
Application Note AC424

IGLOO2 - Optimizing DDR Controller for Improved
Efficiency - Libero SoC v11.6

Table of Contents

Purpose
This application note describes the techniques for improving the efficiency of double data rate (DDR)
controller using an example design for the IGLOO®2 Evaluation Kit board. It also provides details about
implementing the DDR synchronous dynamic random access memory (SDRAM) simulation flow using
the Micron® low power DDR (LPDDR) SDRAM model and Microsemi® LPDDR SDRAM verification IP
(VIP) model.

Introduction
The IGLOO2 device has two high-speed hardened application-specific integrated circuit (ASIC) memory
controllers such as memory subsystem DDR (MDDR) and fabric DDR (FDDR) for interfacing with the
DDR2, DDR3, and LPDDR1 SDRAM memories. The MDDR and FDDR subsystems are used to access
high-speed DDR memories for high-speed data transfer and code execution.
The DDR memory connected to the MDDR subsystem can be accessed by the high-performance
memory subsystem (HPMS) masters and the master logic implemented in the FPGA fabric (FPGA fabric
master), whereas the DDR memory connected to the FDDR subsystem can be accessed only by a field
programmable gate array (FPGA) fabric master.

Purpose . 1
Introduction . 1
References . 3
Design Requirements . 3
Optimization Techniques . 3

Frequency of Operation . 3
Burst Length . 4
AXI Master Without Write Response State . 4
Read Address Queuing . 5
Series of Writes or Reads . 5
DDR Configuration Tuning . 6

Implementation on IGLOO2 Device . 7
Design Description . 7
Hardware Implementation . 9

Running the Design . 28
Setting Up the Hardware . 28
Running the Performance Measurement Utility . 29

LPDDR SDRAM Bandwidth . 31
Simulation Result . 31
Board Test Result . 32

Conclusion . 33
Appendix: Design Files . 33
List of Changes . 33
October 2015 1
© 2015 Microsemi Corporation

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
The FPGA fabric masters communicate with the MDDR and FDDR subsystems through the AXI or AHB
interfaces. Figure 1 shows the MDDR data path for advanced extensible interface (AXI)/advanced
high-performance bus (AHB) interfaces.

The AXI interface is typically used for burst transfers that provide an efficient access path and high
throughput. Though the throughput is dependent on many system level parameters, it can be improved
by applying specific optimization techniques. This application note describes a few DDR SDRAM
controller optimization techniques with an example design for IGLOO2 Evaluation Kit board. Refer to the
UG0446: SmartFusion and IGLOO2 FPGA High Speed DDR Interfaces User Guide, for more information
on MDDR and FDDR subsystems.
The sample design consists an AXI master, LSRAM, counters for throughput measurement, and
CoreUART interface logic. During the write operation, AXI master reads the LSRAM and writes to the
LPDDR memory and measures the throughput. During the read operation, AXI master reads the LPDDR
memory and writes to LSRAM and measures the throughput. The throughput values are displayed on the
host PC using the CoreUART interface.
There are two types of memory simulation models that can be used:

• Microsemi provided Verification Intellectual Property (VIP): The Libero® System-on-Chip
(SoC) includes a JEDEC compliant VIP model. The VIP model is attached to the pin side of the
MDDR/FDDR subsystem and simulates the functionality of a DDR memory device. It can be
configured for DDR2, DDR3, and LPDDR SDRAM memories, and is intended to complement
vendor models or to act as a substitute in case a vendor model is not available.

• Vendor-specific memory model: Memory vendors such as Micron®, Samsung, and Hynix
provide downloadable simulation models for specific memory devices. The downloaded
simulation model must be JEDEC compliant.

This application note also describes the DDR SDRAM simulation flow using the Micron LPDDR SDRAM
model and Microsemi LPDDR SDRAM VIP model.

Figure 1 • MDDR Data Path for AXI/AHB Interfaces
2 Revision 4

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132040

References

References
The following are the references:

• UG0446: SmartFusion and IGLOO2 FPGA High Speed DDR Interfaces User Guide

• AC409: Connecting User Logic to AXI Interfaces of High-Performance Communication Blocks in
the SmartFusion2 Devices

• AC333: Connecting User Logic to the SmartFusion Microcontroller Subsystem

• DDR Controller and Serial High Speed Controller Initialization Methodology

• UG0478: IGLOO2 FPGA Evaluation Kit User Guide

• IGLOO2 System Builder User Guide

Design Requirements
Table 1 lists the design requirements.

Optimization Techniques
This section describes the following optimization techniques:

• Frequency of Operation

• Burst Length

• AXI Master Without Write Response State

• Read Address Queuing

• Series of Writes or Reads

• DDR Configuration Tuning

Frequency of Operation
The MDDR and FDDR subsystems support clock management dividers directly inside the embedded
block. The user can select the divider ratios from the Clock Configurator for DDR clocks
(MDDR_CLK/FDDR_CLK) and DDR_FIC clock. The best overall throughput ratio is 2:1, that is, half the
DDR clock frequency. Many other ratios are possible to provide flexibility to the FPGA design. To show
the optimal data throughput, this application note shows all examples using the 2:1 ratio. The design
example uses 64-bit AXI as a FPGA fabric interface and is configured to use 166 MHz as DDR clock
frequency1 and 83 MHz as AXI clock.

