
Application Note AC422

SmartFusion2 - Optimizing DDR Controller for
Improved Efficiency - Libero SoC v11.7

Table of Contents

Purpose
This application note describes the techniques for improving the efficiency of double data rate (DDR)
controller using an example design for the SmartFusion®2 Advanced Development Kit board. It also
provides details about implementing the DDR synchronous dynamic random access memory (SDRAM)
simulation flow using the Micron® DDR3 SDRAM model and Microsemi DDR3 SDRAM verification IP
(VIP) model.

Purpose . 1

Introduction . 2

References . 3
Design Requirements . 3
Optimization Techniques . 4

Frequency of Operation .4
Burst Length .4
AXI Master without Write Response State . .4
Read Address Queuing .5
Series of Writes or Reads .6
DDR Configuration Tuning . .6

Implementation on the SmartFusion2 Device . 7
Design Description . 8

Hardware Implementation . 11
Configuring the System Builder . 12
Simulation Using Micron DDR3 SDRAM Model . 18
Simulation using Microsemi DDR3 SDRAM VIP Model . 22

Software Implementation . 27

Running the Design . 29
Board Jumper Settings . 29
Host PC to Board Connections . 29
USB Driver Installation . 30
Steps to Run the Design . 30
DDR3 SDRAM Bandwidth . 33

Conclusion . 35

Appendix: Design Files . 36

List of Changes . 37
April 2016 1

© 2016 Microsemi Corporation

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Introduction
The SmartFusion2 device has two high-speed hardened application-specific integrated circuit (ASIC)
memory controllers such as microcontroller subsystem (MSS) DDR (MDDR) and fabric DDR (FDDR) for
interfacing with the DDR2, DDR3, and low power DDR1 (LPDDR1) SDRAM memories. The MDDR and
FDDR subsystems are used to access high-speed DDR memories for high-speed data transfer and code
execution.

The DDR memory connected to the MDDR subsystem can be accessed by the MSS masters and the
master logic implemented in the FPGA fabric master, whereas the DDR memory connected to the FDDR
subsystem can be accessed only by an FPGA fabric master. The FPGA fabric masters communicate
with the MDDR and FDDR subsystems through the AXI or AHB interfaces.
Figure 1 shows the MDDR data path for AXI/AHB interface.

The AXI interface is used for burst transfers that provide an efficient access path and high throughput.
Though the throughput is dependent on many system level parameters, it can be improved by applying
specific optimization techniques. For more information on MDDR and FDDR subsystems, see the
UG0446: SmartFusion2 and IGLOO2 FPGA High Speed DDR Interfaces User Guide.

The sample design consists an AXI master, LSRAM, and counters for throughput measurement. During
the write operation, the AXI master reads the LSRAM and writes to the DDR3 memory and measures the
throughput. During the read operation, the AXI master reads the DDR3 memory and writes to LSRAM
and measures the throughput. The throughput values are displayed on the host PC using the universal
asynchronous receiver/transmitter (UART) interface.

Figure 1 • MDDR Data Path for AXI/AHB Interfaces
2 Revision 6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132040

References
Following are the types of memory simulation models that can be used:

• Microsemi provided generic DDR memory simulation model (VIP):
The Libero® System-on-Chip (SoC) includes a JEDEC compliant VIP model. The VIP model is
attached to the pin side of the MDDR/FDDR subsystem and simulates the functionality of a DDR
memory device. It can be configured for the DDR2, DDR3, and LPDDR SDRAM memories and
used to complement vendor models or to act as a substitute in case a vendor model is not
available.

• Vendor-specific memory model: Memory vendors such as Micron, Samsung, and Hynix
provide downloadable simulation models for specific memory devices. Ensure that the
downloaded simulation model is JEDEC compliant.

This document also describes the DDR SDRAM simulation flow using the Micron DDR3 SDRAM and
Microsemi DDR3 SDRAM VIP models.

References
The following are the references:

• UG0446: SmartFusion2 and IGLOO2 FPGA High Speed DDR Interfaces User Guide

• AC409: Connecting User Logic to AXI Interfaces of High-Performance Communication
Blocks in the SmartFusion2 Devices Application Note

• AC333: Connecting User Logic to the SmartFusion Microcontroller Subsystem Application Note

• DDR Controller and Serial High Speed Controller Initialization Methodology

• UG0557: SmartFusion2 SoC FPGA Advanced Development Kit User Guide

Design Requirements
Table 1 lists the design requirements.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

SmartFusion2 Advanced Development Kit Rev B or later

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero SoC v11.7

SoftConsole v3.4 SP1*

Note: *For this application note, SoftConsole v3.4 SP1 is used. For using SoftConsole v4.0, see the TU0546:
SoftConsole v4.0 and Libero SoC v11.7 Tutorial.
Revision 6 3

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133700
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133700
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132040
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132822
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132822
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130064
http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS/sf2_peri_init_meth_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134215

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Optimization Techniques
This section describes the following optimization techniques:

