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Abstract
FPGAs are powerful design elements in embedded systems with many design advantages, but these 
devices can have complex designs with complex design issues that need to be debugged. Tracking down 
design issues such as definition errors, system interaction problems, and system timing errors can be a 
challenge. The inclusion of in-circuit debug capabilities in an FPGA can dramatically improve hardware 
debug, and avoid countess hours of frustration. This paper describes several different approaches to in-
circuit debug for FPGAs, identifies key trade-offs, and through an example design, targeted for a 
Microsemi SmartFusion®2 SoC FPGA device, will show how new capabilities can be used to speed debug 
and test.

Introduction
FPGAs are pervasive and powerful design elements and are now found in virtually every embedded 
system. With increasing capacity, inclusion of complex on-chip functional blocks and advanced serial 
interfaces these devices can also have complex design problems that need to be debugged. Tracking 
down issues such as functional definition errors (at the FPGA or system level), functional system 
interaction problems, system timing issues, and signal fidelity issues between ICs (like noise, crosstalk, or 
reflections) all become much more complex when using advanced FPGAs. Simulation is certainly a big 
help in identifying many design problems, but many real world interactions won't show up until the design 
is implemented in hardware. Several different techniques for debugging complex design issues have been 
developed to simplify the process. A careful understanding of each of these key techniques, including the 
various advantages and disadvantages, is useful when considering which technique or combination of 
techniques is suitable for a particular design. 

An example FPGA design, targeted for a Microsemi SmartFusion2 SoC FPGA device, can be used to 
demonstrate some of the advantages and disadvantages of these standard techniques as well as the 
newest in-circuit debug capabilities. This illustrative example will show how these various techniques can 
be used to speed the identification and elimination of hardware problems during hardware debug.

Why is FPGA Debugging a Critical Aspect of System Design 
and Development?
FPGAs have a variety of use models that differentiate them from other design elements. FPGAs can be 
used in the production product or can be used as a development vehicle to prove out or prototype a 
production design concept. When used as the production vehicle, FPGAs can be a much more flexible 
target than ASIC or CPU-based production vehicles. This is particularly important for a new design, one 
without much previous design experience. Designs with different architectural options can be easily 
created and tested so the optimal design is identified. FPGAs with on-chip processors (SoC FPGAs) make 
it also possible to trade-off CPU-based processing with hardware assisted FPGA-based acceleration 
functions. These advantages can dramatically reduce design, validation, testing, and failure analysis for 
new product developments.

When used for prototyping a design, perhaps for a production ASIC, FPGA flexibility is a key benefit. An 
actual hardware platform, even one that doesn't run at full speed, makes it much easier to obtain detailed 
system performance metrics, throughput analysis data and architecture proof-of-concept results. FPGA 
support for hardened implementations of industry standard busses (like PCIe®, Gb Enet, XAUI, USB, 
CAN, and others) simplifies the testing associated with these interfaces. The newest families of FPGAs 
with on-chip ARM processors (SoC FPGAs), makes it easy to prototype implementations with embedded 
processors to. Previously developed processor code can be ported to the prototype and new code created 
in parallel with the hardware design effort. 
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This combination of a standard processor with standard interface busses makes it possible to leverage the 
large ecosystem of available code libraries, drivers, functional APIs, Real Time Operating Systems, and 
even full Operating Systems to much more quickly create a working prototype. Additionally, once the 
design is solidified, the FPGA prototype can be used to capture extensive simulation test sets (for both 
stimulus and response) that reflect actual system data. These data sets can be invaluable in creating the 
final simulations for an ASIC or other production implementation. The advantages of using an FPGA as a 
design prototype can dramatically reduce design, validation, testing, and failure analysis for the final 
product implementation.

