
Design of a Secure and
Reliable Data Recorder

Application Example

Introduction
Data recording of critical operations has long been a requirement in many safety oriented applications. 
Perhaps the most notable example of data recording is the black box used in commercial and military 
aircraft. The large amounts of data generated and stored from aircraft flight operations is not only useful in 
determining failure mechanisms but is also useful for more mundane purposes like maintenance and 
reliability studies. Aircraft data recorders need high levels of reliability, even in the face of challenging 
environments with increased radiation levels. Additionally, it is important to make sure the data is authentic 
and known to be associated to the right data sources. The use of encryption can also be critical to protect 
the data from being downloaded and extracted by unauthorized parties.

Secure and reliable data recording applications are also finding their way into non-aerospace applications. 
Automobiles and trucks, both in commercial and industrial areas, are finding that data recording can be a 
valuable tool as insurance, liability, and safety considerations are becoming more important. As the move 
to autonomous vehicle operation accelerates, expect to see the equivalent of the black box become a 
ubiquitous element in the transportation infrastructure. Indeed, insurance companies are offering financial 
incentives to promote good driving behavior through their own black boxes connected to the OBD vehicle 
port. Clearly these insurance companies need to verify and authenticate that the data gathered came from 
the vehicle that was insured and that no tampering of the data exists.

Figure 1: Data Recorder Block Diagram
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This critical combination of reliability and security is a growing trend and looking in some detail at the 
design of a secure and reliable data recorder can help illustrate the key design techniques and features 
needed. A block diagram of a typical data recorder, without specific security and reliability requirements is 
shown in Figure 1 on page 1. A SoC FPGA is used as the main controller for the system. It interfaces to 
sensors and actuators to control and measure the various data sources. A system interface to a central 
controller integrates the data recorder with the rest of the system, as it isn't unusual for multiple data 
recorders to be located throughout the system. A SPI flash memory is used to store the recorded data 
managed by the FPGA. The FPGA may also supervise and monitor the power supply, since often the 
operation of the power supply is important to log. Let’s look at the requirements for security and reliability 
that need to be added to the generic system from Figure 1 on page 1.

Security and Reliability Requirements for the Example Design
The primary security requirement for the example design is the protection of the data being recorded. The 
data should be encrypted so that only an authorized party can download or inspect the data. Encryption 
should also be augmented with cryptographic authentication techniques to prove that the data is 
associated with the actual system. In some cases, hardware binding (proving the recorder communicated 
with specific hardware elements of the design) may be a requirement to further protect the system from 
tampering or aggressive intrusion techniques such as divide and conquer. Security keys must also be 
protected from attack. In particular, security key attacks like side-channel analysis (where timing and power 
measurements made during cryptographic operations can detect real world information ‘leaks’) need to be 
protected against. 

The requirement to secure and authenticate the data being stored by the recorder is perhaps an obvious 
requirement, but less obvious is that securing the actual design of the data recorder is also of critical 
importance. If the design can be reverse engineered the security of the data can be easily compromised. A 
competitor could also use the reverse engineered information as the basis to clone the design, saving the 
expense of the significant effort involved in development and testing. For example, an unscrupulous 
contract manufacturer could copy the design and sell it on the open market at a much reduced price. Any 
of these attacks on the design could lead to a possible financial disaster, one that even litigation 
wouldn’t fix.

Reliability is the other main requirement of the target design. Several design techniques can be used to 
improve reliability, one of the most common, is to duplicate functions adding redundancy to the design so 
that a single error doesn’t result in a functional failure. For example, functions can be duplicated within the 
FPGA and checking logic employed to detect if the function outputs are the same. If they are different and 
an error was encountered it can then be adjusted for. Further opportunities for redundancy will be explored 
in the design and will include triple modular redundancy, design diversity, and error detection and 
correction techniques.

For designs that experience challenging environments, like increased radiation at higher altitudes, it is also 
important to protect against single even upset (SEU) events that come from energetic particle strikes. 
These particles carry enough energy that they can alter the content of sensitive SRAM cells in fine 
lithography electronics components. These events are less common at ground level, but when large 
numbers of devices are deployed, the chance of a ‘flipped’ bit grows and needs to be carefully considered. 
The implications of an altered bit in a safety critical application can be catastrophic, as illustrated by recent 
reports of unintended acceleration in an automotive control system. We will need to protect the example 
design from data or computation errors that could be created from SEU events.
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An Overview of Microsemi SmartFusion2 SoC FPGAs
A block diagram of the SmartFusion®2 SoC FPGA is shown in Figure 2, below. The hardened CPU and 
associated peripherals is shown in the large blue block at the top of the diagram. The System Controller, 
shown in the smaller blue block at the top left, includes a range of key security related functions that help 
with our implementation. The FPGA logic is shown in the large purple block in the middle of the diagram. 
SmartFusion2 SoC FPGA devices have a variety of features that make them not only attractive in general 
purpose applications, but also support advanced security and reliability requirements.