• Frequency of Operation

• Burst Length

• AXI Master without Write Response State

• Read Address Queuing

• Series of Writes or Reads

• DDR Configuration Tuning

Frequency of Operation
The MDDR and FDDR subsystems support clock management dividers inside the embedded block. The
divider ratios can be selected from the Clock Configurator for DDR clocks (MDDR_CLK/FDDR_CLK) and
DDR_FIC clock. The best overall throughput ratio is 2:1, that is, half the DDR clock frequency. Many
other ratios are possible to provide flexibility to the FPGA design. To show the optimal data throughput,
this application note shows all examples using the 2:1 ratio. The design example uses 64-bit AXI as an
FPGA fabric interface and is configured to use 333.33 MHz as DDR clock frequency and 166.66 MHz as
AXI clock. 166.66 MHz is the fastest clock frequency rate available to run the MDDR_CLK, as this is the
limit of the MSS CLK_BASE.

Burst Length
The MDDR and FDDR subsystems support the DRAM burst lengths of 4, 8, or 16, depending on the
configured bus-width and the DDR type. The AXI transaction controller in the MDDR and FDDR
subsystems supports up to 16-beat burst read and write. The AXI beat burst length (write and read) and
burst length of DRAM affect the optimal performance, however, setting the maximum supported burst
length for DDR SDRAM and AXI interface achieves the optimal performance. The design example uses
a DDR SDRAM burst length of 8 and an AXI write and read beat burst length of 16.

Note: The design example is designed to run on the SmartFusion2 Advanced Development Kit board,
which has the SmartFusion2 M2S150 device and a DDR3 SDRAM from Micron with the part
number; MT41K256M8DA -125. Both the devices support the maximum burst length of 8.

AXI Master without Write Response State
When AXI master sends the last data (D (A15)), the WLAST signal goes HIGH, indicating that it is the
last transfer in the first write burst. When AXI slave in DDR subsystem accepts all the data items, it drives
a write response (BVALID) back to the master to indicate that the write transaction is complete. By AXI
protocol, AXI master must wait for the write response before initiating the next write transaction.
However, the time spent waiting for the write response reduces the overall throughput as the clock cycles
are not used. AXI master can send the second burst write address (B) without waiting for the write
response of the first burst. This improves the write throughput by decreasing the wait states.

This application note is focused on optimal throughput, and therefore, the write response channel is not
verified. Microsemi recommends that when using this technique the write response channel is used
concurrently with starting the next transfer to ensure that the previous write data is fully accepted. The
AXI protocol has a defined methodology for handling the termination of write burst transaction. This must
be followed if the write response channel returns an incorrect value.
4 Revision 6

Optimization Techniques
Figure 2 shows the write transaction timing diagram without the write response state.

Read Address Queuing
The MDDR and FDDR subsystems support up to four outstanding read transactions. In 2:1 clock ratio,
the MDDR controller starts the burst read transaction before the command FIFO full, which allows AXI
master to send five burst read addresses.

Figure 3 shows the burst read address queuing timing diagram.

Figure 2 • Write Transaction Timing Diagram without Write Response State

Figure 3 • Read Transaction Timing Diagram with Burst Read Address Queuing
Revision 6 5

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
AXI master increments the burst read address as long as AXI slave in the DDR subsystem asserts the
ARREADY signal. The burst read address queuing significantly increases the read throughput compared
to the normal AXI read sequence. Table 7 on page 34 and Table 8 on page 35 show this significant
improvement. Read address queuing does not reduce the initial latency associated with a DDR memory
read access. By issuing multiple reads in sequence, the initial latency is only accounted for the first read.
After the first read data is returned to the reminder of the requested data, the requested data is returned
in sequence without a large read access penalty associated with the first read.

Series of Writes or Reads
The MDDR and FDDR subsystems’ performance depend on the method of data transfer between the
DDR SDRAM and AXI master. The following methods of data transfer reduce optimal performance:

• Single beat burst read and write operation

• Random read and write operation

• Switching between read and write operation

The MDDR and FDDR subsystems’ performance increase while performing a series of reads or writes
from the same bank and row. Figure 4 shows the AXI to DDR3 address mapping for the DDR3 SDRAM
on the SmartFusion2 Advanced Development Kit board.

When the AXI address crosses 0x0800, the DDR subsystem activates Row 0 of Bank 1. Row 1 of Bank 0
is activated only when the AXI address crosses 0x4000. If a new row is accessed every time, it must be
pre-charged first. This means that additional time is needed before a row can be accessed and this
reduces the overall throughput. Understanding the internal memory layout of the DDR and how it maps to
the AXI address enables the accesses to minimize the row changes and increases the overall
throughput.

DDR Configuration Tuning
The DDR SDRAM datasheet provides the timing parameters required for the proper operation in terms of
time units. These timings must match the configuration registers in the MDDR/FDDR controller. The
timing parameters are required as number of DDR clock cycles and these are entered in the DDR
configurator GUI. The selection of minimum write or read delay values can result in optimal performance.
Implementing this approach requires extensive memory testing to ensure that the memory transfers are
stable.

The SmartFusion2 Advanced Development Kit DDR3 is supplied with a default configuration file to setup
the MDDR controller, which is available on its documentation web page.