In both of these common FPGA use models the flexibility of the FPGA as a design target is a key 
advantage. This means that many design changes and iterations would be the norm, and thus the ability to 
rapidly debug design errors would be critical to enabling as many design options as possible. Without an 
efficient debug capability much of the advantage of FPGA design flexibility will be scarified for the 
additional debugging time required. Luckily, FPGAs can also provide additional hardware features that 
dramatically simplify real-time debugging. Prior to looking at these capabilities, let’s first look at the most 
common types of issues an FPGA design might be faced with so we have the proper background to 
evaluate the efficiency and associated trade-offs of various debugging tools.

Common Issues When Debugging FPGA Designs
Along with the expanded capabilities that modern FPGAs bring, the associated increased complexity 
makes it more difficult to create error-free designs. In fact, it has been estimated that debugging can take 
over 50% of the embedded system design cycle. With time-to-market pressures continuing to squeeze the 
development cycle, hardware debugging of the initial system is relegated to an afterthought—all to often 
assuming that verification (itself a large percentage of the development schedule), will catch all the bugs 
prior to initial system bring-up. Let’s look at just a few common types of system issues to better understand 
the challenges a typical design will face during initial system bring-up.

Functional definition errors can be doubly difficult to find since the designer has misunderstood a particular 
requirement, so the error can be overlooked even when looking carefully at the details of the design. An 
example of a common functional definition error would be where a state machine transition doesn’t end up 
in the right state. Errors can also show up in system interfaces as an interaction problem. Interface latency, 
for example, might be incorrectly specified resulting in an unexpected buffer overflow or underflow 
condition.

System level timing issues are another very common source of design errors. Asynchronous events, in 
particular, are a common source of errors when synchronization or crossing timing domain effects are not 
carefully considered. When operating at speed these types of errors can be very problematic and may 
show up very infrequently, perhaps only when specific data patterns manifest themselves. Many common 
timing violations fall into this category and are usually very difficult, if not impossible to simulate. 

Timing violations can also be the result of low signal fidelity between integrated circuits, in particular in 
systems with multiple power rails for each circuit. Low signal fidelity can result in signal noise, crosstalk, 
reflections, excess loading and Electro-Magnetic Interference (EMI) issues that often show up as timing 
violations. Power supply issues, like transients (in particular during system start-up or shut-down), load 
variations and high power dissipation stresses can also result in mysterious errors, often not easily traced 
back to a power supply source. Even when the design is completely correct board fabrication issues can 
result in errors. Faulty solder joints and improperly attached connectors, for example, can be the source of 
errors and may even be temperature or board location dependent. The use of advanced FPGA packaging 
techniques can make it difficult to probe signals on the printed circuit board to, so just getting access to a 
desired signal can often be problematic. Often many design issues don't create an immediate error and 
must ripple through the design until the error actually manifests itself. Tracing the starting error back to the 
root cause can often be a frustrating, difficult and time consuming task. 
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For example, a single bit wrong in a translation table may not result in an error until many cycles later. 
Some of the tools we will discuss later in this paper, that use dedicated in-circuit debug hardware, are 
specifically targeted at making these ‘bug hunts’ quicker and easier. Prior to getting into the details of these 
tools, let’s first look a popular software-based debugging technique simulation in order to better understand 
the advantages and disadvantages of using simulation for debugging.

Use of Simulation for Debugging
Many times, the beginning of the design debug process begins with simulation. Applying a wide range of 
stimulus to the design and checking the expected output against the simulated designs output, is an easy 
way to catch most obvious design errors. A window showing a typical simulation run is given in Figure 1 
below. The clear advantage of simulation verses hardware-based debugging, is that simulation can be 
done in the software—no actual hardware-based design is needed. Simulation can thus catch many 
design errors, in particular those associated with incorrect specifications, misunderstanding of interface 
requirements, function errors, and many other ‘gross’ types of errors that are readily detected through 
simple tests.