SmartFusion2 SoC FPGA devices combine the full features ARM®Cortex™-M3 CPU with a variety of 
support functions. These functions are implemented in hard logic making them higher performance, 
lower-power, and lower-cost than an equivalent that is implemented in a programmable fabric. The FPGA 
fabric includes configurable logic modules (based on 4-input Look-Up-Table, or LUT, logic blocks), block 
memories, and dedicated arithmetic logic. Advanced SERDES support, including hardened 
implementations for PCIe®and other higher-level functions, makes implementation of standard serial 
interfaces very efficient. Other on-chip security features, like the security services available in the system 
controller for a variety of standard encryption and authorization functions, will be described in more detail in 
the implementation section later in this document.

The use of on-chip fabric-embedded configuration bitstreams on SmartFuson2 SoC FPGA devices 
supports a range of IP protection features, perhaps the most important is that configuration data isn’t 
‘snoopable’ on every start-up cycle. SRAM-based FPGAs require configuration data to be loaded into the 
FPGA on every start-up cycle, making them very easy to copy. For even more design security, the 
programming of SmartFusion2 SoC FPGA devices is done through an encrypted and authorized bitstream 
that is protecting the design when manufactured in an unsecure location. The security keys associated 
with bitstream programming need to be protected from even the most aggressive forms of attack, or the 
security of the design can be compromised. 

The SmartFusion2 FPGA fabric is also protected from SEU-induced errors, since the flash configuration 
bits require much more energy to flip than their SRAM-based competitors. 

Figure 2: SmartFusion2 SoC FPGA Architectural Block Diagram and Key Security Features
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Augmenting this inherent advantage is the liberal use of SEU-hardened functions (like implementing 
smaller buffer memories with latches, which are SEU resistant, and adding dedicated parity features to 
larger block memories, to easily detect memory-associated SEU events) to provide even more reliability.

Implementing a Secure and Reliable Data Recorder Using 
Microsemi FPGAs and SoC FPGAs
Now that the key security and reliability design requirements have been described and we understand 
some of the key capabilities of the SmartFusion2 SoC FPGA, let’s look at the example implementation in 
more detail to see how to satisfy these requirements in a SmartFusion2 SoC FPGA-based implementation.

Satisfying Security Requirements Using Microsemi SmartFusion2 SoC 
FPGAs
We have determined that we need to secure the design intellectual property (IP) from reverse engineering 
and copying. We will also need to be able to protect application data using standard encryption and 
authentication techniques. Security keys should also be protected from attack and common side-channel 
attacks. Let’s see how we satisfy these requirements using SmartFusion2 SoC FPGA devices.

Protecting the Example Designs Intellectual Property

Both on-chip MCU code and FPGA configuration bitstreams in the example design are intrinsically 
protected from common forms of copying and reverse engineering, since they are stored on-chip in flash 
memory. It is much easier to copy or reverse engineer SRAM-based FPGAs. Even attempts to reverse 
engineer SmartFusion2 SoC FPGA devices using invasive techniques (by ‘decapping’ the device and 
attempting to read out the values of the configuration bits on chip) are protected against, since the vast 
number of cells and their embedded locations within the fabric makes it very difficult to reverse engineer 
the design. 

Design IP is also protected during programming, since the bitstream is encrypted and authenticated. This 
eliminated the possibility of device copying during programming. For even more protection during 
manufacturing programming, a Certificate of Conformance (CoC) can be generated and logged. The CoC 
cryptographically verifies that the device was programmed with the intended bitstream. This makes it 
virtually impossible for a contract manufacture to clone or overbuild systems when you use SmartFusion2 
SoC FPGAs as the basis for your design.

Additional protection against reverse engineering is available to eliminate the possibility of an intruder 
gaining access to the design through JTAG or the debugging interface. These interfaces can be protected 
by security ‘locks’ that keep out unauthorized accesses. If desired, locks can be put in place to make the 
device inaccessible for testing, debugging, or programming. This puts the device into a One Time 
Programmable (OTP) mode and makes it secure from even the most aggressive intruders. You can find 
out more about Design Security by referring to the articles and videos listed in the "To Learn More" section 
at the end of this paper.

