
Application Note AC417

SmartFusion2 - Distributing and Running Code
from Multiple Memory Regions

Table of Contents

Purpose
This application note describes how to distribute the application code into different memories such as
embedded static random access memory (eSRAM), embedded nonvolatile memory (eNVM), SRAM in
fabric etc., and execute the code.

Introduction
Linker scripts are files (file extension .ld) that contain commands to direct the linker tool, ld, to generate
executable files that have data and code sections in the desired memory addresses. Linker scripts can
also produce run-time addresses (called virtual memory addresses) that are different from load memory
addresses (that is, address where the program image is loaded). This makes it possible to store the
program image(s) in one or more non-volatile memories at boot time but run these same images from
faster, volatile memories at run-time. The application developer has to write code to relocate (copy) this
image to the correct run-time address. This application note covers a number of ways the code and data
can be partitioned across various memories and describes the linker script commands involved in the
process.

SmartFusion®2 System-on-Chip (SoC) field programmable gate array (FPGA) devices integrate an
ARM® Cortex™-M3 processor, up to 512 KB of eNVM, 64 KB of eSRAM, and memory interfaces for
DDR/SDR SDRAM for program code with a field programmable fabric for user register transfer level
(RTL) implementation.

Purpose .1
Introduction .1
Resources .2
The Cortex-M3 Processor Code Space .2
Linker Script .3

Syntax of Commands Used in this Application Note . .3
MEMORY Command . .3
SECTIONS Command . .4
’.’ : The Location Counter .6
EXCLUDE_FILE Command .6

Declaring Function Pointers to Avoid Veneer Generation . .7
Design Description . .7

Hardware Implementation .7
Software Implementation . 12

Running the Entire Code in Fabric LSRAM [Implementation1] . 12
Subroutine in eSRAM and Main Code in Fabric LSRAM [Implementation2] 14
Stack in eSRAM and Splitting the Code Between eNVM and the Fabric LSRAM [Implementation3] . 17

Running the Implementations . 20
Speeding Up Code Execution by Copying into Internal SRAM at Boot-time 22
April 2014 1

© 2014 Microsemi Corporation

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Resources
This application note is accompanied by three implementation examples targeted to the SmartFusion2.
Resources required to run these examples are detailed in Table 1.

The software example implementations accompanying this application note can be used with any
Microsemi® SoC product that uses ARM embedded processor and the Softconsole tool chain (that is,
GNU tools) with minor modifications.

The Cortex-M3 Processor Code Space
The address range from the 0x00000000 to 0x1FFFFFFF (0.5 GB space) is the code space for the
Cortex-M3 processor. Following are the SmartFusion2 SoC FPGA memory sections for the code/data
space:

• On-chip eNVM (from 0x60000000 to 0x6007FFFF) of 256 KB for code and constant data regions

• On-chip eSRAM (from 0x20000000 to 0x2000FFFF) of 64 KB with SECDED

• On-chip FPGA fabric RAM (FPGA fabric interface controllers (FIC) region 0). This can be mapped
via FIC 0 or FIC 1. This region can be accessed by a system bus for instructions and data

• External RAM interfaced through DDR or SDR interfaces (from 0xA0000000 to 0xDFFFFFFF) of
1 GB for both code and data regions

This application note focuses on the following regions:

• eNVM from 0x60000000 to 0x6007FFFF

• Internal eSRAM at 0x2000000 (used for stack and heap)

• Internal AHB connected LSRAM using the free address space at 0x30000000

The aim is to partition the executable code into eNVM, eSRAM, and internal LSRAM

The current application note limits itself to demonstrate how this can be done during debug and
development. General guidelines are provided at the end for how to deploy such a solution (that is, a
release mode build).

Table 1 • Resource Details

Resource Details Description

Hardware Resources

• SmartFusion2 development kit. Refer the
SmartFusion2 Development Kit User Guide for
more information

Rev D or later

Host PC or Laptop • Windows XP SP2 Operating System - 32-bit/64-bit

• Windows 7 Operating System - 32-bit/64-bit

Software Resources

Libero® System-on-Chip (SoC) for viewing the design
files

11.3

FlashPro Programming Software 11.3

SoftConsole 3.4
2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130919

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Linker Script
Linker scripts are text files. A linker script is written as a series of commands. Each command is either a
keyword, possibly followed by arguments or an assignment to a symbol.

