
Application Note AC410

Using Advanced Encryption Standard System
Services in the SmartFusion2 and IGLOO2 Devices

Table of Contents

References
The following list of references is used in this document. The references complement and help in
understanding the relevant Microsemi® SmartFusion®2 system-on-chip (SoC) field programmable gate
array (FPGA) and IGLOO®2 FPGA device flows and features that are demonstrated in this document.

• SmartFusion2 Microcontroller Subsystem User Guide

• SmartFusion2 System Controller User Guide

• SmartFusion2 Development Kit User Guide

• IGLOO2 FPGA High Performance Memory Subsystem User Guide

• IGLOO2 FPGA System Controller User Guide

• IGLOO2 Evaluation Kit User Guide

Tools Required
The application design provided with this application note uses Libero® System-on-Chip (SoC) v11.3.

References . 1
Tools Required . 1

Introduction . 2

Requirements and Details . 2

AES Engine . 3

SmartFusion2/IGLOO2 Cryptographic Block . 4
Using AES Services in the SmartFusion2/IGLOO2 Device . 6
Design Description . 9
CBC-MAC Example . 16
Design Example: CBC-MAC . 17
Conclusion . 19

Appendix A - Design and Programming Files . 20

Sup
ers

ed
ed
April 2014 1

© 2014 Microsemi Corporation

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130927
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130919
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132583

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
Introduction
Advanced encryption standard (AES) is an encryption solution that is developed to achieve many
rapidly-evolving security concerns that have arisen within the computer and embedded semiconductor
industries. Selected devices of the SmartFusion2 SoC FPGA and IGLOO2 FPGA families allow you to
access the built-in AES engines and use AES encryption and decryption operation. These devices are
marked as S (Data and Design Security) in the device part number. The AES engine in the
SmartFusion2/IGLOO2 device is part of the Cryptographic Services block and resides in the system
controller. The AES engine in the SmartFusion2/IGLOO2 device can accept 128-bit plaintext input word
and generates the corresponding 128-bit ciphertext output word using a supplied 128-/256-bit AES key. It
also provides a reverse function by generating plaintext from the supplied ciphertext using the same AES
key as used for encryption. The AES engine is accessible through the system services. The system
services are system controller actions initiated by asynchronous events from the ARM® Cortex™-M3
processor in the SmartFusion2 device or a fabric master in the SmartFusion2/IGLOO2 devices. The AES
cryptographic services can be used for data security applications and can be disabled through factory or
user security settings.

This application note provides the design example for using the AES encryption and decryption in the
SmartFusion2/IGLOO2 device. It also shows a cryptography application example for using AES
encryption and generating CBC-MAC using the SmartFusion2/IGLOO2 device.

Requirements and Details
Table 1 • SmartFusion2 Reference Design Requirements and Details

Reference Design Requirements and Details Description

Hardware Requirements

SmartFusion2 Development Kit

• 12 V adapter (provided along with the kit)

• FlashPro4 programmer (provided along with the
kit)

• M2S050ST-1FGG896

Rev C or later

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero SoC 11.3

SoftConsole 3.4

Table 2 • IGLOO2 Reference Design Requirements and Details

Reference Design Requirements and Details Description

Hardware Requirements

IGLOO2 Evaluation Kit

• 12 V Wall-Mounted Power Supply (provided along
with the kit)

• FlashPro4 programmer (provided along with the
kit)

• M2GL010TS-1FGG484

Rev C or later

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero SoC 11.3

Sup
ers

ed
ed
2

AES Engine
AES Engine
The AES engine uses the Rijndael algorithm with National Institute of Standards and Technology (NIST)
approved parameters as described in Federal Information Processing Standards (FIPS) Publication
(PUB) 197. Figure 1 shows the AES encryption algorithm with 128-bit key. The AES encryption algorithm
receives 128-bit of plaintext data and 128-/192-/256-bit of a cipher key as input. After several rounds of
computation, it produces 128-bit enciphered version of the original plaintext data as output. The key size
used for an AES cipher determines the number of transformation rounds to convert the input into the final
output, ciphertext. During the rounds of the algorithm, the data bits are subjected to byte substitution,
data shift operations, data mixing operations, and additional (that is, XOR) operations with an expanded
version of the original 128-/192-/256-bit cipher key. The reverse happens during the decryption
operation. The SmartFusion2/IGLOO2 AES engine can be operated in 128-bit key mode or 256-bit key
mode and supports both encryption and decryption services.