Simulation is particularly effective when extensive stimulus combinations are available to the designer and 
the resulting outputs are well known. In these cases, simulation can do an almost exhaustive test of a 
design. Unfortunately, most designs don't have easy access to extensive test suites and the process of 
creating them can be very time consuming. Creating a test suite that covers 100% of the design is virtually 
impossible for large FPGA-based designs and short cuts must be used to try and cover the key elements 
of the design. Another difficulty with simulation, is that it isn't a ‘real world’ implementation and can’t catch 
asynchronous events, at-speed system interactions, or timing violations. Finally, the simulation process 
can be very slow and if many iterations are required simulation quickly becomes the most time consuming, 
and often the most costly portion of the development process. 

Figure 1: Typical Simulation Window
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As an alternative (or perhaps better stated, as an addition to simulation) FPGA designers found that they 
could add debug hardware into the FPGA design in order to observe and control key signals within the 
device. These techniques originally developed as ad-hoc approaches, but have gradually developed into a 
standard hardware debug strategy. This use of in-circuit debug capabilities offers significant advantages 
for FPGA-based designs and the next section will explore the three most common strategies and their 
various advantages and disadvantages.

Common In-Circuit Debug Approaches for FPGAs
The most common techniques to implementing in-circuit debug capabilities in FPGAs use either an 
embedded logic analyzer, external test equipment, or dedicated signal probe hardware embedded within 
the FPGA fabric. The embedded logic analyzer is typically implemented using FPGA fabric and is inserted 
into the design. The JTAG port is used to access the analyzer and the captured data can be displayed on a 
PC. When external test equipment is used, the FPGA design under test is modified so that selected 
internal FPGA signals are routed to output pins. These pins can then be observed through the external test 
equipment. When dedicated signal probe hardware is used, a wide selection of internal signals can be 
read in real time. Some probe implementations can even be used to write to register or memory locations 
further enhancing debug capabilities. Let’s look in more detail at the advantages and disadvantages of 
each of these techniques and then look at an example design to see how these different approaches can 
impact overall debugging time.

In-Circuit FPGA Debug-Embedded Logic Analyzer
The concept of the embedded logic analyzer was a direct result of the ad-hoc in-circuit debugging 
capabilities that designers implemented when FPGAs were first used. Embedded logic analyzers added 
new capabilities and eliminated the requirement for the designer to develop their own analyzer. Most 
FPGAs offer these capabilities and third parties offer standard analyzers (Identify®, from Synopsys, is one 
popular example) that can easily interface with higher level tools to further improve productivity. 
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The logic analyzer functionality is inserted into the design, using FPGA fabric and embedded memory 
blocks as trace buffers, as illustrated in Figure 2. Triggering resources are also created so that complex 
signal interactions can easily be selected and captured. Access to the analyzer for control and data 
transfer is typically done through the standard JTAG port to simplify interface requirements. Captured data 
can be displayed on a PC using common viewing software and typically mirrors a logic simulator waveform 
output viewing style.

The advantages of this approach are that no additional FPGA output pins are used, just the standard JTAG 
signals. The embedded logic analyzer IP cores are usually relatively inexpensive and in some cases can 
be an option to existing FPGA synthesis, or simulation tools. In some cases, the embedded logic analyzer 
can also provide additional outputs on unused I/Os, if it is more convenient. One of the disadvantages to 
this approach is that a large amount of FPGA resources are required. In particular, if trace buffers are used 
this will reduce the number of block memories available. If a wide buffer is needed this will also be a trade-
off against memory depth (since the use of a wider memory results in shallower memory depth)—a big 
disadvantage when using smaller devices. Perhaps the largest drawback to this technique is that every 
time an adjustment to probe placement is made, it is necessary to recompile and reprogram the design. 
When using a large device this process can take a significant amount of time. Due to the way the signal 
probes are placed in the design it can be difficult to correlate signal timing relationships. Additionally, the 
delays between signal probes are not consistent and thus timing relationships are difficult to compare. This 
is a particular difficulty when comparing asynchronous signals or signals from different time domains. 

