
Synopsys FPGA Synthesis
Attribute Reference Manual

January 2014

LO

:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
2 January 2014

Copyright Notice and Proprietary Information

Copyright © 2013 Synopsys, Inc. All rights reserved. This software and
documentation contain confidential and proprietary information that is the
property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance
with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the
license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the
documentation for its internal use only.

Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any. Licensee must assign sequential numbers
to all copies. These copies shall contain the following legend on the cover
page:

“This document is duplicated with the permission of Synopsys, Inc., for the
exclusive use of __ and its
employees. This is copy number __________.”

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 3

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology,
Cadabra, CATS, Certify, CHIPit, CoMET, CODE V, Design Compiler,
DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda,
LightTools, MAST, METeor, ModelTools, NanoSim, NOVeA, OpenVera, ORA,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity,
the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization
Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are regis-
tered trademarks of Synopsys, Inc.

Trademarks (™)

AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves,
BEST, Columbia, Columbia-CE, Cosmos, CosmosLE, CosmosScope, CRITIC,
CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon
Access, Discovery, Eclypse, Encore, EPIC, Galaxy, HANEX, HDL Compiler,
Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem,
Intelli, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty,
Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail,
Mars-Xtalk, Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengi-
neering, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT,
Star-SimXT, StarRC, System Compiler, System Designer, Taurus, Total-
Recall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet Buffer are
trademarks of Synopsys, Inc.

LO

:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
4 January 2014

Service Marks (sm)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license.

ARM and AMBA are registered trademarks of ARM Limited.

Saber is a registered trademark of SabreMark Limited Partnership and is
used under license.

All other product or company names may be trademarks of their respective
owners.

Printed in the U.S.A
January 2014

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 1

Contents

Chapter 1: Introduction

How Attributes and Directives are Specified . 4
The SCOPE Attributes Tab . 4

Summary of Attributes and Directives . 7
Attribute and Directive Summary (Alphabetical) . 7

Summary of Global Attributes . 11
alsloc . 14
alspin . 16
alspreserve . 18
black_box_pad_pin . 20
black_box_tri_pins . 22
full_case . 24
loop_limit . 27
parallel_case . 29
pragma translate_off/pragma translate_on . 31
syn_allow_retiming . 33
syn_black_box . 37
syn_encoding . 43
syn_enum_encoding . 52
syn_global_buffers . 57
syn_hier . 62
syn_insert_buffer . 70
syn_isclock . 77
syn_keep . 79
syn_loc . 85
syn_looplimit . 88
syn_maxfan . 90
syn_multstyle . 96
syn_netlist_hierarchy . 101
syn_noarrayports . 107
syn_noclockbuf . 108
syn_noprune . 111

LO

:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
2 January 2014

syn_pad_type . 122
syn_preserve . 127
syn_probe . 133
syn_radhardlevel . 141
syn_ramstyle . 144
syn_reference_clock . 149
syn_replicate . 151
syn_resources . 155
syn_sharing . 159
syn_state_machine . 164
syn_tco<n> .169
syn_tpd<n> .173
syn_tristate . 176
syn_tsu<n> .177
translate_off/translate_on . 180

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014

C H A P T E R 1

Introduction

This document is part of a set that includes reference and procedural
information for the Synopsys® Synplify Pro® FPGA synthesis tools.

This document describes the attributes and directives available in the
synthesis tools. The attributes and directives let you direct the way a design
is analyzed, optimized, and mapped during synthesis. Throughout the
documentation, features and procedures described apply to all tools, unless
specifically stated otherwise.

This chapter includes the following introductory information:

• How Attributes and Directives are Specified, on page 4

• Summary of Attributes and Directives, on page 7

• Summary of Global Attributes, on page 11

LO

Chapter 1: Introduction How Attributes and Directives are Specified

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 4

How Attributes and Directives are Specified

By definition, attributes control mapping optimizations and directives control
compiler optimizations. Because of this difference, directives must be entered
directly in the HDL source code. Attributes can be entered either in the
source code, in the SCOPE Attributes tab, or manually in a constraint file. For
detailed procedures on different ways to specify attributes and directives, see
Specifying Attributes and Directives, on page 87 in the User Guide.

Verilog files are case sensitive, so attributes and directives must be entered
exactly as presented in the syntax descriptions. For more information about
specifying attributes and directives using C-style and Verilog 2001 syntax,
see Verilog Attribute and Directive Syntax, on page 366.

The SCOPE Attributes Tab

This section describes how to enter attributes using the SCOPE Attributes tab.
To use the SCOPE spreadsheet, use this procedure:

1. Start with a compiled design, then open the SCOPE window.

2. Scroll if needed and click the Attributes tab.

3. Click in the Attribute cell and use the pull-down menus to enter the
appropriate attributes and their values.

The Attributes panel includes the following columns.

How Attributes and Directives are Specified Chapter 1: Introduction

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 5

For more details on how to use the Attributes panel of the SCOPE spreadsheet,
see Specifying Attributes Using the SCOPE Editor, on page 90 in the User
Guide.

When you use the SCOPE spreadsheet to create and modify a constraint file,
the proper define_attribute or define_global_attribute statement is automatically
generated for the constraint file. The following shows the syntax for these
statements as they appear in the constraint file.

define_attribute {object} attributeName {value}

define_global_attribute attributeName {value}

Column Description

Enabled (Required) Turn this on to enable the constraint.

Object Type Specifies the type of object to which the attribute is
assigned. Choose from the pull-down list, to filter the
available choices in the Object field.

Object (Required) Specifies the object to which the attribute is
attached. This field is synchronized with the Attribute field,
so selecting an object here filters the available choices in
the Attribute field. You can also drag and drop an object
from the RTL or Technology view into this column.

Attribute (Required) Specifies the attribute name. You can choose
from a pull-down list that includes all available attributes
for the specified technology. This field is synchronized with
the Object field. If you select an object first, the attribute
list is filtered. If you select an attribute first, the synthesis
tool filters the available choices in the Object field. You
must select an attribute before entering a value.

Value (Required) Specifies the attribute value. You must specify
the attribute first. Clicking in the column displays the
default value; a drop-down arrow lists available values
where appropriate.

Val Type Specifies the kind of value for the attribute. For example,
string or boolean.

Description Contains a one-line description of the attribute.

Comment Contains any comments you want to add about the
attributes.

LO

Chapter 1: Introduction How Attributes and Directives are Specified

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 6

See Summary of Global Attributes, on page 11 for more details on specifying
global attributes in the synthesis environment.

object The design object, such as module, signal, input, instance, port,
or wire name. The object naming syntax varies, depending on
whether your source code is in Verilog or VHDL format. See
syn_black_box, on page 37 for details about the syntax
conventions. If you have mixed input files, use the object naming
syntax appropriate for the format in which the object is defined.
Global attributes, since they apply to an entire design, do not use
an object argument.

attributeName The name of the synthesis attribute. This must be an attribute,
not a directive, as directives are not supported in constraint files.

value String, integer, or boolean value.

Summary of Attributes and Directives Chapter 1: Introduction

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 7

Summary of Attributes and Directives

The following section summarizes the synthesis attributes and directives:

• Attribute and Directive Summary (Alphabetical), on page 7

For detailed descriptions of individual attributes and directives, see the
individual attributes and directives, which are listed in alphabetical order.

Attribute and Directive Summary (Alphabetical)

The following table summarizes the synthesis attributes and directives. For
detailed descriptions of each one, you can find them listed in alphabetical
order.

Attribute/Directive Description Default

alsloc Preserves relative placement in
Microsemi designs.

alspin Assigns scalar or bus ports to I/O
pin numbers in Microsemi
designs.

alspreserve Specifies nets that must be
preserved by the Microsemi
place-and-route tool.

black_box_pad_pin Specifies that a pin on a black box
is an I/O pad. It is applied to a
component, architecture, or
module, with a value that specifies
the set of pins on the module or
entity.

black_box_tri_pins Specifies that a pin on a black box
is a tristate pin. It is applied to a
component, architecture, or
module, with a value that specifies
the set of pins on the module or
entity.

full_case Specifies that a Verilog case
statement has covered all possible
cases.

LO

Chapter 1: Introduction Summary of Attributes and Directives

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 8

loop_limit Specifies a loop iteration limit for
for loops.

parallel_case Specifies a parallel multiplexed
structure in a Verilog case
statement, rather than a
priority-encoded structure.

pragma translate_off/pragma
translate_on

Specifies sections of code to
exclude from synthesis, such as
simulation-specific code.

syn_allow_retiming Determines whether registers may
be moved across combinational
logic to improve performance in
devices that support retiming.

syn_black_box Defines a black box for synthesis.

syn_encoding Specifies the encoding style for
state machines.

Based on
number of
states.

syn_enum_encoding Specifies the encoding style for
enumerated types (VHDL only).

syn_global_buffers Determines the number of global
buffers available.

syn_hier Determines hierarchical control
across module or component
boundaries.

soft

syn_insert_buffer Inserts a clock buffer according to
the specified value.

syn_isclock Specifies that a black-box input
port is a clock, even if the name
does not indicate it is one.

syn_keep Prevents the internal signal from
being removed during synthesis.

syn_loc Specifies pin locations for I/O pins
and cores, and forward-annotates
this information to the
place-and-route tool.

Attribute/Directive Description Default

Summary of Attributes and Directives Chapter 1: Introduction

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 9

syn_looplimit Specifies a loop iteration limit for
while loops.

syn_maxfan Overrides the default fanout guide
for an individual input port, net,
or register output.

syn_multstyle Determines how multipliers are
implemented.

block_mult

syn_netlist_hierarchy Controls hierarchy generation in
EDIF output files

1

syn_noarrayports Specifies ports as individual
signals or bus arrays.

1

syn_noclockbuf Disables automatic clock buffer
insertion.

0

syn_noprune Controls the automatic removal of
instances that have outputs that
are not driven.

syn_pad_type Specifies an I/O buffer standard
for certain technology families.

syn_preserve Preserves registers that can be
optimized due to redundancy or
constraint propagation.

syn_probe Adds probe points for testing and
debugging.

syn_radhardlevel Specifies the radiation-resistant
design technique to use.

syn_ramstyle Determines how RAMs are
implemented.

registers

syn_reference_clock Specifies a clock frequency other
than that implied by the signal on
the clock pin of the register.

syn_replicate Controls replication, either
globally or on registers.

0

syn_resources Specifies resources used in black
boxes.

Attribute/Directive Description Default

LO

Chapter 1: Introduction Summary of Attributes and Directives

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 10

syn_sharing Enables/disables resource
sharing of operators inside a
module.

syn_state_machine Determines if the FSM Compiler
extracts a structure as a state
machine.

syn_tco<n> Defines timing clock to output
delay through a black box. The n
indicates a value between 1 and
10.

syn_tpd<n> Specifies timing propagation for
combinational delay through a
black box. The n indicates a value
between 1 and 10.

syn_tristate Specifies that a black-box pin is a
tristate pin.

syn_tsu<n> Specifies the timing setup delay
for input pins, relative to the
clock. The n indicates a value
between 1 and 10.

translate_off/translate_on Generates clock enable pins for
registers.

1

translate_off/translate_on Specifies sections of code to
exclude from synthesis, such as
simulation-specific code.

Attribute/Directive Description Default

Summary of Global Attributes Chapter 1: Introduction

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 11

Summary of Global Attributes

Design attributes in the synthesis environment can be defined either globally,
(values are applied to all objects of the specified type in the design), or locally,
values are applied only to the specified design object (module, view, port,
instance, clock, and so on). When an attribute is set both globally and locally
on a design object, the local specification overrides the global specification for
the object.

In general, the syntax for specifying a global attribute in a constraint file is:

define_global_attribute attribute_name {value}

The table below contains a list of attributes that can be specified globally in
the synthesis environment.

For complete descriptions of any of the attributes listed below, see Summary
of Attributes and Directives, on page 7.

Global Attribute Can Also Be
Set On Design

Objects

syn_allow_retiming x

syn_hier x

syn_multstyle x

syn_netlist_hierarchy

syn_noarrayports

syn_noclockbuf x

syn_ramstyle x

syn_replicate x

LO

Chapter 1: Introduction Summary of Global Attributes

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 12

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014

All attributes and directives supported for synthesis are listed in alphabetical
order. Each command includes syntax, option and argument descriptions,
and examples. You can apply attributes and directives globally or locally on a
design object.

•

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 14

alsloc

Attribute; Microsemi . Preserves relative placements of macros and IP blocks in
the Microsemi Designer place-and-route tool. The alsloc attribute has no effect
on synthesis, but is passed directly to Microsemi Designer.

Constraint File Syntax and Example

define_attribute {object} alsloc {location}

In the attribute syntax, object is the name of a macro or IP block and location is
the row-column address of the macro or IP block.

Following is an example of setting alsloc on a macro (u1).

define_attribute {u1} alsloc {R15C6}

Verilog Syntax and Example

object /* synthesis alsloc = "location" */ ;

Where object is a macro or IP block and location is the row-column string. For
example:

module test(in1, in2, in3, clk, q);
input in1, in2, in3, clk;
output q;
wire out1 /* synthesis syn_keep = 1 */, out2;
and2a u1 (.A (in1), .B (in2), .Y (out1))

/* synthesis alsloc="R15C6" */;
assign out2 = out1 & in3;
df1 u2 (.D (out2), .CLK (clk), .Q (q))

/* synthesis alsloc="R35C6" */;
endmodule

module and2a(A, B, Y); // synthesis syn_black_box
input A, B;
output Y;
endmodule

module df1(D, CLK, Q); // synthesis syn_black_box
input D, CLK;
output Q;
endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 15

VHDL Syntax and Example

attribute alsloc of object : label is "location" ;

Where object is a macro or IP block and location is the row-column string. See
VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

library IEEE;
use IEEE.std_logic_1164.all;

entity test is
port (in1, in2, in3, clk : in std_logic;

q : out std_logic);
end test;

architecture rtl of test is
signal out1, out2 : std_logic;

component AND2A
port (A, B : in std_logic;

Y : out std_logic);
end component;

component df1
port (D, CLK : in std_logic;

Q : out std_logic);
end component;

attribute syn_keep : boolean;
attribute syn_keep of out1 : signal is true;
attribute alsloc: string;
attribute alsloc of U1: label is "R15C6";
attribute alsloc of U2: label is "R35C6";
attribute syn_black_box : boolean;
attribute syn_black_box of AND2A, df1 : component is true;
begin
U1: AND2A port map (A => in1, B => in2, Y => out1);
out2 <= in3 and out1;
U2: df1 port map (D => out2, CLK => clk, Q => q);
end rtl;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 16

alspin

Attribute; Microsemi. The alspin attribute assigns the scalar or bus ports of the
design to Microsemi I/O pin numbers (pad locations). Refer to the Microsemi
databook for valid pin numbers. If you want to use alspin for bus ports or for
slices of bus ports, you must also use the syn_noarrayports attribute. See
Specifying Locations for Microsemi Bus Ports, on page 487 of the User Guide
for information on assigning pin numbers to buses and slices.

Constraint File Syntax and Example

define_attribute {port_name} alspin {pin_number}

In the attribute syntax, port_name is the name of the port and pin_number is the
Microsemi I/O pin.

define_attribute {DATAOUT} alspin {48}

Verilog Syntax and Example

object /* synthesis alspin = "pin_number" */ ;

Where object is the port and pin_number is the Microsemi I/O pin. For example:

module comparator (datain, clk, dataout);
output dataout /* synthesis alspin="48" */;
input [7:0] datain;
input clk;

// Other code

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 17

VHDL Syntax and Example

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

attribute alspin of object : objectType is "pin_number" ;

Where object is the port, objectType is signal, and pin_number is the Microsemi
I/O pin. For example:

entity comparator is
port (datain : in bit_vector(7 downto 0);

clk : in bit;
dataout : out bit);

attribute alspin : string;
attribute alspin of dataout : signal is "48";

-- Other code

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 18

alspreserve

Attribute; Microsemi . Specifies a net that you do not want removed (optimized
away) by the Microsemi Designer place-and-route tool. The alspreserve attri-
bute has no effect on synthesis, but is passed directly to the Microsemi
Designer place-and-route software. However, to prevent the net from being
removed during the synthesis process, you must also use the syn_keep direc-
tive.

Constraint File Syntax and Example

define_attribute {n:net_name} alspreserve {1}

In the attribute syntax, net_name is the name of the net to preserve.

define_attribute {n:and_out3} alspreserve {1};
define_attribute {n:or_out1} alspreserve {1};

Verilog Syntax and Example

object /* synthesis alspreserve = 1 */ ;

Where object is the name of the net to preserve. For example:

module complex (in1, out1);
input [6:1] in1;oh
output out1;
wire out1;
wire or_oosut1 /* synthesis syn_keep=1 alspreserve=1 */;
wire and_out1;
wire and_out2;
wire and_out3 /* synthesis syn_keep=1 alspreserve=1 */;
assign and_out1 = in1[1] & in1[2];
assign and_out2 = in1[3] & in1[4];
assign and_out3 = in1[5] & in1[6];
assign or_out1 = and_out1 | and_out2;
assign out1 = or_out1 & and_out3;
endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 19

VHDL Syntax and Example

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

attribute alspreserve of object : signal is true ;

Where object is the name of the net to preserve.

For example:

library ieee;
use ieee.std_logic_1164.all;
library synplify;
use synplify.attributes.all;

entity complex is
port (input : in std_logic_vector (6 downto 1);

output : out std_logic);
end complex;

architecture RTL of complex is
signal and_out1 : std_logic;
signal and_out2 : std_logic;
signal and_out3 : std_logic;
signal or_out1 : std_logic;
attribute syn_keep of and_out3 : signal is true;
attribute syn_keep of or_out1 : signal is true;
attribute alspreserve of and_out3 : signal is true;
attribute alspreserve of or_out1 : signal is true;

begin
and_out1 <= input(1) and input(2);
and_out2 <= input(3) and input(4);
and_out3 <= input(5) and input(6);
or_out1 <= and_out1 or and_out2;
output <= or_out1 and and_out3;

end;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 20

black_box_pad_pin

Directive

Used with the syn_black_box directive and specifies that the pins on black box
are I/O pads visible to the outside environment. To specify more than one
port as an I/O pad, list the ports inside double-quotes ("), separated by
commas, and without enclosed spaces.

To instantiate an I/O from your programmable logic vendor, you usually do
not need to define a black box or this directive. The synthesis tool provides
predefined black boxes for vendor I/Os. For more information, refer to your
vendor section under FPGA and CPLD Support.

The black_box_pad_pin directive is one of several directives that you can use
with the syn_black_box directive to define timing for a black box. See
syn_black_box, on page 37 for a list of the associated directives.

Verilog Syntax and Example

object /* synthesis syn_black_box black_box_pad_pin = "portList" */ ;

where portList is a spaceless, comma-separated list of the names of the ports
on black boxes that are I/O pads. For example:

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="GIN[2:0],Q" */;

VHDL Syntax and Example

attribute black_box_pad_pin of object : objectType is "portList" ;

where object is an architecture or component declaration of a black box. Data
type is string; portList is a spaceless, comma-separated list of the black-box
port names that are I/O pads.

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 21

library ieee;
use ieee.std_logic_1164.all;

Entity top is
generic (width : integer := 4);

port (in1,in2 : in std_logic_vector(width downto 0);
clk : in std_logic;
q : out std_logic_vector (width downto 0)
);

end top;

architecture top1_arch of top is
component test is

generic (width1 : integer := 2);
port (in1,in2 : in std_logic_vector(width1 downto 0);
clk : in std_logic;
q : out std_logic_vector (width1 downto 0)

);
end component;

attribute syn_black_box : boolean;
attribute black_box_pad_pin : string;
attribute syn_black_box of test : component is true;
attribute black_box_pad_pin of test : component is "in1(4:0),
in2[4:0], q(4:0)";

begin
test123 : test generic map (width) port map (in1,in2,clk,q);

end top1_arch;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 22

black_box_tri_pins

Directive. Used with the syn_black_box directive and specifies that an output
port on a black box component is a tristate. This directive eliminates multiple
driver errors when the output of a black box has more than one driver. To
specify more than one tristate port, list the ports inside double-quotes ("),
separated by commas (,), and without enclosed spaces.

The black_box_tri_pins directive is one of several directives that you can use
with the syn_black_box directive to define timing for a black box. See
syn_black_box, on page 37 for a list of the associated directives.