The SmartFusion2/IGLOO2 AES engine assumes that the input data is in complete 128-bit blocks and
provides the complete 128-bit output blocks. You must add any padding bits to incomplete plaintext
blocks before calling the AES encryption service and remove any padding bits after receiving the results
of the AES decryption service. The input and output data format of the AES services is little-endian type.
The first byte of the first block is at the lowest address and there are no word alignment requirements. In
other words, consecutive bytes of the plaintext, ciphertext, and keys from the first to last are stored in
order in memory from the lowest to the highest bit address.

Figure 1 • AES Encryption Algorithm (128-bit Cipher Key)

Sup
ers

ed
ed
3

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
AES Mode of Operation
The mode of operation describes how to apply the ciphers single-block operation repeatedly to securely
transform the data that is larger than a block. The built-in system services are designed to support the
following cipher operating modes as recommended in NIST Special Publication 800-38A,
recommendation for Block Cipher Modes of Operation:

1. Electronic Codebook

2. Cipher-Block Chaining

3. Output Feedback

4. Counter

Electronic Codebook
The electronic codebook (ECB) mode is a confidentiality mode that features, for a given key, the
assignment of a fixed ciphertext block to each plaintext block, analogous to the assignment of code
words in a codebook. It is the simplest encryption mode. The message is divided into blocks and each
block is encrypted separately. Identical plaintext blocks are encrypted into identical ciphertext blocks;
thus, it does not hide data patterns well.

Cipher-Block Chaining
The cipher block chaining (CBC) mode features the combination (chaining) of the plaintext blocks with
the previous ciphertext blocks. To make each message unique, an initialization vector (IV) must be used
in the first block. The IV need not to be secret, but it must be unpredictable.

Output Feedback
The output feedback (OFB) features the iteration of the forward cipher on an IV to generate a sequence
of output blocks that are exclusive-ORed with the plaintext to produce the ciphertext and vice-versa. The
OFB mode requires a nonce IV, that is, the IV must be unique for each execution of the mode under the
given key.

Counter
The counter (CTR) mode features the application of the forward cipher to a set of input blocks, called
counters, to produce a sequence of output blocks that are exclusive-ORed with the plaintext to produce
the ciphertext and vice-versa. The sequence of counters must have the property that each block in the
sequence is different from every other block, thus the IV should be a nonce and must be unique for each
execution of the mode under the given key.

In the SmartFusion2/IGLOO2 device, the OPMODE parameter specifies the cipher operating mode, refer
to Table 3 on page 7. The IV parameter used during the AES system service specifies the IV. Refer to
"Using AES Services in the SmartFusion2/IGLOO2 Device" section on page 6 for more information.

SmartFusion2/IGLOO2 Cryptographic Block
In the SmartFusion2/IGLOO2 device, the AES engine is part of this Cryptographic Services block that
resides in System Controller.Sup

ers
ed

ed
4

SmartFusion2/IGLOO2 Cryptographic Block
System Controller Block in the SmartFusion2 Device
The Cryptographic Services block can be accessed through the communication block (COMM_BLK).
There are two communication block (COMM_BLK) instances: one in the microcontroller subsystem
(MSS) that the user interfaces with and the other that communicates with the first block that is located in
the system controller. The COMM_BLK consists of an APB interface, eight byte transmit FIFO, and eight
byte receive FIFO. The COMM_BLK provides a bi-directional message passing facility between the MSS
and the system controller. The AES system services are initiated using the COMM_BLK in the MSS,
which can be read or write by any master on the AMBA high performance bus (AHB) matrix; typically
either the Cortex-M3 processor or a design in the FPGA fabric (also known as a fabric master). The
system controller receives the command through the COMM_BLK in the system controller. The system
controller uses the SII master, an MSS bus master controlled by the system controller, to get the
additional details and options of the AES command at an address provided in the original COMM_BLK
command, pointing where this structured data has been stored in the memory before invoking the
command. The AES output bytes returned by the system controller are written to a memory address
specified in this data structure. On completion of the requested service, the system controller returns a
status message through the COMM_BLK.