Table 1 • Design Requirements

Hardware Requirements Description

IGLOO2 Evaluation Kit. Refer the UG0478: IGLOO2
FPGA Evaluation Kit User Guide for more information.

Rev D or later

Desktop or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero SoC v11.6

Microsoft .NET Framework 4 Client Profile

1. IGLOO2 MDDR subsystem supports maximum of 200 MHz as DDR clock frequency for LPDDR1 memory type. But
LPDDR memory on IGLOO2 Evaluation Kit board supports 166 MHz only.
Revision 4 3

http://www.microsoft.com/en-in/download/details.aspx?id=24872
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132583
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132583
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132040
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132822
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132822
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130064
http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS/sf2_peri_init_meth_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132583
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
Burst Length
The MDDR and FDDR subsystems support the DRAM burst lengths of 4, 8, or 16, depending on the
configured bus-width and the DDR type. The AXI transaction controller in the MDDR and FDDR
subsystem supports up to 16-beat burst reads and writes. The AXI beat burst length (write and read) and
burst length of DRAM affect the optimal performance, but setting the maximum supported burst length for
DDR SDRAM and AXI interface achieves optimal performance. The design example uses a DDR
SDRAM burst length of 16 and an AXI write and read beat burst length of 16.

AXI Master Without Write Response State
When AXI master sends the last data (D (A15)), the WLAST signal goes HIGH indicating that it is the last
transfer in the first write burst. When AXI slave in DDR subsystem accepts all the data items, it drives a
write response (BVALID) back to the master to indicate that the write transaction is complete. By AXI
protocol, AXI master waits for the write response before initiating the next write transaction. However, the
time spent waiting for the write response reduces the overall throughput as the clock cycles are not used.
AXI master can then send the second burst write address (B) without waiting for the write response of the
first burst, which improves the write throughput.
This application note is focused on optimal throughput, and therefore, the write response channel is not
verified. It is recommended that when using this technique the write response channel is used
concurrently with starting the next transfer to ensure that the previous write data is fully accepted. The
AXI protocol has a defined methodology on handling the termination of write burst transaction; this must
be followed if the write response channel returns an incorrect value.
Figure 2 shows the write transaction timing diagram without the write response state.

This technique is implemented in the example design. Comment or uncomment the following line of code
in the AXI master interface (AXI_IF.v) to validate this technique.
define WITHOUT_WRITE_RESPONSE /* Comment this line to define With Write Response state */

Figure 2 • Write Transaction Timing Diagram Without Write Response State
4 Revision 4

Optimization Techniques
Read Address Queuing
The MDDR and FDDR subsystems support upto four outstanding read transactions. In 2:1 clock ratio,
the MDDR controller starts the burst read transaction before the command FIFO full, which allows AXI
master to send 5 burst read address. Figure 3 shows the burst read address queuing timing diagram.

AXI master increments the burst read address as long as AXI slave in the DDR subsystem asserts the
ARREADY signal. The burst read address queuing significantly increases the read throughput compared
to the normal AXI read sequence. Table 6 on page 31 and Table 7 on page 32 show this significant
improvement. Read address queuing does not reduce the initial latency associated with a DDR memory
read access. By issuing multiple reads in sequence the initial latency is only accounted for the first read.
After the first read data is returned the remainder of the requested data is returned in sequence without a
large read access penalty associated with the first read.
This technique is implemented in the example design. Comment or uncomment the following line of code
in AXI master interface (AXI_IF.v) to validate this technique.
define READ_ADDRESS_QUEUING /* Comment this line to define Without Read Address Queuing */

Series of Writes or Reads
The MDDR and FDDR subsystems' performance depends on the method of data transfer between the
DDR SDRAM and AXI master. The following methods of data transfer reduce optimal performance:

• Single beat burst read and write operation

• Random read and write operation

• Switching between read and write operation

Figure 3 • Read Transaction Timing Diagram with Burst Read Address Queuing
Revision 4 5

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
The MDDR and FDDR subsystems' performance increases while performing a series of reads or writes
from the same bank and row. Figure 4 shows the AXI to LPDDR address mapping for the LPDDR
SDRAM on the IGLOO2 Evaluation Kit board.

When the AXI address crosses 0x0800, the DDR subsystem activates Row 0 of Bank 1. Row 1 of Bank 0
is activated only when the AXI address crosses 0x2000. If a new row is accessed every time, it must be
pre-charged first. This means that additional time is needed before a row can be accessed and this
reduces the overall throughput. Understanding the internal memory layout of the DDR and how it maps to
the AXI address enables the accesses to minimize the row changes and increases the overall
throughput.