Verilog Syntax and Examples

object /* synthesis syn_black_box black_box_tri_pins = "portList" */ ;

where portList is a spaceless, comma-separated list of multiple pins.

Here is an example with a single port name:

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_tri_pins="PAD" */;

Here is an example with a list of multiple pins:

module bb1(D,E,tri1,tri2,tri3,Q)
/* synthesis syn_black_box black_box_tri_pins="tri1,tri2,tri3" */;

For a bus, you specify the port name followed by all the bits on the bus:

module bb1(D,bus1,E,GIN,GOUT,Q)
/* synthesis syn_black_box black_box_tri_pins="bus1[7:0]" */;

VHDL Syntax and Examples

attribute black_box_tri_pins of object : objectType is "portList" ;

where object is a component declaration or architecture. Data type is string,
and portList is a spaceless, comma-separated list of the tristate output port
names.

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 23

library ieee;
use ieee.std_logic_1164.all;

package my_components is
component BBDLHS

port (D: in std_logic;
E: in std_logic;
GIN : in std_logic;
GOUT : in std_logic;
PAD : inout std_logic;
Q: out std_logic);

end component;

attribute syn_black_box : boolean;
attribute syn_black_box of BBDLHS : component is true;
attribute black_box_tri_pins : string;
attribute black_box_tri_pins of BBDLHS : component is "PAD";
end package my_components;

Multiple pins on the same component can be specified as a list:

attribute black_box_tri_pins of bb1 : component is
"tri,tri2,tri3";

To apply this directive to a port that is a bus, specify all the bits on the bus:

attribute black_box_tri_pins of bb1 : component is "bus1[7:0]";

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 24

full_case

Directive. For Verilog designs only. When used with a case, casex, or casez
statement, this directive indicates that all possible values have been given,
and that no additional hardware is needed to preserve signal values.

Verilog Syntax and Example

object /* synthesis full_case */

where object is case, casex, or casez statement declarations.

The following casez statement creates a 4-input multiplexer with a
pre-decoded select bus (a decoded select bus has exactly one bit enabled at a
time):

module muxnew1 (out, a, b, c, d, select);
output out;
input a, b, c, d;
input [3:0] select;
reg out;

always @(select or a or b or
c or d)

begin
casez (select)

4'b???1: out = a;
4'b??1?: out = b;
4'b?1??: out = c;
4'b1???: out = d;

endcase
end
endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 25

This code does not specify what to do if the select bus has all zeros. If the select
bus is being driven from outside the current module, the current module has
no information about the legal values of select, and the synthesis tool must
preserve the value of the output out when all bits of select are zero. Preserving
the value of out requires the tool to add extraneous level-sensitive latches if out
is not assigned elsewhere through every path of the always block. A warning
message like the following is issued:

"Latch generated from always block for signal out, probably missing
assignment in branch of if or case."

If you add the full_case directive, it instructs the synthesis tool not to preserve
the value of out when all bits of select are zero.

module muxnew3 (out, a, b, c, d, select);
output out;
input a, b, c, d;
input [3:0] select;
reg out;

always @(select or a or b or c or d)

begin
casez (select) /* synthesis full_case */

4'b???1: out = a;
4'b??1?: out = b;
4'b?1??: out = c;
4'b1???: out = d;

endcase
end
endmodule

If the select bus is decoded in the same module as the case statement, the
synthesis tool automatically determines that all possible values are specified,
so the full_case directive is unnecessary.

Assigned Default and full_case

As an alternative to full_case, you can assign a default in the case statement.
The default is assigned a value of 'bx (a 'bx in an assignment is treated as a
“don't care”). The software assigns the default at each pass through the casez
statement in which the select bus does not match one of the explicitly given
values; this ensures that the value of out is not preserved and no extraneous
level-sensitive latches are generated.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 26

The following code shows a default assignment in Verilog:

module muxnew2 (out, a, b, c, d, select);
output out;
input a, b, c, d;
input [3:0] select;
reg out;

always @(select or a or b or c or d)
begin

casez (select)
4'b???1: out = a;
4'b??1?: out = b;
4'b?1??: out = c;
4'b1???: out = d;
default: out = 'bx;

endcase
end
endmodule

Both techniques help keep the code concise because you do not need to
declare all the conditions of the statement. The following table compares
them:

Default Assignment full_case

Stays within Verilog to get the
desired hardware

Must use a synthesis directive to get the
desired hardware

Helps simulation debugging because
you can easily find that the invalid
select is assigned a 'bx

Can cause mismatches between pre- and
post-synthesis simulation because the
simulator does not use full_case

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 27

loop_limit

Directive

For Verilog designs only. Specifies a loop iteration limit for for loops in the
design when the loop index is a variable, not a constant. The compiler uses
the default iteration limit of 1999 when the exit or terminating condition does
not compute a constant value, or to avoid infinite loops. The default limit
ensures the effective use of runtime and memory resources.

If your design requires a variable loop index or if the number of loops is
greater than the default limit, use the loop_limit directive to specify a new limit
for the compiler. If you do not, you get a compiler error. You must hard code
the limit at the beginning of the loop statement. The limit cannot be an
expression. The higher the value you set, the longer the runtime. To override
the default limit of 2000 in the RTL, use the Loop Limit option on the Verilog
tab of the Implementation Options panel. See Verilog Panel, on page 195 in
the Command Reference.

Note: VHDL applications use the syn_looplimit directive (see
syn_looplimit, on page 88).

Verilog Syntax and Example

beginning_of_loop_statement /* synthesis loop_limit integer */

The following is an example where the loop limit is set to 2000:

module test(din,dout,clk);
input[1999 : 0] din;
input clk;
output[1999 : 0] dout;
reg[1999 : 0] dout;
integer i;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 28

always @(posedge clk)
begin

/* synthesis loop_limit 2000 */
for(i=0;i<=1999;i=i+1)
begin

dout[i] <= din[i];
end

end

endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 29

parallel_case

Directive

For Verilog designs only. Forces a parallel-multiplexed structure rather than
a priority-encoded structure. This is useful because case statements are
defined to work in priority order, executing (only) the first statement with a
tag that matches the select value.

If the select bus is driven from outside the current module, the current
module has no information about the legal values of select, and the software
must create a chain of disabling logic so that a match on a statement tag
disables all following statements. However, if you know the legal values of
select, you can eliminate extra priority-encoding logic with the parallel_case
directive. In the following example, the only legal values of select are 4'b1000,
4'b0100, 4'b0010, and 4'b0001, and only one of the tags can be matched at a
time. Specify the parallel_case directive so that tag-matching logic can be
parallel and independent, instead of chained.

Extra logic for priority
encoding (without
parallel_case)

Extra logic eliminated with
parallel_case

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 30

Verilog Syntax and Example

You specify the directive as a comment immediately following the select value
of the case statement.

object /* synthesis parallel_case */

where object is a case, casex or casez statement declaration.

module muxnew4 (out, a, b, c, d, select);
output out;
input a, b, c, d;
input [3:0] select;
reg out;

always @(select or a or b or c or d)

begin
casez (select) /* synthesis parallel_case */

4'b???1: out = a;
4'b??1?: out = b;
4'b?1??: out = c;
4'b1???: out = d;
default: out = 'bx;

endcase
end
endmodule

If the select bus is decoded within the same module as the case statement, the
parallelism of the tag matching is determined automatically, and the
parallel_case directive is unnecessary.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 31

pragma translate_off/pragma translate_on

Directive

Allows you to synthesize designs originally written for use with other
synthesis tools without needing to modify source code. All source code that is
between these two directives is ignored during synthesis.

Another use of these directives is to prevent the synthesis of stimulus source
code that only has meaning for logic simulation. You can use pragma
translate_off/translate_on to skip over simulation-specific lines of code that are
not synthesizable.

When you use pragma translate_off in a module, synthesis of all source code
that follows is halted until pragma translate_on is encountered. Every pragma
translate_off must have a corresponding pragma translate_on. These directives
cannot be nested, therefore, the pragma translate_off directive can only be
followed by a pragma translate_on directive.

Note: See also, translate_off/translate_on, on page 180. These direc-
tives are implemented the same in the source code.

Verilog Syntax and Example

The Verilog syntax for these directives is as follows:

/* pragma translate_off */

/* pragma translate_on */

For example:

module real_time (ina, inb, out);
input ina, inb;
output out;

/* pragma translate_off */

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 32

realtime cur_time;
/* pragma translate_on */

assign out = ina & inb;
endmodule

VHDL Syntax and Example

The following is the VHDL syntax for these directives:

pragma translate_off

pragma translate_on

For example:

library ieee;
use ieee.std_logic_1164.all;

entity adder is
port (a, b, cin:in std_logic;

sum, cout:out std_logic);
end adder;

architecture behave of adder is
signal a1:std_logic;

--pragma translate_off

constant a1:std_logic:='0';

--pragma translate_on

begin
sum <= (a xor b xor cin);
cout <= (a and b) or (a and cin) or (b and cin); end behave;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 33

syn_allow_retiming

Attribute

Determines if registers can be moved across combinational logic to improve
performance.Return to Summary of Attributes and
Directives.syn_allow_retiming values

DescriptionThe syn_allow_retiming attribute determines if registers can be
moved across combinational logic to improve performance.

The attribute can be applied either globally or to specific registers. Typically,
you enable the global Retiming option in the UI (or the set_option -retiming 1 switch
in Tcl) and use the syn_allow_retiming attribute to disable retiming for specific
objects that you do not want moved.syn_allow_retiming Syntax

You can specify the attribute in the following files: FDC
Exampledefine_attribute {register} syn_allow_retiming {1| 0}

define_global_attribute syn_allow_retiming {1| 0}

Verilog Example

object /* synthesis syn_allow_retiming = 0 | 1 */ ;

Here is an example of applying it to a register:

1 | true Allows registers to be moved during retiming.

0 | false Does not allow retimed registers to be moved.

Global Object

Yes Register

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 34

module parity_check (clk,data,count_one);
input clk;
input [20:0]data ;
output reg [3:0]count_one /* synthesis syn_allow_retiming=1*/;

integer i;
reg parity= 1'b1;

always @(posedge clk)
begin

for (i=0; i<21; i=i+1)
if (data[i] == parity)

count_one<=count_one+1;

end
endmodule

VHDL Example

attribute syn_allow_retiming of object : objectType is true | false ;

The data type is Boolean. Here is an example of applying it to a register:

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY ones_cnt IS
PORT (vin : IN STD_LOGIC_VECTOR (7 DOWNTO 0);

vout : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);
clk : IN STD_LOGIC);

END ones_cnt;

ARCHITECTURE lan OF ones_cnt IS
signal vout_reg : STD_LOGIC_VECTOR (3 DOWNTO 0);
attribute syn_allow_retiming : boolean;
attribute syn_allow_retiming of vout_reg : signal is true;

;

BEGIN
gen_vout: PROCESS(clk,vin)

VARIABLE count : STD_LOGIC_VECTOR(vout'RANGE);
BEGIN

if rising_edge(clk) then
count := (OTHERS => '0');
FOR I IN vin'RANGE LOOP

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 35

count := count + vin(i);
END LOOP;
vout_reg <= count;

end if;
vout <= vout_reg;
END PROCESS gen_vout;
END lan;

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

Effect of using syn_allow_retiming

Before applying syn_allow_retiming.

The critical path and the worst slack for this scenario are given below along
with the original count_one [3] register (before being retimed) as found in the
design.

After applying syn_allow_retiming.

The critical path and the worst slack for this scenario are shown along with
the four '*_ret' retimed registers.

Verilog output reg [3:0]count_one /* synthesis syn_allow_retiming=0*/;

VHDL attribute syn_allow_retiming of vout_reg : signal is false;

Verilog output reg [3:0]count_one /* synthesis syn_allow_retiming=1*/;

VHDL attribute syn_allow_retiming of vout_reg : signal is true;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 36

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 37

syn_black_box

Directive

Defines a module or component as a black box.

syn_black_box Value

Description

Specifies that a module or component is a black box for synthesis. A black
box module has only its interface defined for synthesis; its contents are not
accessible and cannot be optimized during synthesis. A module can be a
black box whether or not it is empty.

Typically, you set syn_black_box on objects like the ones listed below. You do
not need to define a black box for such an object if the synthesis tool includes
a predefined black box for it.

• Vendor primitives and macros (including I/Os).

• User-designed macros whose functionality is defined in a schematic
editor, IP, or another input source where the place-and-route tool
merges design netlists from different sources.

In certain cases, the tool does not honor a syn_black_box directive:

• In mixed language designs where a black box is defined in one language
at the top level but where there is an existing description for it in
another language, the tool can replace the -declared black box with the
description from the other language.

• If your project includes black box descriptions in srs, ngc, or edf
formats, the tool uses these black box descriptions even if you have
specified syn_black_box at the top level.

To override this and ensure that the attribute is honored, use these methods:

• Set a syn_black_box directive on the module or entity in the HDL file that
contains the description, not at the top level. The contents will be
black-boxed.

Value Default Description

moduleName N/A Defines an object as a black box.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 38

• If you want to define a black box when you have an srs, ngc, or edf
description for it, remove the description from the project.

Once you define a black box with syn_black_box, you use other -source code
directives to define timing for the black box. You must add the directives to
the source code because the timing models are specific to individual
instances. There are no corresponding Tcl directives you can add to a
constraint file.

Black-box Source Code Directives
Use the following directives with syn_black_box to characterize black-box
timing:

Black Box Pin Definitions
You define the pins on a black box with these directives in the source code:

For more information on black boxes, see Instantiating Black Boxes in
Verilog, on page 357, and Instantiating Black Boxes in VHDL, on page 552.

syn_black_box Syntax Specification

syn_isclock Specifies a clock port on a black box.

syn_tco<n> Sets timing propagation for combinational delay through the
black box.

syn_tsu<n> Defines timing setup delay required for input pins relative to
the clock.

syn_tco<n> Defines the timing clock to output delay through the black
box.

black_box_pad_pin Indicates that a black box is an I/O pad for the rest of
the design.

black_box_tri_pins Indicates tristates on black boxes.

Verilog object /* synthesis syn_black_box */ ; Verilog
Example

VHDL attribute syn_black_box of object : objectType is true ; VHDL
Example

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 39

Verilog Example

module top(clk, in1, in2, out1, out2);

input clk;
input [1:0]in1;
input [1:0]in2;

output [1:0]out1;
output [1:0]out2;

add U1 (clk, in1, in2, out1);
black_box_add U2 (in1, in2, out2);

endmodule

module add (clk, in1, in2, out1);

input clk;
input [1:0]in1;
input [1:0]in2;

output [1:0]out1;
reg [1:0]out1;

always@(posedge clk)
begin

out1 <= in1 + in2;
end

endmodule

module black_box_add(A, B, C)/* synthesis syn_black_box */;

input [1:0]A;
input [1:0]B;

output [1:0]C;

assign C = A + B;

endmodule

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 40

VHDL Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity add is
port(

in1 : in std_logic_vector(1 downto 0);
in2 : in std_logic_vector(1 downto 0);
clk : in std_logic;
out1 : out std_logic_vector(1 downto 0));

end;

architecture rtl of add is
begin

process(clk)
begin

if(clk'event and clk='1') then
out1 <= (in1 + in2);

end if;
end process;
end;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity black_box_add is
port(

A : in std_logic_vector(1 downto 0);
B : in std_logic_vector(1 downto 0);
C : out std_logic_vector(1 downto 0));

end;

architecture rtl of black_box_add is

attribute syn_black_box : boolean;
attribute syn_black_box of rtl: architecture is true;
begin

C <= A + B;
end;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 41

entity top is
port(

in1 : in std_logic_vector(1 downto 0);
in2 : in std_logic_vector(1 downto 0);
clk : in std_logic;
out1 : out std_logic_vector(1 downto 0);
out2 : out std_logic_vector(1 downto 0));

end;

architecture rtl of top is

component add is
port(

in1 : in std_logic_vector(1 downto 0);
in2 : in std_logic_vector(1 downto 0);
clk : in std_logic;
out1 : out std_logic_vector(1 downto 0));

end component;

component black_box_add
port(

A : in std_logic_vector(1 downto 0);
B : in std_logic_vector(1 downto 0);
C : out std_logic_vector(1 downto 0));

end component;

begin
U1: add port map(in1, in2, clk, out1);
U2: black_box_add port map(in1, in2, out2);
end;

Effect of Using syn_black_box

When the syn_black_box attribute is not set on the black_box_add module, its
content are accessible, as shown in the example below:

module black_box_add(input [1:0]A, [1:0]B, output [1:0]C);

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 42

After applying syn_black_box:, the contents of the black box are no longer
visible:

module black_box_add(input [1:0]A, [1:0]B, output [1:0]C)/* synthesis
syn_black_box */;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 43

syn_encoding

Attribute

Overrides the default FSM Compiler encoding for a state machine and applies
the specified encoding.

syn_encoding Values

The default is that the tool automatically picks an encoding style that results
in the best performance. To ensure that a particular encoding style is used,
explicitly specify that style, using the values below:

Vendor Devices

Microsemi ProASIC3, Fusion, SmartFusion2,
IGLOO2, older devices

Value Description

onehot Only two bits of the state register change (one goes to 0, one goes to 1)
and only one of the state registers is hot (driven by 1) at a time. For
example:
0001, 0010, 0100, 1000
Because onehot is not a simple encoding (more than one bit can be set),
the value must be decoded to determine the state. This encoding style
can be slower than a gray style if you have a large output decoder
following a state machine.

gray More than one of the state registers can be hot. The synthesis tool
attempts to have only one bit of the state registers change at a time, but
it can allow more than one bit to change, depending upon certain
conditions for optimization. For example:
000, 001, 011, 010, 110
Because gray is not a simple encoding (more than one bit can be set),
the value must be decoded to determine the state. This encoding style
can be faster than a onehot style if you have a large output decoder
following a state machine.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 44

You can specify multiple values. This snippet uses safe, gray. The encoding
style for register OUT is set to gray, but if the state machine reaches an invalid
state the synthesis tool will reset the values to a valid state.

module prep3 (CLK, RST, IN, OUT);
input CLK, RST;
input [7:0] IN;
output [7:0] OUT;
reg [7:0] OUT;
reg [7:0] current_state /* synthesis syn_encoding="safe,gray" */;

// Other code

sequential More than one bit of the state register can be hot. The synthesis tool
makes no attempt at limiting the number of bits that can change at a
time. For example:
000, 001, 010, 011, 100
This is one of the smallest encoding styles, so it is often used when area
is a concern. Because more than one bit can be set (1), the value must
be decoded to determine the state. This encoding style can be faster
than a onehot style if you have a large output decoder following a state
machine.

safe This implements the state machine in the default encoding and adds
reset logic to force the state machine to a known state if it reaches an
invalid state. This value can be used in combination with any of the
other encoding styles described above. You specify safe before the
encoding style. The safe value is only valid for a state register, in
conjunction with an encoding style specification.
For example, if the default encoding is onehot and the state machine
reaches a state where all the bits are 0, which is an invalid state, the
safe value ensures that the state machine is reset to a valid state.
If recovery from an invalid state is a concern, it may be appropriate to
use this encoding style, in conjunction with onehot, sequential or gray, in
order to force the state machine to reset. When you specify safe, the
state machine can be reset from an unknown state to its reset state.

original This respects the encoding you set, but the software still does state
machine and reachability analysis.

Value Description

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 45

Description

This attribute takes effect only when FSM Compiler is enabled. It overrides
the default FSM Compiler encoding for a state machine. For the specified
encoding to take effect, the design must contain state machines that have
been inferred by the FSM Compiler. Setting this attribute when
syn_state_machine is set to 0 will not have any effect.

The default encoding style automatically assigns encoding based on the
number of states in the state machine. Use the syn_encoding attribute when
you want to override these defaults. You can also use syn_encoding when you
want to disable the FSM Compiler globally but there are a select number of
state registers in your design that you want extracted. In this case, use this
attribute with the syn_state_machine directive on for just those specific regis-
ters.

The encoding specified by this attribute applies to the final mapped netlist.
For other kinds of enumerated encoding, use syn_enum_encoding. See
syn_enum_encoding, on page 52 and syn_encoding Compared to
syn_enum_encoding, on page 56 for more information.

Encoding Style Implementation

The encoding style is implemented during the mapping phase. A message
appears when the synthesis tool extracts a state machine, for example:

@N: CL201 : "c:\design\..."|Trying to extract state machine for
register current_state

The log file reports the encoding styles used for the state machines in your
design. This information is also available in the FSM Viewer (see FSM Viewer
Window, on page 67).

