

February 2014 1
© 2014 Microsemi Corporation

Implementing a Step-Direction
Interface-based Stepper Motor Controller
using SmartFusion2 Devices

Purpose
This application note describes the Stepper Motor interface that controls a two-phase bipolar stepper motor
using a SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) and companion
stepper motor driver chip, TMC-262. The control blocks are distributed between the SmartFusion2
microcontroller subsystem (MSS) and the FPGA fabric.
This application note facilitates the designer in quickly designing a stepper motor controller interface for an
external driver using the StepperWrapper software library and IP blocks or in customizing them for a specific
application.

Introduction
The stepper motors are electromechanical actuators that provide precise positioning of the rotor shaft. They
are capable of moving to a specified position and holding that position irrespective of the load torque. This
capability makes the stepper motors to be used in optics, medical instruments, factory automation, and
industrial equipment.
The stepper drive consists of a controller, driver, and stepper motor. The controller provides a direction
signal and step pulses, while the driver converts these signals into actual electrical power and supplies them
to the motor. The stepper motor moves in steps, each step covering one step angle, which can be described
as the rotor displacement corresponding to one step pulse.
The stepper motor can be run in the following modes:
• Full-step
• Half-step
• Microstep
In Full-step mode, the motor phase windings are excited in a way that the rotor moves by one step angle.
The angle increment corresponding to the step angle in Full-step mode depends on the motor construction.
It is available in the TMC262 Datasheet as step number, which is defined as the number of steps required
by a stepper motor to complete one revolution.
In Half-step mode, the phase windings are excited in a way that the rotor moves by an angle equal to half
the step angle. This allows for positioning the rotor more precise compared to the Full-step mode. The
number of steps required to complete one revolution is twice as that in Full-step mode.
In Microstep mode, the phase currents are modulated in a way that the step angle is divided into smaller
steps and allows for even finer positioning of the rotor.
The number of steps required to complete one full rotor revolution is calculated as:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑆𝑡𝑒𝑝 𝑁𝑢𝑚𝑏𝑒𝑟 ∗ 𝑀𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

EQ1
To control the speed at which the motor runs to reach the required position, the delay between successive
step pulses must be modulated as described in Direction Interface Stepper Drivers section.

Application Note AC413

http://www.trinamic.com/tmctechlibcd/integrated_circuits/TMC262/TMC262_datasheet.pdf

Implementing a Step-Direction Interface based Stepper Motor Controller using the SmartFusion2 Device Application
Note

2

The SmartFusion2 stepper motor control hardware platform can control up to six stepper motors in two
control modes:
• Continuous (rotation)
• Finite-step
You can also configure:
• Step resolution
• Current drain
• Number of steps
• Motor direction
• Motor speed.
In Continuous-step mode, the motor runs steadily at a set speed until it is interrupted manually. In Finite-step
mode, the motor moves through a specified number of steps at the set speed, after which it continues to
hold this position and resists motion in either direction until it is interrupted manually.
Figure 1 shows running multiple motors by connecting multiple driver cards to the hardware platform where
a single controller controls upto six motors.

SmartFusion2
Stepper Motor Controller

TMCM-1045-MS Module
- Stepper Driver

QSH-4218-35-10-027
Stepper Motor

TMCM-1045-MS Module
- Stepper Driver

QSH-4218-35-10-027
Stepper Motor

TMCM-1045-MS Module
- Stepper Driver

QSH-4218-35-10-027
Stepper Motor

TMCM-1045-MS Module
- Stepper Driver

QSH-4218-35-10-027
Stepper Motor

TMCM-1045-MS Module
- Stepper Driver

QSH-4218-35-10-027
Stepper Motor

TMCM-1045-MS Module
- Stepper Driver

QSH-4218-35-10-027
Stepper Motor

Figure 1 · SmartFusion2 Stepper Motor Driver for Multiple Stepper Motors

Step Direction Interface

3

Step Direction Interface
Stepper motor drivers, such as the TMC-262 driver, have a step - direction interface. This interface requires
only two signals from the controller to run the motor. A controller provides these signals to the driver which in
turn switches the power MOSFETs to make the motor turn by one step angle. The step signal is usually a
pulse, which makes the motor respond by turning the stepper by one step. The direction signal determines
the direction of this motion. To make the motor move by a fixed number of steps at a particular speed, the
number of pulses generated must be equal to the number of steps required, and the speed is achieved by
modulating time between the successive step pulses.