DDR Configuration Tuning
The DDR SDRAM datasheet provides the timings parameters required for the proper operation in terms
of time units. These timings must match with the configuration registers in the MDDR/FDDR controller.
The timing parameters are required as number of DDR clock cycles and these are entered in the
DDR configurator GUI. The selection of minimum write or read delay values can result in optimal
performance. Implementing this approach requires extensive memory testing to ensure that the memory
transfers are stable. The IGLOO2 Evaluation Kit LPDDR is supplied with a default configuration file to
setup the MDDR controller, which is available on its documentation web page.
Table 2 lists the tuned parameters for better performance than the values in the default configuration file.

Figure 4 • AXI to LPDDR the Address Mapping

Table 2 • Tuned DDR Timing Parameters

Parameters Default Values Tuned Values
MRD 4 2
RAS min 8 7
RAS max 8192 11264
RCD 6 3
RP 7 3
REFI 3104 1280
RC 3 10
XP 3 1
CKE 3 1
RFC 79 25
6 Revision 4

Implementation on IGLOO2 Device
Implementation on IGLOO2 Device
The optimization techniques mentioned in the preceding section are implemented and validated using
the IGLOO2 Evaluation Kit board. This section describes the following:

• Design Description

• Hardware Implementation

• Running the Design

Design Description
The design consists HPMS, DDR initialization subsystem, AXI master (AXI_IF), Command decoder
(CMD_Decoder), and a COM interface (COM_Interface) block. Figure 5 shows the block diagram of the
design.

MDDR in the HPMS is configured to use the LPDDR interface and route the AXI interface to the FPGA
fabric. The DDR initialization subsystem consists CoreConfigMaster and CoreConfigP IPs that initialize
the MDDR controller. The initialization process consists the following actions:

• CoreConfigMaster (AHBL Master) accesses the DDR configuration data stored in eNVM through
FIC_0.

• The configuration data is sent to CoreConfigP through the FIC_2 master port.

• CoreConfigP sends the configuration data to advanced peripheral bus (APB) of the MDDR
subsystem.

Figure 5 • Top-Level Block Diagram of the Design
Revision 4 7

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
The command decoder receives the AXI transaction control from the COM interface block and generates
write, read, write size, and read size signals. Figure 6 shows the command decoding.

AXI master block consists AXI read channel, AXI write channel, write throughput counter, read
throughput counter, and 512x64 LSRAM. It performs the write or read operation2 based on the input
signals from the command decoder. During the write operation, AXI master reads the LSRAM and writes
into the LPDDR memory, and then measures the write throughput. During the read operation, AXI master
reads the LPDDR memory and writes into LSRAM, and then measures the read throughput. The write
throughput counter counts the AXI clocks between AWVALID of first data and WLAST of last data.
Similarly, the read throughput counter counts the AXI clocks between ARVALID of first data and RLAST
of last data.
After triggering the write or read operation, AXI master performs the write or read operation eight times to
get the average throughput and to ACTIVATE all banks. During the write operation, the write address
(AWADDR) starts from 0x00000000, and is incremented by 128 (16-beat burst). During the read
operation, the read address (ARADDR) starts from 0x00000000, and is incremented by 128.
After each write or read operation, AXI master sends the throughput count value and an address starting
from 0x0 to the COM interface block. Then, the COM interface block writes the throughput values into
TPSRAM. The control logic in the COM interface block reads the values and sends to the host PC using
the CoreUART interface.
For information on creating a custom AXI interface on user logic, refer to the AC409: Connecting User
Logic to AXI Interfaces of High-Performance Communication Blocks in the SmartFusion2 Devices
Application Note.

Figure 6 • Command Decoding

2. The write or read operation depends on the size of the write or read data. For example, if the write size is selected as 2KB,
then one AXI write operation equals to 16x16-beat burst (16x16x64).
8 Revision 4

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132822
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132822

Implementation on IGLOO2 Device
Hardware Implementation
The hardware implementation involves:

• Configuring the System Builder

• Connecting with custom logic (AXI master, Command decoder, and COM interface).
Figure 7 shows the top-level SmartDesign of the example design.

Figure 7 • Top-Level SmartDesign
Revision 4 9

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
Configuring the System Builder
This section describes how to configure the MDDR and other device features and then build a complete
system using the System Builder graphical design wizard in the Libero SoC software. For details on how
to launch the System Builder wizard and detailed information on how to use it, refer to the IGLOO2
System Builder User Guide.
The following steps describe how to configure the MDDR and access it from AXI master in the FPGA
fabric:

1. Go to the System Builder - Device Features tab and select the HPMS External Memory
(MDDR) check box and leave the rest of the check boxes unchecked. Figure 8 shows the System
Builder - Device Features tab.

2. Configure the MDDR in Memories tab as shown in Figure 9. In this example, the design is
created to access the LPDDR memory with a 16-bit data width and no ECC.