See also the following:

• For information on enabling state machine optimization for individual
modules, see syn_state_machine, on page 164.

• For VHDL designs, see syn_encoding Compared to syn_enum_encoding,
on page 56 for comparative usage information.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 46

Syntax Specification

This table shows how to specify the attribute in different files:

If you specify the syn_encoding attribute in Verilog or VHDL, all instances of
that FSM use the same syn_encoding value. To have unique syn_encoding values
for each FSM instance, use different entities or modules, or specify the
syn_encoding attribute in a constraint file.

SCOPE Example

The object must be an instance prefixed with i:, as in i:instance. The instance
must be a sequential instance with a view name of statemachine.

Although you cannot set this attribute globally, you can define a SCOPE
collection and then apply the attribute to the collection. For example:

define_scope_collection sm {find -hier -inst * -filter
@inst_of==statemachine}

define_attribute {$sm} {syn_encoding} {safe}

Verilog Example

The object can be a register definition signals that hold the state values of
state machines.

Global Object

No Instance, register

FDC define_attribute {object} syn_encoding {value} SCOPE Example

Verilog Object /* synthesis syn_encoding = "value" */; Verilog Example

VHDL attribute syn_encoding of object: objectType is "value"; VHDL Example

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 47

module fsm (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state /* synthesis syn_encoding = "onehot" */;
parameter s1 = 2'b00; parameter s2 = 2'b01;
parameter s3 = 2'b10; parameter s4 = 2'b11;

always @(posedge clk or posedge reset)
begin

if (reset)
state <= s1;

else begin
case (state)
s1: if (x1 == 1'b1)

state <= s2;
else

state <= s3; s2: state <= s4;
s3: state <= s4;
s4: state <= s1;
endcase

end
end

always @(state) begin
case (state)

s1: outp = 1'b1;
s2: outp = 1'b1;
s3: outp = 1'b0;
s4: outp = 1'b0;

endcase
end

endmodule

VHDL Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity fsm is

port (x1 : in std_logic;
reset : in std_logic;
clk : in std_logic;
outp : out std_logic);

end fsm;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 48

architecture rtl of fsm is
signal state : std_logic_vector(1 downto 0);
constant s1 : std_logic_vector := "00";
constant s2 : std_logic_vector := "01";
constant s3 : std_logic_vector := "10";
constant s4 : std_logic_vector := "11";
attribute syn_encoding : string;
attribute syn_encoding of state : signal is "onehot";

begin
process (clk,reset)

begin
if (clk'event and clk = '1') then

if (reset = '1') then
state <= s1 ;

else
case state is

when s1 =>
if x1 = '1' then

state <= s2;
else

state <= s3;
end if;
when s2 =>

state <= s4;
when s3 =>

state <= s4;
when s4 =>

state <= s1;
end case;

end if;
end if;

end process;

process (state)
begin

case state is
when s1 =>

outp <= '1';
when s2 =>

outp <= '1';
when s3 =>

outp <= '0';

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 49

when s4 =>
outp <= '0';

end case;
end process;
end rtl;

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

Effect of Using syn_encoding

The following figure shows the default implementation of a state machine,
with these encoding details reported:

Encoding state machine state [3:0] (netlist: statemachine)
original code -> new code
00 -> 00
01 -> 01
10 -> 10
11 -> 11

The next figure shows the state machine when the syn_encoding attribute is
set to onehot, and the accompanying changes in the code:

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 50

The next figure shows the state machine when the syn_encoding attribute is
set to gray:

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 51

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 52

syn_enum_encoding

Directive

For VHDL designs. Defines how enumerated data types are implemented. The
type of implementation affects the performance and device utilization.

If FSM Compiler is enabled, this directive has no effect on the encoding styles
of extracted state machines; the tool uses the values specified in the
syn_encoding attribute instead. However, if you have enumerated data types
and you turn off the FSM Compiler so that no state machines are extracted,
the syn_enum_encoding style is implemented in the final circuit. See
syn_encoding Compared to syn_enum_encoding, on page 56 for more infor-
mation. For step-by-step details about setting coding styles with this attri-
bute see Defining State Machines in VHDL, on page 304 of the User Guide.

Values for syn_enum_encoding

Values for syn_enum_encoding are as follows:

• default – Automatically assigns an encoding style that results in the best
performance.

• sequential – More than one bit of the state register can change at a time,
but because more than one bit can be hot, the value must be decoded to
determine the state. For example: 000, 001, 010, 011, 100

• onehot – Only two bits of the state register change (one goes to 0; one goes
to 1) and only one of the state registers is hot (driven by a 1) at a time.
For example: 0000, 0001, 0010, 0100, 1000

• gray – Only one bit of the state register changes at a time, but because
more than one bit can be hot, the value must be decoded to determine
the state. For example: 000, 001, 011, 010, 110

• string – This can be any value you define. For example: 001, 010, 101.
See Example of syn_enum_encoding for User-Defined Encoding, on
page 56.

A message appears in the log file when you use the syn_enum_encoding direc-
tive; for example:

CD231: Using onehot encoding for type mytype (red="10000000")

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 53

Effect of Encoding Styles

The following figure provides an example of two versions of a design: one with
the default encoding style, the other with the syn_enum_encoding directive
overriding the default enumerated data types that define a set of eight colors.

In this example, using the default value for syn_enum_encoding, onehot is
assigned because there are eight states in this design. The onehot style imple-
ments the output color as 8 bits wide and creates decode logic to convert the
input sel to the output. Using sequential for syn_enum_encoding, the logic is
reduced to a buffer. The size of output color is 3 bits.

See the following section for the source code used to generate the schematics
above.

syn_enum_encoding = “sequential”

syn_enum_encoding = “default” Based on 8 states, onehot assigned

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 54

VHDL Syntax and Examples

attribute syn_enum_encoding of object : objectType is "value" ;

Where object is an enumerated type and value is one of the following: default,
sequential, onehot or gray. See VHDL Attribute and Directive Syntax, on
page 554 for different ways to specify VHDL attributes and directives.

Here is the code used to generate the second schematic in the previous figure.
(The first schematic will be generated instead, if ”sequential” is replaced by
”onehot” as the syn_enum_encoding value.)

package testpkg is
type mytype is (red, yellow, blue, green, white,

violet, indigo, orange);
attribute syn_enum_encoding : string;
attribute syn_enum_encoding of mytype : type is "sequential";
end package testpkg;

library IEEE;
use IEEE.std_logic_1164.all;
use work.testpkg.all;

entity decoder is
port (sel : in std_logic_vector(2 downto 0);
color : out mytype);

end decoder;
architecture rtl of decoder is
begin

process(sel)
begin

case sel is
when "000" => color <= red;
when "001" => color <= yellow;
when "010" => color <= blue;
when "011" => color <= green;
when "100" => color <= white;
when "101" => color <= violet;
when "110" => color <= indigo;
when others => color <= orange;

end case;
end process;

end rtl;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 55

syn_enum_encoding, enum_encoding, and syn_encoding

Custom attributes are attributes that are not defined in the IEEE specifica-
tions, but which you or a tool vendor define for your own use. They provide a
convenient back door in VHDL, and are used to better control the synthesis
and simulation process. enum_encoding is one of these custom attributes that
is widely used to allow specific binary encodings to be attached to objects of
enumerated types.

The enum_encoding attribute is declared as follows:

attribute enum_encoding: string;

This can be either written directly in your VHDL design description, or
provided to you by the tool vendor in a package. Once the attribute has been
declared and given a name, it can be referenced as needed in the design
description:

type statevalue is (INIT, IDLE, READ, WRITE, ERROR);
attribute enum_encoding of statevalue: type is

"000 001 011 010 110";

When this is processed by a tool that supports the enum_encoding attribute, it
uses the information about the statevalue encoding. Tools that do not recog-
nize the enum_encoding attribute ignore the encoding.

Although it is recommended that you use syn_enum_encoding, the Synopsys
FPGA tools recognize enum_encoding and treat it just like syn_enum_encoding.
The tool uses the specified encoding when the FSM compiler is disabled, and
ignores the value when the FSM Compiler is enabled.

If enum_encoding and syn_encoding are both defined and the FSM compiler is
enabled, the tool uses the value of syn_encoding. If you have both
syn_enum_encoding and enum_encoding defined, the value of syn_enum_encoding
prevails.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 56

syn_encoding Compared to syn_enum_encoding

To implement a state machine with a particular encoding style when the FSM
Compiler is enabled, use the syn_encoding attribute. The syn_encoding attribute
affects how the technology mapper implements state machines in the final
netlist. The syn_enum_encoding directive only affects how the compiler inter-
prets the associated enumerated data types. Therefore, the encoding defined
by syn_enum_encoding is not propagated to the implementation of the state
machine. However, when FSM Compiler is disabled, the value of
syn_enum_encoding is implemented in the final circuit.

Example of syn_enum_encoding for User-Defined Encoding

library ieee;
use ieee.std_logic_1164.all;

entity shift_enum is
port (clk, rst : bit;

O : out std_logic_vector(2 downto 0));
end shift_enum;

architecture behave of shift_enum is
type state_type is (S0, S1, S2);
attribute syn_enum_encoding: string;
attribute syn_enum_encoding of state_type : type is "001 010 101";
signal machine : state_type;
begin

process (clk, rst)
begin

if rst = ’1’ then
machine <= S0;

elsif clk = ’1’ and clk’event then
case machine is

when S0 => machine <= S1;
when S1 => machine <= S2;
when S2 => machine <= S0;

end case;
end if;

end process;

with machine select
O <= "001" when S0,
"010" when S1,
"101" when S2;
end behave;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014

syn_global_buffers

Attribute

Microsemi IGLOO/IGLOOe, ProASIC3/3E

Specifies the number of global buffers to be used in a design. The synthesis
tool automatically adds global buffers for clock nets with high fanout; use
this attribute to specify a maximum number of buffers and restrict the
amount of global buffer resources used. Also, if there is a black box in the
design that has global buffers, you can use syn_global_buffers to prevent the
synthesis tool from inferring clock buffers or exceeding the number of global
resources.

You specify the attribute globally on the top-level module/entity or view. For
Microsemi designs, it can be any integer between 6 and 18. If you specify an
integer less than 6, the software infers six global buffers.

Constraint File Syntax and Example

define_attribute {view} syn_global_buffers {maximum}

define_global_attribute syn_global_buffers {maximum}

For example:

define_global_attribute syn_global_buffers {10}

Verilog Syntax and Example

object /* synthesis syn_global_buffers = maximum */;

For example:

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 58

module top (clk1, clk2, clk3, clk4, clk5, clk6, clk7,clk8,clk9,
clk10, clk11, clk12, clk13, clk14, clk15, clk16, clk17, clk18,
clk19, clk20, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11,
d12, d13, d14, d15, d16, d17, d18, d19, d20, q1, q2, q3, q4, q5,
q6, q7, q8, q9, q10, q11, q12, q13, q14, q15, q16, q17, q18,
q19, q20, reset) /* synthesis syn_global_buffers = 10 */;

input clk1, clk2, clk3, clk4, clk5, clk6, clk7,clk8,clk9, clk10,
clk11, clk12, clk13, clk14, clk15, clk16, clk17, clk18,
clk19, clk20;

input d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14,
d15, d16, d17, d18, d19, d20;output q1, q2, q3, q4, q5, q6, q7,

q8, q9, q10, q11, q12, q13, q14,
q15, q16, q17, q18, q19, q20;

input reset;
reg q1, q2, q3, q4, q5, q6, q7, q8, q9, q10,

 q11, q12, q13, q14, q15, q16, q17, q18, q19, q20;

always @(posedge clk1 or posedge reset)
if (reset)

q1 <= 1'b0;
else

q1 <= d1;

always @(posedge clk2 or posedge reset)
if (reset)

q2 <= 1'b0;
else

q2 <= d2;

always @(posedge clk3 or posedge reset)
if (reset)

q3 <= 1'b0;
else

q3 <= d3;

always @(posedge clk4 or posedge reset)
if (reset)

q4 <= 1'b0;
else

q4 <= d4;

always @(posedge clk5 or posedge reset)
if (reset)

q5 <= 1'b0;
else

q5 <= d5;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 59

always @(posedge clk6 or posedge reset)
if (reset)

q6 <= 1'b0;
else

q6 <= d6;

always @(posedge clk7 or posedge reset)
if (reset)

q7 <= 1'b0;
else

q7 <= d7;

always @(posedge clk8 or posedge reset)
if (reset)

q8 <= 1'b0;
else

q8 <= d8;

always @(posedge clk9 or posedge reset)
if (reset)

q9 <= 1'b0;
else

q9 <= d9;

always @(posedge clk10 or posedge reset)
if (reset)

q10 <= 1'b0;
else

q10 <= d10;

always @(posedge clk11 or posedge reset)
if (reset)

q11 <= 1'b0;
else

q11 <= d11;

always @(posedge clk12 or posedge reset)
if (reset)

q12 <= 1'b0;
else

q12 <= d12

always @(posedge clk13 or posedge reset)
if (reset)

q13 <= 1'b0;
else

q13 <= d13;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 60

always @(posedge clk14 or posedge reset)
if (reset)

q14 <= 1'b0;
else

q14 <= d14;

always @(posedge clk15 or posedge reset)
if (reset)

q15 <= 1'b0;
else

q15 <= d15;

always @(posedge clk16 or posedge reset)
if (reset)

q16 <= 1'b0;
else

q16 <= d16;

always @(posedge clk17 or posedge reset)
if (reset)

q17 <= 1'b0;
else

q17 <= d17;

always @(posedge clk18 or posedge reset)
if (reset)

q18 <= 1'b0;
else

q18 <= d18;

always @(posedge clk19 or posedge reset)
if (reset)

q19 <= 1'b0;
else|

q19 <= d19;

always @(posedge clk20 or posedge reset)
if (reset)

q20 <= 1'b0;
else

q20 <= d20;

endmodule

VHDL Syntax and Example

attribute syn_global_buffers of object : objectType is maximum;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 61

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

library ieee;
use ieee.std_logic_1164.all;

entity top is
port (clk : in std_logic_vector(19 downto 0);

d : in std_logic_vector(19 downto 0);
q : out std_logic_vector(19 downto 0);
reset : in std_logic);

end top;

architecture behave of top is
attribute syn_global_buffers : integer;
attribute syn_global_buffers of behave : architecture is 10;
begin

process (clk, reset)
begin

for i in 0 to 19 loop
if (reset = '1') then

q(i) <= '0';
elsif clk(i) = '1' and clk(i)' event then

q(i) <= d(i);
end if;

end loop;
end process;

end behave;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 62

syn_hier

Attribute

Lets you control the amount of hierarchical transformation across bound-
aries on module or component instances during optimization.

During synthesis, the synthesis tool dissolves as much hierarchy as possible
to allow efficient logic optimization across hierarchical boundaries while
maintaining optimal run times. The tool then rebuilds the hierarchy as close
as possible to the original source to preserve the topology of the design. Use
the syn_hier attribute to address specific needs to maintain the original design
hierarchy during optimization. This attribute gives you manual control over
flattening/preserving instances, modules, or architectures in the design.

Constraint File Syntax and Example

define_attribute {object} syn_hier {value}

where object is a view, and value can be any of the values described in
syn_hier Values, on page 63. Note however, if you are defining syn_hier
globally, it is recommended that you use the SCOPE collection to apply
syn_hier on all views instead. For example:

define_scope_collection all_views {find -hier -view {*}}

define_attribute {$all_views} {syn_hier} {fixed}

Check the attribute values to determine where to attach the attribute. Here is
an example:

define_attribute {v:fifo} syn_hier {hard}

Make sure to specify the attribute on the view (v: object type). See syn_hier in
the SCOPE Window, on page 64 for details.

Verilog Syntax and Examples

object /* synthesis syn_hier = "value" */ ;

where object can be a module declaration and value can be any of the values
described in syn_hier Values, on page 63. Check the attribute values to deter-
mine where to attach the attribute.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 63

This is the Verilog syntax:

module fifo(out, in) /* synthesis syn_hier = "hard" */;

// Other code

VHDL Syntax and Examples

attribute syn_hier of object : architecture is "value" ;

where object is an architecture name and value can be any of the values
described in syn_hier Values, on page 63. Check the attribute values to deter-
mine the level at which to attach the attribute.

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives. This is the VHDL syntax:

architecture struct of cpu is

attribute syn_hier : string;
attribute syn_hier of struct: architecture is "hard";

-- Other code

syn_hier Values

The following table shows the values you can use for syn_hier. For additional
information about using this attribute in HDL Analyst, see Controlling
Hierarchy Flattening, on page 339 and Preserving Hierarchy, on page 339 in
the User Guide.

soft
(default)

The synthesis tool determines the best optimization across hierarchical
boundaries. This attribute affects only the design unit in which it is
specified.

firm Preserves the interface of the design unit. However, when there is cell
packing across the boundary, it changes the interface and does not
guarantee the exact RTL interface. This attribute affects only the design
unit in which it is specified.

hard Preserves the interface of the design unit and prevents most
optimizations across the hierarchy. However, the boundary optimization
for constant propagation is performed. This attribute affects only the
specified design units.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 64

syn_hier in the SCOPE Window

If you use the SCOPE window to specify the syn_hier attribute, do not drag and
drop the object into the SCOPE spreadsheet. Instead, first select syn_hier in
the Attribute column, and then use the pull-down menu in the Object column to
select the object. This is because you must set the attribute on a view (v:). If
you drag and drop an object, you might not get a view object. Selecting the
attribute first ensures that only the appropriate objects are listed in the Object
column.

fixed Preserves the interface of the design unit with no exceptions. Fixed
prevents all optimizations performed across hierarchical boundaries
and retains the port interfaces as well.
For more information, see Using syn_hier fixed, on page 65.

remove Removes the level of hierarchy for the design unit in which it is
specified. The hierarchy at lower levels is unaffected. This only affects
synthesis optimization. The hierarchy is reconstructed in the netlist and
Technology view schematics.

macro Preserves the interface and contents of the design with no exceptions.
This value can only be set on structural netlists. (In the constraint file,
or using the SCOPE editor, set syn_hier to macro on the view (the v:
object type).

flatten Flattens the hierarchy of all levels below, but not the one where it is
specified. This only affects synthesis optimization. The hierarchy is
reconstructed in the netlist and Technology view schematics. To create
a completely flattened netlist, use the syn_netlist_hierarchy attribute
(syn_netlist_hierarchy, on page 101), set to false.
You can use flatten in combination with other syn_hier values; the effects
are described in Using syn_hier flatten with Other Values, on page 67.
If you apply syn_hier to a compile point, flatten is the only valid attribute
value. All other values only apply to the current level of hierarchy. The
compile point hierarchy is determined by the type of compile point
specified, so a syn_hier value other than flatten is redundant and is
ignored.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 65

Using syn_hier fixed

When you use the fixed value with syn_hier, hierarchical boundaries are
preserved with no exceptions. For example, optimizations such as constant
propagation are not performed across these boundaries.

Note: It is recommended that you do not use syn_hier with the fixed
value on modules that have ports driven by tri-state gates. For
details, see When Using Tri-states, on page 65.

When Using Tri-states
It is advised that you avoid using syn_hier="fixed" with tri-states. However, if
you do, here is how the software handles the following conditions:

• Tri-states driving output ports

If a module with syn_hier="fixed" includes tri-state gates that drive a
primary output port, then the synthesis software retains a tri-state
buffer so that the P&R tool can pack the tri-state into an output port.

• Tri-states driving internal logic

If a module with syn_hier="fixed" includes tri-state gates that drive internal
logic, then the synthesis software converts the tri-state gate to a MUX
and optimizes within the module accordingly.

In the following code example, myreg has syn_hier set to fixed.

module top(
clk1,en1, data1,
q1, q2
);

input clk1, en1;
input data1;
output q1, q2;

wire cwire, rwire;
wire clk_gt;

assign clk_gt = en1 & clk1;

// Register module

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 66

myreg U_reg (
.datain(data1),
.rst(1'b1),
.clk(clk_gt),
.en(1'b0),
.dout(rwire),
.cout(cwire)
);

assign q1 = rwire;
assign q2 = cwire;

endmodule

module myreg (
datain,
rst,
clk,
en,
dout,
cout
) /* synthesis syn_hier = "fixed" */;

input clk, rst, datain, en;
output dout;
output cout;

reg dreg;

assign cout = en & datain;

always @(posedge clk or posedge rst)
begin

if (rst)
dreg <= 'b0;

else
dreg <= datain;

end

assign dout = dreg;

endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 67

The HDL Analyst views show that myreg preserves its hierarchical boundaries
without exceptions and prevents constant propagation optimizations.