Figure 2: In-Circuit FPGA Debug-Embedded Logic Analyzer Block Diagram
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In-Circuit FPGA Debug – External Test Equipment
The use of in-circuit debug code in conjunction with external test equipment was a natural development 
when an external logic analyzer was already available for system testing. By creating some simple debug 
code to identify and select internal test signals and apply them to FPGA I/Os, as shown in Figure 3, it was 
possible to leverage the analyzers advanced capabilities (such as large trace buffers, complex triggering 
sequences, and multiple viewing options) to create simple yet powerful debug environments. More 
complex in-circuit capabilities for advanced triggering options can minimize the number of outputs needed. 
For example, selecting specific addresses on a wide bus might be prohibitive if external pins were 
required. 

Using internal FPGA logic dramatically reduces I/O requirements and can even look for specific address 
patterns (perhaps a call and return sequence) for debugging more complex problems. If a common user 
interface is available, this can simplify the learning curve and improves productivity.

The advantages of this approach is that it leverages the cost of the external test equipment and thus there 
is no added tool cost. Some debug circuit IP cores are available from equipment manufacturers or FPGA 
manufacturers, and can be very low cost or even free. The amount of FPGA resources required to 
implement the signal selection logic is very small, and since the trace function is done using the external 
logic analyzer, no block memories are needed. Since selection logic is inexpensive, a large number of 
channels with wide triggering can be supported too. The logic analyzer can operate in both a Timing mode 
and a State mode which helps isolate some timing issues.

The disadvantages of this approach can include the need to purchase a logic analyzer, if one isn’t already 
allocated to the project. This disadvantage may be enough to discourage this approach in many instances. 
Note however, that some low-cost logic analyzer options are becoming available that use the PC or a 
tablet for display, making this option much more cost-effective for simple debug requirements. 

The number of FPGA pins consumed can be another disadvantage and if wide busses need to be 
observed, significant planning for board layout and the addition of debug connectors is needed. This 
requirement is most times difficult to predict early in the design phase and another unwanted complexity. 
Similar to the embedded logic analyzer approach the external test strategy requires recompiling and 
reprogramming of a design, when each new experiment is needed. 

Figure 3: In-Circuit FPGA Debug-External Test Equipment Block Diagram
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The common disadvantages of these two techniques—the use of on-chip resources (which can also 
impact the design’s timing performance and create additional debugging requirements) the need to 
recompile and reprogram the design (which can add hours or even days to the debug schedule) the up-
front planning required for identifying likely test scenarios, and the use of additional chip I/O resources 
created a need for an approach without these drawbacks. One response was the addition of dedicated 
debug logic into the FPGA fabric on some devices. In-circuit debug using hardware probes was the result.

In-Circuit FPGA Debug – Hardware Probes
The use of hardware probes dramatically simplifies in-circuit debug techniques for FPGAs. This technique 
implemented as a Live Probe feature on SmartFusion2®SoC FPGA and IGLOO®2 FPGA devices, adds 
dedicated probe lines to the FPGA fabric to observe the output of any logic element register bit. As shown 
in the block diagram in Figure 4, hardware probes are available in two probe channels A and B.

Selected register outputs (probe points), like the one sourced at the bottom of the figure, are routed above 
the two probe channels and if selected can be applied to either the A or B channel. These real-time 
channel signals can then be sent to dedicated Probe A and Probe B pins on the device. The Probe A and 
Probe B signals can also be internally routed to an embedded logic analyzer. 

Figure 4: Diagram of Probe Circuits
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Note that the timing characteristics of the probe pins are regular and have negligible deviation from one 
probe point to another, making it much easier to compare timing characteristics of the real-time signals. 
Data can be captured at up to 100MHz making it appropriate for the majority of target designs.

Perhaps most importantly the probe point locations, since they aren’t selected as part of the implemented 
design (they’re selected through dedicated hardware) can be quickly changed by simply sending the 
selection data to the device. No design recompile and reprogramming is needed

To simplify the use of the Live Probe capability even more, the associated debug software tool has access 
to all the probe signal locations through an automatically generated debug file. As shown in Figure 5, the 
signal name can be selected from the signal list and applied to the desired channel. This can be done even 
while the design is running so that probing activity within the design is seamless and very efficient. 