Figure 8 • System Builder - Device Features Tab
10 Revision 4

http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

Implementation on IGLOO2 Device
3. Set the DDR memory settling time to 200 µs and click Import Configuration file to initialize the
DDR memory. The configuration file is stored in eNVM. The MDDR subsystem registers must be
initialized before accessing DDR memory through the MDDR subsystem. The MDDR
configuration register file is provided along with the design file (Refer to "Appendix: Design Files"
section on page 33).

Figure 9 • Memory Configuration
Revision 4 11

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
4. In the Peripherals tab, drag the Fabric AMBA Master and drop on to the HPMS DDR FIC
subsystem. The AMBA_MASTER_0 is added to the subsystem and the Interface Type is
configured as AXI. Figure 10 shows the Peripherals tab with the AMBA_MASTER_0 added.

5. Configure the System clock and Subsystem clocks in Clocks tab as listed in Table 3.

Figure 10 • Peripherals Tab with the Fabric AMBA Master Added

Table 3 • System and Subsystem Clocks

Clock Name Frequency in MHz
System Clock On-chip 25/50 MHz RC oscillator

HPMS_CLK 83

MDDR_CLK 166

DDR/SMC_FIC_CLK 83

FIC_0_CLK 20.750
12 Revision 4

Implementation on IGLOO2 Device
Figure 11 shows the Clocks configuration tab.

6. Follow the rest of the steps with default settings and generate the design.
7. Instantiate the custom logic (AXI master, Command decoder, and COM interface) and connect as

shown in Figure 7 on page 9.

Figure 11 • System and Subsystem Clocks Configuration
Revision 4 13

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
Figure 12 shows the SmartDesign of the COM interface block. The COM_interface SmartDesign
component handles the UART communication between the host PC software utility and the AXI master
logic.

The COREUART_0 IP receives the UART signals from the host PC user interface. The Control_Logic_0
collects the command from COREUART_0 and sends to AXI master through the Command decoder,
which triggers the write/read operation. After the write/read operation, the Control_logic_0 reads the
throughput count values from TPSRAM_0 and sends to the host PC through COREUART_0.
The configurations of CoreUART and TPSRAM are given below:

• CoreUART
– Baud Rate: 115200
– Data Bits: 8
– Parity: None.

• TPSRAM
– Write port depth: 8
– Write port width: 16
– Read port depth: 16
– Read port width: 8

Figure 12 • SmartDesign of the COM Interface Block
14 Revision 4

Implementation on IGLOO2 Device
Simulation Using Micron LPDDR SDRAM Model
Setting up the Simulation Model
Setting up and running the simulation involve the following steps:

1. Obtain the Micron LPDDR SDRAM model files: The IGLOO2 Evaluation Kit board has the LPDDR
DRAM from Micron with the part number MT46H32M16LFBF-6 IT:C TR. The memory model used
in the example design supports this device (Refer to "Appendix: Design Files" section on page
33).

2. Copy the dram.v and dram_parameters.vh simulation model files to the
\<Libero SoC project directory>\stimulus directory.

3. Instantiate and connect the LPDDR SDRAM memory model in the testbench as shown in
Figure 13.

4. Ensure that dram.v file is included at the top of the testbench file. The example design uses one
instance of LPDDR model with the device width 16.

Figure 13 • Instantiation of Simulation Model
Revision 4 15

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
5. Set the testbench in which LPDDR memory model is instantiated as active stimulus. Figure 14
shows the settings under Stimulus Hierarchy.

6. Click Project > Project Settings > Simulation Options > Waveforms. Figure 15 shows the
Waveforms settings on the right.

7. Select the Include DO File check box and enter wave.do in the box as shown in Figure 15.

Figure 14 • Stimulus Settings

Figure 15 • Waveforms Settings
16 Revision 4

Implementation on IGLOO2 Device
Timing Diagrams
The timing diagrams from Figure 16 through Figure 18 on page 18 show the write operation. Figure 16
shows the control logic signals in the COM interface block.

After reset is de-asserted, the control logic receives the handshake (0x63) command through the
CoreUART RX port. Then the control logic sends the acknowledgment (0x61) through the CoreUART TX
port and waits for the write command. After the write command is received the control logic sends the
write command to AXI master through the Command decoder, which triggers the write operation. After
the write operation, the control logic reads the throughput count values from TPSRAM and sends to the
CoreUART TX port.
Figure 17 shows the MDDR signals. AXI master reads 2 KB of data from LSRAM and writes to LPDDR
SDRAM. The write operation is repeated eight times. The data is written into Row 0 and Row 1 of all
banks (Bank 0 - Bank 3).

Figure 16 • Control Logic Signals in the COM Interface Block for Write Operation

Figure 17 • MDDR Signals for Write Operation
Revision 4 17

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
Figure 18 shows the AXI master signals. AXI master sends the throughput count value and an address
starting from 0x0 to the COM interface block.