Figure 2 shows the system controller block in the SmartFusion2 device, where the Cryptographic
Services block resides.

Figure 2 • System Controller Block in the SmartFusion2 DeviceSup
ers

ed
ed
5

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
System Controller Block in the IGLOO2 Device
The architecture and uses of the AES engine is similar in IGLOO2 device except the COMM_BLK in the
system controller communicated with COMM_BLK in high performance memory subsystem (HPMS). It is
required to use a fabric master to initiate the AES system services. Microsemi provides the
CoreSysService Directcore IP that acts as fabric master to use the AES system services. The
CoreSysServices soft IP communicates with the COMM_BLK through one of the fabric interface
controllers (FICs), sends the AES system service request, retrieves the cyphertext output, and sends to
use the interface. Figure 3 shows the system controller block in the IGLOO2 device.

Refer to SmartFusion2 System Controller User Guide and IGLOO2 FPGA System Controller User Guide
for more details on the system controller. Also, refer to the Communication Block chapter in the
SmartFusion2 Microcontroller Subsystem User Guide, IGLOO2 FPGA High Performance Memory
Subsystem User Guide for more details on the COMM_BLK.

Using AES Services in the SmartFusion2/IGLOO2 Device
In the SmartFusion2 device, the AES services can be accessed using the mss_sys_services driver in
the firmware core configurator. In the IGLOO2 device, you must use a master in fabric to initiate the AES
system services in the system controller through the COMM_BLK. You can create any fabric master
block following the steps explained below or use CoreSysServices soft IP for the AES services.
CoreSysServices provides a simple user interface in one side and an AHB-Lite master interface on the
FIC side to use the system services through the COMM_BLK. You can use the IGLOO2 approach in the
SmartFusion2 device too. Thus, you have two options to use the AES engine in the SmartFusion2
device:

1. Using firmware core through the MSS

2. Using CoreSysService or own state logic as fabric master

The following section describes the steps for using the 128-bit AES encryption system service in the
IGLOO2 device:

Figure 3 • System Controller Block in the IGLOO2 Device

Sup
ers

ed
ed
6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130927
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

Using AES Services in the SmartFusion2/IGLOO2 Device
1. Set up the AES128DATAPTR descriptor in the user memory space as shown in Table 3,
containing the following 44 bytes:

2. Enable the COMBLK_INTR interrupt from the COMM_BLK block to fabric by enabling
COMBLK_INTR_ENBL bit (29-bit) in INTERRUPT_ENABLE0 register at address 0x40006000.

3. Setup the registers in the COMM_BLK and send the command for 128-bit AES (0x03). Table 4
describes the AES command values.

The system controller receives the command through the COMM_BLK in the system controller.
The system controller reads the key and data from the address pointer and generates the AES
ciphertext test. On completion, the service system controller returns a status message through
the COMM_BLK.

Wait for RCVOKAY bit to be set in the COMM_BLK STATUS register.

4. Read the Word Data register in the COMM_BLK and check the command, status code, and
AES128DATAPTR descriptor pointer as shown in Table 5 on page 8.

Table 3 • AES128DATAPTR Structure

Offset
Length
(Bytes) Field Description

0 16 KEY Encryption key to be used

16 16 IV IV (Ignored for ECB mode)

32 2 NBLOCKS Number of 128-bit blocks to process (maximum 65535)

34 1 MODE Cipher operating mode.

• Bit 7: DECRYPT

• Bit 6: RESERVED

• Bit 1: OPMODE

• Bit 0: OPMODE

DECRYPT: If DECRYPT is 0 then the data at SRCADDRPTR field is
treated as plaintext for encryption. If DECRYPT is 1 then the data at
SRCADDRPTR field is treated as cipher text for decryption.

OPMODE: Defines operating mode.