In many cases, the hardware probe capability, like Live Probe, can be used in conjunction with the 
previously described embedded logic analyzer and the external test techniques.

Figure 5: Debug Set-Up Screen Shot
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As shown in Figure 6, the Live Probe capability to select signals ‘on the fly’ makes it possible to quickly and 
easily change the signals under observation without needing to recompile the design. An external logic 
analyzer or scope can easily observe the probed signals, as illustrated in the top right part of the figure on 
the dedicated probe output pins. Alternatively (or maybe even in addition to) the internal logic analyzer (the 
ILA Identify block, shown in the figure) can be used to observe the probe pins. The probe signals can be 
captured by the ILA and observed on the waveform window. Probe locations can be changed without the 
need to recompile the target design. 

Note that the additional capabilities for triggering and trace can be used to enhance probe functionality, 
making it easy to spot even complex design issues.

Additional hardware debug capabilities are also available on the SmartFusion2 SoC FPGA and IGLOO2 
FPGA devices. One of these capabilities, called Active Probe, can dynamically and asynchronously read 
or write to any logic element register bit. A written value persists for a single clock cycle so normal 
operation can continue, making it a very valuable debugging tool. Active Probe is of particular interest if a 
quick observation of an internal signal is desired (perhaps simply to check that it is active or in the desired 
state, like a reset signal), or if there is a need to quickly test a logic function by writing to a probe point 
(perhaps to initiate a state machine transition by quickly setting an input value to isolate a control flow 
problem).

Figure 6: Live Probe Data Output Options Diagram
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Another debug capability provided by Microsemi is Memory Debug. This feature allows the designer to 
dynamically and asynchronously read or write to a selected FPGA fabric SRAM block. As illustrated in the 
screen shot of the Debug Tool (Figure 7), when the Memory Blocks tab is selected the user can select the 
desired memory to read, execute a snapshot capture of the memory, modify memory values, and then 
write the values back to the device. This can be particularly useful for checking or setting data buffers used 
in communications ports for computation oriented scratch-pad or even for code executed by an embedded 
CPU. Debugging complex data dependent errors is significantly quicker and easier when memories can be 
observed and controlled so quickly.

Once a design is debugged it may be desirable to turn off the hardware debug capabilities to protect 
sensitive information. An attacker could use these same facilities to read-out critical information or change 
system settings that could allow easy access to sensitive portions of the system. Microsemi has added 
features to allow the designer to secure the device after debugging is completed. For example, access to 
Live Probe and Active Probe can be locked to completely disable the function as a possible means of 
attack (it even eliminates the possibility of probe activity creating any patterns in the supply current which 
could be used to try and observe probe data indirectly). Alternatively, access to selected portions of the 
design can be locked out to prevent access to just those sections. This can be convenient if only a portion 
of the design needs to be secure making the rest of the design still accessible for in field testing or error 
analysis.

Figure 7: Annoted Memory Debug Tool Screen Shot
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In-Circuit Debug Comparison Chart
Now that a detailed review of the three main in-circuit hardware debug techniques have been described a 
summary chart, as shown in Figure 8, has been created that details the various advantages and 
disadvantages of each method. Remembering that some techniques can be used in conjunction (Live 
Probe and Internal Logic Analyzer (ILA), like Synopsys Identify, for example), we can see the key strengths 
and weaknesses of each technique. The collection of in-circuit hardware debug capabilities (Live Probe, 
Active Probe, and Memory Debug—collectively called SmartDebug), are weakest in comparison to the 
other techniques when it come to the number of total probes available (a red circle) and are weaker than 
the best (yellow circle) when the capture speed is considered (external test equipment can be faster). 