The timing diagrams from Figure 19 through Figure 21 on page 19 show the read operation. Figure 19
shows the control logic signals in the COM interface block.

After the write operation, the control logic receives the handshake (0x63) command through the
CoreUART RX port. Then the control logic sends the acknowledgment (0x61) through the CoreUART TX
port and waits for the read command. After the read command is received, the control logic sends the
read command to AXI master through the Command decoder, which triggers the read operation. After
the read operation, the control logic reads the throughput count values from TPSRAM and sends to the
CoreUART TX port.

Figure 18 • AXI Master Signals for Write Operation

Figure 19 • Control Logic Signals in the COM Interface Block for Read Operation
18 Revision 4

Implementation on IGLOO2 Device
Figure 20 shows the MDDR signals. AXI master reads 2 KB of data from LPDDR SDRAM and writes to
LSRAM. The read operation is repeated eight times. The data is read from Row 0 and Row 1 of all banks
(Bank 0 - Bank 3).

Figure 21 shows the AXI master signals. AXI master sends the throughput count value and an address
starting from 0x0 to the COM interface block.

Figure 20 • MDDR Signals for Read Operation

Figure 21 • AXI Master Signals for Read Operation
Revision 4 19

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
Simulation Using Microsemi LPDDR SDRAM VIP Model
Libero SoC includes a generic DDR memory simulation model, also called verification intellectual
property (VIP).The VIP is attached to the pin side of the MDDR or FDDR subsystem, and simulates the
functionality of a DDR memory device. It can be configured for DDR2, DDR3, and LPDDR SDRAM
memories as well.

Setting Up the Simulation Model
Setting up and running the simulation involve the followings steps:

1. Click Catalog tab in the Libero SoC.
2. Select the Simulation Mode check box.
3. Under Memory and Controller, select Generic DDR Memory Simulation model and drag into

the SmartDesign testbench canvas. Figure 22 shows the Simulation model.

Figure 22 • Generic DDR Memory Simulation Model
20 Revision 4

Implementation on IGLOO2 Device
4. Enter the Generic DDR Memory Simulation model configuration details as shown in Figure 23.
The example design uses one instance of SimDRAM (VIP model) with the device width size of 16.

5. Connect as described in "Simulation Using Micron LPDDR SDRAM Model" section on page 15.
The connections are same as the Micron model. Figure 24 shows the SmartDesign testbench for
the example design with Microsemi LPDDR SDRAM VIP model.

6. Generate the design by clicking SmartDesign > Generate Component or by clicking Generate
Component on the SmartDesign tool bar.

Figure 23 • Configuring SimDRAM

Figure 24 • SmartDesign Testbench for Example Design with Microsemi LPDDR SDRAM VIP
Revision 4 21

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
7. Open the generated SmartDesign testbench file, LPDDR_VIP_Simulation.v. Figure 25 shows
the SmartDesign generated testbench file under Files tab.

8. Replace timescale 1 ns/100 ps with timescale 1ps/1fs.
9. Add the following code above endmodule.

wire MDDR_CLK;

wire MDDR_CKE;

wire MDDR_CS_N;

wire [15:0] MDDR_ADDR;

wire [2:0] MDDR_BA;

wire [3:0] fsm;

wire [1:0] MDDR_DM_RDQS;

wire [15:0] MDDR_DQ;

wire [1:0] MDDR_DQS;

wire [2:0] COMMAND;

reg fsm_en;

reg BRCLK;

parameter BRCLK_PERIOD = 8680500; // 115200Hz

assign MDDR_DM_RDQS = net_2;

assign MDDR_DQ = net_1;

assign MDDR_DQS = net_0;

assign MDDR_CLK = MDDR_TA_top_0_MDDR_CLK;

assign MDDR_CKE = MDDR_TA_top_0_MDDR_CKE;

assign MDDR_CS_N = MDDR_TA_top_0_MDDR_CS_N;

assign MDDR_ADDR = MDDR_TA_top_0_MDDR_ADDR;

assign MDDR_BA = MDDR_TA_top_0_MDDR_BA;

assign COMMAND =
{MDDR_TA_top_0_MDDR_RAS_N,MDDR_TA_top_0_MDDR_CAS_N,MDDR_TA_top_0_MDDR_WE_N};

Figure 25 • SmartDesign Generated Testbench File
22 Revision 4

Implementation on IGLOO2 Device
assign fsm =
LPDDR_VIP_Simulation.MDDR_TA_top_0.COM_Interface_0.Control_Logic_0.fsm;

initial

begin

 BRCLK = 1'b0;

 @(posedge LPDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.CLK);

 repeat(2000)

 begin

 #(BRCLK_PERIOD / 2.0) BRCLK <= !BRCLK;

 end

end

initial

begin

 $display ("+++");

 $display ("Loading LSRAM from lsram.mem file");

 $display ("");

$readmemh("lsram_512x64.mem",LPDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.Rdata_m
em);

 $display (" Completed Loading LSRAM");

 $display ("+++");