• 00: ECB mode

• 01: CBC mode

• 10: OFB mode

• 11: CTR mode

35 1 RESERVED Reserved

36 4 DSTADDRPTR Pointer to return data buffer

40 4 SRCADDRPTR Pointer to data to encrypt/decrypt

Table 4 • AES Command Value

System Service Name Command Value

128-bit AES Cryptographic Service 3

256-bit AES Cryptographic Service 6

Sup
ers

ed
ed
7

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices

Table 6 shows the service response status codes:

5. Read the AES data from user memory space (at the return, data buffer address is specified in 1).

Figure 4 shows the AES system service data flow diagram in the IGLOO2 device.

Table 5 • 128-bit AES Service Response

Offset
Length
(Bytes) Field Description

0 1 CMD = 3 Command

1 1 STATUS Command status

1 4 AES128DATAPTR Pointer to AES128DATA descriptor

Table 6 • Service Response Status Codes

Status Description

0 Success

127 HRESP error occurred during the MSS transfer

253 Not licensed

254 Service disabled by factory security

255 Service disabled by user security

Figure 4 • AES Service Flow Diagram in the IGLOO2 Device

Sup
ers

ed
ed
8

Design Description
The steps for using the AES service in 256-bit key mode are similar to SmartFusion2. Figure 5 shows the
system service data flow diagram while initiating the AES service from the
Cortex-M3 processor.

Note: You can use CoreSysServices IP in the SmartFusion2 or IGLOO2 devices and initiate the AES
system service using its simple user interface. You just need to send the AES service request with
the required data/parameter to CoreSysServices IP. CoreSysServices IP performs the required
steps to setup the descriptor, sends the command through the COM_BLK to the AES service, and
reads the data back from the eSRAM. Refer to the CoreSysServices Handbook for more
information.

Design Description
This application note includes two design examples for using the AES system service:

• AES_Services_SF2 design example: Demonstrates 128-bit and 256-bit AES encryption and
decryption in the SmartFusion2 device using the system driver firmware code supplied by
Microsemi®.

• AES_Services_IGL2 design example: Demonstrates 128-bit AES encryption and decryption in
the IGLOO2 device using the CoreSysServices IP core supplied by Microsemi.

The SmartFusion2 device design is implemented on the SmartFusion2 Development Kit Board using an
M2S050TS-FG896 device and the IGLOO2 device design is implemented on the IGLOO2 Evaluation Kit
Board using an M2S010TS-FG484 device.

Design Example: Using AES Services in the SmartFusion2 Device
The design example consists of the RC oscillator, a fabric CCC, and the MSS. The fabric PLL is used to
provide the base clock for the MSS. The system services are run using various C routine in the MSS, as
shown below. In addition, a universal asynchronous receiver/transmitter (UART1) in the MSS is used to
display the operation of the AES system service.

Figure 5 • AES Service Flow Diagram in the SmartFusion2 Device

Sup
ers

ed
ed
9

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
Hardware Implementation
Figure 6 shows a block diagram of the design example. The RC oscillator is used to generate a 50 MHz
input clock and the fabric PLL is used to generate a 100 MHz clock from the RC oscillator. This 100 MHz
clock is used as the base clock for the MSS. The MMUART_1 signals are routed through the FPGA
fabric for communicating with the serial terminal program. The counter block is used to show that the
device is up and running.

Figure 6 • SmartFusion2 AES System Service Design Example

Sup
ers

ed
ed
10

Design Description
Software Implementation
The software design example performs the following operations:

1. Initialize the System Controller Enable

2. Initialize MMUART_1

3. Perform various cryptography services:

– Encrypt with 128-bit AES cryptography service

– Decrypt with 128-bit AES cryptography service

– Encrypt with 256-bit AES cryptography service

– Decrypt with 256-bit AES cryptography service

aes128_encryption ();
The aes128_encryption() function provides access to the SmartFusion2 AES-128 encryption
cryptography service. It allows you to perform AES encryption and choose the mode of operation: ECB,
CBC, OFB, or CTR mode. It allows you to specify the number of 128-bit blocks of plaintext to be
processed by the AES-128 system service.

aes128_decryption ();
The aes128_decryption() function provides access to the SmartFusion2 AES-128 decryption
cryptography service. It allows you to perform AES decryption and choose the mode of operation: ECB,
CBC, OFB, or CTR mode. It allows you to specify the number of 128-bit blocks of ciphertext to be
processed by the AES-128 system service.

aes256_encryption ();
This function is similar to aes128_encryption() and provides access to the SmartFusion2 AES-256
encryption cryptography service function using the 256-bit key.

aes256_decryption ();
This function is similar to aes128_decryption() and provides access to the SmartFusion2 AES-256
decryption cryptography service function using the 256-bit key.

