S_PRESET_N/
FDDR

MDDR_APB_S_PRESE
T_N/MSS

APB_S_PCLK/
CoreConfigP

APB_S_PCLK/SDIF<0/
1/2/3>

APB_S_PCLK/FDDR MDDR_APB_S_PCLK/
MSS

MDDR_APBmslave/
CoreConfig

MDDR_APB_SLAVE
(BIF)/MSS

SDIF<0/1/2/
3>_APBmslave/Config

APB_SLAVE (BIF)/
SDIF<0/1/2/3>

FDDR_APBmslave APB_SLAVE (BIF)/
FDDR

FIC_2_APBmmaster/
CoreConfigP

FIC_2_APB_MASTER/
MSS

Figure 3-7 • FIC_2 APB3 Sub-System Connectivity
24

Clocks and Resets Connectivity
Figure 3-8 shows how to connect the CoreResetP to the external reset sources and the peripherals' core
reset signals. It also shows how to connect the CoreResetP to the peripherals' clock synchronization
status signals (PLL lock signals). In addition, it shows how the CoreConfigP and CoreResetP are
connected.

Figure 3-8 • Core SF2Reset Sub-System Connectivity
25

26

4 – Creating and Compiling the Firmware
Application

When you export the firmware from LiberoSoC (Design Flow Window > Export Firmware > Export
Firmware), Libero generates the following files in the <project_folder>/firmware/drivers_config/
sys_config folder:

• sys_config.c - Contains the data structures that hold the values for the peripheral registers.

• sys_config.h - Contains the #define statements that specify which peripherals are used in the
design and need to be initialized.

• sys_config_mddr_define.h - Contains the MDDR controller configuration data entered in the
Registers Configuration dialog box.

• sys_config_fddr_define.h - Contains the FDDR controller configuration data entered in the
Registers Configuration dialog box.

• sys_config_mss_clocks.h - This file contains the MSS clock frequencies as defined in the MSS
CCC configurator. These frequencies are used by the CMSIS code to provide correct clock
information to many of the MSS drivers that must have access to their Peripheral Clock (PCLK)
frequency (e.g., MSS UART baud rate divisors are a function of the baud rate and the PCLK
frequency).

• sys_config_SERDESIF_<n>.c - Contains the SERDESIF_<n> register configuration data
provided during the SERDESIF_<n> block configuration in design creation.

• sys_config_SERDESIF_<n>.h - Contains the #define statements that specify the number of
register configuration pairs and the lane number that needs to be polled for PMA_READY(only in
PCIe mode).

These files are required for the CMSIS code to compile properly and contain information regarding your
current design, including peripheral configuration data and clock configuration information for the MSS.
Do not edit these files manually; they are created to the corresponding component/peripheral directories
every time the SmartDesign components containing the respective peripherals are generated. If any
changes are made to the configuration data of any of the peripherals, you need to re-export the firmware
projects so that the updated firmware files (see the list above) are exported to the <project_folder>/
firmware/drivers_config/sys_config folder.

When you export the firmware, Libero SoC creates the firmware projects: a library where your design
configuration files and drivers are compiled.

If you check the Create project <SoftConsole/IAR/Keil> checkbox when you export the firmware, a
software SoftConsole/IAR/Keil project is created to hold the application project where you can edit the
main.c and user C/H files. Open the SoftConSole/IAR/Keil project to compile the CMSIS code correctly
and have your firmware application properly configured to match your hardware design.

27

5 – BFM Files Used for Simulating the Design

When you generate the SmartDesign components containing the peripherals associated with your
design, the simulation files corresponding to the respective peripherals are generated in the <project
dir>/simulation directory:

• test.bfm - Top-level BFM file that is first executed during any simulation that exercises the
SmartFusion2 MSS Cortex-M3 processor. It executes peripheral_init.bfm and user.bfm, in that
order.

• MDDR_init.bfm - If your design uses the MDDR, Libero generates this file; it contains BFM write
commands that simulate writes of the MSS DDR configuration register data you entered (using
the Edit Registers dialogbox or in the MSS_MDDR GUI) into the MSS DDR Controller registers.

• FDDR_init.bfm - If your design uses the FDDR, Libero generates this file; it contains BFM write
commands that simulate writes of the Fabric DDR configuration register data you entered (using
the Edit Registers dialogbox or in the FDDR GUI) into the Fabric DDR Controller registers.

• SERDESIF_<n>_init.bfm - If your design uses one or more SERDESIF blocks, Libero generates
this file for each of the SERDESIF_<n> blocks used; it contains BFM write commands that
simulate writes of the SERDESIF configuration register data you entered (using the Edit
Registers dialog box or in the SERDESIF_<n> GUI) into the SERDESIF_<n> registers. If the
SERDESIF block is configured as PCIe, this file also has some #define statements that control
the execution of the 2 register configuration phases in perfect order.

• user.bfm - Contains the user commands. These commands are executed after
peripheral_init.bfm has completed. Edit this file to enter your BFM commands.

• SERDESIF_<n>_user.bfm - Contains the user commands. Edit this file to enter your BFM
commands. Use this if you have configured SERDESIF_<n> block in BFM PCIe simulation mode
and as an AXI/AHBLite master. If you have configured SERDESIF_<n> block in RTL simulation
mode, you will not need this file.

When you invoke simulation every time, the following two simulation files are re-created to the <project
dir>/simulation directory with updated contents:

• subsystem.bfm - Contains the #define statements for each peripheral used in your design, that
specify the particular section of the peripheral_init.bfm to be executed corresponding to each
peripheral.

• operipheral_init.bfm - Contains the BFM procedure that emulates the CMSIS::SystemInit()
function run on the Cortex-M3 before you enter the main() procedure. It copies the configuration
data for any peripheral used in the design to the correct peripheral configuration registers and
then waits for all the peripherals to be ready before asserting that you can use these peripherals.
It executes MDDR_init.bfm and FDDR_init.bfm.

Using these generated files, the DDR controllers in your design are configured automatically, simulating
what would happen on a SmartFusion2 device. You can edit the user.bfm file to add any commands
required to simulate your design (Cortex-M3 is the master). These commands are executed after the
peripherals have been initialized. Do not edit the test.bfm, subsystem.bfm, peripheral_init.bfm,
MDDR_init.bfm, FDDR_init.bfm files and the SERDESIF_<n>_init.bfm files.

A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the website.

Website
You can browse a variety of technical and non-technical information on the SoC home page, at
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.
28

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

M
O
W
Sa
Fa
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog
and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

icrosemi Corporate Headquarters

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.
5-02-00384-1/08.14

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

ne Enterprise, Aliso Viejo CA 92656 USA
ithin the USA: +1 (949) 380-6100
les: +1 (949) 380-6136
x: +1 (949) 215-4996

http://www.microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/

	Introduction
	1 – Theory of Operation
	2 – Using System Builder to Create a Design Using DDR and SERDESIF Blocks
	System Builder Device Features Page
	System Builder Memory Page
	System Builder Peripherals Page
	SERDESIF Configuration

	3 – Using SmartDesign to Create a Design Using DDR and SERDESIF Blocks
	DDR Controller Configuration
	SERDESIF Configuration
	Creating the FPGA Design Initialization Sub-System
	MSS FIC_2 APB Configuration
	CoreConfigP
	CoreResetP
	25/50MHz Oscillator Instantiation

	System Reset (SYSRESET) Instantiation
	Overall Connectivity
	Configuration Data Path Connectivity
	Clocks and Resets Connectivity

	4 – Creating and Compiling the Firmware Application
	5 – BFM Files Used for Simulating the Design
	A – Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