Calculating Number of Wait Cycles Between Successive Step Pulses
The controller uses a counter to generate the time delays between pulses. The following steps describe the
algorithm to calculate the number of wait cycles that should be counted by the controller for a specified
speed.

1. The speed of the motor in number of revolutions per second is NRPS or 𝑁𝑅𝑃𝑀
60

; where NRPM is the motor

speed in revolutions per minute; the time taken for each revolution is 60
𝑁𝑅𝑃𝑀

.

2. The Step number of the motor indicates the number of pulses required to run the motor through one
complete revolution in Full-step mode. Therefore, the time between two successive pulses is:

60
𝑁𝑅𝑃𝑀

𝑆𝑡𝑒𝑝 𝑁𝑢𝑚𝑏𝑒𝑟 =
60

(𝑁𝑅𝑃𝑀) ∗ (𝑆𝑡𝑒𝑝 𝑁𝑢𝑚𝑏𝑒𝑟)

EQ2
3. If the clock frequency of the controller is fclk (to the SmartFusion2 device and the TMC-262 driver), the

time period of this clock is 1
𝑓𝑐𝑙𝑘

.

4. The number of clock cycles to count before sending the successive strobe signals is:
60

�𝑁𝑅𝑃𝑀�∗(𝑆𝑡𝑒𝑝 𝑁𝑢𝑚𝑏𝑒𝑟)
1

𝑓𝑐𝑙𝑘

 or 𝑓𝑐𝑙𝑘∗60
(𝑁𝑅𝑃𝑀)∗(𝑆𝑡𝑒𝑝 𝑁𝑢𝑚𝑏𝑒𝑟)

EQ3
5. For Microstep mode, each step (θ) is divided into smaller steps (Δ). Each step pulse will now

correspond to Δ. For a given number of wait cycles between successive step pulses, the motor will run
at NRPM in Full-step mode, but at 𝑁𝑅𝑃𝑀

2
 in Half-step mode, and (NRPM

Number of microsteps
) in the Microstep mode.

To keep the motor speed consistent, the number of wait cycles is divided by the Number of microsteps.
The modified formula for NRPS is:

𝑓𝑐𝑙𝑘 ∗ 60
(𝑁𝑅𝑃𝑀) ∗ (𝑆𝑡𝑒𝑝 𝑁𝑢𝑚𝑏𝑒𝑟) ∗ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝𝑠)

EQ4
If it is not divided, the speed of the motor becomes slower than NRPS.

6. The TMC-262 driver requires the number of microsteps to be programmed in using a variable, MRES.
Table 3 shows the Microstep resolution and their respective MRES value.

7. Hence, the number of wait cycles between successive strobe pulses is:

𝑓𝑐𝑙𝑘 ∗ 60 ∗ 2(𝑀𝑅𝐸𝑆−8)

(𝑁𝑅𝑃𝑀) ∗ (𝑆𝑡𝑒𝑝 𝑁𝑢𝑚𝑏𝑒𝑟)

EQ5

Implementing a Step-Direction Interface based Stepper Motor Controller using the SmartFusion2 Device Application
Note

4

Block Diagram
Figure 2 shows the signal connections between various blocks used in the stepper motor control design.
This design uses an advanced peripheral bus (APB) interface to communicate between the MSS and the
FPGA fabric.

SmartFusion2
TMCM-1045-MS Stepper Interface Card

Microcontroller Subsystem FPGA

Commutator Interface Block

20-bit SPI Block

USB
Interface

Microsemi
MultiAxis Motor

Control GUI - USB

Direction
Step Pulse

SPI Port

Logic for
Start, Stop,
Initialize,

Set
Direction,

etc. Enable

APB

TMC262
20-bit SPI

bus

SPI
Ready

Figure 2 · System-Level Block Diagram of SmartFusion2 Stepper Motor Controller

Functional Description
This section lists the inputs that are required for the blocks and descriptions of the hardware and software
blocks used in controlling the stepper motor.

System Inputs
The following data is required to operate a stepper motor using the Step pulse interface:
• Current scale – The quantity by which the motor current is amplified. This is specified in steps 0 through

15, with 0 referring to the lowest current and in turn, lowest torque. 15 referring to the highest current and
in turn, highest torque. For more information, refer to the TMC262 Datasheet.

• Speed – The number of revolutions of the motor in a given period of time.
• MRES – The microstep resolution, refer to Table 3.
• Direction – The direction of the motor - clockwise or anticlockwise.
• Step Number of the motor: The number of steps required for the motor to complete one full revolution.
• Number of steps – The number of steps through which the motor runs, when the controller is running in

Finite-step mode. When in Continuous mode, this does not apply as the motor runs till it is expressly
stopped manually.

