@ Microsemi Application Note AC398

Implementation of 9x9 Multiplications, Wide-
Multiplier, and Extended Addition Using
IGLOO2/SmartFusion2 Mathblock

Table of Contents

PUurpose e e e el 1
Introduction e e e e e e e e o 1
Using 9x9 MultiplierMode e e e AT e 2
Wide-Multiplier. e e e A 12
Extended Addition L e L 18
Conclusion e e e e e e e e 24
Appendix A-DesignFiles. o i 24
Purpose

This application note highlights the design guidélines anchdiffefent implementation methods to achieve
better performance results while implementing wide-multipliers, 9-bitx9-bit multiplications, and extended
addition with the IGLOO2/SmartFusion2 mathble€k (MACC). The 9-bitx9-bit multiplications,
wide-multiplier, and extended addition are ideal/jor applications with high-performance and
computationally intensive signal processing operations. Some of them are finite impulse response (FIR)
filtering, fast fourier transforms (EETs), andhdigital up/down conversion. These functions are widely used
in video processing, 2D/3D inlage prosessing, wireless, industrial applications, and other digital signal
processing (DSP) applications.

Introduction

The IGLOO2/Smartfusion2 mathblock architecture has been optimized to implement various common
DSP functions with maximum performance and minimum logic resource utilization. The dedicated routing
region around the mathblock and the feedback paths provided in each mathblock result in routing
improvements. The IGLOOCZ/SmartFusion2 mathblock has a variety of features for fast and easy
implementation of many basic math functions. The high speed multiplier (9x9, 18x18), adder/subtractor,
and __aeeumulator in mathblock delivers high speed math functions. For more information on
1G1L.O02/SmartFusion2 mathblock, refer to IGLOO2 FPGA Fabric User's Guide/SmartFusion2 FPGA
Fabric User's Guide and for usage refer to the Inferring Microsemi SmartFusion2 MACC Blocks
documeiit.

This“application note explains the design considerations and different methods for implementing the
following:

« Using 9x9 Multiplier Mode
e Wide-Multiplier
« Extended Addition

June 2013

© 2013 Microsemi Corporation

http://www.microsemi.com/soc/documents/SmartFusion2_Fabric_UG.PDF
http://www.microsemi.com/soc/documents/SmartFusion2_Fabric_UG.PDF
www.microsemi.com/soc/documents/Inferring_Microsemi_SmartFusion2_MACC_Blocks.pdf
http://www.microsemi.com/soc/documents/IGLOO2_Fabric_UG.pdf

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Using 9x9 Multiplier Mode

Overview

The 9-bitx9-bit multipliers are extensively used in low precision video processing applications. In video
applications, the color conversion formats such as YUV to RGB, RGB to YUV, and RGB to YCbCr,
NTSC, PAL etc., 9-bitx9-bit multipliers are used. In image processing, the operations involving 8-bit RGB
such as 3x3, 5x5, 7x7 matrix multiplications, image enhancement techniques, scaling, resizing etc.,
9-bitx9-bit multipliers are used. The IGLOO2/SmartFusion2 device addresses these applications by
using mathblock in DOTP mode.

The following sections explain the DOTP configurations and capabilities, guidelines, different
implementation methods with design examples, and their performance and simulationresults.

The mathblock when configured in DOTP mode has two independent 9-bit x 9-bit multipliers{ollowed by
adder. The sum of the dual independent 9x9 multiplier (DOTP) result is stored in upper 35 bits of 44-bit
register. In DOTP mode, mathblock implements the following equation:

Multiplier result = (A[8:0] x B[17:9] + A 17:9] x B[8:0]) x 2°

EQ1

Configuration

The IGLOO2/SmartFusion2 mathblock in DOTP mode can be used in three different configurations.
These configurations are available in Libero® Systeni-on-Chip (SoC) tool, Catalog > Arithmetic as
given below:

« Multiplier

e Multiplier accumulator

e Multiplier addsub
The DOTP multiplier is implemented as shown in_Figdre 3 on page 3. The dot product multiplier adder
with the IGLOO2/SmartFusion2 mathbloek is shéwn'in Figure 1. The dot product multiplier accumulator
with mathblock is shown in Figures2.0n page. 3. For more information on the arithmetic cores, refer to the
IGLOO2/SmartFusion2 Hard Multiplier AddSub,Configuration User's Guide, IGLOO2/SmartFusion2 Hard

Multiplier Accumulator Configuration ¢User's Guide, and IGLOO2/SmartFusion2 Hard Multiplier
Configuration User's Guide.

Aol | SF2/GL2 MACC
Bog0l— |

— b CARRYOUT/OVERFLOW
A[B:0—]] n ﬂ s

T - CDOUT[43:0]
BA[8:0]—
Cl43:0/— 7
Carryin— I_—

Pn=Pn-1 + (A0*BO + A1*B1) + Carryin + C[43:0]

Figure 1 « Dot Product Multiplier Adder

http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT/sf2_hard_mult_config_ug_1.pdf
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ADDSUB/sf2_hard_mult_addsub_config_ug_1.pdf
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT/sf2_hard_mult_config_ug_1.pdf
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT/sf2_hard_mult_config_ug_1.pdf

& Microsemi

Using 9x9 Multiplier Mode

ABO— | SF2/GL2 MACC

B0[8:0]—
P —CARRYOUT/OVERFLOW
A1[8:0]— L~ P[43:0]

—CDOUT[43:0]

