SmartFusion2, IGLOO2, and RTG4

Hard Multiplier Accumulator Configuration

Table of Contents

	Introduction	3
	Key Features	3
1	SmartDesign	5
2	Core Parameters	7
3	Port Description	. 10
A	Product Support	. 14
	Customer Technical Support Center	. 14
	Technical Support	. 14
	Contacting the Customer Technical Support Center	. 14
		. 15

Introduction

The Hard Multiplier Accumulator for SmartFusion2, IGLOO2, and RTG4 supports normal (Figure 1) and dot product (Figure 2) multiplication. Blue registers indicate control signals; brown registers are for data.

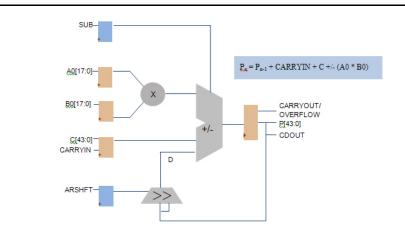


Figure 1 • Normal Multiplier Accumulator

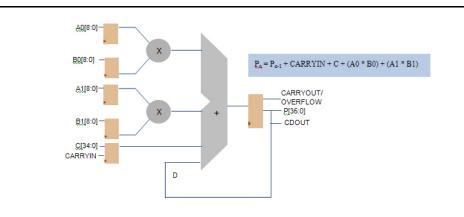


Figure 2 • Dot Product Multiplier Accumulator

Key Features

The Hard Multiplier Accumulator supports two operating modes: Normal and Dot Product.

- A structural netlist is generated in either Verilog or VHDL
- Individual inputs and outputs can be optionally registered with:
 - A common rising edge clock
 - Independent active-low asynchronous and synchronous clear controls
 - Independent active-high enable controls
- An additional cascade output CDOUT can be enabled. This is the sign-extended 44 bit copy of output P
- An additional Carry In input can be enabled

- An additional Carry Out or Overflow output can be enabled.
- Normal Mode Features:
 - Configurable operand widths for A0 and B0 between 2 and 18
 - Configurable operand width for C between 2 and 44
 - Optional assignment of operand A0 to an 18 bit two's complement constant
 - Optional assignment of operand C to a 44 bit two's complement constant
 - Option to select between Multiplier followed by Adder, Subtractor or dynamic AddSub
 - Optional Arithmetic Right Shift by 17 bits of the feedback input
- Dot Product Mode Features:
 - Configurable operand widths for A0, B0, A1, B1 between 2 and 9.
 - Configurable operand width for C between 2 and 35.
 - Optional assignment of operand A0 and A1 to a 9 bit two's complement constant
 - Optional assignment of Operand C to a 35 bit two's complement constant

1 – SmartDesign

The Hard Multiplier Accumulator for SmartFusion2, IGLOO2, and RTG4 is available for download from the Libero® SoC IP Catalog via the web repository. Once listed in the Catalog you can double-click the macro to configure it in SmartDesign. For information on using SmartDesign to configure, connect, and generate cores, see the Libero SoC online help.

uration			
Operation Mode			
•	Normal	O Dot Product	
Multiplier Functions			
	Function Multiplier	Accumulator (Adder/Subtractor)	•
A0 and A1 Inputs			
Use A0 Constant		Use A1 Constant	
A0 Constant value (H	ex) 0×1	A1 Constant value (Hex) 0x1
A0 Width	18	A1 Width	0
Register Port A0		Register Port A1	
B0 and B1 Inputs			
B0 Width	18	B1 Width 0	
Register Port B0 [V	Register Port B1	
Input Port C to Adder			
Use Constant	3	Constant value (Hex)	x0
Width	44	Carry In]
Register Port	7		
Input Port ARSHFT17			
Right s	hift of cascade I/P 👿	Register Port	
Input Port SUB			
	Regis	iter Port 🔽	
Output Port P			
Registe	r Port P 📝	Overflow/CarryOut	arryOut 👻