Hardware Blocks (FPGA Blocks)
The hardware blocks use the parameters listed in System Inputs section as inputs to generate the step
pulses and the direction signal. Although the step-direction interface only requires two signals to run the
motor, several other parameters should be configured on the TMC262 driver. This is configured using the
SPI communication block. This section describes:
• Commutator Block
• SPI Block

Commutator Block
Using the inputs listed in System Inputs section, the commutator block generates the direction signal and
step pulses and sends them as input to the stepper driver. The time duration between the successive step
pulses decides the motor speed.
This time duration (number of clock cycles to wait before sending successive strobe signals) is calculated by
using EQ5.
For Continuous (stepping) mode, the required speed is given as input to the system and the step pulses are
generated until the commutator block is reset.

http://www.trinamic.com/tmctechlibcd/integrated_circuits/TMC262/TMC262_datasheet.pdf

Functional Description

5

For Finite-step mode, the number of steps through which the motor must run is also specified to the block
(EQ1). This operation makes the motor to run through a finite number of steps by generating an equivalent
number of pulses and stop. After the motor stops, it remains energized and can resist motion in both the
directions. Figure 3 shows a logical representation of the commutator block algorithm.

Commutator Logic

Step Pulse Generation - logic

Time duration computation logic for step pulses + pulse
generation logic

Iterates N* times in Finite-step mode and infinite times
in Continuous mode

*N is the number of steps

Figure 3 · Commutator Block

Figure 4 shows the pseudo code representation of the commutator block.

Input: mode, FiniteStepCount, speed, Resolution

Output: StepPulse

PROCESS: Step Pulse Generation

IF ((mode IS Continuous) OR (FiniteStepCount > 0))

{

IF(delay IS 0) THEN

{

TOGGLE StepPulse;

delay <- COMPUTE delay;

}

ELSE

{

DECREMENT delay;

}

}

Figure 4 · Pseudo Code Representation of the Commutator Block

Implementing a Step-Direction Interface based Stepper Motor Controller using the SmartFusion2 Device Application
Note

6

SPI Block
The TMC-262 driver has several registers that must be configured through a serial peripheral interface (SPI)
communication channel. During the transfer, the TMC-262 driver sends back a frame of data with
parameters such as motor stall, over temperature that can be used to ensure safe operation. A 20-bit SPI
communication block is used to transfer data between the SmartFusion2 device and the TMC-262 driver.
This block also provides a ready signal to indicate that the block is ready to transmit the data. This signal is
useful to a controlling block (for example, MSS) when continuous data transmissions are required.
Figure 2 shows the commutator block and SPI block signals that are directly connected to the external
stepper driver module (TMCM-1045-MS). The MSS sends inputs to these blocks through an APB interface.
On the MSS, the hardware abstraction layer provides application program interface (API)s to communicate
with the fabric through the APB interface.

MSS Blocks (Software Library)
The MSS is responsible for logic to:
• Initialize, start, and stop the motor
• Set the motor parameters
The MSS also communicates with the GUI on a Host PC and other blocks on the FPGA fabric. The MSS
communicates with the GUI through a human interface device (HID) class, high speed interrupt based USB
communication. The interface uses direct memory access (DMA) and requires a minimum of 125 µs
between consecutive transfers. The MSS communicates with the fabric through an APB interface.

StepperWrapper Library
The StepperWrapper library provides APIs for the stepper motor drive to
• Initialize, start, stop and
• Change motor configuration parameters
The USBMsgHandler library calls these functions. USBMsgHandler library is used to communicate with the
GUI through the USB port. The StepperWrapper library can also be called independently in the firmware.
Table 1 shows a list of APIs provided by the StepperWrapper library.

Table 1 · APIs in the StepperWrapper Library

API Name API (Prototype) Function

StepperInit

void StepperInit(

mss_gpio_id_t Stepper_slot,

mss_gpio_id_t FAB_SPI_SLOT,

addr_t AXIS_BASE_ADDR,

uint32_t FAB_SPI_RDY_MASK,

Stepper_type *Stepper_ptr,

uint32_t steps,

uint8_t speed,

uint8_t mres,

uint8_t dirn,

uint8_t Current_fil,

uint8_t Mode

);

Initializes a stepper motor structure with:
• The GPIO pins to:

- Enable the stepper module
- Receive the SPi ready signals

• The APB base address
• Other stepper parameters like resolution,

direction, speed and so on

StepperStart

void StepperStart(

Stepper_type *Stepper_ptr

);

Loads the number of steps in the Finite-step mode,
or the continuous step mask in the Continuous mode
and runs the motor.