Figure 4 • AXI to DDR3 Address Mapping
6 Revision 6

Implementation on the SmartFusion2 Device
Table 2 lists the tuned parameters for better performance than the values in the default configuration file.

Implementation on the SmartFusion2 Device
The optimization techniques that are mentioned in the preceding section are implemented and validated
using the SmartFusion2 Advanced Development Kit board. This section describes the following:

• Design Description

• Hardware Implementation

• Software Implementation

• Running the Design

Table 2 • Tuned DDR Timing Parameters

Parameters Default Values Tuned Values

CAS 6 (CLK) 5

RAS min 15 12

RAS max 8192 22528

RCD 6 (CLK) 5

RP 7 (CLK) 5

REFI 3104 2592

RC 51 17

RFC 79 54

WR 6 5

FAW 32 10
Revision 6 7

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Design Description
The design consists MSS, CoreConfigP IP, CoreResetP IP, SYSRESET_POR Macro, on-chip 25/50 MHz
RC oscillator, Fabric CCC (FCCC), AXI master (AXI_IF), AHB master (AHB_IF), and a command
decoder (CMD_Decoder). Figure 5 shows the block diagram of the design.

MSS is configured to use one UART interface (MMUART_0), MSS clock conditioning circuit
(MSS_CCC), RESET Controller, eight GPIOs, one instance of the fabric interface (FIC_0), FIC_2
(Peripheral Initialization), and MDDR.

The FIC_0 interface is configured to use a slave interface with the AHB-Lite (AHBL) interface type. The
FIC_2 is configured to initialize the MSS DDR using the ARM® Cortex®-M3 processor along with the
CoreConfigP, CoreResetP, and SYSRESET_POR macro. The MMUART_0 is used as an interface for
writing to HyperTerminal. Eight GPIOs are configured as output and routed to the FPGA fabric. The
Cortex-M3 processor initiates the AXI write and read operation using these GPIOs. The MDDR is
configured to use the DDR3 interface and routes the AXI interface to the FPGA fabric.

Figure 5 • Top-Level Block Diagram of the Design
8 Revision 6

Design Description
FCCC is configured to provide the 166.6 MHz reference clock to the MSS_CCC and the fabric logic. The
on-chip 25 MHz/50 MHz RC oscillator is the reference clock source for the FCCC.

Table 3 lists the MSS_CCC generated clocks.

The command decoder receives the AXI transaction control from the Cortex-M3 processor through
GPIOs and generates write, read, write size, and read size signals. Figure 6 shows the command
decoding.

Table 3 • MSS_CCC Generated Clocks

Clock Name Frequency in MHz

M3_CLK 166.6

MDDR_CLK 333.2

DDR_SMC_FIC_CLK 166.6

APB_0 83.3

APB_1 83.3

FIC_0_CLK 166.6

Figure 6 • Command Decoding
Revision 6 9

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
AXI master block consists AXI read channel, AXI write channel, write throughput counter, read
throughput counter, and 512x64 LSRAM. It performs the write or read operation1 based on the input
signals from the command decoder. During the write operation, AXI master reads the LSRAM and writes
into the DDR3 memory, and then measures the write throughput. During the read operation, AXI master
reads the DDR3 memory and writes into LSRAM, and then measures the read throughput. The write
throughput counter counts the AXI clocks between AWVALID of first data and WLAST of last data.
Similarly, the read throughput counter counts the AXI clocks between ARVALID of first data and RLAST
of last data. After triggering the write or read operation, the AXI master performs the write or read
operation eight times to get the average throughput. During the write operation, the write address
(AWADDR) starts from 0x00000000, and is incremented by 128 (16-beat burst). During the read
operation, the read address (ARADDR) starts from 0x01000000, and is incremented by 128.

After each write or read operation, AXI master sends the throughput count value and an eSRAM address
starting from 0x20008104 to AHBL master. Then, AHBL master writes the throughput values into
eSRAM. After that the Cortex-M3 processor reads the values and sends to the host PC using the UART
interface.

For more information on creating a custom AXI interface on user logic,
see the AC409: Connecting User Logic to AXI Interfaces of High-Performance Communication Blocks in
the SmartFusion2 Devices Application Note.

For more information on creating a custom AHB interface on user logic,
see the AC333: Connecting User Logic to the SmartFusion Microcontroller Subsystem Application Note.

For more information on timing optimization performed in the AXI interface,
see the UG0446: SmartFusion2 andIGLOO2 FPGA High Speed DDR Interfaces User Guide.

1. The write or read operation depends on the size of write or read data. For example, if the write size is selected
as 2 KB, then one AXI write operation equals to 16x16-beat burst (16x16x64).
10 Revision 6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132822
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132822
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130064
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132040

Hardware Implementation
Hardware Implementation
The hardware implementation involves:

• Configuring the System Builder

• Connecting with a user logic AXI master (AXI_IF), AHB master (AHB_IF), and a command
decoder (CMD_Decoder)

Figure 7 shows the top-level SmartDesign of the example design.