B1[8:0]—

Cl43:0—]
Carryin|—

0or1—

0's

CDIN
Px = (A0*BO + A1*B1) + Carryin + C[43:0] + CDIN

Figure 2 « Dot Product Multiplier Accumulator

P =A0*B0 + A1*B1

Figure roduct Multiplier

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Math Functions with DOTP

When DOTP is enabled, several mathematical functions can be implemented. Some of them are listed in

Table 1.
Single Mathblock (DOTP Enabled)

Table 1+ Math Functions with DOTP

S.No Conditions Implemented Equations
1 P = A[8:0] = B[17:9]; M = A[17:9]; N = B[8:0] Y = P2+ MxN

2 P = A[8:0] = B[17:9]; Q = A[17:9] = B[8:0] Y =P2+ Q2

3 A[8:0] = B[17:9] = 1; B = A[17:9]; Q = B[8:0] Y=1+Q2

4 A[8:0] = B[17:9] = 1; P = A[17:9]; Q = B[8:0] Y =1+PxQ

5

P = A[8:0] = A[17:9]; Q = B[17:9] = B[8:0]

Y = PxQ + PxQ = 2xPxQ

In this way several 9-bit mathematical functions can be implemented using Dét praduct mode with a
single mathblock.

Guidelines
When designing with DOTP multiplier, the following recommendations should be used to achieve better
performance:
* To perform Y = AXB + CxD equation, instantiate Arithmeti€ IP cores with DOTP enabled for 9x9
multiplications. This avoids inferring two 18x18 multipliers.
* Register the inputs and outputs, whendising Arithmetie’lP cores (Mathblock).
« The registered inputs and outputs should use the same clock.
¢ Use the cascaded feature to cannect the multipleé mathblocks. This is achieved by connecting the
cascade output (CDOUT) of one MACC blogk to the cascade input (CDIN) of another mathblock.

For more information on VHDL{\Verilog ‘¢oding styles for inferring mathblocks, refer to the Inferring
Microsemi SmartFusion2 MACC Blocks.

Design Exampies

This section illustrates the 9x9 Multiplier mode usage with the following design examples:
¢« Example 1: 6:tap FIR Filter Using Multiple Mathblocks
« Example 2: 6-tap FIRFilter Using Single Mathblock
¢ Example 3:Alpha Blénding

Example 1: 64ap FIR Filter Using Multiple Mathblocks

Thist@esign exariple (Figure 4 on page 5) shows the 6-tap FIR filter (systolic FIR filter) implementation
With multiple mathblocks and also shows the performance results of the implementation.

Designddescription

The B-tap FIR filter design with multiple mathblocks as shown in Figure 4 on page 5 is a systolic
architecture implementation. This architecture utilizes a single IGLOO2/SmartFusion2 mathblock to
perform two independent 9x9 multiplications followed by an addition, instead of using two mathblocks
that have a single multiplication unit. With this architecture implementation, only three mathblocks are
required to design a 6-tap FIR filter. The 6-tap FIR design uses cascaded chains (CDOUT to CDIN) for
propagating the sum to achieve best performance and thus reducing fabric resources. In this
implementation technique, the mathblock is configured as Dot product multiplier Adder. Eight Pipeline
registers are added in fabric only at the input.

When designing n-tap systolic FIR filters with IGLOO2/SmartFusion2 mathblock for 9-bit input data and
9-bit coefficient, only n/2 mathblocks are utilized, saving n/2 mathblock resources.

http://www.microsemi.com/soc/documents/Inferring_Microsemi_SmartFusion2_MACC_Blocks.pdf
http://www.microsemi.com/soc/documents/Inferring_Microsemi_SmartFusion2_MACC_Blocks.pdf

& Microsemi

Using 9x9 Multiplier Mode

6-tap FIR (9-bit x 9-bit)

T OO OO

CO[8:0] C1[8:0] C2[8:0] C3[8:0] C4[8:.0] C5[8:0]
reset n— | | | | | |
clk—»
CDIN CDIN CDIN
Zeros
_l Y \
+ \ + / +
SF2/GL2MACC SF2/GL2 MACC SF2/GL2 MACC

»Yn_out

Figure 4 « 6-tap Systolic FIR Filter
In this design, the FIR filter generates outputs for every elockicycle after an initial latency of 10 clock
cycles.

Total initial latency = 8 clock cycles for 8 input samples + 2 clock cycles (MACC block input and output
are registered).

=10 clock cycles

Design Files

For information on the implemeéntdtion of the 6-tap FIR filter design, refer to the FIR_6_tap.vhd design file
provided in <Design files'FIR 6 TAP>,

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Hardware Configuration
For 6-tap systolic FIR filter, mathblock is configured as Dot product multiplier adder with inputs and
outputs registered as shown in Figure 5.

Configuring Dotmul_add_0 (HARD_MULT_ADDSUE - 1.0.100)‘ ‘ ||]

() Normal @) Dot Product -

Multiplier Functions

l Function |Mu|tipier with Adder v |

Al and Al Inputs

Use Al Constant Use Al Constant

AO0 Constant value (Hex) Al Constant value (Hex) m — T
- Ay

A0 Width 9 Al Width

Register Ports AD Register Ports Al

BO and B1 Inputs

111

BO Width 9

Register Ports B0

Input Port C to Adder

Use Constant
Width 3s Carry In O

Register Port |:|

Input Port D to Adder

Fi n | CD: m previous math block Y]

i & de input |:| Register Port |:|
R

Figure & t Multiplier Adder for 6-tap Systolic FIR

6 on page 7 shows the 6-tap systolic FIR filter resource utilization that uses multiple mathblocks.