ILA-based techniques, like Synopsys Identify, are weakest when compared to the other techniques and 
when FPGA resource requirements are considered. External test equipment-based techniques are 
weakest over a number of considerations with cost, design timing impact, and probe movement overhead 
(due to the need to recompile the design) the most onerous. Perhaps the optimal solution is a combination 
of SmartDebug and one of the other techniques, so that the number of channels weakness of SmartDebug 
can be mitigated and the probe point movement disadvantages of the other techniques reduced as well.

Figure 8: In-Circuit FPGA Debug Methods Comparison Chart
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Simple Debug Use Case
Now that we have a better understanding of the various in-circuit debug options, let’s look at a simple 
design example to see how these techniques perform. Figure 9, shows a simple FPGA design in a 
SmartFusion2 SoC FPGA device. The Microcontroller Subsystem (MSS) is reset by the CoreSF2Reset 
Soft IP block. The inputs to this block are the Power On Reset, a User Fabric Reset, and an External 
Reset. The outputs are a reset to the User Fabric, an MSS reset, and an M3 reset. The error symptoms are 
that there is no activity on the I/Os even though the device exits the POR state successfully. The three 
different options for debugging this error are illustrated in the figure as well: The blue box (labeled ETE) is 
for the External Test Equipment method; the green box (labeled ILA) is for the Internal Logic Analyzer 
method; and the orange box (labeled AP) is for the Active Probe method. We will assume the potential root 
causes of the error are improperly asserted reset inputs to the CoreSF2Reset Soft IP block.

Figure 9: Example Design with a Reset Error
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Let’s now look at the debug process for three of the previously described in-circuit methods. 

External Test Equipment
Using this method, it is assumed that the test equipment is available and not being used by a higher 
priority project. Additionally, it is important to have planned ahead so that some FPGA I/Os are available 
and can be easily connected to the test equipment. Having a header on the PCB for example, would be 
very helpful and minimize time spent trying to identify and connect to a ‘likely suspect’ or the potential 
shorting of pins during probing. The design will need to be recompiled to select the signals we want to 
investigate. Hopefully, we won’t be ‘peeling back the onion’ and need to select additional signals for further 
investigation, since often our initial investigation just results in more questions. In any event, the recompile 
and reprogramming process can take a significant amount of time, and if it results in timing violations a 
redesign is required (we are all familiar with how frustrating trying to solve timing closure issues can be, in 
particular, when you are making the design changes to find a design bug—the entire process can take 
from minutes to hours)!

Internal Logic Analyzer
Using this method the ILA must be inserted into the design using fabric resources, and then needs to be 
recompiled. Note that if the ILA has already been instantiated, the signals we want to investigate may not 
have been instrumented, which would also require a recompile. This process risks changing the original 
design and violating timing constraints. If timing is met, the design needs to be reprogrammed and 
reinitialized. This whole process can take several minutes or even hours if recompile times are long and 
multiple passes are needed.

Active Probe
Using this method the Active Probe can be pointed to the source of the various reset signals, all of which 
are sourced by register outputs (as is common in any good digital design practice). The signals are 
selected one at a time, from an Active Probe menu shown in Figure 10 below. The selected signal values 
can be read and are displayed on the Active Probe data window. Any mis-assertions easily identified. This 
test can be done immediately without the need to recompile and reprogram the device. The whole process 
takes just a few seconds.

Figure 10: Use of Active Probe to Read Signal Values
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More Complex Debug Use Case
The above design was very simple and is useful as an introduction to using the described design 
techniques, but a more complex example might be even more illustrative. Many times the signal of interest 
isn't a static signal as it was in our simple example but is dynamic. A common dynamic signal is an 
intermediate clock, perhaps used for timing a handshake for a serial interface. Figure 11 shows such a 
design with the user Soft IP core, in this case, a custom serial interface connected to the system APB bus. 
The errors symptoms are that there is no activity on the users custom serial interface, and that when an 
APB bus master issues a transaction to access the serial interface it goes into an exception condition 
indicating an incorrect handshake. These conditions seem to rule out a static cause, like an incorrect reset 
signal, since the transaction state machine seems to not be operating at the rate expected and thus 
causes the exception. The root cause is thought to be the clock frequency generator within the user IP 
core. If it is not running at the correct frequency the described errors would result.