Using syn_hier flatten with Other Values

You can combine flatten with other syn_hier values as shown below:

flatten,soft Same as flatten.

flatten,firm Flattens all lower levels of the design but preserves the interface of
the design unit in which it is specified. This option also allows
optimization of cell packing across the boundary.

flatten,remove Flattens all lower levels of the design, including the one on which it
is specified.

No Constant Propagation Optimizations

 Performed

RTL View

Technology View

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 68

If you use flatten in combination with another option, the tool flattens as
directed until encountering another syn_hier attribute at a lower level. The
lower level syn_hier attribute then takes precedence over the higher level one.

These example demonstrate the use of the flatten and remove values to flatten
the current level of the hierarchy and all levels below it (unless you have
defined another syn_hier attribute at a lower level).

Example of syn_hier hard

Here is an example of two versions of a design: one with syn_hier set on
modules mem and data; the other shows what happens to those modules with
the automatic flattening that occurs during synthesis.

Verilog module top1 (Q, CLK, RST, LD, CE, D)
/* synthesis syn_hier = "flatten,remove" */;

// Other code

VHDL architecture struct of cpu is

attribute syn_hier : string;
attribute syn_hier of struct: architecture is "flatten,remove";

-- Other code

With syn_hier=”hard”

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 69

Without syn_hier=”hard”
This is the default.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 70

syn_insert_buffer

Attribute

Inserts a technology-specific clock buffer.

syn_insert_buffer Values

Description

Use this attribute to insert a clock buffer. You can also use it on a non-clock
high fanout net, such as reset or common enable that needs global routing, to
insert a global buffer for that port. The synthesis tool inserts a
technology-specific clock buffer. The object you attach the attribute to also
varies with the vendor.

Vendor Technologies

Microsemi IGLOO/IGLOOe/IGLOO+/IGLOO2
ProASICPLUS, ProASIC3/3E/3L,
SmartFusion2

Vendor Value Description

Microsemi CLKBUF,
HCLKBUF
CLKINT,
HCLKINT

The Microsemi IGLOO/IGLOOe/IGLOO+, and
ProASICPLUS families supports these attribute values:
• Pads:

CLKBUF
HCLKBUF (for nets that drive the clock pins of sequential
primitives)

• Nets:
CLKINT
HCLKINT (for nets that drive the clock pins of sequential
primitives)

Microsemi SmartFusion2 and IGLOO2 support only
CLKINT.

Vendor Object Description

Microsemi Instance Inserts the specified clock buffer.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 71

syn_insert_buffer Syntax Specification

You cannot specify this attribute as a global value.

FDC Example

Verilog Examples

This section provides technology-specific examples.

module test
(CLK, din1, din2, din3, din4,Q1, Q2, reset, gt1, gt2);

input gt1, gt2;
input CLK;
input reset /* synthesis syn_insert_buffer = "SB_GB_IO" */;
input din1;
input din2 /* synthesis syn_insert_buffer = "SB_GB_IO" */;
input din3 /* synthesis syn_insert_buffer = "SB_GB_IO" */;
input din4;
output reg Q1, Q2;

wire gt11 /* synthesis syn_insert_buffer = "SB_GB" syn_keep = 1 */;

assign gt11 = gt1;

wire int_clk_glob;
wire int_clk_core;

wire int_clk_glob_gt;
wire int_clk_core_gt;

reg reg_1, reg_2, reg_3, reg_4;

FDC define_attribute object syn_insert_buffer value FDC Example

Verilog object /* synthesis syn_insert_buffer = “value” */; Verilog Examples

VHDL attribute syn_insert_buffer of object : objectType is “value”; endmoduleVHDL
Example

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 72

assign int_clk_glob_gt = CLK & gt11;
assign int_clk_core_gt = CLK & gt2;

always @(posedge int_clk_core_gt or negedge reset)
begin

if (!reset)
reg_1 <= 0;
else
begin
reg_1 <= din1;
reg_2 <= din2;
Q1 <= reg_1 + reg_2;
end

end

always @(posedge int_clk_glob_gt)
begin

reg_3 <= din3;
reg_4 <= din4;
Q2 <= reg_3 + reg_4;

end

endmodule

This code specifies the syn_insert_buffer attribute, so the tool inserts SB_GB_IO
buffers for the reset, din2, and din3 ports. Without the attribute, these ports
would use the SB_IO buffer and infer an SB_GB buffer on the gt11 net.

Microsemi syn_insert_buffer Verilog Example
In the following example, the attribute is attached to LDPRE, SEL, RST,
LDCOMP, and CLK.

module prep2_2 (DATA0, DATA1, DATA2, LDPRE, SEL, RST, CLK, LDCOMP);
output [7:0] DATA0;
input [7:0] DATA1, DATA2;
input LDPRE, SEL, RST, CLK

/* synthesis syn_insert_buffer = "GL25" */, LDCOMP;
wire [7:0] DATA0_internal;
prep2_1 inst1 (CLK, RST, SEL, LDCOMP, LDPRE, DATA1, DATA2,

DATA0_internal);
prep2_1 inst2 (CLK, RST, SEL, LDCOMP, LDPRE, DATA0_internal,

DATA2, DATA0);
endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 73

module prep2_1 (CLK, RST, SEL, LDCOMP, LDPRE, DATA1, DATA2, DATA0);
input CLK, RST, SEL, LDCOMP, LDPRE ;
input [7:0] DATA1, DATA2 ;
output [7:0] DATA0 ;
reg [7:0] DATA0;
reg [7:0] highreg_output, lowreg_output; // internal registers
wire compare_output = (DATA0 == lowreg_output); // comparator
wire [7:0] mux_output = SEL ? DATA1 : highreg_output;

// mux registers
always @ (posedge CLK or posedge RST)
begin

if (RST) begin
highreg_output = 0;
lowreg_output = 0;

end else begin
if (LDPRE)

highreg_output = DATA2;
if (LDCOMP)

lowreg_output = DATA2;
end

end

// counter
always @(posedge CLK or posedge RST)
begin

if (RST)
DATA0 = 0;

else if (compare_output) // load
DATA0 = mux_output;

else
DATA0 = DATA0 + 1;

end

endmoduleVHDL Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity prep2_1 is
port (clk : in bit;

rst : in bit;
sel : in bit;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 74

ldcomp : in bit;
ldpre : in bit;
data1,data2 : in std_logic_vector(7 downto 0);
data0 : out std_logic_vector(7 downto 0));

end prep2_1;

architecture behave of prep2_1 is
signal equal: bit;
signal mux_output: std_logic_vector(7 downto 0);
signal lowreg_output: std_logic_vector(7 downto 0);
signal highreg_output: std_logic_vector(7 downto 0);
signal data0_i: std_logic_vector(7 downto 0);
begin

compare: process(data0_i, lowreg_output)
begin

if data0_i = lowreg_output then
equal <= '1';

else
equal <= '0';

end if;
end process compare;

mux: process(sel, data1, highreg_output)
begin

case sel is
when '0' =>

mux_output <= highreg_output;
when '1' =>

mux_output <= data1;
end case;

end process mux;

registers: process (rst,clk)
begin

if (rst = '1') then
highreg_output <= "00000000";
lowreg_output <= "00000000";

elsif clk = '1' and clk'event then
if ldpre = '1' then

highreg_output <= data2;
end if;
if ldcomp = '1' then

lowreg_output <= data2;
end if;

end if;
end process registers;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 75

counter: process (rst,clk)
begin

if rst = '1' then
data0_i <= "00000000";

elsif clk = '1' and clk'event then
if equal = '1' then

data0_i <= mux_output;
elsif equal = '0' then

data0_i <= data0_i + "00000001";
end if;

end if;
end process counter;

data0 <= data0_i;
end behave;

library ieee;
use ieee.std_logic_1164.all;

entity prep2_2 is
port (CLK : in bit;

RST : in bit;
SEL : in bit;
LDCOMP : in bit;
LDPRE : in bit;
DATA1,DATA2 : in std_logic_vector(7 downto 0);
DATA0 : out std_logic_vector(7 downto 0));

attribute syn_insert_buffer : string;
attribute syn_insert_buffer of clk : signal is "GL25";
end prep2_2;

architecture behave of prep2_2 is
component prep2_1

port (clk : in bit;
rst : in bit;
sel : in bit;
ldcomp : in bit;
ldpre : in bit;
data1,data2 : in std_logic_vector(7 downto 0);
data0 : out std_logic_vector(7 downto 0));

end component;

signal data0_internal : std_logic_vector (7 downto 0);

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 76

begin
inst1: prep2_1 port map(clk => CLK, rst => RST, sel => SEL,

ldcomp => LDCOMP, ldpre => LDPRE, data1 => DATA1,
data2 => DATA2, data0 => data0_internal);

inst2: prep2_1 port map(clk => CLK, rst => RST, sel => SEL,
ldcomp => LDCOMP, ldpre => LDPRE, data1 => data0_internal,
data2 => DATA2, data0 => DATA0);

end behave;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 77

syn_isclock

Directive

Used with the syn_black_box directive and specifies an input port on a black
box as a clock. Use the syn_isclock directive to specify that an input port on a
black box is a clock, even though its name does not correspond to one of the
recognized names. Using this directive connects it to a clock buffer if appro-
priate. The data type is Boolean.

The syn_isclock directive is one of several directives that you can use with the
syn_black_box directive to define timing for a black box. See syn_black_box, on
page 37 for a list of the associated directives.

Verilog Syntax and Examples

object /* synthesis syn_isclock = 1 */ ;

where object is an input port on a black box.

module ram4 (myclk,out,opcode,a,b) /* synthesis syn_black_box */;
output [7:0] out;
input myclk /* synthesis syn_isclock = 1 */;
input [2:0] opcode;
input [7:0] a, b;

//Other code

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 78

VHDL Syntax and Examples

attribute syn_isclock of object: objectType is true ;

where object is a black-box input port.

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

library synplify;

entity ram4 is
port (myclk : in bit;

opcode : in bit_vector(2 downto 0);
a, b : in bit_vector(7 downto 0);
rambus : out bit_vector(7 downto 0));

attribute syn_isclock : boolean;
attribute syn_isclock of myclk: signal is true;

-- Other code

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 79

syn_keep

Directive

Preserves the specified net intact during optimization and synthesis.

Description

With this directive, the tool preserves the net without optimizing it away by
placing a temporary keep buffer primitive on the net as a placeholder. You can
view this buffer in the schematic views (see Effect of Using syn_keep, on
page 83 for an example). The buffer is not part of the final netlist, so no extra
logic is generated. There are various situations where this directive is useful:

• To preserve a net that would otherwise be removed as a result of optimi-
zation. You might want to preserve the net for simulation results or to
obtain a different synthesis implementation.

• To prevent duplicate cells from being merged during optimization. You
apply the directive to the nets connected to the input of the cells you
want to preserve.

• As a placeholder to apply the -through option of the define_multicycle_path or
define_false_path timing constraint. This allows you to specify a unique
path as a multiple-cycle or false path. Apply the constraint to the keep
buffer.

• To prevent the absorption of a register into a macro. If you apply
syn_keep to a reg or signal that will become a sequential object, the tool
keeps the register and does not absorb it into a macro.

syn_keep with Multiple Nets in Verilog

In the following statement, syn_keep only applies to the last variable in the
wire declaration, which is net c:

wire a,b,c /* synthesis syn_keep=1 */;

Technology Default Value Global Object

All - No Net

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 80

To apply syn_keep to all the nets, use one of the following methods:

• Declare each individual net separately as shown below.

wire a /* synthesis syn_keep=1 */;
wire b /* synthesis syn_keep=1 */;
wire c /* synthesis syn_keep=1 */;

• Use Verilog 2001 parenthetical comments, to declare the syn_keep attri-
bute as a single line statement.

(* syn_keep=1 *) wire a,b,c;

• For more information, see Attribute Examples Using Verilog 2001 Paren-
thetical Comments, on page 368.

syn_keep and SystemVerilog Data Types

The SystemVerilog data types behave like logic or reg, and SystemVerilog
allows them to be assigned either inside or outside an always block. If you
want to use syn_keep to preserve a net with a SystemVerilog data type, like bit,
byte, longint or shortint for example, you must make sure that continuous
assigns are made inside an always block, not outside.

The following table shows examples of SystemVerilog datatype assignments:

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 81

For information about supported SystemVerilog data types, see Data Types,
on page 377.

Comparison of syn_keep, syn_preserve, and syn_noprune

Although these directives all work to preserve logic from optimization,
syn_keep, syn_preserve, and syn_noprune work on different objects:

Assignment in always block,
syn_keep works

assign keep1_wireand_out;
assign keep2_wireand_out;
always @(*) begin

keep1_bitand_out;
keep2_bitand_out;
keep1_byteand_out;
keep2_byteand_out;
keep1_longintand_out;
keep2_longintand_out;
keep1_shortintand_out;
keep2_shortintand_out;

Assignment outside always block,
syn_keep does not work

assign keep1_wireand_out;
assign keep2_wireand_out;
assign keep1_bitand_out;
assign keep2_bitand_out;
assign keep1_byteand_out;
assign keep2_byteand_out;
assign keep1_longintand_out;
assign keep2_longintand_out;
assign keep1_shortintand_out;
assign keep2_shortintand_out;

syn_keep Only works on nets and combinational logic. It ensures that the
wire is kept during synthesis, and that no optimizations cross
the wire. This directive is usually used to prevent unwanted
optimizations and to ensure that manually created replications
are preserved. When applied to a register, the register is
preserved and not absorbed into a macro.

syn_preserve Ensures that registers are not optimized away.

syn_noprune Ensures that a black box is not optimized away when its
outputs are unused (i.e., when its outputs do not drive any
logic).

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 82

See Preserving Objects from Being Optimized Away, on page 335 in the User
Guide for more information.

Verilog Syntax and Example

object /* synthesis syn_keep = 1 */ ;

object is a wire or reg declaration. Make sure that there is a space between the
object name and the beginning of the comment slash (/).

Here is the source code used to produce the results shown in Effect of Using
syn_keep, on page 83.

module example2(out1, out2, clk, in1, in2);
output out1, out2;
input clk;
input in1, in2;
wire and_out;
wire keep1 /* synthesis syn_keep=1 */;
wire keep2 /* synthesis syn_keep=1 */;
reg out1, out2;
assign and_out=in1&in2;
assign keep1=and_out;
assign keep2=and_out;

always @(posedge clk)begin;
out1<=keep1;
out2<=keep2;

end
endmodule

VHDL Syntax and Example

attribute syn_keep of object : objectType is true ;

where object is a single or multiple-bit signal. See VHDL Attribute and
Directive Syntax, on page 554 for different ways to specify VHDL attributes
and directives.

Here is the source code used to produce the schematics shown in Effect of
Using syn_keep, on page 83.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 83

entity example2 is
port (in1, in2 : in bit;

clk : in bit;
out1, out2 : out bit);

end example2;

architecture rt1 of example2 is
attribute syn_keep : boolean;
signal and_out, keep1, keep2: bit;
attribute syn_keep of keep1, keep2 : signal is true;
begin
and_out <= in1 and in2;
keep1 <= and_out;
keep2 <= and_out;

process(clk)
begin

if (clk'event and clk = '1') then
out1 <= keep1;
out2 <= keep2;

end if;
end process;

end rt1;

Effect of Using syn_keep

When you use syn_keep on duplicate logic, the tool retains it instead of
optimizing it away. The following figure shows the Technology view for two
versions of a design.

In the first, syn_keep is set on the nets connected to the inputs of the registers
out1 and out2, to prevent sharing. The second figure shows the same design
without syn_keep. Setting syn_keep on the input wires for the registers ensures
that the design has duplicate registered outputs for out1 and out2. If you do
not apply syn_keep to keep1 and keep2, the software optimizes out1 and out2,
and only has one register.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 84

With syn_keep

Without syn_keep

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 85

syn_loc

Attribute

The syn_loc attribute specifies the location (placement) of ports.

syn_loc Values

Description

Specifies pin locations for I/O pins and cores, and forward-annotates this
information to the place-and-route tool. This attribute can only be specified
in a top-level source file or a constraint file.

syn_loc Syntax

pinNumbers is a comma-separated list of pin or placement numbers. Refer to
the vendor data book for valid values.

Vendor Technology

Microsemi SmartFusion, ProASIC and older families

Value Description

Pin numbers Assigns pin numbers to ports.

Default Global Attribute Object

Not Applicable No Port

FDC define_attribute portDesignName {syn_loc} {pinNumbers} FDC Example

Verilog object /* synthesis syn_loc = "pinNumbers" */ Verilog Example

VHDL attribute syn_loc of object : objectType is "pinNumbers" ; VHDL Example

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 86

FDC Example

The following are examples of using this attribute:

You can also specify locations for individual bus bits with this attribute:

Verilog Example

module test(a ,b, clk, out1);
input clk;
input [2:0]a;
input [2:0]b;
output reg [2:0] out1/* synthesis syn_loc = "P14,P12,P11*/;

always@(posedge clk)
begin

out1 <= a + b;
end
endmodule

Microsemi define_attribute {CR_DIN[3:0]} syn_loc {M7, Y6, B6, D10}

Microsemi define_attribute {CR_DIN[3:0]} syn_loc
{M7, Y6, B6, D10}

Microsemi

define_attribute {CR_DIN[3]} syn_loc {M7}
define_attribute {CR_DIN[2]} syn_loc {Y6}
define_attribute {CR_DIN[1]} syn_loc {B6}
define_attribute {CR_DIN[0]} syn_loc {D10}

Specify the b: prefix and the bit slice:
define_attribute {b:CR_DIN[0]} syn_loc {D10}
define_attribute {b:CR_DIN[1]} syn_loc {B6}
define_attribute {b:CR_DIN[2]} syn_loc {Y6}
define_attribute {b:CR_DIN[3]} syn_loc {M7}

Microsemi input [3:0] CR_DIN /* synthesis syn_loc = "M7,Y6, B6, D10"

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 87

VHDL Example

library ieee;
use ieee.std_logic_1164.all;

entity test is
generic (s : integer := 2);

port (
clk: in std_logic;
in1: in std_logic_vector(s downto 0);
in2: in std_logic_vector(s downto 0);
d_out: out std_logic_vector(5 downto 0));
attribute syn_loc : string;
attribute syn_loc of d_out:signal is"P14,P12,P11,P5,P21,P13";

end test;

architecture beh of test is
begin

process (clk)
begin

if rising_edge(clk) then
d_out <= in1 & in2;

end if;
end process;

end beh;

Microsemi attribute syn_loc : string;
attribute syn_loc of CR_DIN : signal is "M7,Y6, B6, D10";

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 88

syn_looplimit

Directive

VHDL only

Specifies a loop iteration limit for while loops in the design when the loop
index is a variable, not a constant. If your design requires a variable loop
index, use the syn_looplimit directive to specify a limit for the compiler. If you
do not, you can get a “while loop not terminating” compiler error. The limit
cannot be an expression. The higher the value you set, the longer the
runtime. To override the default limit of 2000 in the RTL, use the Loop Limit
option on the VHDL tab of the Implementation Options panel. See VHDL
Panel, on page 192 in the Command Reference.

Verilog applications use the loop_limit directive (see loop_limit, on page 27).