Running the Design
This section describes running the design example on the SmartFusion2 Development Kit board using
the M2S050TS-FG896 device:

1. Connect the power supply to the SmartFusion2 Development Kit board.

2. Plug the FlashPro4 ribbon cable into JTAG Programming Header on the SmartFusion2
Development Kit board.

3. Program the SmartFusion2 Development Kit board with the provided STAPL file (refer to
"Appendix A - Design and Programming Files" on page 20) using FlashPro4.

Sup
ers

ed
ed
11

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
4. Connect one end of the USB Mini-B cable to the J24 connector provided in the SmartFusion2
Development Kit board. Connect the other end of the USB cable to the host PC.

5. Invoke the SoftConsole Integrated Design Environment (IDE) from the Libero SoC software
project and launch the debugger.

6. Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. If the computer does not have the HyperTerminal program, any free serial terminal
emulation program such as PuTTY or Tera Term can be used. Refer to Configuring Serial
Terminal Emulation Programs Tutorial for configuring HyperTerminal, TeraTerm, or PuTTY.

Figure 7 • SmartFusion2 Development Kit Board

Sup
ers

ed
ed
12

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

Design Description
7. Run the debugger in the SoftConsole tool. The HyperTerminal window shows various options to
run the AES encryption and decryption. Follow the instruction on the screen to run the example.
Figure 8 shows the HyperTerminal.

Note: The ASCII-Hex notation is used for input by the program so the data is more easily readable.

The data goes from the first byte to the last byte of the multi-byte message, IV, or key, etc. entered or
displayed from left to right (and then top to bottom, if multi-line) as shown by the terminal emulator. Each
byte is represented by two ASCII characters selected by value from the ordered sixteen character set 0-
9 and a-f with the leftmost ASCII character representing the first four bits of the byte (that is, bits 7:4)
encoded into a hexadecimal digit having its first binary bit (bit 7) interpreted as the most significant bit,
and then the resulting hexadecimal digit encoded into an 8-bit ASCII character; the rightmost ASCII
character representing the following four bits (bits 3:0) are encoded with the last binary bit of the byte (bit
0) being interpreted as the least significant of the second hexadecimal digit. The AES output is the Hex
data displayed in endian order.

Figure 8 • AES System Service Design Example using HyperTerminal

Sup
ers

ed
ed
13

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
Design Example: Using AES Services in the IGLOO2 Device
The design consists of the IGLOO2 HPMS, the on-chip 50 MHz RC oscillator, a Fabric CCC, the
CoreSysServices IP block, the CoreRESET IP block, a CoreABC IP block, a CoreUART_apb IP block, a
fabric state machine to control the CoreSysServices bock, and an APB data block to reformat the AES
output so it can be displayed by a terminal emulator.

Hardware Implementation
Figure 9 shows the block diagram of the design example. The 50 MHz RC oscillator is used as the main
clock. It is used with a CCC to provide the 100 MHz reference clock to the HPMS. This 100 MHz clock is
also used as main clock for the fabric blocks. The HPMS is configured to use the CoreResetP block to
generate reset signals for all the blocks. The CoreSysServices IP is configured to use the AES system
services. It sends a command to the system controller through COMM block in the HPMS. The fabric
Sysservice state control logic initiates the AES system service and captures the AES data from
CoreSysService. The fabric Sysservice state block sends the plaintext AES data that (in the example
design) is basically a big-endian binary counter that keep increments the AES plaintext after every AES
encryption operation. The incremented value is used as the input for the next encryption operation. The
fabric Sysservice state block uses the most recent ciphertext AES data that was calculated as input for
the decryption operation. The UART controller block is mainly used to display the AES output to
HyperTerminal; it is not required for the AES operation. The APB data block captures the AES data
values and converts the binary data to ASCII Hexadata to display in human readable format on the
HyperTerminal. The CoreABC program controls initiating fabric state machine and displaying the data
through the CoreUARTapb interface.