The main purpose of the linker script is to describe how the sections in the input files should be mapped
into the output file, and to control the memory layout of the output file (image file).

An executable and linkable format (ELF) file is an example of an object file. Object files participate in
program linking (building a program) and program execution (running a program). Object files are
created by the assembler and link editor. The object files are binary representations of programs that are
intended to be executed directly on a processor.

The GNU linker tool, ld, combines a number of object and archive files, relocates their data, and ties up
symbol references. Usually the last step in compiling a program is to run ld. The purpose of this section
is to familiarize the user with the keywords necessary for implementation. For a comprehensive list, refer
to the ld manual: https://sourceware.org/binutils/docs/ld/

The most fundamental command for ld is the SECTIONS command which specifies the output sections.
Every meaningful linker script must have a SECTIONS command. It specifies a picture of the output file’s
layout, in varying degrees of detail.

The MEMORY command complements SECTIONS command by describing the available memory in the
target architecture. This command is optional.

Comments may be included in linker scripts just as in C: delimited by ‘/*’ and ‘*/’. As in C, comments are
syntactically equivalent to whitespace.

Syntax of Commands Used in this Application Note
This section covers the following commands required to understand the examples provided along with
this application note.

– MEMORY Command

– SECTIONS Command

– ’.’ : The Location Counter

– EXCLUDE_FILE Command

MEMORY Command
The MEMORY command describes the location and size of blocks of memory in the target system. This
command specifies details of the memory regions that may be used by the linker, and the ones it must
avoid. Though the linker does not shuffle sections to fit into the available regions, it does move the
requested sections into the correct regions and issues errors when the regions become too full.

The following section from GNU linker document explains the command syntax.

MEMORY
{
name (attr) : ORIGIN = origin, LENGTH = len
...
}

where,

name is the name used internally by the linker to refer to the region. Any symbol name may be used.
The region names are stored in a separate name space, and do not conflict with symbols, file names, or
section names. Distinct names should be used to specify multiple regions.

(attr) is an optional list of attributes. Valid attribute lists must be made up of the characters "LIRWX".
If the attribute list is omitted, the parentheses around it must be omitted as well.

origin is the start address of the region in physical memory. It is an expression that must evaluate to
a constant before memory allocation is performed. The keyword ORIGIN may be abbreviated to org or
o (but not, for example, ’ORG’).

len is the size in bytes of the region (an expression). The keyword LENGTH may be abbreviated to
‘len’ or ‘l’.
3

https://sourceware.org/binutils/docs/ld/

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
For example, consider the following line taken from the linker script contained in the design files used to
run the entire code from Fabric SRAM [Implementation1].

In example 1, two memory regions are defined: one for storing code (ram), and another for stack
(esram).Once a memory region is defined, ’>region’ directs the linker to place specific output sections
into that memory region.

For example, if there is a memory region named ram, use ’>ram’ in the output section definition.

If no address is specified for the output section, the linker sets the address to the next available address
within the memory region. If the combined output sections directed to a memory region are too large for
the region, the linker issues an error message.

See the example below:

.data :
{
__data_load = LOADADDR (.data);
_sidata = LOADADDR (.data);
__data_start = .;
_sdata = .;
KEEP(*(.jcr))
*(.got.plt) *(.got)
*(.shdata)
(.data .data. .gnu.linkonce.d.*)
 . = ALIGN (4);
_edata = .;
} >ram

In the above example, the .data section is loaded into a memory region called ram. This region would
be defined earlier in the linker script using the MEMORY command.

SECTIONS Command
The SECTIONS command controls how the input sections are combined into output sections, as well as
their order in the output file. A maximum of one SECTIONS command may be used in a script file, but it
can have as many statements within it. Statements within the SECTIONS command can do one of three
things:

• Define the entry point

• Assign a value to a symbol

• Describe the placement of a named output section, and which input sections go into it

The SECTIONS command is written as the keyword SECTIONS, followed by a series of symbol
assignments and output section descriptions enclosed in curly braces.

The most frequently used statement in the SECTIONS command is the section definition, which specifies
the properties of an output section: its location, alignment, contents, fill pattern, and target memory
region. Most of these specifications are optional; the simplest form of a section definition is:

SECTIONS { ...
secname : {
contents
 }
... }

where,

secname is the name of the output section

contents specifies what goes in the output section, for example, a list of input files or sections of input
files.