 @(posedge LPDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.RESETn);

 force LPDDR_VIP_Simulation.MDDR_TA_top_0.COM_Interface_0.COREUART_0.DATA_OUT
= 8'b1100011; /* Handshaking Commmand 'c' */

 @(posedge
LPDDR_VIP_Simulation.MDDR_TA_top_0.COM_Interface_0.Control_Logic_0.RX_RDY);

 repeat(5) @(posedge BRCLK);

 force LPDDR_VIP_Simulation.MDDR_TA_top_0.COM_Interface_0.COREUART_0.DATA_OUT
= 8'b00100101; /* 2KB Write */

@(posedge fsm_en);

 repeat(40) @(posedge BRCLK);

 force LPDDR_VIP_Simulation.MDDR_TA_top_0.COM_Interface_0.COREUART_0.DATA_OUT
= 8'b1100011; /* Handshaking Commmand 'c' */

 @(posedge
LPDDR_VIP_Simulation.MDDR_TA_top_0.COM_Interface_0.Control_Logic_0.RX_RDY);

 repeat(5) @(posedge BRCLK);

 force LPDDR_VIP_Simulation.MDDR_TA_top_0.COM_Interface_0.COREUART_0.DATA_OUT
= 8'b00100110; /* 2KB Read */

end

always @(posedge LPDDR_VIP_Simulation.MDDR_TA_top_0.AXI_IF_0.CLK)

begin

 if(fsm == 4'b1001)

 begin

 fsm_en <= 1'b1;

 end

 else

 begin
Revision 4 23

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
 fsm_en <= 1'b0;

 end

end

10. Under the Stimulus Hierarchy tab, set the SmartDesign testbench as Set as active stimulus.
Figure 26 shows the Stimulus Hierarchy settings.

11. Change the default DO file name to wave_vip.do file in Project > Project Settings > Simulation
Options > Waveforms. Figure 27 shows the Waveforms settings.

Figure 26 • Stimulus Settings

Figure 27 • Waveforms Settings
24 Revision 4

Implementation on IGLOO2 Device
Timing Diagrams
The timing diagrams from Figure 28 through Figure 30 on page 26 show the write operation. Figure 28
shows the control logic signals in the COM interface block.

After reset is de-asserted, the control logic receives the handshake (0x63) command through the
CoreUART RX port. Then the control logic sends the acknowledgment (0x61) through the CoreUART TX
port and waits for the write command. After the write command is received, the control logic sends the
write command to AXI master through the Command decoder, which triggers the write operation. After
the write operation, the control logic reads the throughput count values from TPSRAM and sends to the
CoreUART TX port.
Figure 29 shows the MDDR signals. AXI master reads 2 KB of data from LSRAM and writes to LPDDR
SDRAM. The write operation is repeated eight times. The data is written into Row 0 and Row 1 of all
banks (Bank 0 - Bank 3).

Figure 28 • Control Logic Signals in the COM Interface Block for Write Operation

Figure 29 • MDDR Signals for Write Operation
Revision 4 25

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
Figure 30 shows the AXI master signals. AXI master sends the throughput count value and an address
starting from 0x0 to the COM interface block.

The timing diagrams from Figure 31 through Figure 33 on page 27 show the read operation. Figure 31
shows the control logic signals in the COM interface block.

After the write operation, the control logic receives the handshake (0x63) command through the
CoreUART RX port. Then the control logic sends the acknowledgment (0x61) through the CoreUART TX
port and waits for the read command. After the read command is received, the control logic sends the
read command to AXI master through the Command decoder, which triggers the read operation. After
the read operation, the control logic reads the throughput count values from TPSRAM and sends to the
CoreUART TX port.

Figure 30 • AXI Master Signals for Write Operation

Figure 31 • Control Logic Signals in the COM Interface Block for Read Operation
26 Revision 4

Implementation on IGLOO2 Device
Figure 32 shows the MDDR signals. AXI master reads 2 KB of data from LPDDR SDRAM and writes to
LSRAM. The read operation is repeated eight times. The data is read from Row 0 and Row 1 of all banks
(Bank 0 - Bank 3).

Figure 33 shows the AXI master signals. AXI master sends the throughput count value and an address
starting from 0x0 to the COM interface block.

Figure 32 • MDDR Signals for Read Operation

Figure 33 • AXI Master Signals for Read Operation
Revision 4 27

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
Running the Design
The design example is designed to run on the IGLOO2 Evaluation Kit board. For more detailed board
information, refer to www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-
evaluation-kit.