Note: The results shown are specific for IGLOO2 device. Similar results can be achieved using
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

& Microsemi

Using 9x9 Multiplier Mode

Resource Utilization

Resource Usage Report for FIR_étap
Mapping to part: m2gl050tfbgaf96stcd

Cell usage:
CLEINT 2 uses

Sequential Cells:

5LE 72 uses

Registers not packed on I/0 Pads: T2
DSP Blocks: 3

MACC: 3 Mulcs

I/0 ports: 46

I/0 primitives: 46
INEUF 11 uses
CUTBUF 35 uses

Global Clock Buffers: 2

Total LUTs: 1]

Figure 6 « Resource Utilization for a 6-tap Systolic FIR Filter

Place-and-Route Results
The frequency of operation achieved with this implementation after plaéé-and-route is shown in Figure 7.

Summary

Clock Period | Frequency Required Period | Required Freguency External Setup | External Hold | Min Clock-To-Out | Max Clock-To-Out
Domain (ns) (MHz) (ns) (MHz) {ns) (ns) (ns) (ns)

clk 2.780 359.712 2.857 350.018 0.070 1.279 5.594 12.379

Figure 7 « Place-and-Route Results for 6:4ap Systolic IR Filter

Simulation Results

Figure 8 shows the pastssynthesis simulation results. The coefficient values (cO-c5) are configured in
designas CO0=5,C1 =3,C257,C38=-4,C4 =1, C5=-2. The simulation results show that the 6-tap FIR
filter outputs on ewery clock cyecle. It has an initial latency of 10 clock cycles.

v = | . - - St o N (o
File Eagit View Adgd Format Tood Bookmarks Window Meip
5 - & B . . YRESE). 43K E-T s || % w3 i

dEEAY - LS [C LR WY “ “

10 elock eyclas

Figure 8 « 6-tap FIR Filter Post Synthesis Simulation

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Example 2: 6-tap FIR Filter Using Single Mathblock

This design example (Figure 9) shows the 6-tap FIR filter implementation with single-mathblock
(MAC FIR filter) and also shows the performance result of the implementations.

Design Description

The 6-tap FIR filter can also be implemented with a single mathblock as shown in Figure 9. This design
uses coefficient memory where coefficients are stored and input memory that stores input samples. The
control logic reads two consecutive coefficients from the coefficient memory and two consecutive input
samples from the input memory and provides it to mathblock. Due to dual independent 9-bitx9-bit
multipliers, the filter result is calculated in four clock cycles instead of six clock cycles that has a single
multiplier and accumulator.

If a single multiplier and accumulator is used for sum of the products, the number oficycles taken for
result is same as the number of coefficients or number of taps used in filter design. With.this relationship,
the performance of a single multiplier and accumulator is given as follows:

Maximum input sample rate = System Clock / (Number of taps + 1)

With IGLOO2/SmartFusion2 mathblock i.e., for two products followed accumulatar, the samplée rate
= Clock /((1/2 x number of taps)+1)

For 6-tap FIR filter, sample rate = Clock/(6/2 + 1) = Clock/4

Single MAC 6-tap FIR (9-bitx9-bif)
Coefficient Coef2[8:0]
memory Coef\[80
Coef_addg, 8x9 B | I]nput 2[80])
. " | (depthxwidth) -)
FiltOp_en Input 1 [8:0]
Control
logic v 3R] 1
clk — >
reset n—» Data_addr | Inpuf'saimples
g 8x9
depthxwidth
Xin[8:0] =)
Xin_valid —
Coef _in[8:0]— Y
Coef_valid —
Filter_en —
ready <——
SF2/GL2 MACC
Y
Yn out

Figure 9 s 6-tap FIR Filter With Single Mathblock

Design Files

Far information on the implementation of the 6-tap FIR filter design, refer to the MAC_FIR_6_tap.vhd
design file provided in <Design files' FIR_6_TAP_singleMACC>.

Hardware Configuration

& Microsemi

Using 9x9 Multiplier Mode

In this implementation, the mathblock used is Dot product multiplier accumulator as shown in Figure 10.

Configuring Dotmul_acc_0 (HARD_MULT_ACC - 1.0.100) "W i [0 [

() Normal

Multiplier Functions

(@) Dot Product

Function

| Multiplier Accumulator (Adder)

AD and Al Inputs
AD Constant value (Hex)

AD Width 9

Use A0 Constant

Register Port AD

BO and B1 Inputs

BO Width 9

Register Port BO

Input Port C to Adder

Use Al Constant
Al Constant value (Hex) |0x1
Al Width

Register Port Al

B1 Width

Use Constant ue (Hex) 0x0
Width [
Register Port
Input Port ARSHFT17 |
Right shi ck inpll || Register Port [
Figure 10 « Dot Product Multip ator

-Route Results
SOu

tilization results for the 6-tap FIR filter with a single mathblock.

own are specific for IGLOO2 device. Similar results can be achieved using
device. Refer to SmartFusion2 design files for more information.