Supporting Data Security Standards in the Example Design

The SmartFusion2 SoC FPGA “S” devices (for example M2S090S-FG484) provide a significant amount of 
Data Security capabilities, typically implemented through service calls to the Security Subsystem within the 
System Controller. Several industry standard cryptographic functions are supported by simple security 
service calls including encryption and decryption algorithms, such as AES-128 and AES-256, a Message 
Authentication Code function (HMAC based on SHA-256), and a Non-Deterministic Random Number 
Generator (used in some advanced Data Security algorithms to improve secure transmissions by 
eliminating ‘repeated’ datasets). 
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More advanced functions include KeyTree Key Derivation (an alternative to HMAC), advanced 
challenge-response protocols to secure the transmission channel between the sender and receiver, and a 
Physically Unclonable Function (PUF) used to create a physically unique device ID (much like a 
fingerprint) to support more advanced security capabilities. These features can all be used to protect 
sensitive applications data stored within or transferred to/from the system. You can find out more about 
Data Security by referring to the articles and videos listed in the "To Learn More" section at the end of this 
paper.

Protecting Security Keys from Attacks

We need to protect the security keys used in the example design from aggressive attacks that could 
compromise the cryptographic operations of the system. One popular method of attack is to use 
side-channel analysis (such as observations of power or timing signatures during security key-related 
operations) to try and determine on-chip secure information. This side-channel approach is similar to one a 
safecracker might use to determine the safes combination by listening to the noise made by the tumblers 
while manipulating the lock. In this case, the side-channel is the sound made by the physical 
implementation of the security “function”. The SmartFusion2 SoC FPGAs implement side-channel attack 
resistant decryption algorithms and in particular, are designed to be resistant to the most advanced 
Differential Power Analysis (DPA) form of side-channel attack. 

If DPA-resistant techniques are not used, an intruder can measure the power consumed by the design 
when security keys and algorithms are being processed. Knowing the typical algorithm operations, a 
statistical analysis of the power use can be used to determine the security key value. For example, many 
security algorithms are implemented on an 8-bit basis, which means that only 256 combinations need to be 
checked through the DPA to identify an 8-bit section of the security key. DPA resistance can be 
dramatically improved by changing the architecture of the algorithm to limit such divide and conquer 
strategies. Additionally, changing the security key frequently will limit the number of measurements an 
attacker can use for statistical analysis making such approaches dramatically more difficult. Furthermore, 
circuit design tricks, like pre-charging registers and busses, will limit the “noise” available to an intruder. 
Many of the techniques used on Microsemi DPA-resistant FPGAs are licensed from 
Cryptographic™Research Inc. (CRI, a division of Rambus, Inc.) and contribute to making them the most 
secure devices available. 
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You can read more about these techniques in the articles and videos listed in the "To Learn More" section 
at the end of this paper under the heading "Protecting Your Design from Side-Channel Attacks".

Satisfying Reliability Requirements in the Example Design
Let’s take our example design and look at how we can significantly improve reliability by using redundancy 
techniques. Figure 3 on page 6 shows the changes to the example system. In order to improve storage 
reliability we added redundant SPI memories. This provides a back-up in case one memory fails or if a 
non-recoverable error damages data in one device. The new redundant power subsystem helps recover 
from a failure in the main supply. Power will switch over to a redundant supply if the main supply fails.

Mitigation of Errors Through Redundancy and Design Diversity

In safety critical systems redundancy is mandatory to operate properly in the event of a failure. There are 
two well-known techniques that are widely utilized—Dual Modular Redundancy (DMR) and Triple Modular 
Redundancy (TMR). In the case of Dual Modular Redundancy, duplicate designs work in parallel. Each 
processing element receives the same input and a fail-safe certification engine checks for consistency. If a 
fault is identified then prevention must be taken to avoid a failure. Triple modular redundancy creates three 
duplicate designs and the results of each output are presented to a voting circuit, such that the output state 
that receives the most votes is set. This can withstand the complete failure of one subsystem and allows a 
supervisor circuit to attempt to fix the fault, or alert an operator. 