Figure 9 • IGLOO2 AES System Service Design Example
Sup

ers
ed

ed
14

Design Description
Running the Design
This section describes running the design example in the IGLOO2 Evaluation Kit board using the
M2GL010TS-FG484 device:

1. Connect the power supply to the SmartFusion2 Development Kit board.

2. Plug the FlashPro4 ribbon cable into connector J5 (JTAG Programming Header) on the IGLOO2
Evaluation Kit board.

3. Connect the mini USB cable between the FlashPro4 and the USB port of the PC.

4. Connect one end of the USB mini-B cable to the J18 connector provided on the IGLOO2
Evaluation Kit board. Connect the other end of the USB cable to the host PC. Make sure that the
USB to UART bridge drivers are automatically detected (can be verified in the Device Manager).

5. If USB to UART bridge drivers are not installed, download and install the drivers from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

6. Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. If the computer does not have the HyperTerminal program, any free serial terminal
emulation program such as PuTTY or Tera Term can be used. Refer to Configuring Serial
Terminal Emulation Programs Tutorial for configuring HyperTerminal, Tera Term, or PuTTY.

7. Program the IGLOO2 Evaluation Kit board with the provided STAPL file (refer to "Appendix A -
Design and Programming Files" on page 20) using FlashPro4.

Figure 10 • IGLOO2 Evaluation Kit BoardSup
ers

ed
ed
15

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
After programming, HyperTerminal displays a message to run the AES system services as shown in
Figure 11.

CBC-MAC Example
In cryptography, a cipher block chaining message authentication code (CBC-MAC) is a technique for
constructing a message authentication code from a block cipher. It uses AES encryption in CBC mode.

Figure 11 • HyperTerminal Showing CoreSysService Design OutputSup
ers

ed
ed
16

Design Example: CBC-MAC
Figure 12 shows the technique for CBC-MAC. The IV used in first block is zero. Then a chain of blocks is
created as each block depends on the proper encryption of the previous block.

This application note shows the design example of generating CBC-MAC in the SmartFusion2 and
IGLOO2 device.

Note: The CBC-MAC design example uses message size that is exact multiple of 128 bits, and that it
must not be used in a production environment without careful review by a qualified cryptographer.

Design Example: CBC-MAC
This section describes the CBC-MAC application design example. The CBC-MAC design is implemented
in both the SmartFusion2 and IGLOO2 devices.

• CBC_MAC_SF2 design example: Demonstrates using CBC-MAC in the SmartFusion2 device. It
uses firmware code to generate CBC-MAC.

• CBC_MAC_IGL2 design example: Demonstrates using CBC-MAC in the IGLOO2 device. It uses
CoreSysServices IP to generate CBC-MAC.

Design Example: Using CBC_MAC in SmartFusion2
This design example is similar to AES_Services_SF2 design example. It uses same hardware
implementation and uses UART1 in the MSS to display the CBC-MAC operation.

Software Implementation
The software design example performs the following operations:

1. Initializes the System Controller Enable

2. Initializes MMUART_1

3. Performs CBC-MAC

cbc_mac ();
The cbc_mac() function allows to run CBC-MAC in the SmartFusion2 AES-128 device. It allows you to
enter messages with variable length, perform CBC-MAC operation, and display the result.

Figure 12 • CBC-MAC of a Message

Sup
ers

ed
ed
17

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
Running the Design
This section describes running the CBC-MAC design example in the SmartFusion2 Development Kit
using the M2S050TS-FG896 device. Use AES_Services_SF2 design example steps to program the
device and open HyperTerminal. Then, invoke the SoftConsole IDE from the Libero SoC software project
and launch the debugger. Run the demo design as shown in Figure 13.

Design Example: Using CBC_MAC in the IGLOO2 Device
This design example is similar to the AES_Services_IGL2 design example. Figure 14 on page 19 shows
the block diagram of CBC-MAC design. The fabric system service state control logic configures
CoreSysService to generate AES CBC mode. It also sends the appropriate IV during each AES services.
The design example uses a message block that sends the messages for AES operation. The message
block uses four messages in the current implementation. One of the messages is tied to DIP switch in the
IGLOO2 Evaluation Kit. You can change the DIP switch and change the message.