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Resource Utilization

Resource Usage Report for MAC FIR 6 TRAP

Mapping to part: m2gl050tfbga896std

Cell usage:

CLEINT 2 uses
RAM&4x18 2 uses
CFG1 3 uses
CFG2 13 uses
CFG3 12 uses
CFG4 23 uses

Sequential Cells:

SLE 94 uses

Registers not packed on I/0 Pads: 94
DSP Blocks: 1

MACC: 1 Multc

I/0 ports: 49

I/0 primitives: 49
INBUF 13 uses
CUTBUF 36 uses

Global Clock Buffers: 2

Total LUTs: 51

Figure 11 « Resource Utilization Results for a Single MAC FIR

Place-and-Route Results
The frequency of operation achieved with this implémentation after place-and-route is shown in

Figure 12.
Summary
Clock Period | Frequency Required Period | Reguired Frequency |External Setup | External Hold | Min Clock-To-Out | Max Clock-To-Qut
Domain (ns) (MHz) (ns) (MiAz) (ns) (ns) (ns) (ns)
clk 3.951 253.100 4.000 250.000 0.091 2575 6.737 14.346

Figure 12 « Place-and-Route ResultS for Single MAC FIR

Example 3: Alpha Blending

The followingg@xamplésshows/the implementation of Alpha blending used in image processing as shown
in Figure 13 on'page 11, Alpha blending is the process of combining a translucent foreground color with
a backgreund color, thereby producing a new blended color.

Design Description

The Alpha blending for each Rpeys Gnews Bnew @s shown in Figure 13 on page 11 is implemented using
the'foliowing equations:

Rnpew = (1-alpha) x RO [7:0] + alpha x R1[7:0]

EQ2
Ghew = (1-alpha) x GO [7:0] + alpha x G1[7:0]

EQ3
Bnew = (1-alpha) x BO [7:0] + alpha x B1[7:0]

EQ 4

10

& Microsemi

Using 9x9 Multiplier Mode

This implementation uses three mathblocks to output R', G', B' values simultaneously for blended image.
Each mathblock is configured as dot product multiplier for performing 9-bit x 9-bit multiplications.

RGB1[23:0]
(Image2 Pixel)
Alpha | (1-Alpha) Alpha (1-Alpha) Alpha (1-Alpha)
SF2/GL2 MACC SF2/GL2MACC SF2/GI2 MACC]
Rnew Grew Briew

Figure 13 » Alpha Blending Implementation Using IGLOO2/SmartFusion2 Mathblocks

Hardware Configuration

For Alpha blending, mathblock is configured as Dot préduct muttiplier with inputs and outputs registered.

Synthesis and Place-and-Route Results

Figure 14 shows the Alpha blending resource afilization using.thiree mathblocks.

Note: The results shown are specific for IGLO@2 device. Similar results can be achieved using
SmartFusion2 device. Refer to SpiartFusion2 design files for more information.

Resource Utilization

Resourcg WUsagel Bepaft for Alphablending
Mapping B8 Part: m@gl0S50cfbga896std

EENE S

CLEINT £ uses

Carry primitives used for arithmetic functions:

BRET1 30 uses

Sequegtial Cells:

SLE 27 uses

Kegisters not packed on IS0 Pads: 27
DSF Elocks: 3

MRCC: 3 Mulcs

I/0 ports: 77

I/0 primitives: &9
INEBUF 42 uses
OUTIEBUF 27 uses

Global Clock Buffers: 2

Total LUTs: 1]

Figure 14 - Place-and-Route Results for Alpha Blending

11

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Place-and-Route Results

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 15.

Summary

Clock Period | Frequency Required Period | Required Frequency | External Setup | External Hold | Min Clock-To-Out | Max Clock-To-Qut
Domain (ns) (MHz) (ns) (MHz) (ns) (ns) (ns) (ns)

clk 2.929 31413 2.857 350.018 -2.276 2587 6.255 13.545

Figure 15 « Place-and-Route Results for Alpha Blending

Wide-Multiplier

Overview

The wide-multipliers are extensively used in high precision (more than, 18x18‘multiplication) wireless and
medical applications. These applications require high precisiongat every stage’ when implementing
complex arithmetic functions used in FFT, filters etc. Military, test, and high-performance computing also
require performance and precision requirements, and sometimes require single-precision and double-
precision floating-point calculations for implementing complex matrix operations and signal transforms.
To implement DSP functions that require high pre€ision, Ahe IGLOO2/SmartFusion2 device offers
implementing wide-multipliers (that is, operands width more‘than{18x18) with the IGLOO2/SmartFusion2
mathblock. The wide-multipliers are implemented By cascading multiple IGLOO2/SmartFusion2
mathblocks using CDOUT and CDIN to prapagate the résuli and to achieve the best performance
results.

This section describes wide-multiplierfguidelines and different implementation methods with design
example to achieve the best performance results,

Configuration

When implementing the wide-muliipliers, the IGLOO2/SmartFusion2 mathblock is configured in Normal
mode to function as.memmal multiolier (18x18), normal multiplier accumulator, and normal multiplier
addsub.

Guidelinég
Following, are some of the lmportant recommendations for implementing wide-multiplier to achieve the
best, resulis

* The inputs@nd output are registered with the same clock.

¢ Add pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the inputs and outputs of mathblock, if arithmetic cores (Mathblock) are
used.

« CDOUT of one mathblock is connected to the CDIN of another mathblock.

Design Examples

This section shows the wide-multiplier with the following design examples:
e Multiplier 32x32 implementation using multiple mathblock
e Multiplier 32x32 implementation using single mathblock

The following section explains the 32x32 multiplier implementation with multiple mathblocks and with
single mathblock. It also shows the performance results for both the implementations.