Figure 7 • Top-Level SmartDesign
Revision 6 11

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Configuring the System Builder
This section describes how to configure the MDDR and other device features and then build a complete
system using the System Builder graphical design wizard in the Libero SoC software. For more
information on how to launch and use the System Builder wizard, see the SmartFusion2 System Builder
User Guide.

The following steps describe how to configure the MDDR and access it from AXI master in the FPGA
fabric:

1. Go to the System Builder - Device Features tab and select the MDDR check box. Leave the
rest of the check boxes unchecked, as shown in Figure 8.

Figure 8 • System Builder - Device Features Tab
12 Revision 6

http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf

Hardware Implementation
2. Configure the MDDR in Memories tab as shown in Figure 9. In this example, the design is
created to access the DDR3 memory with a 16-bit data width and no ECC.

3. Set the DDR memory settling time to 200 µs and click Import Configuration file to initialize the
DDR memory. The configuration file is stored in eNVM. The MDDR subsystem registers must be
initialized before accessing DDR memory through the MDDR subsystem. The MDDR
configuration register file is provided along with the design file (See "Appendix: Design Files" on
page 36).

Figure 9 • Memory Configuration
Revision 6 13

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
4. In the Peripherals tab, drag Fabric AMBA Master to MSS DDR FIC Subsystem, as shown in
Figure 10. AMBA_MASTER_0 is added to the subsystem. Configure the Interface Type as AXI.
Figure 10 shows the Peripherals tab.

5. Drag Fabric AMBA Master to MSS FIC_0 - Fabric Master Subsystem. AMBA_MASTER_1 is
added to the subsystem and configured with AHBLite.

6. Under MSS Peripherals, select MM_UART_0 and MSS_GPIO.

Figure 10 • Selecting MMUART_0 and MSS GPIO in Peripherals Tab
14 Revision 6

Hardware Implementation
7. Select IO under Connect To option in the MM_UART_0 Configuration window, as shown in
Figure 11.

Figure 11 • MM_UART_0 Configuration Window
Revision 6 15

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
8. Use the settings in the MSS_GPIO Configurator tab, as shown in Figure 12 and keep the
remaining at default state. Eight GPIOs are configured as output and routed to the FPGA fabric.

9. Configure the System clock and Subsystem clocks in the Clocks tab, as listed in Table 4.

Figure 12 • MSS GPIO Configuration

Table 4 • System and Subsystem Clocks

Clock Name Frequency in MHz

System clock On-chip 25 MHz/50 MHz RC oscillator

M3_CLK 166.6

MDDR_CLK 333.2

DDR/SMC_FIC_CLK 166.6

APB_0_CLK 83.3

APB_1_CLK 83.3

FIC_0_CLK 166.6
16 Revision 6

Hardware Implementation
Figure 13 shows the Clocks configuration window.

10. Follow the remaining steps with default settings and generate the design.

11. Instantiate the custom logic (AXI master, AHB master, and a command decoder) and connect, as
shown in Figure 7 on page 11.

Figure 13 • System and Subsystem Clocks Configuration
Revision 6 17

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Simulation Using Micron DDR3 SDRAM Model

Setting Up the Simulation Model
Setting up and running the simulation involve the following steps:

1. Obtain the Micron DDR3 memory model files - the SmartFusion2 Advanced Development Kit
board has the DDR3 SDRAM from Micron with the part number; MT41K256M8DA -125. The
memory model used in the example design supports this device
(See "Appendix: Design Files" on page 36).

2. Copy the ddr3.v and ddr3_parameters.vh simulation model files to the \<Libero SoC project
directory>\stimulus directory.

3. Instantiate and connect the DDR3 memory model in the testbench, as shown in Figure 14.

4. Ensure that the ddr3.v file is included at the top of the testbench file. The example design uses
two instances of DDR3 models with a device width of eight.

Figure 14 • Instantiating Simulation Model
18 Revision 6

Hardware Implementation
5. Set the testbench in which DDR3 memory model is instantiated as active stimulus. Figure 15
shows the settings under Stimulus Hierarchy.

6. Click Project > Project Settings > Simulation Options > Waveforms. Figure 16 shows the
Waveforms settings on the right.

7. Select the Include DO file check box and enter wave.do in the box, as displayed in Figure 16.

Figure 15 • Stimulus Settings

Figure 16 • Waveforms Settings
Revision 6 19

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
The timing diagrams shown from Figure 17 through Figure 19 illustrate the write operation.
Figure 17 shows the AXI master signals, command from CMD_Decoder, and address and data to AHB
master.

Figure 18 shows the MDDR signals. AXI master reads 2 KB of data from LSRAM and writes to DDR3
SDRAM. The write operation is repeated eight times. The data is written into Row 0 of all banks (Bank 0
– Bank 7).

Figure 19 shows the AHB master signals. AHB master receives the address and data from AXI master
and writes into eSRAM.

Figure 17 • AXI Master (AXI_IF) Signals for Write Operation

Figure 18 • MDDR Signals for Write Operation

Figure 19 • AHB Master Signals
20 Revision 6

Hardware Implementation
The timing diagrams shown from Figure 20 through Figure 22 shows the read operation. Figure 20
shows the AXI master signals, command from CMD_Decoder, and address and data to AHB master.