VHDL Syntax and Example

attribute syn_looplimit : integer;
attribute syn_looplimit of labelName : label is value;

The following is an example where the loop limit is set to 5000:

library IEEE;
use std.textio.all;
use ieee.std_logic_textio.all;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity initram is
port (rAddr, wAddr, dataIn : in integer;

clk: in bit;
we : in bit;
dataOut : out integer);

end;

architecture rtl of initram is
subtype smallint is integer range 0 to 3000;
type intAry is array (0 to 3000) of smallint;
function load(name : string) return intAry is
attribute syn_looplimit : integer;
attribute syn_looplimit of myloop: label is 5000;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 89

variable t : intAry ;
variable data : smallint ;
variable dataLine : line ;
variable i : natural ;
file dataFile : text open READ_MODE is name ;

begin
myloop: while (not endfile(dataFile)) loop

readline(dataFile,dataLine);
read(dataLine,data);
t(i) := data;
i := i + 1;

end loop myloop;

return t;
end load;

signal ram : intAry := load("data.txt");
signal rAddr_reg : integer ;
begin

process (clk) begin
if (clk'event and clk='1') then

rAddr_reg <= rAddr;
if(we = '1') then

ram(wAddr) <= dataIn;
end if;

end if;
end process;

dataOut <= ram(rAddr_reg);
end RTL ;

The data.txt file in the example is a large data file with each entry repre-
senting an iteration for the loop.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 90

syn_maxfan

Attribute

Overrides the default (global) fanout guide for an individual input port, net, or
register output.

syn_maxfan Value

Description

syn_maxfan overrides the global fanout for an individual input port, net, or
register output. You set the default Fanout Guide for a design through the
Device panel on the Implementation Options dialog box or with the set_option
-fanout_limit command or -fanout_guide in the project file. Use the syn_maxfan
attribute to specify a different (local) value for individual I/Os.

Generally, syn_maxfan and the default fanout guide are suggested guidelines
only, but in certain cases they function as hard limits.

• When they are guidelines, the synthesis tool takes them into account,
but does not always respect them absolutely. The synthesis tool does
not respect the syn_maxfan limit if the limit imposes constraints that
interfere with optimization.

You can apply the syn_maxfan attribute to the following:

• Registers or instances. You can also apply it to a module or entity. If you
attach the attribute to a lower-level module or entity that is subse-
quently optimized during synthesis, the synthesis tool moves the
syn_maxfan attribute up to the next higher level. If you do not want
syn_maxfan moved up during optimization, set the syn_hier attribute for
the entity or module to hard. This prevents the module or entity from
being flattened when the design is optimized.

Vendor Technology Default

Microsemi All None

value Integer for the maximum fanout

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 91

• Ports or nets. If you apply the attribute to a net, the synthesis tool
creates a KEEPBUF component and attaches the attribute to it to prevent
the net itself from being optimized away during synthesis.

The syn_maxfan attribute is often used along with the syn_noclockbuf attribute
on an input port that you do not want buffered. There are a limited number of
clock buffers in a design, so if you want to save these special clock buffer
resources for other clock inputs, put the syn_noclockbuf attribute on the clock
signal. If timing for that clock signal is not critical, you can turn off buffering
completely to save area. To turn off buffering, set the maximum fanout to a
very high number; for example, 1000.

Similarly, you use syn_maxfan with the syn_replicate attribute in certain
technologies to control replication.

syn_maxfan Syntax

FDC Example

define_attribute {object} syn_maxfan {integer}

Verilog Example

object /* synthesis syn_maxfan = "value" */ ;

Global Object Type

No Registers, instances, ports, nets

FDC define_attribute {object} syn_maxfan {integer} FDC Example

Verilog object /* synthesis syn_maxfan = "value" */ ; Verilog Example

VHDL attribute syn_maxfan of object : objectType is "value" ; VHDL Example

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 92

For example:

module syn_maxfan (clk,rst,a,b,c);
input clk,rst;
input [7:0] a,b;
output reg [7:0] c;

reg d/* synthesis syn_maxfan=3 */;

always @ (posedge clk)
begin

if(rst)
d <= 0;

else
d <= ~d;

end

always @ (posedge d)
begin

c <= a^b;
end

endmodule

VHDL Example

attribute syn_maxfan of object : objectType is "value" ;

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity maxfan is

port (a : in std_logic_vector(7 downto 0);
b : in std_logic_vector(7 downto 0);
rst : in std_logic;
clk : in std_logic;
c : out std_logic_vector(7 downto 0));

end maxfan;

architecture rtl of maxfan is
signal d : std_logic;

attribute syn_maxfan : integer;
attribute syn_maxfan of d : signal is 3;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 93

begin

process (clk)
begin
if (clk'event and clk = '1') then

if (rst = '1') then
d <= '0';
else
d <= not d;

end if;
end if;

end process;

process (d)
begin

if (d'event and d = '1') then

c <= a and b;
end if;
end process;

end rtl;

Effect of Using syn_maxfan

Before applying syn_maxfan:

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 94

After applying syn_maxfan:

After applying attribute syn_maxfan, the register “d” replicated three times
(shown in red) because its actual fanout is 8, but we have restricted it to 3.

Verilog reg d/* synthesis syn_maxfan=3 */;

VHDL attribute syn_maxfan of d : signal is 3;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 95

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 96

syn_multstyle

Attribute

Determines how multipliers are implemented.

syn_multstyle Values

Description

This attribute specifies whether the multipliers are implemented as dedicated
hardware blocks or as logic.

syn_multstyle Syntax

The following shows the attribute syntax when specified in different files:

Vendor Device Values

Microsemi SmartFusion2, IGLOO2 dsp | logic

Value Description Default

dsp Microsemi
Implements the multipliers as DSP blocks.

X

Global Attribute Object

Yes Module or instance

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 97

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

SCOPE Example

This SCOPE example specifies that the multipliers be globally implemented
as logic:

This example specifies that multipliers be implemented as logic.

define_attribute {temp[15:0]} syn_multstyle {logic}

FDC define_attribute {instance} syn_multstyle
{logic | dsp}

Global attribute:
define_global_attribute syn_multstyle
{logic | dsp }

SCOPE Example

Verilog input net /* synthesis syn_multstyle =
“logic | dsp ” */;

Verilog Example

VHDL attribute syn_multstyle of instance : signal
is “logic | dsp”;

VHDL Example

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 98

Verilog Example

module mult(a,b,c,r,en);
input [7:0] a,b;
output [15:0] r;
input [15:0] c;
input en;
wire [15:0] temp /* synthesis syn_multstyle="logic" */;
assign temp = a*b;
assign r = en ? temp: c;
endmodule

VHDL Example

library ieee ;
use ieee.std_logic_1164.all ;
USE ieee.numeric_std.all;

entity mult is
port (clk : in std_logic ;

a : in std_logic_vector(7 downto 0) ;
b : in std_logic_vector(7 downto 0) ;
c : out std_logic_vector(15 downto 0))

end mult ;

architecture rtl of mult is
signal mult_i : std_logic_vector(15 downto 0) ;
attribute syn_multstyle : string ;
attribute syn_multstyle of mult_i : signal is "logic" ;
begin
mult_i <= std_logic_vector(unsigned(a)*unsigned(b)) ;

process(clk)
begin

if (clk'event and clk = '1') then
c <= mult_i ;

end if ;
end process ;

end rtl ;

Effect of Using syn_multstyle in a Microsemi Design

In a Microsemi design, you can specify that the multipliers be implemented
as logic or as dedicated DSP blocks. The following figure shows a multiplier
implemented as DSP:

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 99

The following figure shows the same Microsemi design with the multiplier imple-
mented as logic when the attribute is set to logic:

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 100

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 101

syn_netlist_hierarchy

Attribute.

Determines if the generated netlist is to be hierarchical or flat.

syn_netlist_hierarchy Values

Description

A global attribute that controls the generation of hierarchy in the EDIF or VM
output netlist when assigned to the top-level module in your design. The
default (1/true) allows hierarchy generation, and setting the attribute
to 0/false flattens the hierarchy and produces a completely flattened output
netlist.

Syntax Specification

Vendor Technology

Microsemi ProASIC, IGLOO families

Value Description Default

1/true Allows hierarchy generation Default

0/false Flattens hierarchy in the netlist

Global Object

Yes Module/Architecture

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 102

SCOPE Example

Verilog Example

module fu_add(input a,b,cin,output su,cy);
assign su = a ^ b ^ cin;
assign cy = (a & b) | ((a^b) & cin);
endmodule 4

module rca_adder#(parameter width =4)
(input[width-1:0]A,B,input CIN,
 output[width-1:0]SU,output COUT);

wire[width-2:0]CY;
fu_add FA0(.su(SU[0]),.cy(CY[0]),.cin(CIN),.a(A[0]),.b(B[0]));
fu_add FA1(.su(SU[1]),.cy(CY[1]),.cin(CY[0]),.a(A[1]),.b(B[1]));
fu_add FA2(.su(SU[2]),.cy(CY[2]),.cin(CY[1]),.a(A[2]),.b(B[2]));
fu_add FA3(.su(SU[3]),.cy(COUT),.cin(CY[2]),.a(A[3]),.b(B[3]));
endmodule

module rp_top#(parameter width =16)
(input[width-1:0]A1,B1,input CIN1,
 output[width- 1:0]SUM,output COUT1) /*synthesis

syn_netlist_hierarchy=0*/;
wire[2:0]CY1;
rca_adder RA0 (.SU(SUM[3:0]),.COUT(CY1[0]),.CIN(CIN1),

.A(A1[3:0]),.B(B1[3:0]));
rca_adder RA1(.SU(SUM[7:4]),.COUT(CY1[1]),.CIN(CY1[0]),

.A(A1[7:4]),.B(B1[7]));

FDC define_global_attribute syn_netlist_hierarchy {0|1} SCOPE
Example

Verilog object /* synthesis syn_netlist_hierarchy = 0|1 */ ; Verilog
Example

VHDL attribute syn_netlist_hierarchy of object : objectType is true|false ; VHDL
Example

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 103

rca_adder RA2 (.SU(SUM[11:8]),.COUT(CY1[2]),.CIN(CY1[1]),
.A(A1[11:8]),.B(B1[11:8]));

rca_adder RA3(.SU(SUM[15:12]),.COUT(COUT1),.CIN(CY1[2]),
.A(A1[15:12]),.B(B1[15:12]));

endmodule

VHDL Example

library ieee;
use ieee.std_logic_1164.all;

entity FULLADDER is
port (a, b, c : in std_logic;

sum, carry: out std_logic);
end FULLADDER;

architecture fulladder_behav of FULLADDER is
begin

sum <= (a xor b) xor c ;
carry <= (a and b) or (c and (a xor b));

end fulladder_behav;

library ieee;
use ieee.std_logic_1164.all;

entity FOURBITADD is
port (a, b : in std_logic_vector(3 downto 0);

Cin : in std_logic;
sum : out std_logic_vector (3 downto 0);
Cout, V : out std_logic);

end FOURBITADD;

architecture fouradder_structure of FOURBITADD is
signal c: std_logic_vector (4 downto 1);
component FULLADDER

port (a, b, c: in std_logic;
sum, carry: out std_logic);

end component;
begin

FA0: FULLADDER
port map (a(0), b(0), Cin, sum(0), c(1));

FA1: FULLADDER
port map (a(1), b(1), C(1), sum(1), c(2));

FA2: FULLADDER
port map (a(2), b(2), C(2), sum(2), c(3));

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 104

FA3: FULLADDER
port map (a(3), b(3), C(3), sum(3), c(4));

V <= c(3) xor c(4);
Cout <= c(4);

end fouradder_structure;

library ieee;
use ieee.std_logic_1164.all;

entity BITADD is
port (A, B: in std_logic_vector(15 downto 0);

Cin : in std_logic;
SUM : out std_logic_vector (15 downto 0);
COUT: out std_logic);

end BITADD;

architecture adder_structure of BITADD is
attribute syn_netlist_hierarchy : boolean;
attribute syn_netlist_hierarchy of adder_structure:

architecture is false;
signal C: std_logic_vector (4 downto 1);

component FOURBITADD
port (a, b: in std_logic_vector(3 downto 0);

Cin : in std_logic;
sum : out std_logic_vector (3 downto 0);
Cout, V: out std_logic);

end component;

begin
F1: FOURBITADD

port map (A(3 downto 0),B(3 downto 0),
 Cin, SUM(3 downto 0),C(1));

F2: FOURBITADD
port map (A(7 downto 4),B(7 downto 4),

 C(1), SUM(7 downto 4),C(2));
F3: FOURBITADD

port map (A(11 downto 8),B(11 downto 8),
 C(2), SUM(11 downto 8),C(3));

F4: FOURBITADD
port map (A(15 downto 12),B(15 downto 12),

 C(3), SUM(15 downto 12),C(4));
COUT <= c(4);

end adder_structure;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 105

Effect of Using syn_netlist_hierarchy

Without applying the attribute (default is to allow hierarchy generation) or
setting the attribute to 1/true creates a hierarchical netlist.

Verilog output[width-1:0]SUM,output COUT1)
/*synthesis syn_netlist_hierarchy=1*/;

VHDL attribute syn_netlist_hierarchy of adder_structure :
architecture is true ;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 106

Applying the attribute with a value of 0/false creates a flattened netlist.

syn_hier flatten and syn_netlist_hierarchy

The syn_hier=flatten attribute and the syn_netlist_hierarchy=false attributes both
flatten hierarchy, but work slightly differently. Use the syn_netlist_hierarchy
attribute if you want a completely flattened netlist (this attribute flattens all
levels of hierarchy). When you set syn_hier=flatten, you flatten the hierarchical
levels below the component on which it is set, but you do not flatten the
current hierarchical level where it is set. Refer to syn_hier, on page 62 for
information about this attribute.

Verilog output[width-1:0]SUM,output COUT1)
/*synthesis syn_netlist_hierarchy=0*/;

VHDL attribute syn_netlist_hierarchy of adder_structure :
architecture is false ;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 107

syn_noarrayports

Attribute

Specifies that the ports of a design unit be treated as individual signals
(scalars), not as buses (arrays) in the output file.

Constraint File Syntax and Example

define_global_attribute syn_noarrayports {0|1}

For example:

define_global_attribute syn_noarrayports {1}

Verilog Syntax and Example

object /* synthesis syn_noarrayports = 0 | 1 ;

Where object is a module declarations. For example:

module adder8(cout, sum, a, b, cin)
/* synthesis syn_noarrayports = 1 */;

// Other code

VHDL Syntax and Example

attribute syn_noarrayports of object : objectType is true | false ;

where object is an architecture name. The data type is Boolean. See VHDL
Attribute and Directive Syntax, on page 554 for different ways to specify
VHDL attributes and directives.

In this example, the ports of adder8 are treated as scalars during synthesis.

architecture adder8 of adder8 is
attribute syn_noarrayports : boolean;
attribute syn_noarrayports of adder8 : architecture is true;

-- Other code

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 108

syn_noclockbuf

Attribute

Turns off automatic clock buffer usage.

syn_noclockbuf Values

Description

The synthesis tool uses clock buffer resources, if they exist in the target
module, and puts them on the highest fanout clock nets. You can turn off
automatic clock buffer usage by using the syn_noclockbuf attribute. For
example, you can put a clock buffer on a lower fanout clock that has a higher
frequency and a tighter timing constraint.

You can turn off automatic clock buffering for nets or specific input ports. Set
the Boolean value to 1 or true to turn off automatic clock buffering.

You can attach this attribute to a port or net in any hard architecture or
module whose hierarchy will not be dissolved during optimization.

Constraint File Syntax and Example

Vendor Technology

Microsemi all

Value Description

0/false
(Default)

Turns on clock buffering.

1/true Turns off clock buffering.

Global Support Object

Yes module/architecture

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 109

define_attribute {clock_port} syn_noclockbuf {0|1}

define_global_attribute syn_noclockbuf {0|1}

For example:

define_attribute {clk} syn_noclockbuf {1}

define_global_attribute syn_noclockbuf {1}

FDC Example

The syn_noclockbuf attribute can be applied in the scope window as shown:

Verilog Syntax and Examples

object /* synthesis syn_noclockbuf = 1 | 0 */ ;

module ckbufg (d,clk,rst,set,q);
input d,rst,set;
input clk /*synthesis syn_nocclockbuf=1*/;
output reg q;
always@(posedge clk)
begin
if(rst)
q<=0;
else if(set)
q<=1;
else
q<=d;
end
endmodule

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 110

VHDL Syntax and Examples

attribute syn_noclockbuf of object : objectType is true | false ;

library IEEE;
use IEEE.std_logic_1164.all;
entity d_ff_srss is
port (d,clk,reset,set : in STD_LOGIC;

q : out STD_LOGIC);
attribute syn_noclockbuf: Boolean;
attribute syn_noclockbuf of clk : signal is false;
end d_ff_srss;
architecture d_ff_srss of d_ff_srss is
begin
process(clk)
begin
if clk'event and clk='1' then
if reset='1' then
q <= '0';
elsif set='1' then
q <= '1';
else
q <= d;
end if;
end if;
end process;
end d_ff_srss;

Global Support

When syn_noclockbuf attribute is applied globally, global buffers are inferred
by default. If the syn_noclockbuf attribute value is set to ‘1’, global buffers are
not inferred.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 111

syn_noprune

Directive
Prevents optimizations for instances and black-box modules (including

technology-specific primitives) with unused output ports.

syn_noprune Values

Description

Use this attribute to prevent the removal of instances, black-box modules,
and technology-specific primitives with unused output ports during optimi-
zation.

By default, the synthesis tool removes any module that does not drive logic as
part of the synthesis optimization process. If you want to keep such an
instance in the design, use the syn_noprune directive on the instance or
module, along with syn_hier set to hard.

The syn_noprune directive does not prevent a hierarchy from being dissolved or
flattened. To ensure that hierarchies are preserved in a design with multiple
hierarchies, you must specify the syn_noprune directive and set syn_hier to fixed
for all levels of the hierarchy. See Verilog Example 3: Hierarchical Design, on
page 113 for an example.

For further information about this and other directives used for preserving
logic, see Comparison of syn_keep, syn_preserve, and syn_noprune, on
page 81, and Preserving Objects from Being Optimized Away, on page 335 in
the User Guide.

Vendor Technology Global Object

All All No Verilog module/instance
VHDL architecture/component

Value Description

0 | false

(Default)
Allows instances and black-box modules with unused output ports
to be optimized away.

1 | true Prevents optimizations for instances and black-box modules with
unused output ports.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 112

syn_noprune Syntax

Verilog Examples

This section contains code snippets and an example.

Verilog Example 1: Module Declaration
syn_noprune can be applied in two places: on the module declaration of
syn_noprune or in the top-level instantiation. The most common place to use
syn_noprune is in the declaration of the module. By placing it here, all
instances of the module are protected.

module syn_noprune (a,b,c,d,x,y); /* synthesis syn_noprune=1 */;

// Other code

The results for this example are shown in Effects of using syn_noprune:
Example 1, on page 118.

my_design
my_design1 (out, in, clk_in) /* synthesis syn_noprune=1 */,
my_design2 (out, in, clk_in),
my_design3 (out, in, clk_in) /* synthesis syn_noprune=1 */;

module top(a1,b1,c1,d1,y1,clk);
output y1;
input a1,b1,c1,d1;
input clk;
wire x2,y2;
reg y1;
syn_noprune u1(a1,b1,c1,d1,x2,y2) /* synthesis syn_noprune=1 */;

always @(posedge clk)
y1<= a1;

endmodule

Verilog object /* synthesis syn_noprune = 1 */ ; Verilog Examples

VHDL attribute syn_noprune : boolean
attribute syn_noprune of object : objectType is true;

VHDL Examples

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 113

module syn_noprune (a,b,c,d,x,y)/* synthesis syn_hier="hard" */;
output x,y;
input a,b,c,d;
endmodule

Verilog Example 2: Black Box Declaration
Here is a snippet showing syn_noprune used on black box instances. If your
design uses multiple instances with a single module declaration, the synthesis
comment must be placed before the comma (,) following the port list for each
of the instances.

my_design my_design1(out,in,clk_in) /* synthesis syn_noprune=1 */;
my_design my_design2(out,in,clk_in) /* synthesis syn_noprune=1 */;

In this example, only the instance my_design2 will be removed if the output
port is not mapped.