12

& Microsemi

Wide-Multiplier

Examplel: Multiplier 32x32 Implementation Using Multiple Mathblocks
The following section explains the 32x32 multiplier implementation with multiple mathblocks and shows
the performance results.
Design Description
The 32x32 multiplier is implemented using the following algorithm:

A= (AH x 217) + AL;

B = (BH x 217) + BL;

AxB = (AH x 217 + AL) x (BH x 217 + BL)
= ((AHxBH) x 23%) + ((AHxXBL +ALxBH) x 217) + ALxBL

The 32x32 multiplier is implemented efficiently using four mathblocks without using fabric resources to
produce 64-bit result as shown in Figure 16 and Figure 17 on page 14. To achieve bestiperformance
results, mathblock input and output registers are to be used.

AH = A[31],A[31],A[31], A[31:17] AL="0", A[16:0]

A[31:0] x B[31:0] =
X Bu=B[31],B[31], B[31], BI31:17] Bu& ‘0’ ,'Bl16:0]
43 33 ALx BL 0
Mathblockl — SignExtend 10 bits ALBL[33:17] ALBL[16:0]
43 33 AH.xBL 0
17 bit offset
Mathblock2 —= | sjgnExtend 12 bits AHBL[33:17] AHBL[16:0] < >
43 33 AL xBH 0
17 bit offset
Mathblock3 —| SignEadend 12 bits ALBH[33:17] ALBH[16:0] (= >
[
29 AH x BH 0
34 bit|offset
Mathblockd —» AHBH[31:17] AHBH[16:0] |- =
Y v
P[63:34] P[33:17] P[16:0]

Figure 16 « 32x32 Multiplication

13

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Multiplier 32x32

BL AL BL AH

| | | |

Zero’sf—
v Y
\ ¥ / +
SF2/GL2 MACC SF2/GL2 MACE SF2/GL2 MACC
\ 4 v v
P16:0] P[33:17] P[63:34]

Figure 17 « Implementation of 32x32 Multiplier

When implementing using HDL, to infer mathblock input @nd.ettput registers by synthesis tool, pipeline
stages are added at output and input to achieve maximum throughput. In this design two pipeline stages
are added at input and output. Refer to design files for information on implementation of 32x32 multiplier.

Design Files

For information on the implementatien of the multiplier 32x32 design, refer to the
Mult32x32_multipleMACC.vhd design file provided in <Design files -> Mult32x32_multipleMACC>.

Hardware Configuration

For 32x32 multiplier using. single, mathbiock, mathblock is configured to function as normal multiplier,
normal multiplier addsub WitthARSHFT enabled, inputs and outputs registered.

Normal Multiplier Acéumulator, —> Pn = Pn-1 + CARRYIN + C +/- AOxBO
Normal Multiplier Addsub —> Pn = D + CARRYIN + C +/- AOxBO (if ARSHFT is disabled)
—>Pn = (D>>17) + CARRYIN + C +/- AOxBO (if ARSHFT is enabled)
Normal Multipliep—> P = AOxBO
Synthesis anhd.Place-and-Route Results
Figlire 18 on page 15 shows the 32x32 multiplier resource utilization when using multiple mathblocks.

Note: The results shown are specific for IGLOO2 device. Similar results can be achieved using
ShartFusion2 device. Refer to SmartFusion2 design files for more information.

14

& Microsemi

Wide-Multiplier

Resource Utilization

Resource Usage Report for Mult32x32 multipleMACC
Mapping to part: m2gl0S50cfbga896std

Cell usage:
CLEINT Z uses

Sequential Cells:

S5LE 146 uses

REegisters not packed on I/0 Pads: 146
D5SF Blocks: 4

MRCC: 1 Multc

MRCC: 3 Multhdds

I/0 ports: 130

I/0 primitives: 130
INBUF 66 uses
CUTBUF 64 uses

Global Clock Buffers: 2

Total LUT=: a

Figure 18 « Resource Utilization for Multiple Mathblocks

Place-and-Route Results
The frequency of operation achieved with this implementation after place-and-route is shown in

Figure 19.
Summary
Clock Period | Frequency Required Period Required Frequency | External Setup External Hold | Min Clock-To-Out Max Clock-To-Out
Domain (ns) (MHz) (ns) (MHz) (ns) (ns) (ns) (ns)
clk 2.780 359.712 2.857 350.018 4.450 1411 5.887 13.332

Figure 19 « Place-and-Route Results for 82%32 With Multiple Mathblock

Example 2: 32%32 Multipiier Implementation Using Single Mathblock

The following section explains the 32x32 multiplier implementation with single mathblocks and also
shows the pefiormanceyresults.

Design Description

The 32x382 multiplier Is implemented using same algorithm as shown in "Example 1: 6-tap FIR Filter
Using Multiple,Mathblocks" section on page 4.

AXBEAHXBH) % 23%) + (AHXBL +ALxBH) x 217) + ALxBL
= ((AHXBH) x 23%) + (AHxBL x 217) + (ALxBH x 217) + ALxBL

In this implementation, the four multiplications are computed using a single mathblock in sequential
manner. The control finite-state machine (FSM) in the design provides the inputs to the mathblock
sequentially in four successive states as shown in Figure 20 on page 16 and appropriately enables the
shift operation in the corresponding state. The mathblock used in this design is configured as normal
multiplier accumulator Arithmetic IP core. Refer to the Hard Multiplier accumulator User’s Guide for
configuration.