Figure 1-1 • Hard Multiplier Accumulator Configuration Options - Normal Mode

uration				
Operation Mode				
	Normal	Oot Product		
Multiplier Functions				
	Function	Multiplier Accumulator (Adder)	-	
A0 and A1 Inputs				
Use A0 Constant		Use A1 Consta	ant 📃	
A0 Constant valu	e (Hex) 0×1	A1 Constant v	alue (Hex)	
A0 Width	9	A1 Width	9	
Register Port A0		Register Port /	A1 🔽	
B0 and B1 Inputs				
B0 Width	9	B1 Width	9	
Register Port	B0 🔽	Register Port	t B1 🔽	
Input Port C to Adder				
Use Constant		Constant value	(Hex) 0x0	
Width	35	Carry In		
Register Port				
Input Port ARSHFT17				
Rij	ght shift of cascade I/	P 🗌 Reg	gister Port	
Input Port SUB				
		Register Port		
Output Port P				
Re	gister Port P 📝	Overflow/Carr	ryOut CarryOut 💌	

Figure 1-2 • Hard Multiplier Accumulator Configuration Options - Dot Product Mode

After configuring and generating the macro instance, you can simulate basic functionality. The macro can then be instantiated as a component of a larger design.

2 – Core Parameters

Table 2-1 lists the Normal mode Hard Multiplier Accumulator settings; Table 2-2 lists the Dot Product mode settings.

Name	Valid Range	Description
Multiplier Functions		
Function	Multiplier Accumulator (Adder) Multiplier Accumulator (Subtractor) Multiplier Accumulator (Adder/Subtractor)	The Multiplier Accumulator with Adder/Subtractor exposes the SUB control signal, which enables you to dynamically toggle between an add or subtract operation.
Input Port A0		
Use Constant		Sets input port A0 to constant
Constant Value (Hex)	-2 ¹⁷ to (2 ¹⁷ - 1)	Two's complement value of A0, if A0 is constant. Values shorter than 18 bits are padded with zeros. Negative values must be a full 18 bits wide. For example, 0x1FFFF means +131071 (2 ¹⁷ - 1), while 0x3FFFF means -1
Width	2 to 18	Width of input port A0; if shorter than 18 bits it is sign-extended. For example, if the width is 8, a value of 0x7F means +127 and a value of 0xFF means -1
Register Port		Registers input port A0 (if A0 is not set to constant)
Input Port B0		
Width	2 to 18	Width of input port B0; if shorter than 18 bits it is sign-extended. For example, if the width is 8, a value of 0x7F means +127 and a value of 0xFF means -1.
Register Port		Registers input port B0
Input Port C		
Use Constant		Sets input port C to constant
Constant Value (Hex)	-2 ⁴³ to (2 ⁴³ - 1)	Two's complement value of C, if C is constant. Values shorter than 44 bits are padded with zeros. Negative values must be a full 44 bits wide.
Width	2 to 44	Width of input port C; if shorter than 44 bits it is sign-extended. For example, If the width is 8, a value of 0x7F means +127 and a value of 0xFF means -1.
Carry In		Carry in for C (if C is not set to constant)

Name	Valid Range	Description	
Register Port		Registers input port C and Carry In (if C is not set to constant)	
Input Port ARSHFT17	7		
Right Shift of Feedback Input		Feedback input is arithmetic right-shifted by 17 if selected	
Register Port		Registers ARSHFT17 control signal	
Input Port SUB			
Register Port		Registers control input port SUB when Multiplier Accumulator with Adder/Subtractor option is selected	
Output Port P			
Register Port	Always Selected	Registers output port P, CDOUT and Overflow/CarryOut	
Overflow/CarryOut	None, Overflow, CarryOut	Select the output port function to include in the module interface	

Table 2-2 • Hard Multiplier Accumulator Dot Product Mode Configuration Description