Figure 21 shows the MDDR signals. AXI master reads 2 KB of data from DDR3 SDRAM and writes to
LSRAM. The read operation is repeated eight times. The data is read from Row 0 of all banks (Bank 0 –
Bank 7).

Figure 22 shows the AHB master signals. AHB master receives the address and data from AXI master
and writes to eSRAM.

Figure 20 • AXI Master (AXI_IF) Signals for Read Operation

Figure 21 • MDDR Signals for Read Operation

Figure 22 • AHB Master Signals
Revision 6 21

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Simulation using Microsemi DDR3 SDRAM VIP Model
Libero SoC includes a generic DDR memory simulation model (VIP). The VIP is attached to the pin side
of the MDDR or FDDR subsystem, and simulates the functionality of a DDR memory device. It can be
configured for DDR2, DDR3, and LPDDR SDRAM memories as well.

Setting Up Simulation Model
Setting up and running the simulation involve the followings steps:

1. Click Catalog tab in the Libero SoC.

2. Select the Simulation Mode check box.

3. Under Memory and Controller, select Generic DDR Memory Simulation model and drag into
the SmartDesign testbench canvas. Figure 23 shows the Simulation mode.

4. Enter the Generic DDR Memory Simulation model configuration details, as shown in Figure 24.
The example design uses two instances of SimDRAM (VIP model) with a device width size of
eight.

Figure 23 • Generic DDR Memory Simulation Model

Figure 24 • Configuring SimDRAM
22 Revision 6

Hardware Implementation
5. Connect as described in "Simulation using Microsemi DDR3 SDRAM VIP Model" section on page
22. The connections are same as the Micron model. Figure 25 shows the SmartDesign testbench
for the example design with Microsemi DDR3 SDRAM VIP model.

6. Generate the design by clicking SmartDesign > Generate Component or by clicking Generate
Component on the SmartDesign toolbar.

7. Add the following code above endmodule in the generated SmartDesign testbench file,
MDDR_VIP_Simulation.v.

wire [1:0] MDDR_DM_RDQS;
wire [15:0] MDDR_DQ;
wire [1:0] MDDR_DQS;
wire [2:0] COMMAND;
assign COMMAND =
{MDDR_TA_top_0_MDDR_RAS_N,MDDR_TA_top_0_MDDR_CAS_N,MDDR_TA_top_0_MDDR_WE_N};
assign MDDR_DM_RDQS = MDDR_DM_RDQS_net_0;
assign MDDR_DQ = MDDR_DQ_net_0;
assign MDDR_DQS = MDDR_DQS_net_0;
initial
begin
$display ("+++");
$display ("Loading LSRAM from lsram.mem file");
$display ("");
$readmemh("lsram_512x64.mem",MDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.Rdata_me
m);
$display (" Completed Loading LSRAM");
$display ("+++");
@(posedge MDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.RESETn);
/* 2KB write */
repeat(9500) @(posedge MDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.CLK);
force MDDR_VIP_Simulation.MDDR_TA_top_0.CMD_Decoder_0.command = 8'b001_001_01;
/* Disable Write */
repeat(15) @(posedge MDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.CLK);
force MDDR_VIP_Simulation.MDDR_TA_top_0.CMD_Decoder_0.command = 8'b000_000_00;
/* 2KB Read */
repeat(5000) @(posedge MDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.CLK);
force MDDR_VIP_Simulation.MDDR_TA_top_0.CMD_Decoder_0.command = 8'b001_001_10;

Figure 25 • SmartDesign Testbench for Example Design with Microsemi DDR3 SDRAM VIP
Revision 6 23

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
/* Disable Read */
repeat(15) @(posedge MDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.CLK);
force MDDR_VIP_Simulation.MDDR_TA_top_0.CMD_Decoder_0.command = 8'b000_000_00;
end

Figure 26 shows the SmartDesign generated testbench file under the Files tab.

8. Under the Stimulus Hierarchy tab, set the SmartDesign testbench as Set as active stimulus.
Figure 27 shows the Stimulus Hierarchy settings.

Figure 26 • SmartDesign Generated Testbench File

Figure 27 • Stimulus Settings
24 Revision 6

Hardware Implementation
9. Change the default DO file name to wave_vip.do file in Project > Project Settings > Simulation
Options > Waveforms. Figure 28 shows the Waveforms settings.

The timing diagrams from Figure 29 through Figure 31 on page 26 shows the write operation. Figure 29
shows the AXI master signals, command from CMD_Decoder, and address and data to AHB master.

Figure 30 shows the MDDR subsystem signals. AXI master reads 2 KB of data from LSRAM and writes
into DDR3 SDRAM. The write operation is repeated eight times. The data is written into Row 0 of all
banks (Bank 0 – Bank 7).

Figure 28 • Waveforms Settings

Figure 29 • AXI Master (AXI_IF) Signals for Write Operation

Figure 30 • MDDR Signals for Write Operation
Revision 6 25

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Figure 31 shows the AHB master signals. AHB master receives address and data from AXI master and
writes into eSRAM.