The time taken to generate output = 4 clock cycles for providing inputs
+ 2 clock cycles as the inputs and output is registered
+ 2 clock cycles by mathblock at input and output.
= 8 clock cycles

15

http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

reset_n —a-| AL[17:0],B|_[17:0]
B[31:0] A [17:0],B{17:0]

A[31:0]
E—

SF2/GL2 MACC Block
E \
P
L - Result
>+

clk =
AQl17:01,B[17:0]

Ayl17:0],B{17:0]

Curr_State

C
mul_en—p- Zeros
D - Uk, resultvalid

Control FSM /

ARSHFT LM Y

Multiplier 32 x 32

Figure 20 Multiplier 32x32 with One MACC Block

Design Files
For more information on the implementation(of the multiplier32x32 design, refer to the Mult32x32.vhd
design file provided in <Design files'Mult32x32>.

Hardware Configuration

For 32x32 multiplier using single mathblock, mathisiock is configured as to function as normal multiplier
accumulator with inputs and outputsiregistered.

Synthesis and Place-and-Routé results

Figure 21 shows the 32x32 multiplier resource utilization when using a single mathblock.

Note: The results shownnare Speeific for IGLOO2 device. Similar results can be achieved using
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Resource Utilization

Res0@E8s Usage Report for Mult32x32 SingleMACC

Mapping to part: m2gl0S0tfbga8%6std

Cell usag=:

CLEINT 2 us=s
CFGz 4 uses
CFG3 2 uses
CFG¢ 38 us=s

Sequential Cells:

SLE 108 uses

Registers not packed on I/0 Pads: 108
DSP Blocks: 1

MACC: 1 Mulc

I/0 ports: 132

I/0 primicives: 132
INBUF 87 uszs
CUTBUF 65 us=s

Global Clock Buffers: 2

Totzl LUTs: 51

Figure 21 « Resource Utilization for a Single Mathblock

16

& Microsemi

Wide-Multiplier
Place-and-Route Results

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 22.

Summary
Clock Period | Frequency Required Period | Required Frequency | External Setup |External Hold | Min Clock-To-Out | Max Clock-To-Out
Domain (ns) (MHz) (ns) (MHz) (ns) (ns) (ns) (ns)
clk 2.842 351.865 3.333 300.030 -0.062 2246 6.546 15.103
Figure 22 « Place-and-Route Results for 32x32 Multiplier with Single Mathblock

Simulation Results

Figure 23 shows the post synthesis simulation results. The simulation result shows that the multiplier
outputs on 8 clock cycles after input is provided.

mwee g U IS 0 SRR - o o i
File Edit View Add Format Tools Bookmarks Window Help

g| Wave - Default =

|B-g@e@ imanz - ag[tot 3ot 2925 3| SURN|| ot w0 [P0 oo 2z B HEIE 00 || [o4 2 0]
|&cwares e ||Ta/mmy |aaagn E T - L

Figure 23 « Multiplier 32x32 Post Synthesis Simulation Results

17

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Extended Addition

Overview

Mathblock has a 3-input adder and supports accumulation up to 44 bits. In some applications, such as
floating point multiplication, complex-FFT and filters, high precision data has to be maintained at every
stage. These DSP functions require more than 44-bit addition (extended addition) which can be realized
using the IGLOO2/SmartFusion2 mathblock (3-input adder) and fabric logic. The extended addition is
implemented by dividing the addition into two parts. The lower part (LSB) of addition is implemented
using IGLOO2/SmartFusion2 mathblock and upper part (MSB) of addition is implemented with minimal
fabric adder logic.

For a 2-input addition, the inputs can be from any one of the following:
1. CDIN and C input
2. Multiplier output and CDIN
3. Multiplier output and C input

For a 3-input addition, the inputs are from multiplier output, CDIN, and [C-input. Tofperform arithmetic
additions, the IGLOO2/SmartFusion2 mathblock provides Carryin inputd and Carryout signal for
propagating the carry from one mathblock to another mathblock or.from mathbleck4o fabric logic.

Configuration

When implementing the extended addition, the IGLOO2/SmartFusion2 mathblock is configured in
Normal mode to function as normal multiplier addsub.

Guidelines
« Mathblock should be configuredtio fuRction as multiplier adder/subtractor to perform 2-input
extended signed addition.

* Add Pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register thé inputs andhoutputs of mathblock, if arithmetic cores (Mathblock) are
used.

¢ Make sure the CDOUT of®one MACC block is connected to the CDIN of another MACC block.

Design Examples

This section shiews theextended addition with the following design examples:
e 2-input extended signed addition
* 3:dhput extended signed addition

Example®: 24nput Signed Extended Addition

Thé foliowing section shows a 2-input extended signed addition—if one operand is more than 44-bit
wide. In this section, it is also shown that the 2-input extended signed addition implementation logic with
fabric resources are implemented with the multiplier adder.

18

& Microsemi

Extended Addition

Design Description

2-Input Addition

For computing 2-input extended signed addition Z = U + V, with one operand width more than the
mathblock output width 44, the following logic should be implemented in fabric as shown in Figure 24.

Um-1 Um2.. Un+2 Un¢1 Un Und Unz ... Ubd

+ vnd4 Vna.. Vo4 Ved Va1 Vet Ve . Vo

el Eme2 ... 2 Il In End Ene2 ... £D

Figure 24 « 2-input Extended Signed Addition

Where U is an m-bit value (where m > 44), V is a sign-extended n-bit value (where n\< 44). The 2-input
extended signed addition is divided in two parts. The lower part is computediifinthe mathblack and the
upper part is computed in the fabric.