StepperStop

void StepperStop(

Stepper_type *Stepper_ptr

);

Disables the stepper module and puts this axis in
Finite-step mode with zero steps.

Functional Description

7

API Name API (Prototype) Function

StepperSetParam

void StepperSetParam(

Stepper_type *Stepper_ptr,

uint8_t Speed,

uint8_t Mres,

uint32_t Steps,

uint8_t current);

Sets parameters such as speed, MRES, number of
steps, and motor current.

StepperSetDirn

void StepperSetDirn(

Stepper_type *Stepper_ptr,

uint8_t direction);

Sets the direction of the stepper.
0: Clockwise
1: Anticlockwise

SPI_tx_262

static inline void
SPI_tx_262(

addr_t reg_addr,

uint32_t value

);

Sends data from the MSS to the stepper driver chip
through the fabric SPI block. The MSS sends the
data to be transmitted with a start transmission bit.
After a fixed period of time, this bit is cleared so that
the data is not sent repeatedly.

Table 2 shows the default values that the StepperInit() writes to the TMC262 registers automatically.

Table 2 · Default Values for TMC262 Driver Registers

Register Default Value Function

DRVCTRL 0x00000 + MRES Drive Control register (last 4 bits represent MRES,
refer to Table 3)

CHOPCONF 0x8B032 Chopper Configuration register

SMARTEN 0xA8160 CoolStep Configuration

SGSCONF 0xD4F00 + Current_scaling StallGuard Configuration

DRVCONF 0xEF050 Driver Configuration

Table 3 shows the values of MRES corresponding to the various microsteps.

Table 3 · MRES Values for Microstep Resolutions

Resolution (Microsteps) MRES Value

256 0

128 1

64 2

32 3

16 4

8 5

4 6

Half Step (2) 7

Full Step (1) 8

Note: The speed and direction of the motor and the MRES value can be configured while the motor is
running. Current scaling can only be modified when the motor stops.

Implementing a Step-Direction Interface based Stepper Motor Controller using the SmartFusion2 Device Application
Note

8

Setting up the Design
Table 4 lists the hardware and software requirements of the reference design.

Table 4 · Reference Design Requirements

Reference Design Requirements and Details Description
Hardware Requirements

• SmartFusion2 Development Kit
− 12 V adapter (provided along with the kit)
− FlashPro4 programmer (provided along with the kit)
− USB A to Micro-B cable (provided along with the kit)

• TMCM-6930-MS Interposer Card (provided with the
motor control kit)

• TMCM-1045-MS Stepper Daughter Card (provided with
the motor control kit)

• Power Supply (provided with the motor control kit)

Rev C or later

Host PC or Laptop Any Windows 7 Operating System

Software Requirements
Host PC Drivers (provided along with the design files) USB Drivers (Provided with the GUI)
Microsemi application Microsemi Motor Control GUI 2.4 or later

For information on setting up the hardware, connecting it to the GUI and running the design, refer to the
SmartFusion2 Six-Axis Motor Control Development Kit Demo Guide.

Summary

9

Figure 5 shows the stepper Daughter card connected to a stepper motor.

Figure 5 · Stepper Motor Driver Daughter Card connected to a Stepper Motor

Summary
This application note describes the basic step-direction interface control method of a stepper motor drive
using SmartFusion2 and the TMCM-1045-MS stepper driver card. The functional operation of the stepper
motor drive is described, and the default settings are discussed.

References
1. TMC262 Datasheet

http://www.trinamic.com/tmctechlibcd/integrated_circuits/TMC262/TMC262_datasheet.pdf
2. Stepping Motors and their Microprocessor controls, Takashi Kenjo, 1994
3. T.C. Chin, D.P. Mital and M.A. Jabbar, A Stepper Motor Controller, 1988.

http://www.trinamic.com/tmctechlibcd/integrated_circuits/TMC262/TMC262_datasheet.pdf

51900281-1/02.14

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1(949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com/

	Purpose
	Introduction
	Step Direction Interface
	Calculating Number of Wait Cycles Between Successive Step Pulses
	Block Diagram

	Functional Description
	System Inputs
	Hardware Blocks (FPGA Blocks)
	Commutator Block
	SPI Block

	MSS Blocks (Software Library)
	StepperWrapper Library

	Setting up the Design
	Summary
	References