The timing diagrams from Figure 32 through Figure 34 on page 27 shows the read operation. Figure 32
shows the AXI master signals, command from CMD_Decoder, and address and data to AHB master.

Figure 33 shows the MDDR signals. AXI master reads 2 KB of data from DDR3 SDRAM and writes into
LSRAM. The read operation is repeated eight times. The data is read from Row 0 of all banks (Bank 0 –
Bank 7).

Figure 31 • AHB Master Signals

Figure 32 • AXI Master (AXI_IF) Signals for Read Operation

Figure 33 • MDDR Signals for Read Operation
26 Revision 6

Software Implementation
Figure 34 shows the AHB master signals. AHB master receives address and data from AXI master and
writes into eSRAM.

Software Implementation
The software design example performs the following operations:

• Initializing and configuring the MMUART_0 with 115200 baud rate, 8 data bits, 1 stop bit, no
parity, and no flow control. This is done by adding MICROSEMI_STDIO_THRU_MMUART0
symbol in the project settings, as shown in Figure 35.

• Initializing and configuring the GPIOs (MSS_GPIO_0 to MSS_GPIO_7 are configured in the
output mode).

• Initializing the DDR3 SDRAM:

– 16777216x4 locations, starting from address 0xA0000000, are filled with zeros.

– 8x1024x4 locations, starting from address 0xA1000000, are filled with incremental patterns.

• Initializing the eSRAM: 8x4 locations, starting from address 0x20008104, are filled with zeros.

• Performing the data integrity checks.

• Sending a command to AXI master for reading operation through GPIOs.

• Sending a command to AXI master for writing operation through GPIOs.

Figure 34 • AHB Master Signal

Figure 35 • MICROSEMI_STDIO_THRU_MMUART0 Symbol Settings
Revision 6 27

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
List of firmware drivers used in this application:

• SmartFusion2 MSS GPIO driver

• SmartFusion2 MSS MMUART driver: to communicate with the serial terminal program running on
the host PC

In this design example, the application software performs the following steps:

1. Performing the following data integrity checks:

a. The Cortex-M3 processor initializes the 8x1024x4 (8 repetitions x 1024 locations x 4 bytes)
locations of DDR3 SDRAM, starting from address 0xA1000000, with incremental patterns. The
pattern increments from 0 to 1023, and is repeated eight times.

b. AXI master reads 4 KB of data from DDR3 SDRAM, starting from the address 0x01000000,
that is, 0xA10000001, and writes into LSRAM. The read operation is repeated eight times. The
last 4 KB of data is fetched from the address 0x01007000, that is, 0xA10070001.

c. AXI master reads 4 KB of data from LSRAM (512x64) and writes into DDR3 SDRAM, starting
from address 0x00000000, that is, 0xA00000001. The write operation is repeated eight times.
The last 4 KB of data is written at the address 0x00007000, that is, 0xA0007000.

d. The Cortex-M3 processor compares the 4 KB data at address 0xA0007000 and 0xA1007000.
The status is printed on HyperTerminal with error count, if any.

Note:The address map to access the DDR memory from MSS masters through MDDR is
0xA0000000-0xDFFFFFFF.

2. Initializing the DDR3 SDRAM again.

3. Perform the read operation. Uncomment any of the following lines based on the size of data to be
read from DDR3 SDRAM. The default size is 2 KB.

4. Printing the read throughput values on HyperTerminal.
28 Revision 6

Running the Design
5. Performing the write operation. Uncomment any of the following lines based on the size of data to
be written into DDR3 SDRAM. The default size is 2 KB.

6. Printing the write throughput values on HyperTerminal.

Running the Design
The design example is designed to run on the SmartFusion2 Advanced Development Kit board. For
more information about the kit board, see http://www.microsemi.com/products/fpga-soc/design-
resources/dev-kits/smartfusion2/smartfusion2-advanced-development-kit.

Board Jumper Settings
Table 5 lists the jumpers that need to be connected on SmartFusion2 Advanced Development Kit board.

Note: Switch OFF the power switch, SW7, while connecting the jumpers.

Host PC to Board Connections
1. Connect the FlashPro4 programmer to the FP4 HEADER J37 connector of the SmartFusion2

Advanced Development Kit board.

2. Connect the J33 connector on the SmartFusion2 Advanced Development Kit board to the host
PC using the USB mini-B (FTDI interface) cable.

Table 5 • SmartFusion2 Advanced Development Kit Jumper Settings

Jumper Pin (From) Pin (To) Comments

J116, J353, J354, J54 1 2 These are the default jumper settings of the Advanced
Development Kit Board. Ensure that these jumpers are
set accordingly.J123 2 3

J124, J121, J32 1 2 JTAG programming via FTDI
Revision 6 29

http://www.microsemi.com/index.php?option=com_content&view=article&id=2781&catid=1663&Itemid=3690
http://www.microsemi.com/index.php?option=com_content&view=article&id=2781&catid=1663&Itemid=3690

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
USB Driver Installation
Install the FTDI D2XX driver for serial terminal communication through the FTDI mini USB cable. The
drivers and installation guide can be downloaded from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

Ensure that the USB to UART bridge drivers are detected by verifying the Device Manager, as shown in
Figure 36 on page 30.