Z = (Sumupper, Sumlower)
EQ5

The lower part of the sum, Z = U + V, is calculated by providing the Uf(n-1): 0], V[(n-1): O] inputs to
mathblock, where n = 44 is mathblock output width.

Sumlower = U[(n-1): 0] + V[(n-1): 0]
EQ6
The Upper part of sum Z = U + V is calculated as_shown below:
Sumupper = U[m: n] + V[m: n] (where U[m: n|, VIm: n}-are the MSB bits)
EQ7
V[m:n]={S,S....S, X},
S = P[n-1] AND X
Where,
P [n-1] is MSB of Sumlower
X" is the overflow of the Sumilower (from the mathblock)
(m-n-1) number @ S's'sheuldbe"appended in MSB bits of the V[m: n].

Hardware Implémentation

Figure 25 on page 20 shows the operand width of C as 52-bit wide and explains the implementation for
2-input extendedhsigned addition. For 3-input addition, mathblock is configured as multiplier addsub in
Normal mode. The upper part and lower part of the sum are shown as follows:

For,52-bit, 2-input extended signed addition,

Sumlower,=[43:0] + A[17:0]xB[17:0]
Sumupper ={C[51:44] + {S, S, S, CARRYOUT}}
Result [51:0] = {Sumupper, Sumlower}

Restlt[51:0] ={C[51:44] +{S, S, S, CARRYOUT}}, P[43:0]
Where,
S = P[43] AND CARRYOUT

19

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

SF2/GL2 MACC Fabric Logic for 2-input Adder

A[17:0]
B[17:0] 4 AD P[43:0]/ —D—
C[43:0] >

0

3

v}

2|z

<&

o

Cc

_{

- Result [51:0]
)_/
n X

u[8:0]={S,8,S,S,5,8,X}

|
C[51:44] D—D —D—

Figure 25 « Fabric Logic for 2-input Extended Addition

Design Files

For information on the implementation of the 2-input extended addition, refer to the
Extended_adder_2_input.vhd désign file provided in <Design files'Extended_adder_2_input>.

Synthesis and Place-and-Route Résults

Figure 26 shows the 2-input'exiended addition resource utilization when using mathblock and fabric

logic.

Note: The results!shown are specific for IGLOO2 device. Similar results can be achieved using
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Resource Utilization with Fabric Adder Logic

Resource Usage Report for Extended adder 2_input
Mapping to part: m2gl050tfbga896std

Cell usage:

CLKINT 2 uses

Carry primitives used for arithmetic functions:

ARI1 8 uszes

Sequential Cells:

SLE 52 uses

Registers not packed on I/C Pads: 52
DSF Blocks: 1

MACC: 1 Mult

I/C ports: 142

I/0 primitives: 142
INBUF 90 uses
OUTBUF 52 uses

Global Clock Buffers: 2

Total LUTs: 0

Figure 26 « Resource Utilization for 2-input Extended Addition with Fabric Resources

20

& Microsemi

Extended Addition

Place-and-Route Results with Fabric Adder Logic
The frequency of operation achieved with this implementation after place-and-route is shown in

Figure 27.
Summary
Clock Period | Frequency Required Period | Required Frequency | External Setup External Hold | Min Clock-To-Out Max Clock-To-Out
Domain (ns) (MHz) (ns) (MHz) (ns) (ns) (ns) (ns)
clk 2931 341.180 3.333 300.030 0.675 1.452 5.682 13.069

Figure 27 « Place-and-Route Results for 2-input Extended Addition with Fabric Resources

Simulation Results
Figure 28 show the post synthesis simulation results. The simulation result shows that the 2-input
addition outputs on the next clock cycle after the input is provided.

wvwe o S I . - Ty Y e
!l’ile Edit View Add Format Tools Bookmarks Window Help B
1 Wave - Default . - d
H-ewHe@ iRBO0 |0 M|t 23200009 | SR || 5t s mF] La0otNEin o AU || [x w4 e
& & Qe eamn Be- €= B | Sean N |

Figure 28 « Post Synthesis Simulation Resuits{or, 2-Input Extended Addition with Fabric Adder

21

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Example 1: 3-input Signed Extended Addition

The following section explains the 3-input extended signed addition, if one or more operands are more
than 44-bit wide. In this section, it shows the 3-input extended signed addition implementation logic with
fabric resources.

Design Description

3-input Extended Addition

For performing 3-input extended addition, Z = T + U + V, with two operands width more than the
mathblock input width 44, the following logic should be implemented in fabric as shown in Figure 29.

Tm1 Tm2 ... T2 Tn#1 Tn ETn-'I Tnz ... To
Um4 Um2 .. Un+2 Un+t Un {Una Unz .. Uo
L Vot Voo Va4 Vod Vo Vot Vo2 .. Vo

Emd EZm-2 .. Zn#2 Ene1 En Enat In2 . ZD

Figure 29 « 3-input Extended Signed Addition

Where, T and U are m-bit values (where m > 44), V is a sign-exténded n=hit value (where n < 44). The
3-input extended signed addition is divided in two parts. The lower part'is:.computed in the math block
and the upper part is computed in the fabric.