A design diversity methodology is sometimes employed to further improve reliability. Using this 
methodology parallel designs are not just duplicated but will perform the same function using a different 
implementation. For example, an FPGA might be used for one of the designs and the parallel design might 
use an MCU. This diversity in the target implementations increases reliability even more since errors 
related to complex design or implementation ‘bugs’ will not be duplicated in dramatically different targets. 

The System Controller is now implemented using a Dual Modular Redundancy (DMR) technique. The 
controller functions are duplicated and FPGA-based compare logic is added to identify any outputs that do 
not ‘agree’. When such an error is detected the subsystem responsible for the error can be reset and 
diagnostics performed. This mitigates the chance of the error resulting in a system failure. 

Figure 3: Redundancy Techniques Applied to the Example Design
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Note that the dual implementations of the System Controller use a design diversity technique. One 
controller is implemented with the CPU and the other is implemented with the FPGA fabric. This provides 
additional reliability since each implementations error characteristics will be significantly different and thus 
the chance of a common systematic error (for example, their response to noise, temperature, voltage, 
timing differences, or even implementation ‘bugs’) will be significantly reduced. 

Implementing Additional Reliability Features

SmartFusion2 SoC FPGA devices can easily implement custom reliability features not found on standard 
ASSP devices. For example, SmartFusion2 SoC FPGAs have multiple SERDES channels (up to 16) 
on-chip making it possible to duplicate communications channels, perhaps PCIe in our example design, for 
additional levels of redundancy and reliability. Once these functions are integrated on-chip, additional 
redundancy, error checking, and advanced error recovery mechanisms could be included in the design. 
These additional features would create a more reliable design than those available in an ASSP. Note that 
the inclusion of the SEU-protected SRAM blocks and a Single Error Correction Double Error Detection 
external memory controller as features on SmartFusion2 SoC FPGA devices simplifies the design of 
higher level functions, since these memory-related reliability features don't need to be designed ‘from 
scratch’ and won’t require the use of additional FPGA fabric to implement them.

Single Event Upset (SEU) as a Source of Errors

The Single Event Upset phenomenon was first discovered in 1979 by Intel and Bell Labs as failures in 
DRAMs and is attributed to stray alpha particles or neutrons ‘flipping’ the memory cell. In 1999 Sun 
Microsystems noticed errors in cached SRAMs for mission critical servers. In space and aviation 
applications the effects of radiation on electronics is well understood as operational altitudes have a higher 
neutron flux. However, the SEU phenomenon is increasingly becoming a concern at sea level as well. The 
continuous drive to smaller semiconductor geometries reduces the charge at each SRAM cell and the ever 
increasing content of electronics in fielded systems increases the likelihood of SEU-related SRAM errors. 
Note that flash memories, which require a significantly higher energy level to ‘flip’ state, are immune to 
these types of SEU events. 

SmartFusion2 SoC FPGA devices make it easy to protect against SEU events due to benefits from several 
other ‘built-in’ reliability advantages that come from the underlying flash technology used in their 
implementation. For example, flash-based configuration memory is immune from SEU events and results 
in a zero FIT-rate contribution from configuration memory, unlike SRAM-based FPGAs which are orders of 
magnitude more susceptible to SEU events. 

Another reliability feature related to the use of on-chip configuration storage is that SmartFuson2 SoC 
FPGA devices don't require an external configuration device, unlike SRAM-based FPGAs, which do. The 
reduced component count for a SmartFusion2 SoC FPGA implementation thus improves system reliability. 
SmartFusion2 SoC FPGA devices also have very low static power consumption, due to the inherent 
low-power advantages that come from using flash for configuration memory. 
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Conclusion
The advanced safety and security capabilities of Microsemi SmartFusion2 SoC FPGAs satisfy all the key 
requirements needed for the most robust implementation of a secure and reliable data recorder. As 
illustrated in the example design, security requirements for the design, the application data and the 
security keys are all met and exceeded by the advanced features available on the Microsemi 
SmartFusion2 SoC FPGA device. The inherent security features of on-chip fabric-embedded flash 
configuration memory are augmented by encrypted and authenticated configuration bitstream loading with 
the associated keys protected from advanced side-channel attacks by CRI licensed mitigation techniques. 
On-chip hardware acceleration of a host of standard cryptographic functions further simplifies the 
implementation of highly secure systems. SmartFusion2 SoC FPGA resistance to errors from SEU events, 
also inherent from the use of flash-based fabric-embedded configuration memory, is also augmented with 
several additional features to further reduce system errors. SmartFusion2 SoC FPGA devices are your 
most secure and reliable platform on which to implement your embedded system.
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