Name	Valid Range	Description		
Input Port A0				
Use Constant		Sets input port A0 to constant		
Constant Value (Hex)	-2 ⁸ to (2 ⁸ - 1)	Two's complement value of A0, if A0 is constant. Values shorter than 9 bits are padded with zeros. Negative values must be a full 9 bits wide. For example, $0xFF$ means +255 (2^8 - 1), while $0x1FF$ means -1		
Width	2 to 9	Width of input port A0; if shorter than 9 bits it is sign-extended. For example, if the width is 8, a value of 0x7F means +127 and a value of 0xFF means -1.		
Register Port		Registers input port A0 (if A0 is not set to constant)		
Input Port A1		·		
Use Constant		Sets input port A1 to constant		
Constant Value (Hex)	-2 ⁸ to (2 ⁸ - 1)	Two's complement value of A1, if A1 is constant. Values shorter than 9 bits are padded with zeros. Negative values must be a full 9 bits wide. For example, $0xFF$ means +255 (2^8 - 1), while $0x1FF$ means -1		
Width	2 to 9	Width of input port A1; if shorter than 9 bits it is sign-extended. For example, if the width is 8, a value of 0x7F means +127 and a value of 0xFF means -1.		
Register Port		Registers input port A1 (if A1 is not set to constant)		
Input Port B0	1			

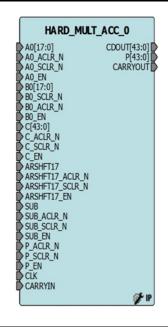

Name	Valid Range	Description		
Width	2 to 9	Width of input port B0; if shorter than 9 bits it is sign-extended. For example, if the width is 8, a value of 0x7F means +127 and a value of 0xFF means -1.		
Register Port		Registers input port B0		
Input Port B1				
Width	2 to 9	Width of input port B1; if shorter than 9 bits it is sign-extended. For example, if the width is 8, a value of 0x7F means +127 and a value of 0xFF means -1.		
Register Port		Registers input port B1		
Input Port C				
Use Constant		Sets input port C to constant		
Constant Value (Hex)	-2 ³⁵ to (2 ³⁵ - 1)	Two's complement value of C, if C is constant. Values shorter than 35 bits are padded with zeros. Negative values must be a full 35 bits wide.		
Width	2 to 35	Width of input port C; if shorter than 35 bits it is sign-extended. For example, if the width is 8, a value of 0x7F means +127 and a value of 0xFF means -1.		
Carry In		Carry in for C (if C is not set to constant)		
Register Port		Registers input port C and Carry In (if C is not set to constant)		
Output Port P				
Register Port	Always selected	Registers output port P, CDOUT, and Overflow/CarryOut		
Overflow/CarryOut	None, Overflow, CarryOut	Select the output port function to include in the module interface		

Table 2-2 • Hard Multiplier Accumulator Dot Product Mode Configuration Description

3 – Port Description

The figures below display the Hard Multiplier Accumulator input and output ports for Normal mode (Figure 3-1) and Dot Product mode (Figure 3-2). Only a subset of the ports is used in any given Hard Multiplier Accumulator configuration.

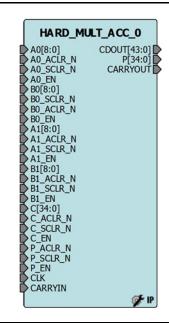


Figure 3-2 • Hard Multiplier Accumulator Ports, Dot Product Mode

Table 3-1 lists the Hard Multiplier Accumulator port signals for Normal mode.

Signal	Direction	Description
A0	Input	Input data A0, 2- 18 bits wide
B0	Input	Input data B0, 2- 18 bits wide
С	Input	Input data C, 2- 44 bits wide
CLK	Input	Input clock for all registers
A0_ACLR_N	Input	Asynchronous reset for data A0 registers
A0_SCLR_N	Input	Synchronous reset for data A0 registers
A0_EN	Input	Enable for data A0 registers
B0_ACLR_N	Input	Asynchronous reset for data B0 registers
B0_SCLR_N	Input	Synchronous reset for data B0 registers
B0_EN	Input	Enable for data B0 registers
C_ACLR_N	Input	Asynchronous reset for data C, Carry In registers
C_SCLR_N	Input	Synchronous reset for data C, Carry In registers
C_EN	Input	Enable for data C, Carry In registers
CARRYIN	Input	Carry In input for operand C
ARSHFT17_ACLR_N	Input	Asynchronous reset for ARSHF T17 register
ARSHFT17_SCLR_N	Input	Synchronous reset for ARSHF T17 register
ARSHFT17_EN	Input	Enable for ARSHFT17 register
SUB_ACLR_N	Input	Asynchronous reset for input control SUB registers
SUB_SCLR_N	Input	Synchronous reset for input control SUB registers
SUB_EN	Input	Enable for input control SUB registers
SUB	Input	Input control signal to select between add or subtract operation
P_ACLR_N	Input	Asynchronous reset for result P, CDOUT, Overflow/Carryout registers
P_SCLR_N	Input	Synchronous reset for result P, CDOUT, Overflow/Carryout registers
P_EN	Input	Enable for result P, CDOUT, Overflow/Carryout registers
Р	Output	Pn = Pn-1 + CARRYIN + C + (A0 * B0) when SUB = 0 Pn = Pn-1 + CARRYIN + C - (A0 * B0) when SUB = 1
OVERFLOW	Output	When high, indicates that the result exceeded the width of output P. OVERFLOW = (P[45] ^ P[44]) (P[44] ^ P[43])