Example 1

MEMORY
{
ram (rwx) : ORIGIN = 0x30000000, LENGTH = 16k /* fabric SRAM address and length*/
esram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k
}

4

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
For example, let’s suppose, code (that is, the text section) needs to be loaded at 0x20000000, and the
data section needs to be loaded at the 0x30000000 location, which are the RAM and eSRAM memory
regions as declared in the memory command in memory section. Below is a linker script that performs
the task:

Here, by using the ’>’ token at the end of .data, the linker is directed to place the .data in the specified
memory region ram. Similarly, “.text” is placed in eSRAM.

The first line defines an output section, ‘.text’. The colon following the .text is required syntax that may
be ignored for now. Within the curly braces after the output section name, list the names of the input
sections that must be placed into this output section. The ’*’ is a wildcard that matches any file name. The
expression ’*(.text)’ means all ’.text’ input sections in all input object (that is, .o) files. This text section is
loaded into the eSRAM location (>eSRAM) that starts at 0x20000000. The data section is loaded at the
ram location (>ram) that starts at 0x30000000.

Example 2

SECTIONS
{
.text :
{
CREATE_OBJECT_SYMBOLS
__text_load = LOADADDR(.text);
__text_start = .;
__vector_table_vma_base_address = .;
*(.isr_vector)
*(.text)
} >esram
.data :
{
__data_load = LOADADDR (.data);
_sidata = LOADADDR (.data);
__data_start = .;
_sdata = .;
KEEP(*(.jcr))
*(.got.plt) *(.got)
*(.shdata)
(.data .data. .gnu.linkonce.d.*)
. = ALIGN (4);
_edata = .;
} >ram }
5

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
’.’ : The Location Counter
The special linker variable dot ’.’ always contains the current output location counter. Since the ’.’
always refers to a location in an output section, it must always appear in an expression within a
SECTIONS command. The ’.’ symbol may appear anywhere that an ordinary symbol is allowed in an
expression, but its assignments have a side effect. Assigning a value to the ’.’ symbol causes the
location counter to be moved. This may be used to create holes in the output section and place the
data/code at a specific location. The location counter may never be moved backwards.

In the example 3, file1 is located at the beginning of the .text section, followed by a 1000 byte gap.
Then file2 appears, also with a 1000 byte gap following before file3 is loaded. The notation ’= 0x1234’
specifies the data that is to be written (filled) in the gaps.

EXCLUDE_FILE Command
Let’s consider the .text : { *(.text) } component from the previous example (example 2).
Here, ‘*’ is a wildcard that matches any filename, hence, in the above example, it includes all input
‘.text’ sections from all input object files.

In this application note, for implementation2 and implementation3, we need subroutine to be excluded
from the list, so that it can be loaded into a different memory location. So, the EXCLUDE_FILE is used to
exclude the particular subroutine.o file from loading into the text section.

*(EXCLUDE_FILE (*subroutine.o) .text.*)

In the above command all files are loaded except files that match *subroutine.o.

To load subroutine.o file into the LSRAM in the fabric, use:

.mytext :
{
subroutine.o(.text.)
 } >lsram

Here, LSRAM is a section in memory that needs to be defined using the MEMORY command, covered
earlier in the document.

Example 3

SECTIONS
{
.text :
{
file1(.text)
. = . + 1000;
file2(.text)
. += 1000;
file3(.text)
} = 0x1234;

}

6

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Declaring Function Pointers to Avoid Veneer Generation
Veneers are small sections of code generated by the linker and inserted into your program. ’armlink’
generates veneers when a branch involves a destination beyond the branching range of the current
range.

In implementation2 and implementation3), this is certain when the code is partitioned across regions
starting at 0x20000000 and 0x30000000.

The range of a branch long (BL) instruction is 32 MB for ARM and 4 MB for Thumb. A veneer can,
therefore, extend the range of the branch by becoming the intermediate target of the instruction and then
setting the PC to the destination address.

The disadvantage with veneers is that single stepping through a function located beyond the range of the
BL instruction becomes impossible. This happens because the entire function is executed in the veneer
function called. To enable debugging code partitioned across many regions spaced far apart, function
pointers have to be used to call the function. Using this approach, the function then can be single
stepped while debugging.