Setting Up the Hardware
Use the following steps to setup the hardware:

1. Connect the jumpers on the IGLOO2 Evaluation Kit board as listed in Table 4.

CAUTION: While making the jumper connections, the power supply switch SW7 must be switched OFF.
2. Connect the power supply to the J6 connector; switch ON the power supply switch, SW7.
3. Connect the FlashPro4 programmer to the PROG HEADER J5 connector of the IGLOO2

Evaluation Kit board.
4. Connect the host PC USB port to the IGLOO2 Evaluation Kit board’s J18 (FTDI) USB connector

using the USB mini-B cable.
5. Ensure that the USB to UART bridge drivers are automatically detected by verifying the Device

Manager of the host PC.
If the USB to UART bridge drivers are not installed, download and install the drivers from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

6. Program the IGLOO2 Evaluation Kit board with the generated or provided *.stp file (Refer to
"Appendix: Design Files" section on page 33) using FlashPro.

Table 4 • IGLOO2 FPGA Evaluation Kit Jumper Settings

Jumper Pin (from) Pin (to) Comments
J22 1 2 Default

J23 1 2 Default

J24 1 2 Default

J8 1 2 Default

J3 1 2 Default
28 Revision 4

http://www.microsemi.com/index.php?option=com_content&view=article&id=2067&catid=1719&Itemid=2909
http://www.microsemi.com/index.php?option=com_content&view=article&id=2067&catid=1719&Itemid=2909
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

Running the Design
Running the Performance Measurement Utility
The example design provides the performance measurement utility, IGL2_LPDDR_BW that runs on the
host PC to communicate with the IGLOO2 Evaluation Kit board. The UART protocol is used as the
underlying communication protocol between the host PC and the IGLOO2 Evaluation Kit board.
Figure 34 shows the initial IGL2_LPDDR_BW utility window.

The IGL2_LPDDR_BW utility consists the following sections:

• Transfer Type: Write or Read

• Data Size: Write data size or Read data size can be selected from the drop-down list. The data
size varies from 2 KB to 16 KB.

• LPDDR Throughput: It displays the number of AXI clocks and corresponding throughput values
in MB/s.

• Buttons:
– Connect button to connect or disconnect the serial port communication between the host PC

and the IGLOO2 Evaluation Kit board.
– Start button to start the performance measurement.
– Exit button to exit the application.

Figure 34 • IGL2_LPDDR_BW Utility
Revision 4 29

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
Steps to Run the Utility
1. Launch the utility. The default location is:

<download_folder>\M2GL_AC424_DF\Windows_Utility\IGL2_LPDDR_BW.exe

2. Click Connect and wait for few seconds to connect the proper FDTI COM port. The connection
status along with the COM port and Baud rate is shown in the left bottom corner of the window.
Figure 35 shows the connection status of the utility.

3. Select Write or Read as Transfer Type.
4. Select Write data size or Read data size from the drop-down box and click Start. Figure 36 shows

the write throughput measurement for 2 KB data transfer.

The number of AXI clocks may differ for different run. It is due to PRE-CHARGE, ACTIAVTE or
REFRESH cycle that runs between the memory transactions.
Table 7 on page 32 lists the write and read bandwidth for data size varies from 2 KB to 16 KB.

Figure 35 • IGL2_LPDDR_BW Connection Status

Figure 36 • Write Throughput Measurement
30 Revision 4

LPDDR SDRAM Bandwidth
LPDDR SDRAM Bandwidth
Table 5 provides the total number of 16 beat bursts corresponding to the write or read size.

The following equation is applied to calculate the throughput:

EQ 1

Simulation Result
Table 6 lists the write and read bandwidth of LPDDR SDRAM simulation. The incremental pattern of size
varies from 2 KB to 16 KB, which is transferred from LSRAM to LPDDR SDRAM and vice-versa.

Table 5 • Total Number of 16 Beat Bursts

Write or Read Data Size Total Number of 16 Beat Bursts
2 KB 16

4 KB 32

8 KB 64

16 KB 128

Bandwidth MB s  16 Total number of AXI clocks Total number of 16 beat bursts  
8 AXI clock MHz 

=

Table 6 • LPDDR SDRAM Bandwidth

SI No
Optimization
Techniques

Size
(KB)

Write Read

Write
Improvement

Read
Improvement

Number
of

Cycles
Bandwidth
(MB/Sec)

Number
of

Cycles
Bandwidth
(MB/Sec)

Base AXI CLK 80 MHz 2 507 323 721 227 avg:320 avg:225

4 1019 321 1450 225

8 2043 320 2904 225

16 4091 320 5809 225

1 AXI CLK 83 MHz 2 507 335 721 235 avg:332
3.75%

avg:234
4%4 1019 333 1450 234

8 2043 332 2905 234

16 4091 332 5800 234

2 AXI CLK 83 MHz
Without Write
Response State

2 477 356 721 235 avg:354
10.6%

avg:234
4%4 957 355 1450 234

8 1917 354 2905 234

16 3837 354 5809 234

3 AXI CLK 83 MHz
Without Write
Response State
Tuned DDR
Configuration

2 477 356 719 236 avg:354
10.6%

avg:235
4.4%4 957 355 1440 236

8 1917 354 2886 235

16 3906 348 5883 231
Revision 4 31

IGLOO2 - Optimizing DDR Controller for Improved Efficiency - Libero SoC v11.6
Board Test Result
Table 7 lists the write and read bandwidth of LPDDR SDRAM on the IGLOO2 Evaluation kit board. The
incremental pattern of size varies from 2 KB to 16 KB, which is transferred from LSRAM to LPDDR
SDRAM and vice-versa.