Note: Copy the COM port number for serial port configuration. Ensure that the COM port Location is
specified as on USB Serial Converter C, as shown in Figure 36.

Steps to Run the Design
1. Connect the power supply to the J42 connector and FlashPro programmer.

2. Switch ON the power supply switch, SW7.

3. Program the SmartFusion2 Advanced Development Kit board with the generated or provided
*.stp file (See "Appendix: Design Files" on page 36) using FlashPro.

4. Invoke the SoftConsole v3.4 integrated design environment (IDE) and launch the debugger.

5. Start the HyperTerminal program with the baud rate set to 115200, 8 data bits, 1 stop bit, no parity,
and no flow control. If the PC does not have HyperTerminal, use any free serial terminal emulation
program, such as PuTTY or TeraTerm. See the Configuring Serial Terminal Emulation Programs
Tutorial, for configuring HyperTerminal, TeraTerm, and PuTTY.

Figure 36 • USB to UART Bridge Drivers
30 Revision 6

http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

Running the Design
When the debugger runs in SoftConsole, the HyperTerminal window is displayed with the data integrity
check-status followed by the read and write throughputs. Figure 37 shows the total number of AXI clocks
used for 2 KB of data transferred from LSRAM to DDR3 SDRAM and DDR3 SDRAM to LSRAM.

Figure 38 shows the total number of AXI clocks used for 4 KB of data transferred from LSRAM to DDR3
SDRAM and DDR3 SDRAM to LSRAM.

Figure 37 • Throughput for 2 KB Data

Figure 38 • Throughput for 4 KB Data
Revision 6 31

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Figure 39 shows the total number of AXI clocks used for 8 KB of data transferred from LSRAM to DDR3
SDRAM and DDR3 SDRAM to LSRAM.

Figure 40 shows the total number of AXI clocks used for 16 KB of data transferred from LSRAM to DDR3
SDRAM and DDR3 SDRAM to LSRAM.

Figure 39 • Throughput for 8 KB Data

Figure 40 • Throughput for 16 KB Data
32 Revision 6

Running the Design
DDR3 SDRAM Bandwidth
Table 6 provides the total number of 16-beat bursts corresponding to the write or read size.

The following equation is applied to calculate the throughput:

EQ 1

Table 6 • Total Number of 16 Beat Bursts

Write or Read Data Size Total Number of 16 Beat Bursts

2 KB 16

4 KB 32

8 KB 64

16 KB 128

Bandwidth MB s  16 Total number of AXI clocks Total number of 16 beat bursts  
8 AXI clock MHz 

=

Revision 6 33

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Simulation Result
Table 7 lists the write and read bandwidths of DDR3 SDRAM simulation. The incremental pattern of size
varies from 2 KB to 16 KB, which is transferred from LSRAM to DDR3 SDRAM and DDR3 SDRAM to
LSRAM.

Table 7 • DDR3 SDRAM Bandwidth - Simulation Result

SI No
Optimization
Techniques

Size
(KB)

Write Read

Write
Improvement

(Average)

Read
Improvement

(Average)

Number
of

Cycles
Bandwidth
(MB/Sec)

Number
of

Cycles
Bandwidth
(MB/Sec)

Base 160 MHz 2 539 607 737 445 605 448

4 1083 605 1476 444

8 2171 604 2954 443

16 4347 603 5921 442

1 166 MHz 2 539 631 737 461 627.5
3.7%

461
2.8%

4 1083 628 1476 461

8 2171 626 2954 460

16 4347 625 5913 460

2 166 MHz

Without Write
Response State

2 509 668 737 461 666
6.13%

461
2.8%

4 1021 666 1476 461

8 2045 665 2954 460

16 4093 664 5913 460

3 166 MHz

Without Write
Response State

Tuned DDR
Configuration

2 509 668 736 462 666
6.13%

461
2.8%

4 1021 666 1474 461

8 2045 665 2950 461

16 4093 664 5910 460

4 166 MHz

Without Write
Response State

Tuned DDR
Configuration

Read Command
Queuing

2 509 668 526 646 666
6.13%

645
39.9%

4 1021 666 1054 645

8 2045 665 2110 644

16 4093 664 4222 644
34 Revision 6

Conclusion
Board Test Result
Table 8 lists the write and read bandwidth of DDR3 SDRAM on SmartFusion2 Advanced Development
Kit board. The incremental pattern of size varies from 2 KB to 16 KB, which is transferred from LSRAM to
DDR3 SDRAM and DDR3 SDRAM to LSRAM.

Conclusion
This application note describes the DDR SDRAM bandwidth optimization techniques with an example
design on the SmartFusion2 Advanced Development Kit board. It also shows the DDR SDRAM
simulation flow using the Micron DDR3 SDRAM model and the Microsemi DDR3 SDRAM VIP model.