Design Description
The design example in this application note uses MSS, FIC, AHBLSRAM, eSRAM, and eNVM memory.
The design consists of MSS with FIC_0 enabled for AHB master interface. AHBLSRAM has been
instantiated with the size of 16 K locations of 32 bits each. Fabric oscillator is used as a clock source,
which is then given to the FCCC. The output of FCCC is the clock for the MSS. CoreAHBLite is
instantiated to connect the FIC_O and AHBLSRAM.

Hardware Implementation
The hardware implementation involves configuring MSS, Fabric, CCC, oscillator, sysreset, and
AHBLSRAM. Figure 1 shows the top level SmartDesign of the application.

Figure 1 • Top-Level SmartDesign
7

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
On-chip oscillator of 25/50 MHz has been configured as the source for Fabric CCC. Figure 2 shows the
Oscillator Configuration window.

Fabric CCC has been configured to take 50 MHz on-chip oscillator and give an output of 50 MHz at GL0.
This GL0 output is used by the MSS_CCC and provides a clock of 50 MHz as shown in Figure 3 and
Figure 4 on page 9.

Figure 2 • Oscillator Configuration

Figure 3 • Fabric PLL Configuration
8

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
MSS reset is configured to ‘Enable FPGA Fabric to MSS Reset (MSS_RESET_N_F2M)’ as shown in
Figure 5.

Figure 4 • MSS CCC Configuration

Figure 5 • MSS RESET Configuration
9

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
FIC_0 is configured to use the ABHLite master interface as shown in Figure 6.

Core AHBLSRAM is configured for the space of 16 K locations of 32 bits each. The number of locations
specified should be a multiple of 2048.

Note: The LSRAM depth refers to number of locations, that is, 16 K locations of 32 bits each.

Figure 6 • FIC Configuration

Figure 7 • Fabric LSRAM Configuration
10

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Core AHBLite is configured with a Memory space of 4 GB addressable space with 16 slots of 256 MB
each. The Selecting M0 can access slot 3 under Enable Master access gives the address of slave as
0x30000000.

Figure 8 • AHBLite Configuration
11

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Software Implementation
This AN covers three ways to split the application code across the memory regions. They are:

• Running the Entire Code in Fabric LSRAM [Implementation1]

• Subroutine in eSRAM and Main Code in Fabric LSRAM [Implementation2]

• Stack in eSRAM and Splitting the Code Between eNVM and the Fabric LSRAM [Implementation3]

Running the Entire Code in Fabric LSRAM [Implementation1]
To run the entire code in Fabric LSRAM, the memory section of the linker script of eSRAM needs to be
modified. Modify the RAM origin address to 0x30000000, which is the address of the LSRAM in FABRIC,
and set the length as 16 K as LSRAM is configured for 16 K locations of 32 bits each. The following
details show how to do this.

MEMORY

{
 /* SmartFusion2 internal LSRAM */
 ram (rwx) : ORIGIN = 0x30000000, LENGTH = 16k
}

The following sections also need to be modified to set the stack size and address in the memory space
available.

RAM_START_ADDRESS = 0x30000000; /* Must be the same value MEMORY region ram ORIGIN
as above. */
RAM_SIZE = 16k; /* Must be the same value MEMORY region ram LENGTH as above. */
MAIN_STACK_SIZE = 8k; /* Cortex main stack size. */
PROCESS_STACK_SIZE= 4k; /* Cortex process stack size (only available with OS
extensions).*/

To verify this, use the following simple application code that writes into the memory at 0x20000000
(eSRAM memory region), reads back the data from there, adds a value to it, and writes it into another
variable. Running this code displays the values getting updated.

p = 0x20000000;
*p=100;
*p+=20;
q=*p;

The disassembly window displays the address of the instructions that start from 0x30000000, which is
the address of the LSRAM.
12

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Upon completion of this step-by-step execution, the value of variables getting updated can be seen.
Finally, the value of q will be updated to 120.

Figure 9 • Softconsole Debug Showing Memory Address for Implementation1

Figure 10 • Memory Map for Implementation1

Space for code, data

Space for stack

0x30000000

0x30003FFF

0x300
02000

LSRAM

8 K

8 K
13

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Subroutine in eSRAM and Main Code in Fabric LSRAM [Implementation2]
In this implementation, the main code is loaded into the Fabric LSRAM, and the subroutine file is loaded
into the eSRAM.