In this situation it is probably a better strategy to replace the Active Probe approach with the Live Probe. 
This is illustrated in the above figure by the orange colored LP box, using the JTAG signal for the probe 
source selection. 

External Test Equipment
For this case, the methodology is very similar to the previously described simple example. The user clock 
signal is brought out to the test point (hopefully on a header) and a time consuming recompile is needed. It 
may also be helpful to bring out a reference signal, perhaps a system clock that is used to clock the users 
IP as a comparison signal. We will again be subjected to the need to recompile and reprogram so the 
entire process could take a significant amount of time.

Figure 11: Dynamic Signal Debug Example
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Internal Logic Analyzer
This case is very similar to the simple example. The ILA must be inserted, or the desired signal defined, 
and a recompile and reprogram cycle executed. All the previously described issues still result in a 
significant debug cycle time. There is an additional complexity, however. The clock that drives the ILA 
needs to be synchronous, and ideally much faster with respect to the clock to be observed from the user 
Soft IP core. If these clocks are asynchronous, or don't have the correct timing relationships, data capture 
will be unpredictable and a possible source of confusion for the debug process.

Note that if the user Soft IP clock is not generated on-chip (perhaps it is recovered from the serial interface) 
the designer may need to add a clock module to generate a faster ILA clock using additional resources and 
possibly creating a timing violation. 

Live Probe 
Using this method, the Live Probe can be quickly pointed to the source of the user clock and any other 
clock source from a register to chase down the root cause of the error. The Live Probe will show the 
selected signal outputs in real time and any timing relationship between the signals is thus much easier to 
determine. The whole process takes just a few seconds. 

Other Debug Features for Serial Interfaces
It is also important to point out that there are many additional debug capabilities in SmartFusion2 SoC 
FPGA and IGLOO2 FPGA devices that can be used on serial interfaces, like the one in the previous 
example design where errors are even more complicated. SERDES Debug, for example, provides specific 
debug capabilities for the dedicated high-speed serial interfaces. Some of the SERDES Debug features 
include PMA test support (like PRBS pattern generation and loopback testing) support for multiple 
SERDES test configurations with register-level reconfiguration to avoid the use of the full design flow to 
make configuration changes, and text reports showing configured protocols, SERDES configuration 
registers, and Lane configuration registers. These features make SERDES debug much easier and can be 
used in conjunction with Live Probe and Active Probe to further speed debugging of complex circuits.

The previously described Memory Debug tool can also be used in conjunction with SERDES Debug to 
speed testing. Since memory buffers can be quickly and easily inspected and changed with Memory 
Debug, it is possible to quickly create ’test packets’ and observe loopback or inter-system communications 
results. The designer can leverage these capabilities and thus minimize the need for specialized ‘test 
harnesses’ that consume additional FPGA fabric and that might impact chip timing.

Conclusion
This paper has described in detail several different approaches to implementing in-circuit debug for FPGAs 
and SoC FPGAs—the use of an Integrated Logic Analyzer, the use of external test equipment, and the use 
of dedicated probe circuits integrated into the FPGA fabric. The addition of specialized and dedicated 
probe circuits, like Active Probe and Live Probe offered by Microsemi on SmartFusion2 SoC FPGA and 
IGLOO2 FPGA devices, was shown to significantly speed and simplifies the debug process. The ability to 
quickly modify the selection of internal signals (without the need to execute a very time consuming 
recompile), and the ability to probe internal signals (without the need to use FPGA fabric and potentially 
introduce timing violations) were shown to be major advantages when debugging FPGA designs. 
Additionally, the use of multiple methodologies, which can work together to provide an even more 
comprehensive debug capability was described. Finally, two example debug use cases were given to 
illustrate the trade-offs between the described methods.arnesses’ that consume additional FPGA fabric 
and that might impact chip timing.
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