4 AXI CLK 83 MHz
Without Write
Response State
Tuned DDR
Configuration
Read Command
Queuing

2 477 356 526 323 avg:354
10.6%

avg:322
43%4 957 355 1054 322

8 1917 354 2110 322

16 3907 348 4317 315

5 AXI CLK 100 MHz
(MDDR CLK 200
MHZ)
Without Write
Response State
Tuned DDR
Configuration
Read Command
Queuing

2 477 429 526 389 avg:428
33.75%

avg:388
72%4 957 428 1054 388

8 1917 427 2110 388

16 3907 419 4317 379

Table 6 • LPDDR SDRAM Bandwidth (continued)

SI No
Optimization
Techniques

Size
(KB)

Write Read

Write
Improvement

Read
Improvement

Number
of

Cycles
Bandwidth
(MB/Sec)

Number
of

Cycles
Bandwidth
(MB/Sec)

Table 7 • LPDDR SDRAM Bandwidth

SI No
Optimization
Techniques

Size
(KB)

Write Read

Write
Improvement

Read
Improvement

Number
of

Cycles
Bandwidth
(MB/Sec)

Number
of

Cycles
Bandwidth
(MB/Sec)

Base AXI CLK 80 MHz 2 507 323 721 227 avg:320 avg:225

4 1019 321 1450 225

8 2043 320 2905 225

16 4091 320 5812 225

1 AXI CLK 83 MHz 2 507 335 721 235 avg:332
3.75%

avg:234
4%4 1019 333 1450 234

8 2043 332 2905 234

16 4091 332 5809 234

2 AXI CLK 83 MHz
Without Write
Response State

2 477 356 721 235 avg:354
10.6%

avg:234
4%4 957 355 1450 234

8 1917 354 2905 234

16 3837 354 5809 234
32 Revision 4

Conclusion
Conclusion
This application note describes the DDR SDRAM bandwidth optimization techniques with an example
design on the IGLOO2 Evaluation Kit board. It also shows the LPDDR SDRAM simulation flow using the
Micron LPDDR SDRAM model and Microsemi LPDDR SDRAM VIP model.

Appendix: Design Files
The design files can be downloaded from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=m2gl_ac424_liberov11p6_df

The design file consists Libero SoC Verilog project, MDDR Configuration files, Simulation model files and
programming files (*.stp) for the IGLOO2 Evaluation Kit board. Refer to the Readme.txt file included in
the design file for the directory structure and description.

List of Changes
The following table shows the important changes made in this document for each revision:

3 AXI CLK 83 MHz
Without Write
Response State
Tuned DDR
Configuration

2 477 356 719 236 avg:354
10.6%

avg:235
4.4%4 957 355 1444 235

8 1917 354 2886 235

16 3907 348 5883 231

4 AXI CLK 83 MHz
Without Write
Response State
Tuned DDR
Configuration
Read Command
Queuing

2 477 356 526 323 avg:354
10.6%

avg:322
43%4 957 355 1054 322

8 1917 354 2110 322

16 3907 348 4313 315

Table 7 • LPDDR SDRAM Bandwidth (continued)

SI No
Optimization
Techniques

Size
(KB)

Write Read

Write
Improvement

Read
Improvement

Number
of

Cycles
Bandwidth
(MB/Sec)

Number
of

Cycles
Bandwidth
(MB/Sec)

Date Changes Page

Revision 4
(October 2015)

Updated the document for Libero v11.6 software release (SAR 71831). NA

Revision 3
(May 2015)

Updated the document for Libero v11.5 software release (SAR 67502). NA

Revision 2
(August 2014)

Updated the document for Libero v11.4 software release (SAR 59677). NA
Revision 4 33

http://soc.microsemi.com/download/rsc/?f=m2gl_ac424_liberov11p6_df

51900292-4/10-15

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as
custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and
has approximately 3,600 employees globally. Learn more at www.microsemi.com.

© 2015 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	Purpose
	Introduction
	References
	Design Requirements
	Optimization Techniques
	Frequency of Operation
	Burst Length
	AXI Master Without Write Response State
	Read Address Queuing
	Series of Writes or Reads
	DDR Configuration Tuning

	Implementation on IGLOO2 Device
	Design Description
	Hardware Implementation
	Configuring the System Builder
	Simulation Using Micron LPDDR SDRAM Model
	Simulation Using Microsemi LPDDR SDRAM VIP Model

	Running the Design
	Setting Up the Hardware
	Running the Performance Measurement Utility
	Steps to Run the Utility

	LPDDR SDRAM Bandwidth
	Simulation Result
	Board Test Result

	Conclusion
	Appendix: Design Files
	List of Changes