Two memory regions need to be declared: one for Fabric LSRAM, and one for eSRAM with the
appropriate address and lengths as shown below.

MEMORY
{
 ram (rwx) : ORIGIN = 0x30000000, LENGTH = 16k
 esram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k
}
We need to make the following changes, so the stack is loaded into the eSRAM:
RAM_START_ADDRESS = 0x20000000; /* Must be the same value MEMORY region ram ORIGIN
as above. */
RAM_SIZE = 64k; /* Must be the same value MEMORY region ram LENGTH as above. */
MAIN_STACK_SIZE = 8k; /* Cortex main stack size. */
PROCESS_STACK_SIZE= 4k; /* Cortex process stack size (only available with OS
extensions).*/

In the text section of the linker script, everything is loaded into the LSRAM except the subroutine.o file as
shown below:

*(.text)
*(EXCLUDE_FILE (*subroutine.o) .text.*)

Another section called .mytext is declared and the subroutine.o file is loaded into the eSRAM region as
shown below:

.mytext :
 {
 subroutine.o(.text.)
 } >esram

The declared functions add, sub, and mul perform the addition, subtraction, and multiplication
respectively of two numbers.

These functions are in the subroutine.c file. To avoid the generation of veneers, declare the function
pointers to these functions as shown below.

int (*add_ptr)(int , int) ;//function pointer to add
int (*sub_ptr)(int , int);//function pointer to sub
int (*mul_ptr)(int , int); //function pointer to mul
14

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Run the design to see the values returned by these function pointers in the eSRAM region as the
subroutine is loaded into the eSRAM, as shown in Figure 11.

On performing step-by-step execution, the disassemble window shows these functions located in the
eSRAM memory region and the appropriate values getting updated in the variable window as shown in
Figure 12.

Figure 11 • Debug Window Showing Address Pointers Getting Updated for Implementation2

Figure 12 • Debug Window Showing Memory Execution Address for Implementation2
15

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Figure 13 • Memory Map for Implementation2

Space where Subroutine is loaded

Stack Space

0x20000000

0x2000FFFF

56 K

8 K

0x2000E000

Space for code, data

0x30000000

16 K

0x30003FFF

eSRAM LSRAM
16

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Stack in eSRAM and Splitting the Code Between eNVM and the Fabric
LSRAM [Implementation3]
In this implementation, the entire code is loaded into the eNVM excluding subroutine (that is loaded into
LSRAM) and the stack is in the eSRAM. To do this, the eNVM linker script needs to be modified as
follows:

1. Add the LSRAM memory region in the memory command.

MEMORY
{
 /*
 * WARNING: The words "SOFTCONSOLE", "FLASH", and "USE", the colon ":",
* and the name of the type of flash memory are all in a specific order.
 * Please do not modify that comment line, in order to ensure
* debugging of your application will use the flash memory correctly.
 */

 /* SOFTCONSOLE FLASH USE: microsemi-smartfusion2-envm */
 rom (rx) : ORIGIN = 0x60000000, LENGTH = 256k

 /* SmartFusion2 internal eNVM mirrored to 0x00000000 */
 romMirror (rx) : ORIGIN = 0x00000000, LENGTH = 256k

 /* SmartFusion2 internal eSRAM */
 ram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k

 /* SmartFusion 2 LSRAM Block, This will store subroutines*/
 lsram (rwx) : ORIGIN = 0x30000000, LENGTH = 16k

}
Exclude the subroutine.o from loading into the eNVM
*(EXCLUDE_FILE (*subroutine.o) .text.*)
Load the subroutine.o into the LSRAM.
.mytext :
 {
 subroutine.o(.text.)
} >lsram

The declared functions add, sub, and mul perform addition, subtraction, and multiplication respectively
of two numbers.
17

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Run the design to see the values returned by these function pointers as expected (pointers point to the
LSRAM region) shown in Figure 14.

Figure 14 • Debug Window Showing Function Pointers for Implementation3
18

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
While performing a step-by-step execution, the disassembly window displays the functions located in the
LSRAM memory region as shown in Figure 15.

Figure 15 • Debug Window Showing Execution Address for Implementation3

Figure 16 • Memory Map for Implementation3

Stack

0x20000000

0x2000FFFF

0x2000E000 Space for code, data

0x30000000

0x30003FFF

eSRAM LSRAM

Space where maincode
is loaded

0x60000000

0x6000FFFF

eNVM
19

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Running the Implementations
This application note provides the Design Files for all three implementations. There is one set of design
files for the implementation1, and another set for the implementation2 and implementation3.