Figure 13 • HyperTerminal showing CBC-MAC Design in the SmartFusion2 DeviceSup
ers

ed
ed
18

Conclusion
Note: You can modify the message block, content, and size. However, you need to change the counter in
Sysservice state control logic to match the message length. The other blocks are similar to the
AES_Services_IGL2 design example.

Running the Design
This section describes running the CBC-MAC design example in the IGLOO2 Evaluation Kit using the
M2GL010TS-FG484 device. Use AES_Services_IGL2 design example steps to program the device and
open HyperTerminal. Run the demo design as shown in Figure 15.

Conclusion
The SmartFusion2 and IGLOO2 family of FPGAs are the most secure programmable logic devices ever
made. In selected SmartFusion2 and IGLOO2 devices, the AES engine can perform encryption or
decryption on 128-bit blocks of user data using either 128-bit or 256-bit keys as defined in NIST FIPS
197. Several common modes are provided to encrypt or decrypt arbitrarily sized blocks of data, including
ECB, CBC, OFB, and CTR modes as defined in NIST SP800-38a. The AES system services, along with
the other cryptographic services offered, allow you to use the SmartFusion2 and IGLOO2 devices in
various secure applications.

Figure 14 • IGLOO2 CBC-MAC Design Example

FAB_OSC FAB_CCC

CORERESETP

HPMS

CoreSysServices
Sysservice

State control
logic

CoreABC

APB data
block

CoreUARTapb

System Builder Block

SysService Controller Block UART Controller Blockmessage_block

Figure 15 • CBC-MAC of a Message

Sup
ers

ed
ed
19

Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
Appendix A - Design and Programming Files
You can download the SmartFusion2 and IGLOO2 AES design files from the Microsemi Corporation
website: http://soc.microsemi.com/download/rsc/?f=SF2_IGL2_AES_DF

The SmartFusion2 design file consists of a Libero Verilog project, SoftConsole software project, and
programming files (*.stp) for the SmartFusion2 Development Kit. The IGLOO2 design file consists of a
Libero Verilog project and programming files (*.stp) for the IGLOO2 Evaluation Kit. Refer to the
Readme.txt file included in the design file folder for the directory structure and description.

You can download the SmartFusion2 and IGLOO2 CBC-MAC design files from the Microsemi
Corporation website: http://soc.microsemi.com/download/rsc/?f=SF2_IGL2_CBC_MAC_DF

The SmartFusion2 design file consists of a Libero Verilog project, SoftConsole software project, and
programming files (*.stp) for the SmartFusion2 Development Kit. The IGLOO2 design file consists of a
Libero Verilog project and programming files (*.stp) for the IGLOO2 Evaluation Kit. Refer to the
Readme.txt file included in the design file folder for the directory structure and description.

Sup
ers

ed
ed
20

http://soc.microsemi.com/download/rsc/?f=SF2_IGL2_AES_DF
http://soc.microsemi.com/download/rsc/?f=SF2_IGL2_CBC_MAC_DF

51900278-1/04.14

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

Sup
ers

ed
ed

mailto:sales.support@microsemi.com
www.microsemi.com

	Using Advanced Encryption Standard System Services in the SmartFusion2 and IGLOO2 Devices
	References
	Tools Required
	Introduction
	Requirements and Details
	AES Engine
	AES Mode of Operation

	SmartFusion2/IGLOO2 Cryptographic Block
	System Controller Block in the SmartFusion2 Device
	System Controller Block in the IGLOO2 Device

	Using AES Services in the SmartFusion2/IGLOO2 Device
	Design Description
	Design Example: Using AES Services in the SmartFusion2 Device
	Design Example: Using AES Services in the IGLOO2 Device

	CBC-MAC Example
	Design Example: CBC-MAC
	Design Example: Using CBC_MAC in SmartFusion2
	Design Example: Using CBC_MAC in the IGLOO2 Device

	Conclusion
	Appendix A - Design and Programming Files