The results for the following code example, where syn_noprune is used on an
instance and a black box, is shown in Effects of Using syn_noprune: Example
2, on page 119.

module top
(input a, b, c, d, e, clk,
output o1);

reg o2_noprunereg /* synthesis syn_noprune = 1*/ ;
wire o3_wire;
assign o1 = a & b;
always @(posedge clk)

begin
o2_noprunereg = c & d & e;

end
noprune_bb U1 (a, o3_wire) /* synthesis syn_noprune = 1*/ ;
endmodule
module noprune_bb (input in1, output o1);
endmodule

Verilog Example 3: Hierarchical Design
In the example below, syn_noprune1 and syn_noprune2 are intermediate
modules in a hierarchical design. You must apply syn_hier = fixed attribute to
them if you want the lowest-level modules, syn_noprune3 and syn_noprune4, to
be preserved.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 114

module top(a1,b1,c1,d1,y1,clk,a2,b2,c2,d2);
output y1;
input a1,b1,c1,d1;
input a2,b2,c2,d2;
input clk;
wire x2,y2,x3,y3;
reg y1;
syn_noprune1 u1(a1,b1,c1,d1,x2,y2);
syn_noprune1 u2(a2,b2,c2,d,x3,y3);

always @(posedge clk)
y1<= a1;
endmodule

module syn_noprune1 (a,b,c,d,x,y)/* synthesis syn_noprune=1
syn_hier = "fixed" */;

output x,y;
input a,b,c,d;

syn_noprune2 uut (.*);
endmodule

module syn_noprune2 (a,b,c,d,x,y)/* synthesis syn_noprune=1
syn_hier = "fixed"*/;

output x,y;
input a,b,c,d;

syn_noprune3 uut1 (.*);
syn_noprune4 uut2 (.*);

endmodule

module syn_noprune3 (a,b,c,d,x)/* synthesis syn_black_box
syn_noprune=1 */;

output x;
input a,b,c,d;

endmodule

module syn_noprune4 (a,b,c,d,y)/* synthesis syn_black_box
syn_noprune=1 */;

output y;
input a,b,c,d;

endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 115

VHDL Examples

This section contains code snippets and an example.

Architecture Declaration
The syn_noprune attribute is normally associated with the names of architec-
tures. Once it is associated, any component instantiation of the architecture
(design unit) is protected from being deleted.

library synplify;
architecture mydesign of rtl is

attribute syn_noprune : boolean;
attribute syn_noprune of mydesign : architecture is true;

-- Other code

Component Declaration
Here is an example:

architecture top_arch of top is
component gsr

port (gsr : in std_logic);
end component;

attribute syn_noprune : boolean;
attribute syn_noprune of gsr: component is true;

See Instantiating Black Boxes in VHDL, on page 552, for more information.

Component Instance Declaration
The syn_noprune attribute works the same on component instances as with a
component declaration.

architecture top_arch of top is
component gsr

port (gsr : in bit);
end component;

attribute syn_noprune : boolean;
attribute syn_noprune of u1_gsr: label is true;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 116

Example 1
The results for this example are shown in Effects of using syn_noprune:
Example 1, on page 118.

my_design
my_design1 (out, in, clk_in) /* synthesis syn_noprune=1 */,
my_design2 (out, in, clk_in),
my_design3 (out, in, clk_in) /* synthesis syn_noprune=1 */;

module top(a1,b1,c1,d1,y1,clk);
output y1;
input a1,b1,c1,d1;
input clk;
wire x2,y2;
reg y1;
syn_noprune u1(a1,b1,c1,d1,x2,y2) /* synthesis syn_noprune=1 */;

always @(posedge clk)
y1<= a1;

endmodule

module syn_noprune (a,b,c,d,x,y)/* synthesis syn_hier="hard" */;
output x,y;
input a,b,c,d;
endmodule

library ieee;
use ieee.std_logic_1164.all;

entity noprune is
port (a, b, c,d : in std_logic;

x,y : out std_logic);
end noprune;

architecture behave of noprune is
attribute syn_hier : string;
attribute syn_hier of behave : architecture is "hard" ;
begin

x <= a and b;
y <= c and d;

end behave;

library ieee;
use ieee.std_logic_1164.all;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 117

entity top is
port (a1, b1 : in std_logic;

c1,d1,clk : in std_logic;
y1 :out std_logic);

end ;

architecture behave of top is
component noprune
port (a, b, c, d : in std_logic;

x,y : out std_logic);
end component;

signal x2,y2 : std_logic;
attribute syn_noprune : boolean;
attribute syn_noprune of u1 : label is true;
begin

u1: noprune port map(a1, b1, c1, d1, x2, y2);
process begin

wait until (clk = '1') and clk'event;
y1 <= a1;

end process;
end;

VHDL Black Box Example
The results for this example are shown in Effect of Using syn_noprune:
Example 3, on page 120.

Example 3

library ieee;
use ieee.std_logic_1164.all;

entity top is
port (
clk : in std_logic;
a, b, c, d : in std_logic;
out_a : out std_logic);

end entity top;

architecture arch of top is
component noprune_bb

port(
din : in std_logic;
dout : out std_logic);

end component noprune_bb;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 118

signal o1_noprunereg : std_logic;
signal o2_reg : std_logic;

attribute syn_noprune : boolean;
attribute syn_noprune of U1: label is true;
attribute syn_noprune of o1_noprunereg : signal is true;

begin
process(clk)

begin
if rising_edge(clk) then

o1_noprunereg <= b and c;
out_a <= a;

end if;
end process;
U1: noprune_bb port map (d, o2_reg);

end architecture arch;

Effects of using syn_noprune: Example 1

The following figure shows the HDL Analyst view for two versions of a design:
one version using syn_noprune on black box instance U1, one version without
syn_noprune.

With syn_noprune, module U1 is preserved in the design. Without syn_noprune,
the module is optimized away. See the examples in Verilog Examples, on
page 112and VHDL Examples, on page 115 for the corresponding code.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 119

Effects of Using syn_noprune: Example 2

The following Technology views show that the instance and black box module
are not optimized away when syn_noprune is applied. For the corresponding
Verilog code, see Verilog Example 2: Black Box Declaration, on page 113.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 120

Effect of Using syn_noprune: Example 3

In the following VHDL code example, syn_noprune is applied on both an
instance and black box module with unused outputs. For the corresponding
code, see For the corresponding VHDL code, see VHDL Black Box Example,
on page 117.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 121

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 122

syn_pad_type

Attribute

Specifies an I/O buffer standard.

syn_pad_type Values

Description

Specifies an I/O buffer standard. Refer to I/O Standards, on page 183 and to
the vendor-specific documentation for a list of I/O buffer standards available
for the selected device family.

syn_pad_type Syntax

Vendor Technology

Microsemi Axcelerator, IGLOO, and ProASIC and newer families

Value Description

{buffer}_{standard}
For example: IBUF_LVCMOS_18

Specifies the port I/O standard.

Default Global Attribute Object

Not Applicable No Port

FDC define_io_standard -default portType {port} -delay_type
portType syn_pad_type {io_standard}
For example: define_io_standard {p} -delay_type
output syn_pad_type {LVCMOS_18}

FDC Example

Verilog object /* synthesis syn_pad_type = io_standard */ Verilog Example

VHDL attribute syn_pad_type of object : objectType is
io_standard ;

VHDL Example

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 123

FDC Example

Constraint File Examples

-default_portType PortType can be input, output, or bidir. Setting
default_input, default_output, or default_bidir causes all
ports of that type to have the same I/0 standard
applied to them.

-delay_type portType PortType can be input, output, or bidir.

syn_pad_type {io_standard} Specifies I/O standard (see following table).

To set... Use this syntax...

The default for all input
ports to the AGP1X pad
type

define_io_standard -default_input -delay_type
input syn_pad_type {AGP1X}

All output ports to the
GTL pad type

define_io_standard -default_output -delay_type
output syn_pad_type {GTL}

All bidirectional ports to
the CTT pad type

define_io_standard -default_bidir -delay_type
bidir syn_pad_type {CTT}

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 124

The following are examples of pad types set on individual ports. You cannot
assign pad types to bit slices.

define_io_standard {in1} -delay_type input
syn_pad_type {LVCMOS_15}

define_io_standard {out21} -delay_type output
syn_pad_type {LVCMOS_33}

define_io_standard {bidirbit} -delay_type bidir
syn_pad_type {LVTTL_33}

Verilog Example

module top (clk,A,B,PC,P);

input clk;
input A ;
input B,PC;
output reg P/* synthesis syn_pad_type = "OBUF_LVCMOS_18" */;

reg a_d,b_d;
reg m;

always @(posedge clk)
begin

a_d <= A;
b_d <= B;
m <= a_d + b_d;
P <= m + PC;

end

endmodule

VHDL Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

library synplify;
use synplify.attributes.all;

entity top is
port (clk : in std_logic ;
A : in std_logic_vector(1 downto 0);

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 125

B : in std_logic_vector(1 downto 0);
PC : in std_logic_vector(1 downto 0);
P : out std_logic_vector(1 downto 0));

attribute syn_pad_type : string;
attribute syn_pad_type of P : signal is "OBUF_LVCMOS_18";
end top ;

architecture rtl of top is
signal m : std_logic_vector(1 downto 0);

begin
process(clk)

begin
if (clk'event and clk = '1') then

m <= A + B;
P <= m + PC;

end if ;
end process ;

end rtl ;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 126

Effect of Using syn_pad_type

The following figure shows the netlist output after the attribute is applied:

Verilog output reg P /*synthesis syn_pad_type = "OBUF_LVCMOS_18"*/;

VHDL attribute syn_pad_type of P : signal is "OBUF_LVCMOS_18";

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 127

syn_preserve

Directive

Prevents sequential optimizations such as constant propagation, inverter
push-through, and FSM extraction.

syn_preserve Values

Description

The syn_preserve directive controls whether objects are optimized away. Use
syn_preserve to retain registers for simulation, or to preserve the logic of
registers driven by a constant 1 or 0. You can set syn_preserve on individual
registers or on the module/architecture so that the directive is applied to all
registers in the module.

For example, assume that the input of a flip-flop is always driven to the same
value, such as logic 1. By default, the synthesis tool ties that signal to VCC
and removes the flip-flop. Using syn_preserve on the registered signal prevents
the removal of the flip-flop. This is useful when you are not finished with the
design but want to do a preliminary run to find the area utilization.

Another use for this attribute is to preserve a particular state machine. When
the FSM compiler is enabled, it performs various state-machine optimiza-
tions. Use syn_preserve to retain a particular state machine and prevent it
from being optimized away.

Value Description

1 | true Preserves register logic.

0 | false (Default) Optimizes registers as needed.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 128

When registers are removed during synthesis, the tool issues a warning
message in the log file. For example:

@W:...Register bit out2 is always 0, optimizing ...

The syn_preserve directive is similar to syn_keep and syn_noprune, in that it
preserves logic. For more information, see Comparison of syn_keep,
syn_preserve, and syn_noprune, on page 81, and Preserving Objects from
Being Optimized Away, on page 335 in the User Guide.

syn_preserve Syntax

Verilog object /* synthesis syn_preserve = 0 |1 */ Verilog Example

VHDL attribute syn_preserve of object : objectType is true | false; VHDL Examples

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 129

Verilog Example

In the following example, syn_preserve is applied to all registers in the module
to prevent them from being optimized away. For the results, see Effect of
using syn_preserve, on page 131.

module mod_preserve (out1,out2,clk,in1,in2)
/* synthesis syn_preserve=1 */;

output out1, out2;
input clk;
input in1, in2;
reg out1;
reg out2;
reg reg1;
reg reg2;

always@ (posedge clk)begin
reg1 <= in1 &in2;
reg2 <= in1&in2;
out1 <= !reg1;
out2 <= !reg1 & reg2;
end
endmodule

This is an example of setting syn_preserve on a state register:

reg [3:0] curstate /* synthesis syn_preserve = 1 */ ;

VHDL Examples

This section contains some VHDL code examples:

Example 3
library ieee, synplify;
use ieee.std_logic_1164.all;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 130

entity simpledff is
port (q : out std_logic_vector(7 downto 0);

d : in std_logic_vector(7 downto 0);
clk : in std_logic);

-- Turn on flip-flop preservation for the q output
attribute syn_preserve : boolean;
attribute syn_preserve of q : signal is true;
end simpledff;

architecture behavior of simpledff is
begin

process(clk)
begin

if rising_edge(clk) then
-- Notice the continual assignment of "11111111" to q.

q <= (others => '1');
end if;

end process;
end behavior;

Example 2
In this example, syn_preserve is used on the signal curstate that is later used in
a state machine to hold the value of the state register.

architecture behavior of mux is
begin
signal curstate : state_type;
attribute syn_preserve of curstate : signal is true;

-- Other code

Example 3
The results for the following example are shown in Effect of using
syn_preserve, on page 131.

library ieee;
use ieee.std_logic_1164.all;

entity mod_preserve is
port (out1 : out std_logic;

out2 : out std_logic;
in1,in2,clk : in std_logic);

end mod_preserve;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 131

architecture behave of mod_preserve is
attribute syn_preserve : boolean;
attribute syn_preserve of behave: architecture is true;
signal reg1 : std_logic;
signal reg2 : std_logic;
begin

process
begin

wait until clk'event and clk = '1';
reg1 <= in1 and in2;
reg2 <= in1 and in2;
out1 <= not (reg1);
out2 <= (not (reg1) and reg2) ;

end process;
end behave;

Effect of using syn_preserve

The following figure shows reg1 and out2 are preserved during optimization
with syn_preserve.

When syn_preserve is not set, reg1 and reg2 are shared because they are driven
by the same source. out2 gets the result of the AND of reg2 and NOT reg1. This
is equivalent to the AND of reg1 and NOT reg1, which is a 0. As this is a
constant, the tool removes out2 and the output out2 is always 0.

Verilog mod_preserve /* synthesis syn_preserve = 1 */

VHDL attribute syn_preserve of behave : architecture is true;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 132

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 133

syn_probe

Attribute.

Inserts probe points for testing and debugging the internal signals of a
design.

syn_probe Values

Description

syn_probe works as a debugging aid, inserting probe points for testing and
debugging the internal signals of a design. The probes appear as ports at the
top level. When you use this attribute, the tool also applies syn_keep to the
net.

You can specify values to name probe ports and assign pins to named ports
for selected technologies. Pin-locking properties of probed nets will be trans-
ferred to the probe port and pad. If empty square brackets [] are used, probe
names will be automatically indexed, according to the index of the bus being
probed.

The table below shows how to apply syn_probe values to nets, buses, and bus
slices. It indicates what port names will appear at the top level. When the
syn_probe value is 0, probe generation is disabled; when syn_probe is 1, the
probe port name is derived from the net name.

Value Description

1/true Inserts a probe, and automatically derives a name for the probe port
from the net name.

0/false Disables probe generation.

portName Inserts a probe and generates a port with the specified name. If you
include empty square brackets, [], the probe names are automatically
indexed to the net name.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 134

syn_probe Syntax

The following table shows the syntax used to define this attribute in different
files:

FDC Example

The following examples insert a probe signal into a net and assign pin
locations to the ports.

Net Name syn_probe
Value

Probe Port Comments

n:ctrl 1 ctrl_probe_1 Probe port name generated by the
synthesis tool.

n:ctr test_pt test_pt For string values on a net, the port
name is identical to the syn_probe value.

n:aluout[2] test_pt test_pt For string values on a bus slice, the
port name is identical to the syn_probe
value.

n:aluout[2] test_pt[] test_pt[2] The empty square brackets [] indicate
that port names will be indexed to net
names.

n:aluout[2:0] test_pt[] test_pt[2]
test_pt[1]
test_pt[0]

The empty square brackets [] indicate
that port names will be indexed to net
names.

n:aluout[2:0] test_pt test_pt,
test_pt_0,
test_pt_1

If a syn_probe value without brackets is
applied to a bus, the port names are
adjusted.

Global Object Default

No Net None

FDC define_attribute {n:netName} syn_probe
{probePortname|1|0}

FDC Example

Verilog object /* synthesis syn_probe = "string" | 1 | 0 */ ; Verilog Example

VHDL attribute syn_probe of object : signal is "string" | 1 | 0 ; VHDL Example

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 135

define_attribute {n:inst2.DATA0_*[7]} syn_probe {test_pt[]}
define_attribute {n:inst2.DATA0_*[7]} syn_loc

{14,12,11,5,21,18,16,15}

Verilog Example

The following example inserts probes on bus alu_tmp [7:0] and assign pin
locations to each of the ports inserted for the probes.

module alu(out1, opcode, clk, a, b, sel);
output [7:0] out1;
input [2:0] opcode;
input [7:0] a, b;
input clk, sel;
reg [7:0] alu_tmp /* synthesis syn_probe="alu1_probe[]"

syn_loc="A5,A6,A7,A8,A10,A11,A13,A14" */;
reg [7:0] out1;
// Other code
always @(opcode or a or b or sel)
begin

case (opcode)
3'b000:alu_tmp <= a+b;
3'b000:alu_tmp <= a-b;
3'b000:alu_tmp <= a^b;
3'b000:alu_tmp <= sel ? a:b;
default:alu_tmp <= a|b;

endcase
end

always @(posedge clk)
out1 <= alu_tmp;
endmodule

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 136

VHDL Example

The following example inserts probes on bus alu_tmp(7 downto 0) and assigns
pin locations to each of the ports inserted for the probes.

library ieee;
use ieee.std_logic_1164.all;
entity alu is
port (a : in std_logic_vector(7 downto 0);

b : in std_logic_vector(7 downto 0);
opcode : in std_logic_vector(2 downto 0);

clk : in std_logic;
out1 : out std_logic_vector(7 downto 0));

end alu;
architecture rtl of alu is
signal alu_tmp : std_logic_vector (7 downto 0);

attribute syn_probe : string;
attribute syn_probe of alu_tmp : signal is "test_pt";
attribute syn_loc : string;
attribute syn_loc of alu_tmp : signal is

"A5,A6,A7,A8,A10,A11,A13,A14";

begin
process (clk)

begin
if (clk'event and clk = '1') then
out1 <= alu_tmp;
end if;

end process;
process (opcode,a,b)

begin
case opcode is
when "000" => alu_tmp <= a and b;
when "001" => alu_tmp <= a or b;
when "010" => alu_tmp <= a xor b;
when "011" => alu_tmp <= a nand b;
when others => alu_tmp <= a nor b;

end case;
end process;

end rtl;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 137

Effect of Using syn_probe

Before applying syn_probe:

After applying syn_probe with “1”:

Verilog reg [7:0] alu_tmp /* synthesis syn_probe="0"*/

VHDL attribute syn_probe of alu_tmp : signal is "0";

Verilog reg [7:0] alu_tmp /* synthesis syn_probe="1"*/

VHDL attribute syn_probe of alu_tmp : signal is "1";

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 138

After applying syn_probe with “test_pt”:

Verilog reg [7:0] alu_tmp /* synthesis syn_probe="test_pt"*/

VHDL attribute syn_probe of alu_tmp : signal is "test_pt";

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 139

After applying syn_probe with “test_pt[]”:

Verilog reg [7:0] alu_tmp /* synthesis syn_probe="test_pt[]"*/

VHDL attribute syn_probe of alu_tmp : signal is "test_pt[]";

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 140

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 141

syn_radhardlevel

Attribute.

Implements designs with high reliability, using radiation-resistant
techniques.

Some high reliability techniques are not available or appropriate for all
Microsemi families. Use a design technique that is valid for the project.
Contact Microsemi technical support for details.

You can apply syn_radhardlevel globally to the top-level module/architecture or
on an individual register output signal (or inferred register in VHDL), and the
tool uses the attribute value in conjunction with the Microsemi macro files
supplied with the software. For more details about using this attribute, see
Specifying syn_radhardlevel in the Source Code, on page 482 and Working
with Radhard Designs, on page 481 in the User Guide.