To get the design files for LSRAM (implementation1), refer to
http://soc.microsemi.com/download/rsc/?f=M2S_AC417_Implementation1_DF

To get the design files for eSRAM-LSRAM and eNVM-LSRAM(implementation2 and 3), refer to
http://soc.microsemi.com/download/rsc/?f=M2S_AC417_Implementation2_3_DF

Select the appropriate linker script in the Softconsole for running the above described scenarios.

1. To run implementation 1 that includes running only in LSRAM, select the linker script as shown in
Figure 17

Figure 17 • Selecting Linker Script for Implementation1
20

http://soc.microsemi.com/download/rsc/?f=M2S_AC417_Implementation1_DF
http://soc.microsemi.com/download/rsc/?f=M2S_AC417_Implementation1_DF
http://soc.microsemi.com/download/rsc/?f=M2S_AC417_Implementation2_3_DF

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
2. To run implementation 2, which includes loading the subroutine into eSRAM and all other codes
into the LSRAM, the eSRAM-LSRAM linker script needs to be selected as shown in Figure 18.

3. To run implementation 3, where the code is loaded into eNVM and the subroutine is loaded into
LSRAM in fabric, the eNVM-LSRAM linker script needs to be selected as shown in Figure 19.

Figure 18 • Selecting Linker Script eSRAM-LSRAM for Implementation 2

Figure 19 • Selecting Linker Script eNVM-LSRAM for Implementation 3
21

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
Speeding Up Code Execution by Copying into Internal SRAM
at Boot-time

This section describes the method to load the code into internal SRAM before the execution of the code
begins. This is done by using the Linker script production-relocate-executable.ld, which is
available under the startup_gcc folder as shown in Figure 20.

In the linker script under the memory command, there is an external_ram section that is required to
modify this section address according to the address of the SRAM implemented. For example, if the
address is 0x30000000 and the size is 16 KB (as it is in this design example) modify the memory section
as follows:

internal_ram (rwx) : ORIGIN = 0x30000000, LENGTH = 16K

Figure 20 • Location of production-relocate-executable.ld
22

SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
After this modification has been made in the memory command, AT command should be used for the
Linker to identify which part of the code is to be loaded into the internal SRAM. For example, to load the
data section into the internal SRAM, specify the memory region as follows:

.data :
 {
 __data_load = LOADADDR(.data);
 _sidata = LOADADDR (.data);
 __data_start = .;
 _sdata = .;
 KEEP(*(.jcr))
 *(.got.plt) *(.got)
 *(.shdata)
 (.data .data. .gnu.linkonce.d.*)
 . = ALIGN (4);
 _edata = .;
 } >internal_ram AT>rom

Here, internal_ram AT>rom means that the data is first loaded into the rom and that before the
execution begins, when the Reset_handler is run, this data will be copied into the internal_ram.

Relocation of the data section at runtime is done by the startup_m2sxxx.s which has the copy data
section code (shown below):

/*--
* Copy data section.
*/

copy_data:
 ldr r0, =__data_load
 ldr r1, =__data_start
 ldr r2, =_edata
 cmp r0, r1
 beq clear_bss

copy_data_loop:
 cmp r1, r2

 itt ne
 ldrne r3, [r0], #4
 strne r3, [r1], #4
 bne copy_data_loop
23

51900285-1/04.14

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

www.microsemi.com
mailto:%20sales.support@microsemi.com

	SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
	Purpose
	Introduction
	Resources
	The Cortex-M3 Processor Code Space
	Linker Script
	Syntax of Commands Used in this Application Note
	MEMORY Command
	SECTIONS Command
	’.’ : The Location Counter
	EXCLUDE_FILE Command

	Declaring Function Pointers to Avoid Veneer Generation
	Design Description
	Hardware Implementation
	Software Implementation
	Running the Entire Code in Fabric LSRAM [Implementation1]
	Subroutine in eSRAM and Main Code in Fabric LSRAM [Implementation2]
	Stack in eSRAM and Splitting the Code Between eNVM and the Fabric LSRAM [Implementation3]

	Running the Implementations
	Speeding Up Code Execution by Copying into Internal SRAM at Boot-time