Table 8 • DDR3 SDRAM Bandwidth - Board Test Result

SI No
Optimization
Techniques

Size
(KB)

Write Read
Write

Improvement
(Average)

Read
Improvement

(Average)
Number

of Cycles
Bandwidth
(MB/Sec)

Number
of Cycles

Bandwidth
(MB/Sec)

Base 160 Mhz 2 539 607 737 445 605 448

4 1083 605 1476 444

8 2171 604 2954 443

16 4347 603 5913 460

1 166.6 Mhz 2 539 631 736 461 627.5 3.7% 461 2.8%

4 1083 628 1474 461

8 2171 626 2950 461

16 4347 625 5924 460

2 166.6 Mhz

Without Write
Response State

2 509 668 736 461 666 6.13% 461 2.8%

4 1021 666 1477 461

8 2045 665 2959 461

16 4093 664 5923 459

3 166.6 Mhz

Without Write
Response State

Tuned DDR
Configuration

2 509 668 736 462 666 6.13% 461 2.8%

4 1021 666 1474 461

8 2045 665 2953 461

16 4093 664 5918 460

4 166.6 MHz

Without Write
Response State

Tuned DDR
Configuration

Read
Command
Queuing

2 509 668 526 646 666 6.13% 645 39.9%

4 1021 666 1054 645

8 2045 665 2110 644

16 4093 664 4222 644
Revision 6 35

SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
Appendix: Design Files
The design files can be downloaded from the Microsemi website:
http://soc.microsemi.com/download/rsc/?f=m2s_ac422_liberov11p7_df

The design file consists Libero SoC Verilog project, SoftConsole software project, MDDR Configuration
files, Simulation model files, and programming files (*.stp) for the SmartFusion2 Advanced Development
Kit board. See the Readme.txt file included in the design file for the directory structure and description.
36 Revision 6

http://soc.microsemi.com/download/rsc/?f=m2s_ac422_liberov11p7_df

List of Changes
List of Changes
The following table shows the important changes made in this document for each revision.

Revision Changes Page

Revision 6
(April 2016)

Updated the document for Libero SoC v11.7 software release (SAR 78130). NA

Revision 5
(October 2015)

Updated the document for Libero SoC v11.6 software release (SAR 72584). NA

Revision 4
(May, 2015)

Updated the document for Libero SoC v11.5 software release (SAR 67501). NA

Revision 3
(August, 2014)

Rearranged a few sections. No change in content. NA

Revision 2
(August, 2014)

Updated the document for Libero SoC v11.4 software release (SAR 59944). NA

 Revision 1
(June, 2014)

Initial release. NA
Revision 6 37

Microse
One Ent
CA 9265

Within t
Outside
Sales: +
Fax: +1

E-mail:

ctor
trial
nal

and
ice

tion
er-
es.
ees

© 2016
rights r
Microse
Microse
tradema
property

n or
any
sold
 not
 are
and
 rely
er's
The
ntire
y or
uch
t is

 this
mi Corporate Headquarters
erprise, Aliso Viejo,
6 USA

he USA: +1 (800) 713-4113
 the USA: +1 (949) 380-6100
1 (949) 380-6136
(949) 215-4996

sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semicondu
and system solutions for communications, defense & security, aerospace and indus
markets. Products include high-performance and radiation-hardened analog mixed-sig
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing
synchronization devices and precise time solutions, setting the world’s standard for time; vo
processing devices; RF solutions; discrete components; enterprise storage and communica
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Pow
over-Ethernet ICs and midspans; as well as custom design capabilities and servic
Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employ
globally. Learn more at www.microsemi.com.

 Microsemi Corporation. All
eserved. Microsemi and the
mi logo are trademarks of
mi Corporation. All other
rks and service marks are the

Microsemi makes no warranty, representation, or guarantee regarding the information contained herei
the suitability of its products and services for any particular purpose, nor does Microsemi assume
liability whatsoever arising out of the application or use of any product or circuit. The products
hereunder and any other products sold by Microsemi have been subject to limited testing and should
be used in conjunction with mission-critical equipment or applications. Any performance specifications
believed to be reliable but are not verified, and Buyer must conduct and complete all performance
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
on any data and performance specifications or parameters provided by Microsemi. It is the Buy
responsibility to independently determine suitability of any products and to test and verify the same.
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the e
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitl
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to s
information itself or anything described by such information. Information provided in this documen
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in
51900290-6/04.16

 of their respective owners. document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.7
	Table of Contents
	Purpose
	Introduction
	References
	Design Requirements
	Optimization Techniques
	Frequency of Operation
	Burst Length
	AXI Master without Write Response State
	Read Address Queuing
	Series of Writes or Reads
	DDR Configuration Tuning

	Implementation on the SmartFusion2 Device
	Design Description
	Hardware Implementation
	Configuring the System Builder
	Simulation Using Micron DDR3 SDRAM Model
	Simulation using Microsemi DDR3 SDRAM VIP Model

	Software Implementation
	Running the Design
	Board Jumper Settings
	Host PC to Board Connections
	USB Driver Installation
	Steps to Run the Design
	DDR3 SDRAM Bandwidth

	Conclusion
	Appendix: Design Files
	List of Changes