Vendor Technologies Tool

Microsemi Anti-fuse (RT, RH and RD radhard devices)
ProASIC3, ProASIC3E, ProASIC3L, IGLOO2,
SmartFusion2

Synplify Pro

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 142

syn_radhardlevel = none | cc | tmr | tmr_cc

syn_radhardlevel Syntax (Microsemi)

The following table summarizes the syntax in different files:

Value Description

none Default. Uses standard design techniques, and does not insert any
triple register logic.

cc Microsemi Anti-fuse
Implements combinational cells with feedback as storage, rather
than flip-flop or latch primitives.

tmr Microsemi Anti-fuse, ProASIC3, ProASIC3E, ProASIC3L,
SmartFusion2, IGLOO2
Uses triple module redundancy or triple voting to implement
registers. Each register is implemented by three flip-flops or latches
that “vote” to determine the state of the register. This option can
potentially affect area and timing QoR because of the additional
logic inserted, so be sure to check your area and timing goals when
you use this option.

tmr_cc Microsemi Anti-fuse
Uses triple module redundancy, where each voting register is
composed of combinational cells with feedback rather than flip-flop
or latch primitives

Name Global Attribute Object

syn_radhardlevel No Module, architecture, register
Verilog: output signal
VHDL: architecture, signal

FDC define_attribute {object} syn_radhardlevel
{none|cc|trmr|tmr_cc}

Constraint File Example, on
page 143

Verilog object /* synthesis syn_radhardlevel =
none|cc|trmr|tmr_cc */

Verilog syn_radhardlevel
Example, on page 143

VHDL attribute syn_rw_conflict_logic : boolean;
attribute syn_rw_conflict_logic of Object : Object
Type is none|cc|trmr|tmr_cc ;

VHDL syn_radhardlevel
Example, on page 143

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 143

Constraint File Example
define_attribute {dataout[3:0]} syn_radhardlevel {tmr}

Verilog syn_radhardlevel Example
//Top level
module top (clk, dataout, a, b);
input clk;
input a;
input b;
output [3:0] dataout;
M1 inst_M1 (a1, M3_out1, clk, rst, M1_out);
// Other code

//Sub modules subjected to DTMR
module M1 (a1, a2, clk, rst, q)

/* synthesis syn_radhardlevel="distributed_tmr" */;
input clk;
input signed [15:0] a1,a2;
input clk, rst;
output signed [31:0] q;
// Other code

VHDL syn_radhardlevel Example
See VHDL Attribute and Directive Syntax, on page 554 for alternate methods
for specifying VHDL attributes and directives.

library synplify;
architecture top of top is
attribute syn_radhardlevel : string;
attribute syn_radhardlevel of top: architecture is "tmr";

-- Other code

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 144

syn_ramstyle

Attribute

Specifies the implementation for an inferred RAM.

syn_ramstyle Values

The values for syn_ramstyle vary with the target technology. The following table
lists all the valid syn_ramstyle values, some of which apply only to certain
technologies. For details about using syn_ramstyle, see RAM Attributes, on
page 309 in the User Guide.

Vendor Devices

Microsemi ProASIC3, Fusion, SmartFusion2
Older devices

Default Global Attribute Object

block_ram Yes View, module, entity, RAM instance

block_ram Specifies that the inferred RAM be mapped to the appropriate
device-specific memory. It uses the dedicated memory resources in
the FPGA.
By default, the software uses deep block RAM configurations
instead of wide configurations to get better timing results. Using
deeper RAMs reduces the output data delay timing by reducing the
MUX logic at the output of the RAMs. By default the software does
not use the parity bit for data with this option.
Alternatively, you can specify a ramType value. See RAM Type
Values and Implementations, on page 145 for details of how
memory is implemented for different devices.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 145

RAM Type Values and Implementations
The table lists vendor-specify RAM implementation information, including
vendor-specific ramType values.

no_rw_check By default, the synthesis tool inserts bypass logic around the
inferred RAM to avoid simulation mismatches caused by
indeterminate output values when reads and writes are made to the
same address. When this option is specified, the synthesis tool does
not insert glue logic around the RAM.
You can use this option on its own or in conjunction with a RAM
type value such as M512, or with the power value for supported
technologies. You cannot use it with the rw_check option, as the two
are mutually exclusive.
There are other read-write check controls. See Read-Write Address
Checks, on page 146 for details about the differences.

ramType Specifies a device-specific RAM implementation. Valid values vary
from vendor to vendor as they are based on device architecture:
• Microsemi: lsram, uram

See RAM Type Values and Implementations, on page 145 for
details of how memory is implemented for different devices.

registers Specifies that an inferred RAM be mapped to registers (flip-flops and
logic), not technology-specific RAM resources.

rw_check When enabled, the synthesis tool inserts bypass logic around the
RAM to prevent a simulation mismatch between the RTL and
post-synthesis simulations.
You can use this option on its own or in conjunction with a RAM
type value such as M512, or with the power value for supported
technologies. You cannot use it with the no_rw_check option, as the
two are mutually exclusive.
There are other read-write check controls. See Read-Write Address
Checks, on page 146 for details about the differences.

Vendor Values Implementation Technology

Microsemi Default: block_ram ProASIC3/
ProASIC3E/
ProASIC3Lregisters Registers

Default: Registers SmartFusion, Fusion
IGLOO+, IGLOO
IGLOOe

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 146

Description

The syn_ramstyle attribute specifies the implementation to use for an inferred
RAM. You can apply the attribute globally, to a module, or a RAM instance.
You can also use syn_ramstyle to prevent the inference of a RAM, by setting it
to registers. If your RAM resources are limited, you can map additional RAMs
to registers instead of RAM resources using this setting.

The syn_ramstyle values vary with the technology.

Read-Write Address Checks
When reads and writes are made to the same address, the output could be
indeterminate, and this can cause simulation mismatches. The synthesis tool
offers multiple ways to specify how to handle read-write address checking:

If there is a conflict, the software uses the following order of precedence:

lsram RAM1K18 SmartFusion2

uram RAM64X18

registers Registers

Read Write Control Use when...

syn_ramstyle You know your design does not read and write to the same
address simultaneously and you want to specify the RAM
implementation. The attribute has two mutually-exclusive
read-write check options:
• Use no_rw_check to eliminate bypass logic. If you enable

global RAM inference with the Read Write Check on RAM
option, you can use no_rw_check to selectively disable
glue logic insertion for individual RAMs.

• Use rw_check to insert bypass logic. If you disable global
RAM inference with the Read Write Check on RAM option,
you can use rw_check to selectively enable glue logic
insertion for individual RAMs.

Read Write Check on RAM You want to globally enable or disable glue logic insertion
for all the RAMs in the design.

Vendor Values Implementation Technology

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 147

• syn_ramstyle attribute settings

• Read Write Check on RAM option on the Device panel of the Implementation
Options dialog box.

syn_ramstyle Syntax

FDC Example

If you edit a constraint file to apply syn_ramstyle, be sure to include the range
of the signal with the signal name. For example:

define_attribute {mem[7:0]} syn_ramstyle {registers};

define_attribute {mem[7:0]} syn_ramstyle {block_ram};

Verilog Example

module ram4 (datain,dataout,clk);
output [31:0] dataout;
input clk;
input [31:0] datain;
reg [7:0] dataout[31:0] /* synthesis syn_ramstyle="block_ram" */;
// Other code

VHDL Example

library ieee;
use ieee.std_logic_1164.all;

FDC define_attribute {signalname [bitRange]} -syn_ramstyle value
define_global_attribute syn_ramstyle value

FDC Example

Verilog object /* synthesis syn_ramstyle = value */ Verilog Example

VHDL attribute syn_ramstyle of object : objectType is value ; VHDL Example

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 148

entity ram4 is
port (d : in std_logic_vector(7 downto 0);

addr : in std_logic_vector(2 downto 0);
we : in std_logic;
clk : in std_logic;
ram_out : out std_logic_vector(7 downto 0));

end ram4;

library synplify;
architecture rtl of ram4 is
type mem_type is array (127 downto 0) of std_logic_vector (7

downto 0);
signal mem : mem_type;
-- mem is the signal that defines the RAM

attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is "block_ram";

-- Other code

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 149

syn_reference_clock

Attribute.

Specifies a clock frequency other than the one implied by the signal on the
clock pin of the register.

Description

syn_reference_clock is a way to change clock frequencies other than by using
the signal on the clock pin. For example, when flip-flops have an enable with
a regular pattern, such as every second clock cycle, use syn_reference_clock to
have timing analysis treat the flip-flops as if they were connected to a clock at
half the frequency.

To use syn_reference_clock, define a new clock, then apply its name to the
registers you want to change.

FDC Example

define_attribute {register} syn_reference_clock {clockName}

For example:

define_attribute {myreg[31:0]} syn_reference_clock {sloClock}

You can also use syn_reference_clock to constrain multiple-cycle paths through
the enable signal. Assign the find command to a collection (clock_enable_col),
then refer to the collection when applying the syn_reference_clock constraint.

The following example shows how you can apply the constraint to all registers
with the enable signal en40:

Vendor Technology Default Value Global Object

Microsemi SmartFusion2, ProASIC3,
older families

- - Register

FDC define_attribute {register} syn_reference_clock
{clockName}

FDC
Example

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 150

define_scope_collection clock_enable_col {find -seq * -filter
(@clock_enable==en40)}

define_attribute {$clock_enable_col} syn_reference_clock {clk2}

Note: You apply syn_reference_clock only in a constraint file; you cannot
use it in source code.

Effect of using syn_reference_clock

Before applying attribute:

After applying attribute:

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 151

syn_replicate

Attribute

Controls replication of registers during optimization.

syn_replicate values

Description

The synthesis tool automatically replicates registers while optimizing the
design and fixing fanouts, packing I/Os, or improving the quality of results.

If area is a concern, you can use this attribute to disable replication either
globally or on a per-register basis. When you disable replication globally, it
disables I/O packing and other QoR optimizations. When it is disabled, the
synthesis tool uses only buffering to meet maximum fanout guidelines.

To disable I/O packing on specific registers, set the attribute to 0. Similarly,
you can use it on a register between clock boundaries to prevent replication.
Take an example where the tool replicates a register that is clocked by clk1
but whose fanin cone is driven by clk2, even though clk2 is an unrelated clock
in another clock group. By setting the attribute for the register to 0, you can
disable this replication.

syn_replicate Syntax Specification

Vendor Technologies

Microsemi SmartFusion and older families

Value Default Global Object Description

0 No Yes Register Disables duplication of registers

1 Yes Yes Register Allows duplication of registers

FDC define_global_attribute syn_replicate {0|1}; FDC Example

Verilog object /* synthesis syn_replicate = 1 | 0 */; Verilog Example

VHDL attribute syn_replicate : boolean;
attribute syn_replicate of object : signal is false;

VHDL Example

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 152

FDC Example

Verilog Example

module norep (Reset, Clk, Drive, OK, ADPad, IPad, ADOut);
input Reset, Clk, Drive, OK;
input [6:0] ADOut;
inout [6:0] ADPad;
output [6:0] IPad;
reg [6:0] IPad;
reg DriveA /* synthesis syn_replicate = 0 */;
assign ADPad = DriveA ? ADOut : 32'bz;

always @(posedge Clk or negedge Reset)
if (!Reset)

begin
DriveA <= 0;
IPad <= 0;

end
else

begin
DriveA <= Drive & OK;
IPad <= ADPad;

end
endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 153

VHDL Example

library IEEE;
use ieee.std_logic_1164.all;

entity norep is
port (Reset : in std_logic;

Clk : in std_logic;
Drive : in std_logic;
OK : in std_logic;
ADPad : inout std_logic_vector (6 downto 0);
IPad : out std_logic_vector (6 downto 0);
ADOut : in std_logic_vector (6 downto 0));

end norep;

architecture archnorep of norep is
signal DriveA : std_logic;
attribute syn_replicate : boolean;
attribute syn_replicate of DriveA : signal is false;
begin
ADPad <= ADOut when DriveA='1' else (others => 'Z');

process (Clk, Reset)
begin

if Reset='0' then
DriveA <= '0';
IPad <= (others => '0');

elsif rising_edge(clk) then
DriveA <= Drive and OK;
IPad <= ADPad;

end if;
end process;

end archnorep;

Effect of Using syn_replicate

The following example shows a design without the syn_replicate attribute:

Verilog reg DriveA /*synthesis syn_replicate=1*/

VHDL attribute syn_replicate : boolean;
attribute syn_replicate of DriveA : signal is true;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 154

When you apply syn_replicate, the registers are not duplicated:

Verilog reg DriveA /*synthesis syn_replicate=0*/

VHDL attribute syn_replicate : boolean;
attribute syn_replicate of DriveA : signal is false;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 155

syn_resources

Attribute

Microsemi ProASIC3, ProASIC3E, ProASIC3L, IGLOO, IGLOOe, IGLOO+, and
Fusion

Specifies the resources used inside a black box. It is applied to Verilog
black-box modules and VHDL architectures or component definitions.

Return to Summary of Attributes and Directives.

The value of the attribute is any combination of the following:

The Microsemi families only support resource values of blockrams and corecells.

Constraint File Syntax and Example

define_attribute {v:moduleName} syn_resources
{blockrams=integer}

define_attribute {v:moduleName} syn_resources
{blockrams=integer|corecells=integer}

You can apply the attribute to more than one kind of resource at a time by
separating assignments by a comma (,). For example:

define_attribute {v:bb} syn_resources {blockrams=10}

define_attribute {v:bb} syn_resources {corecells=50,blockrams=20}

Verilog Syntax and Example

object /* synthesis syn_resources = "value" */ ;

In Verilog, you can only attach this attribute to a module. Here is an example:

Value Description

blockrams=integer number of RAM resources

corecells=integer number of core cells for Microsemi
families only.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 156

module bb (o,i) /* synthesis syn_black_box syn_resources =
"luts=500,regs=463,blockrams=10" */;

input i;
output o;
endmodule

module top_bb (o,i);
input i;
output o;
bb u1 (o,i);
endmodule

Verilog Syntax and Example (Microsemi)
object /* synthesis syn_resources = "value" */ ;

In Verilog, you can only attach this attribute to a module. Here is an example:

module bb (o,i) /* synthesis syn_black_box syn_resources =
"corecells=10,blockrams=5" */;

input i;
output o;
endmodule

module top_bb (o,i);
input i;
output o;
bb u1 (o,i);
endmodule

VHDL Syntax and Example (Microsemi)
attribute syn_resources of object : objectType is "string" ;

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives. In VHDL, this attribute can be placed
on either an architecture or a component declaration.

architecture top of top is
component decoder

port (clk : in bit;
a, b : in bit;
qout : out bit_vector(7 downto 0));

end component;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 157

attribute syn_resources : string;
attribute syn_resources of decoder: component is

"corecells=500,blockrams=10";

-- Other code

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 158

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014

syn_sharing

Directive

Enables or disables the sharing of operator resources during the compilation
stage of synthesis.

syn_sharing Values

Description

The syn_sharing directive controls resource sharing during the compilation
stage of synthesis. This is a compiler-specific optimization that does not affect
the mapper; this means that the mapper might still perform resource sharing
optimizations to improve timing, even if syn_sharing is disabled.

You can also specify global resource sharing with the Resource Sharing option
in the Project view, from the Project->Implementation Options->Options panel, or
with the set_option -resource_sharing Tcl command.

resource sharing globally, you can use the syn_sharing directive to turn on
resource sharing for specific modules or architectures. See Sharing
Resources, on page 345 in the User Guide for a detailed procedure.

Technology Default Value Global Object

All On Yes Component, module

Value Description

off | false Does not share resources during the compilation stage of synthesis.

on | true
(Default)

Optimizes the design to perform resource sharing during the
compilation stage of synthesis.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 160

syn_sharing Syntax

Verilog Example

module add (a, b, x, y, out1, out2, sel, en, clk)
/* synthesis syn_sharing=off */;

input a, b, x, y, sel, en, clk;
output out1, out2;
wire tmp1, tmp2;
assign tmp1 = a * b;
assign tmp2 = x * y;
reg out1, out2;

always@(posedge clk)
if (en)

begin
out1 <= sel ? tmp1: tmp2;

end
else

begin
out2 <= sel ? tmp1: tmp2;

end
endmodule

Verilog object /* synthesis syn_sharing=”on | off” */ ; Verilog Example

VHDL attribute syn_sharing of object : objectType is “true | false” ; VHDL Example

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 161

VHDL Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity add is
port (a, b : in std_logic_vector(1 downto 0);

x, y : in std_logic_vector(1 downto 0);
clk, sel, en: in std_logic;
out1 : out std_logic_vector(3 downto 0);
out2 : out std_logic_vector(3 downto 0)

);
end add;

architecture rtl of add is
signal tmp1, tmp2: std_logic_vector(3 downto 0);
begin

tmp1 <= a * b;
tmp2 <= x * y;

attribute syn_sharing : string;
attribute syn_sharing of add : component is “false”;

process(clk) begin
if clk’event and clk=’1’ then

if (en=’1’) then
if (sel=’1’) then

out1 <= tmp1;
else

out1 <= tmp2;
end if;

else
if (sel=’1’) then

out2 <= tmp1;
else

out2 <= tmp2;
end if;

end if;
end if;

end process;
end rtl;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 162

Effect of Using syn_sharing

The following example shows the default setting, where resource sharing in
the compiler is on:

Verilog module add /* synthesis syn_sharing = “on” */;

VHDL attribute syn_sharing of add : component is “true” ;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 163

The next figure shows the same design when resource sharing is off, and two
adders are inferred:

Verilog module add /* synthesis syn_sharing = “off” */;

VHDL attribute syn_sharing of add : component is “false” ;

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 164

syn_state_machine

Directive

Enables/disables state-machine optimization on individual state registers in
the design. When you disable the FSM Compiler, state-machines are not
automatically extracted. To extract some state machines, use this directive
with a value of 1 on just those individual state-registers to be extracted.
Conversely, when the FSM Compiler is enabled and there are state machines
in your design that you do not want extracted, use syn_state_machine with a
value of 0 to override extraction on just those individual state registers.

Also, when the FSM Compiler is enabled, all state machines are usually
detected during synthesis. However, on occasion there are cases in which
certain state machines are not detected. You can use this directive to declare
those undetected registers as state machines.

The following figure shows an example of two implementations of a state
machine: one with the syn_state_machine directive enabled, the other with the
directive disabled.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 165

syn_state_machine=0

syn_state_machine=1

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 166

See the following HDL syntax and example sections for the source code used
to generate the schematics above. See also:

• syn_encoding, on page 43 for information on overriding default encoding
styles for state machines.

• For VHDL designs, syn_encoding Compared to syn_enum_encoding, on
page 56 for usage information about these two directives.

Verilog Syntax and Examples

object /* synthesis syn_state_machine = 0 | 1 */ ;

where object is a state register. Data type is Boolean: 0 does not extract an
FSM, 1 extracts an FSM.

Following is an example of syn_state_machine applied to register OUT.

module prep3 (CLK, RST, IN, OUT);
input CLK, RST;
input [7:0] IN;
output [7:0] OUT;
reg [7:0] OUT;
reg [7:0] current_state /* synthesis syn_state_machine=1 */;

// Other code

Here is the source code used for the example in the previous figure.

module FSM1 (clk, in1, rst, out1);
input clk, rst, in1;
output [2:0] out1;

`define s0 3'b000
`define s1 3'b001
`define s2 3'b010
`define s3 3'bxxx

reg [2:0] out1;
reg [2:0] state /* synthesis syn_state_machine = 1 */;
reg [2:0] next_state;

always @(posedge clk or posedge rst)
if (rst) state <= `s0;
else state <= next_state;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 167

// Combined Next State and Output Logic
always @(state or in1)

case (state)
`s0 : begin

out1 <= 3'b000;
if (in1) next_state <= `s1;
else next_state <= `s0;

end
`s1 : begin

out1 <= 3'b001;
if (in1) next_state <= `s2;
else next_state <= `s1;

end
`s2 : begin

out1 <= 3'b010;
if (in1) next_state <= `s3;
else next_state <= `s2;

end
default : begin

out1 <= 3'bxxx;
next_state <= `s0;

end
endcase

endmodule

VHDL Syntax and Examples

attribute syn_state_machine of object : objectType is true|false ;

where object is a signal that holds the value of the state machine. For
example:

attribute syn_state_machine of current_state: signal is true;

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 168

Following is the source code used for the example in the previous figure.

library ieee;
use ieee.std_logic_1164.all;

entity FSM1 is
port (clk,rst,in1 : in std_logic;

out1 : out std_logic_vector (2 downto 0));
end FSM1;

architecture behave of FSM1 is
type state_values is (s0, s1, s2,s3);
signal state, next_state: state_values;
attribute syn_state_machine : boolean;
attribute syn_state_machine of state : signal is false;

begin
process (clk, rst)
begin

if rst = '1' then
state <= s0;

elsif rising_edge(clk) then
state <= next_state;

end if;
end process;

process (state, in1) begin
case state is

when s0 =>
out1 <= "000";
if in1 = '1' then next_state <= s1;

else next_state <= s0;
end if;

when s1 =>
out1 <= "001";
if in1 = '1' then next_state <= s2;

else next_state <= s1;
end if;

when s2 =>
out1 <= "010";
if in1 = '1' then next_state <= s3;

else next_state <= s2;
end if;

when others =>
out1 <= "XXX"; next_state <= s0;

end case;
end process;

end behave;

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 169

syn_tco<n>
Directive

Used with the syn_black_box directive; supplies the clock to output
timing-delay through a black box.

The syn_tco<n> directive is one of several directives that you can use with the
syn_black_box directive to define timing for a black box. See syn_black_box, on
page 37 for a list of the associated directives.