Signal	Direction	Description
CARRYOUT	Output	This bit can be used to extend the adder in the fabric. CARRYOUT = C[43] ^ D[43] ^ P[44]
CDOUT	Output Cascade	Cascade output of result P. CDOUT is a copy of P, sign-extended to 44 bits. The entire bus must either be dangling or drive an entire CDIN of another MATH block in Normal mode.

Table 3-1 • Hard Multiplier Accumulator Ports - Normal Mode (continued)

Table 3-2 lists the Hard Multiplier Accumulator port signals for Dot Product mode.

Table 3-2 • Hard Multiplier Accumulator Ports - Dot Product Mode

Signal	Direction	Description	
A0	Input	Input data A0, 2- 9 bits wide	
B0	Input	Input data B0, 2- 9 bits wide	
A1	Input	Input data A1, 2- 9 bits wide	
B1	Input	Input data B1, 2- 9 bits wide	
С	Input	Input data C, 2- 35 bits wide	
CLK	Input	Input clock for all registers	
A0_ACLR_N	Input	Asynchronous reset for data A0 registers	
A0_SCLR_N	Input	Synchronous reset for data A0 registers	
A0_EN	Input	Enable for data A0 registers	
B0_ACLR_N	Input	Asynchronous reset for data B0 registers	
B0_SCLR_N	Input	Synchronous reset for data B0 registers	
B0_EN	Input	Enable for data B0 registers	
A1_ACLR_N	Input	Asynchronous reset for data A1 registers	
A1_SCLR_N	Input	Synchronous reset for data A1 registers	
A1_EN	Input	Enable for data A1 registers	
B1_ACLR_N	Input	Asynchronous reset for data B1 registers	
B1_SCLR_N	Input	Synchronous reset for data B1 registers	
B1_EN	Input	Enable for data B1 registers	
C_ACLR_N	Input	Asynchronous reset for data C, Carry In registers	
C_SCLR_N	Input	Synchronous reset for data C, Carry In registers	
C_EN	Input	Enable for data C, Carry In registers	
CARRYIN	Input	Carry In input for operand C	
P_ACLR_N	Input	Asynchronous reset for result P, CDOUT, Overflow/Carryout registers	

Signal	Direction	Description	
P_SCLR_N	Input	Synchronous reset for result P, CDOUT, Overflow/Carryout registers	
P_EN	Input	Enable for result P, CDOUT, Overflow/Carryout registers	
Р	Output	Pn = Pn-1 + CARRYIN + C + (A0 * B0) + (A1*B1)	
OVERFLOW	Output	When high, indicates that the result exceeded the width of output P. $OVERFLOW = (P[36] \land P[35]) (P[35] \land P[34])$	
CARRYOUT	Output	This bit can be used to extend the adder in the fabric. CARRYOUT = C[34] ^ D[34] ^ P[35]	
CDOUT	Output Cascade	Cascade output of result P. CDOUT is a sign-extended copy of P. The entire bus must either be dangling or drive an entire CDIN of another MATH block in Dot Product mode.	

Table 3-2 • Hard Multiplier	Accumulator Ports - Dot	Product Mode (continued)
-----------------------------	-------------------------	--------------------------

A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call 800.262.1060 From the rest of the world, call 650.318.4460 Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more information and support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on the website.

Website

You can browse a variety of technical and non-technical information on the SoC home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select **Yes** in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

©2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at **www.microsemi.com**.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information is estired by such information. Information provided in this document is provided by any other reserves the right to make any changes to the information in this document is provides.