Z = {Sumupper, Sumlower}

EQ8
The lower part of the sum Z =T + U + V, is calculated by providing the {'0', T[(n-2): 0]},
{0', U [(n-2}: O}, V [(n-1): O] inputs to Mathblgck, where n =44"is mathblock output width.
Sumlower = {'0', T[(n-2): 0]} + {'0', U[{@~2): 01} +V[(n-1): 0]
EQ9
The upper part of sum Z =T + U + V is caleulated as shown below
Sumupper = T[m: n-1] + Ufm: n-1] # V[m:nj
EQ 10

(where T[m: n], U[m: n], V/[m: nj are the MSB bits)
V[m:n]={S§,S....S, X, P [n-1]}
S= Pn-TPANBSX

Whetre 'P [n-1}'15.the MSB bit of the Sumlower

‘X' is theyoverflow of the Sumlower (from the mathblock),

(m-n-2) number of S's should be appended in MSB bits of the V[m: n].
Hardware Implementation
Figure 30/0n page 23 shows the operand widths of C, D are 52-bit wide and explains implementation for

3-input€xiended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in
Nermal mode. The lower part of the sum and upper part of the sum are shown as follows:

For 52-bit, 3-input extended signed addition,
Sumlower = P [43:0] = {'0', C [42:0]} + {'0", D [42:0]} + A[17:0]xB[17:0]
Sumupper ={C[51:44] + {S, S, S, CARRYOUT}}
Result [51:0] = {Sumupper, Sumlower}
Result [51:0] = {C[51:43] + D[51:43] + {S, S, S, S, S, S, S, CARRYOUT, P[43]}}, P[42:0]
Where S = P[43] AND CARRYOUT

22

& Microsemi

Extended Addition

SF2/GL2 MACC Fabric Logic for 3-input Adder
A[17:0]
B17:0] N _D P[43:0]/ D_
'0,C[42:0]
'0',D[42:0]

LNOAYHVYD
[evld

—> Result [5

8

U[8:0] = {,5,5,8,,5,X,P[43]}

C[51:44] —|

D[51:44]

Figure 30 ¢ Fabric Logic for 3-input Extended Ad

Design Files
For further information on
Extended_adder_3_input.vho

ement the 3-input extended addition, refer to the
d in <Design files'Extended_adder_3_input>.

Note: The resulis|s are specific for IGLOO2 device. Similar results can be achieved using
SmartFusic fer to SmartFusion2 design files for more information.

23

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Place-and-Route Results with Fabric Adder Logic Implemented with MACC Block

Resource Usage Report for Extended adder 3 input

Mapping to part: m2gl050tfbga8S6std

Cell usage:
CLEKINT 2 uses
CFG2 1 use

Carry primitives used for arithmetic functions:
ARI1 18 uses

Sequential Cells:

SLE 37 uses

Registers not packed on I/0Q Pads: 57
DSP Blocks: 1

MACC: 1 Multc

I/C ports: 194

I/C primitives: 194
INBUF 142 uses
CUTEBUF 52 uses

Global Clock Buffers: 2

Total LUTs: 1

Figure 31 « Resource Utilization for 3-input Extended Addition with Fabri¢ Resources

Simulation Results

Figure 32 shows the post synthesis simulation results. Ahe simulation result shows that the 3-input
addition outputs on the three clock cycles after the,input IS provided.

Fioe & | E . - =08
File Edit View Add Format Teools Bookmarks Window Help
H-gH-& AL

il

I

|

L 3 clock cyclas

Figure 32 » Post Synthesis,Simulation Results for 3-input Extended Addition with Fabric Adder

J00Is Required

The example designs for 9x9 Multiplier mode, wide-multiplier, and extended addition are developed,
synthesized, and simulated using the following software tools on the IGLOO2 M2GL050/SmartFusion2
M28050 device:

Software Tools
e Libero SoC 11.1.14
¢ Modelsim 10.1c
« Synplify Pro ME H2013.03M-1

IP Cores
¢ Arithmetic IP cores v 1.0.100

24

Conclusion

This application notes explains IGLOO2/SmartFusion2 mathblock features such as 9x9 Multiplier mode,
wide-multiplier, and extended addition. This document also provides implementation techniques and
guidelines along with the design examples for the 9x9 Multiplication, wide-multiplier, and extended

addition for optimum performance.

Appendix A - Design Files
Download the design files (VHDL) from the Microsemi SoC Products Group website:
www.microsemi.com/soc/download/rsc/?f=DSPAN_GL2_DF.

www.microsemi.com/soc/download/rsc/?f=DSPAN_SF2_DF.
Refer to the Readme.txt file included in the design file for the directory structure an

www.microsemi.com/soc/download/rsc/?f=DSPAN_GL2_DF
www.microsemi.com/soc/download/rsc/?f=DSPAN_SF2_DF

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at

Micmsemi@ www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA © 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of

Within the USA: +1 (949) 380-6100 . : . - . .
Sales: +1 (949) 380-6136 Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Fax: +1 (949) 215-4996

51900274-0/06.13

http://www.microsemi.com

	Implementation of 9x9 Multiplications, Wide- Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
	Purpose
	Introduction
	Using 9x9 Multiplier Mode
	Overview
	Configuration
	Guidelines
	Design Examples

	Wide-Multiplier
	Overview
	Configuration
	Guidelines
	Design Examples

	Extended Addition
	Overview
	Configuration
	Guidelines
	Design Examples

	Conclusion
	Appendix A - Design Files