Constraint File Syntax and Example

The syn_tco<n> directive can be entered as an attribute using the Attribute
panel of the SCOPE editor. The information in the object, attribute, and value
fields must be manually entered. This is the constraint file syntax for the
directive:

define_attribute {v:blackboxModule} syn_tcon {[!]clock->bundle=value}

For details about the syntax, see the following table:

v: Constraint file syntax that indicates that the directive is attached
to the view.

blackboxModule The symbol name of the black-box.

n A numerical suffix that lets you specify different clock to output
timing delays for multiple signals/bundles.

! The optional exclamation mark indicates that the clock is active
on its falling (negative) edge.

clock The name of the clock signal.

bundle A bundle is a collection of buses and scalar signals. The objects
of a bundle must be separated by commas with no intervening
spaces. A valid bundle is A,B,C, which lists three signals. To
assign values to bundles, use the following syntax. The values
are in ns.

[!]clock->bundle=value

value Clock to output delay value in ns.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 170

Constraint file example:

define_attribute {v:RCV_CORE} syn_tco1 {CLK-> R_DATA_OUT[63:0]=20}
define_attribute {v:RCV_CORE) syn_tco2 {CLK-> DATA_VALID=30}

Verilog Syntax and Example

object /* syn_tcon = " [!]clock -> bundle = value" */ ;

See Constraint File Syntax and Example, on page 169 for syntax explana-
tions. The following example defines syn_tco<n> and other black-box
constraints:

module ram32x4(z,d,addr,we,clk);
/* synthesis syn_black_box syn_tco1="clk->z[3:0]=4.0"

syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */

output [3:0] z;
input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 171

VHDL Syntax and Examples

attribute syn_tcon of object : objectType is " [!]clock -> bundle = value" ;

In VHDL, there are ten predefined instances of each of these directives in the
synplify library: syn_tpd1, syn_tpd2, syn_tpd3, … syn_tpd10. If you are entering the
timing directives in the source code and you require more than 10 different
timing delay values for any one of the directives, declare the additional direc-
tives with an integer greater than 10. For example:

attribute syn_tco11 : string;
attribute syn_tco12 : string;

See Constraint File Syntax and Example, on page 169 for other syntax expla-
nations.

See VHDL Attribute and Directive Syntax, on page 554 for alternate methods
for specifying VHDL attributes and directives.

The following example defines syn_tco<n> and other black-box constraints:

-- A USE clause for the Synplify Attributes package
-- was included earlier to make the timing constraint
-- definitions visible here.
architecture top of top is
component Dpram10240x8

port (
-- Port A

ClkA, EnA, WeA: in std_logic;
AddrA : in std_logic_vector(13 downto 0);
DinA : in std_logic_vector(7 downto 0);
DoutA : out std_logic_vector(7 downto 0);

-- Port B
ClkB, EnB: in std_logic;
AddrB : in std_logic_vector(13 downto 0);
DoutB : out std_logic_vector(7 downto 0));

end component;

attribute syn_black_box : boolean;
attribute syn_tsu1 : string;
attribute syn_tsu2 : string;
attribute syn_tco1 : string;
attribute syn_tco2 : string;
attribute syn_isclock : boolean;
attribute syn_black_box of Dpram10240x8 : component is true;
attribute syn_tsu1 of Dpram10240x8 : component is

"EnA,WeA,AddrA,DinA -> ClkA = 3.0";

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 172

attribute syn_tco1 of Dpram10240x8 : component is
"ClkA -> DoutA[7:0] = 6.0";

attribute syn_tsu2 of Dpram10240x8 : component is
"EnB,AddrB -> ClkB = 3.0";

attribute syn_tco2 of Dpram10240x8 : component is
"ClkB -> DoutB[7:0] = 13.0";

-- Other code

Verilog-Style Syntax in VHDL for Black Box Timing
In addition to the syntax used in the code above, you can also use the
following Verilog-style syntax to specify black-box timing constraints:

attribute syn_tco1 of inputfifo_coregen : component is
"rd_clk->dout[48:0]=3.0";

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 173

syn_tpd<n>

Directive

Used with the syn_black_box directive; supplies information on timing propa-
gation for combinational delay through a black box.

The syn_tpd<n> directive is one of several directives that you can use with the
syn_black_box directive to define timing for a black box. See syn_black_box, on
page 37 for a list of the associated directives.

Constraint File Syntax and Example

You can enter the syn_tpd<n> directive as an attribute using the Attribute panel
of the SCOPE editor. The information in the object, attribute, and value fields
must be manually entered. This is the constraint file syntax:

define_attribute {v:blackboxModule} syn_tpdn {bundle->bundle=value}

For details about the syntax, see the following table:

Constraint file example:

define_attribute {v:MEM} syn_tpd1 {MEM_RD->DATA_OUT[63:0]=20}

v: Constraint file syntax that indicates that the directive is
attached to the view.

blackboxModule The symbol name of the black-box.

n A numerical suffix that lets you specify different input to
output timing delays for multiple signals/bundles.

bundle A bundle is a collection of buses and scalar signals. The
objects of a bundle must be separated by commas with no
intervening spaces. A valid bundle is A,B,C, which lists three
signals. The values are in ns.

"bundle->bundle=value"

value Input to output delay value in ns.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 174

Verilog Syntax and Example

object /* syn_tpdn = "bundle -> bundle = value" */ ;

See Constraint File Syntax and Example, on page 173 for an explanation of
the syntax. This is an example of syn_tpd<n> along with some of the other
black-box timing constraints:

module ram32x4(z,d,addr,we,clk); /* synthesis syn_black_box
syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */

output [3:0] z;
input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

VHDL Syntax and Examples

attribute syn_tpdn of object : objectType is "bundle -> bundle = value" ;

In VHDL, there are 10 predefined instances of each of these directives in the
synplify library, for example: syn_tpd1, syn_tpd2, syn_tpd3, … syn_tpd10. If you are
entering the timing directives in the source code and you require more than
10 different timing delay values for any one of the directives, declare the
additional directives with an integer greater than 10. For example:

attribute syn_tpd11 : string;
attribute syn_tpd11 of bitreg : component is

"di0,di1 -> do0,do1 = 2.0";
attribute syn_tpd12 : string;
attribute syn_tpd12 of bitreg : component is

"di2,di3 -> do2,do3 = 1.8";

See Constraint File Syntax and Example, on page 173 for an explanation of
the syntax.

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

The following is an example of assigning syn_tpd<n> along with some of the
black box constraints. See Verilog-Style Syntax in VHDL for Black Box
Timing, on page 172 for another way.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 175

-- A USE clause for the Synplify Attributes package was included
-- earlier to make the timing constraint definitions visible here.
architecture top of top is
component rcf16x4z

port (ad0, ad1, ad2, ad3 : in std_logic;
di0, di1, di2, di3 : in std_logic;
clk, wren, wpe : in std_logic;
tri : in std_logic;
do0, do1, do2, do3 : out std_logic);

end component;

attribute syn_tpd1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> do0,do1,do2,do3 = 2.1";

attribute syn_tpd2 of rcf16x4z : component is
"tri -> do0,do1,do2,do3 = 2.0";

attribute syn_tsu1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> clk = 1.2";

attribute syn_tsu2 of rcf16x4z : component is
"wren,wpe -> clk = 0.0";

-- Other code

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 176

syn_tristate

Directive

Specifies that an output port, on a module defined as a black box, is a
tristate. Use this directive to eliminate multiple driver errors if the output of a
black box has more than one driver. A multiple driver error is issued unless
you use this directive to specify that the outputs are tristate.

Verilog Syntax and Examples

object /* synthesis syn_tristate = 1 */ ;

where object can be black-box output ports. For example:

module BUFE(O, I, E); /* synthesis syn_black_box */
output O /* synthesis syn_tristate = 1 */;

// Other code

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 177

syn_tsu<n>
Directive

Used with the syn_black_box directive; supplies information on timing setup
delay required for input pins (relative to the clock) in the black box.

The syn_tsu<n> directive is one of several directives that you can use with the
syn_black_box directive to define timing for a black box. See syn_black_box, on
page 37 for a list of the associated directives.

Constraint File Syntax and Example

The syn_tsu<n> directive can be entered as an attribute using the Attribute
panel of the SCOPE editor. The information in the object, attribute, and value
fields must be manually entered. The constraint file syntax for the directive
is:

define_attribute {v:blackboxModule} syn_tsun {bundle->[!]clock=value}

For details about the syntax, see the following table:

Constraint file example:

v: Constraint file syntax that indicates that the directive is attached
to the view.

blackboxModule The symbol name of the black-box.

n A numerical suffix that lets you specify different clock to output
timing delays for multiple signals/bundles.

bundle A collection of buses and scalar signals. The objects of a bundle
must be separated by commas with no intervening spaces. A
valid bundle is A,B,C, which lists three signals. The values are in
ns. This is the syntax to define a bundle:

bundle->[!]clock=value

! The optional exclamation mark indicates that the clock is active
on its falling (negative) edge.

clock The name of the clock signal.

value Input to clock setup delay value in ns.

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 178

define_attribute {v:RTRV_MOD} syn_tsu4 {RTRV_DATA[63:0]->!CLK=20}

Verilog Syntax and Example

object /* syn_tsun = "bundle -> [!]clock = value" */ ;

For syntax explanations, see Constraint File Syntax and Example, on
page 177.

This is an example that defines syn_tsu<n> along with some of the other
black-box constraints:

module ram32x4(z,d,addr,we,clk);
/* synthesis syn_black_box syn_tpd1="addr[3:0]->z[3:0]=8.0"

syn_tsu1="addr[3:0]->clk=2.0" syn_tsu2="we->clk=3.0" */
output [3:0] z;
input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

VHDL Syntax and Examples

attribute syn_tsun of object : objectType is "bundle -> [!]clock = value" ;

In VHDL, there are 10 predefined instances of each of these directives in the
synplify library, for example: syn_tsu1, syn_tsu2, syn_tsu3, … syn_tsu10. If you are
entering the timing directives in the source code and you require more than
10 different timing delay values for any one of the directives, declare the
additional directives with an integer greater than 10:

attribute syn_tsu11 : string;
attribute syn_tsu11 of bitreg : component is

"di0,di1 -> clk = 2.0";
attribute syn_tsu12 : string;
attribute syn_tsu12 of bitreg : component is

"di2,di3 -> clk = 1.8";

For other syntax explanations, see Constraint File Syntax and Example, on
page 177.

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 179

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives. For this directive, you can also use
the following Verilog-style syntax to specify it, as described in Verilog-Style
Syntax in VHDL for Black Box Timing, on page 172.

The following is an example of assigning syn_tsu<n> along with some of the
other black-box constraints:

-- A USE clause for the Synplify Attributes package
-- was included earlier to make the timing constraint
-- definitions visible here.
architecture top of top is
component rcf16x4z

port (ad0, ad1, ad2, ad3 : in std_logic;
di0, di1, di2, di3 : in std_logic;
clk, wren, wpe : in std_logic;
tri : in std_logic;
do0, do1, do2, do3 : out std_logic);

end component;

attribute syn_tco1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> do0,do1,do2,do3 = 2.1";

attribute syn_tpd2 of rcf16x4z : component is
"tri -> do0,do1,do2,do3 = 2.0";

attribute syn_tsu1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> clk = 1.2";

attribute syn_tsu2 of rcf16x4z : component is
"wren,wpe -> clk = 0.0";

-- Other code

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 180

translate_off/translate_on

Directive

Allows you to synthesize designs originally written for use with other
synthesis tools without needing to modify source code. All source code that is
between these two directives is ignored during synthesis.

Another use of these directives is to prevent the synthesis of stimulus source
code that only has meaning for logic simulation. You can use
translate_off/translate_on to skip over simulation-specific lines of code that are
not synthesizable.

When you use translate_off in a module, synthesis of all source code that
follows is halted until translate_on is encountered. Every translate_off must have
a corresponding translate_on. These directives cannot be nested, therefore, the
translate_off directive can only be followed by a translate_on directive.

Note: See also, pragma translate_off/pragma translate_on, on page 31.
These directives are implemented the same in the source code.

Verilog Syntax and Example

The Verilog syntax for these directives is as follows:

/* synthesis translate_off */

/* synthesis translate_on */

For example:

module test(input a, b, output c);

//synthesis translate_off
assign c=a&b

//synthesis translate_on
assign c=a|b;
endmodule

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 181

For SystemVerilog designs, you can alternatively use the
synthesis_off/synthesis_on directives. The directives function the same as the
translate_off/translate_on directives to ignore all source code contained between
the two directives during synthesis.

For Verilog designs, you can use the synthesis macro with the Verilog ‘ifdef
directive instead of the translate on/off directives. See synthesis Macro, on
page 361 for information.

VHDL Syntax and Example

For VHDL designs, you can alternatively use the synthesis_off/synthesis_on
directives. Select Project->Implementation Options->VHDL and enable the Synthesis
On/Off Implemented as Translate On/Off option. This directs the compiler to treat
the synthesis_off/on directives like translate_off/on and ignore any code between
these directives.

See VHDL Attribute and Directive Syntax, on page 554 for different ways to
specify VHDL attributes and directives.

The following is the VHDL syntax for translate-off/translate_on:

synthesis translate_off

synthesis translate_on

For example:

architecture behave of ram4 is
begin

-- synthesis translate_off
stimulus: process (clk, a, b)

-- Source code you DO NOT want synthesized

end process;
-- synthesis translate_on

-- Other source code you WANT synthesized

LO

:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 182

VHDL Syntax and Example

attribute syn_sharing of object : objectType is " true | false" ;

where object is an architecture name. See VHDL Attribute and Directive
Syntax, on page 554 for different ways to specify VHDL attributes and direc-
tives.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity alu is
port (a, b : in std_logic_vector (7 downto 0);

opcode: in std_logic_vector (1 downto 0);
clk: in std_logic;
result: out std_logic_vector (7 downto 0));

end alu;

architecture behave of alu is
-- Turn on resource sharing for the architecture.
attribute syn_sharing of behave : architecture is "on";
begin
-- Behavioral source code for the design goes here.
end behave;

Synplify Pro for Microsemi Edition Reference Manual, January 2014 183

Index

Symbols
.edf file. See edif file

A
alspin 16
alspreserve 18
attributes

alphabetical summary 7
custom 55
global attribute summary 11
specifying in the SCOPE spreadsheet 4
specifying, overview of methods 4

Attributes panel, SCOPE spreadsheet 4

B
black box directives

black_box_pad_pin 20
black_box_tri_pins 22
syn_black_box 37
syn_isclock 77
syn_resources 155
syn_tco 169
syn_tpd 173
syn_tristate 176
syn_tsu 177

black boxes
directives. See black box directives
source code directives 38
timing directives 173

black_box_pad_pin directive 20
black_box_tri_pins directive 22
buffers

clock. See clock buffers
global. See global buffers

C
case statement

default 25

clock buffers
assigning resources 108

clocks
on black boxes 77

code
ignoring with pragma translate off/on

31
compiler

loop iteration, loop_limit 27
loop iteration, syn_looplimit 88

custom attributes 55

D
define_attribute

syntax 5
define_false_path

using with syn_keep 79
define_global_attribute

summary 11
syntax 5

define_multicycle_path
using with syn_keep 79

E
edif file

hierarchy generation 101
scalar and array ports 107
syn_netlist_hierarchy attribute 101
syn_noarrayports attribute 107

enumerated types
syn_enum_encoding directive 52

F
fanout limits

overriding default 90
syn_maxfan attribute 90

FSMs
syn_encoding attribute 43

:

184 Synplify Pro for Microsemi Edition Reference Manual, January 2014

full_case directive 24

G
global attributes summary 11
global buffers

defining 57

H
hierarchy

flattening with syn_hier 62
flattening with syn_netlist_hierarchy

101
high reliability

syn_radhardlevel 141

I
I/O packing

disabling with syn_replicate 151
instances

preserving with syn_noprune 111

L
loop_limit directive 27

M
Microsemi

alsloc attribute 14
alspin attribute 16
alspreserve attribute 18
assigning I/O ports 16
preserving relative placement 14
syn_radhardlevel attribute 141

multicycle paths
syn_reference_clock 149

multipliers, implementing 96

N
netlist hierarchy, controlling 101
nets

preserving (Microsemi) 18
preserving with alspreserve (Microsemi)

18
preserving with syn_keep 79

P
pad locations

See also pin locations
parallel_case directive 29
pin locations

forward annotating 85
Microsemi 16

pragma translate_off directive 31
pragma translate_on directive 31
priority encoding 29
probes

inserting 133

R
RAMs

implementation styles 144, 148
technology support 145

registers
preserving with syn_preserve 127

relative location
alsloc (Microsemi) 14

replication
disabling 151

resource sharing
syn_sharing directive 159

S
SCOPE spreadsheet

Attributes panel 4
sequential optimization, preventing with

syn_preserve 127
simulation mismatches

full_case directive 26
state machines

enumerated types 52
extracting 164

syn_black_box directive 37
syn_encoding

compared with syn_enum_encoding
directive 56

using with enum_encoding 55
syn_encoding attribute 43
syn_enum_encoding

using with enum_encoding 55
syn_enum_encoding directive 52

compared with syn_encoding attribute
56

:

Synplify Pro for Microsemi Edition Reference Manual, January 2014 185

syn_global_buffers attribute 57
syn_hier

using with fanout guides 90
syn_hier attribute 62
syn_insert_buffer attribute 70
syn_isclock directive 77
syn_keep

compared with syn_preserve and
syn_noprune directives 81

syn_keep directive 79
syn_loc attribute 85
syn_looplimit directive 88
syn_maxfan attribute 90
syn_multstyle attribute 96
syn_netlist_hierarchy attribute 101
syn_noarrayports attribute 107
syn_noclockbuf attribute 108

using with fanout guides 91
syn_noprune directive 111
syn_preserve

compared with syn_keep and
syn_noprune 128

syn_preserve directive 127
syn_probe attribute 133
syn_radhardlevel

Microsemi options 142
Microsemi syntax 142
TMR. See TMR, distributed TMR

syn_radhardlevel attribute 141
syn_ramstyle attribute 144
syn_reference_clock attribute 149
syn_replicate

using with fanout guides 91
syn_replicate attribute 151
syn_resources attribute 155
syn_sharing directive 159
syn_state_machine directive 164
syn_tco directive 169
syn_tpd directive 173

black-box timing 173, 177
syn_tristate directive 176
syn_tsu directive 177

black-box timing 177
syn_vote_loops Attribute 180
synthesis_off directive 181
synthesis_on directive 181
SystemVerilog

ignoring code with synthesis_off/on 181

SystemVerilog data types
assignment for syn_keep 80

T
timing

syn_tco directive 169
syn_tpd directive 173
syn_tsu directive 177

TMR 141
Microsemi syn_radhardlevel 141

translate_off directive 180
translate_on directive 180
triple module redundancy (tmr) 141
tristates

black_box_tri_pins directive 22
syn_tristate directive 176

V
Verilog

ignoring code with translate off/on 180
syn_keep on multiple nets 79

W
wires, preserving with syn_keep directive 79

LO

:

186 Synplify Pro for Microsemi Edition Reference Manual, January 2014

	Synopsys FPGA Synthesis
	Attribute Reference Manual
	Introduction
	How Attributes and Directives are Specified
	The SCOPE Attributes Tab

	Summary of Attributes and Directives
	Attribute and Directive Summary (Alphabetical)

	Summary of Global Attributes

	alsloc
	alspin
	alspreserve
	black_box_pad_pin
	black_box_tri_pins
	full_case
	loop_limit
	parallel_case
	pragma translate_off/pragma translate_on
	syn_allow_retiming
	syn_black_box
	syn_encoding
	syn_enum_encoding
	syn_global_buffers
	syn_hier
	syn_insert_buffer
	syn_isclock
	syn_keep
	syn_loc
	syn_looplimit
	syn_maxfan
	syn_multstyle
	syn_netlist_hierarchy
	syn_noarrayports
	syn_noclockbuf
	syn_noprune
	syn_pad_type
	syn_preserve
	syn_probe
	syn_radhardlevel
	syn_ramstyle
	syn_reference_clock
	syn_replicate
	syn_resources
	syn_sharing
	syn_state_machine
	syn_tco<n>
	syn_tpd<n>
	syn_tristate
	syn_tsu<n>
	translate_off/translate_on
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	V
	W

