
SmartFusion2 Modbus Reference Design
User Guide

SmartFusion2 Modbus Reference Design

Revision 0 3

Table of Contents

1 SmartFusion2 Modbus Reference Design . 5
Introduction . 5

Change Log . 5

Reference Design Features . 5

Installing and Using the Reference Design . 6

SoftConsole Firmware Project . 14

Libero SoC Hardware Project . 19

RS-485 Communications . 19

References . 21

A Product Support . 23
Customer Service . 23

Customer Technical Support Center . 23

Technical Support . 23

Website . 23

Contacting the Customer Technical Support Center . 23

ITAR Technical Support . 24

1 – SmartFusion2 Modbus Reference Design

Introduction
Modbus is a serial communications and application level protocol primarily targeting industrial network
communications. The origins of rationale for and specifications related to Modbus are summarized in the
Modbus Organization FAQ [reference 3.1], the Modbus organization technical resources page
[reference 3.2], and also in various Modbus tutorials and introductory guides available on the web such
as those mentioned in "References" section on page 21 [reference 7].

Change Log
• V1.0 - Initial release using the Libero® System-on-Chip (SoC) v11.0 Beta SP1, SmartFusion®2

microcontroller subsystem (MSS) 0.0.720, and SoftConsole v3.4[.0.3] Beta.

• V1.1 - Updated release using the Libero SoC v11.0 Production, SmartFusion2 MSS 1.0.100, and
SoftConsole v3.4[.0.5] production.

Reference Design Features
1. Modbus over serial line reference slave implementation based on a “bare metal” (non

[Free]RTOS) implementation of the FreeModbus communications stack v1.5 [reference 5] targets
the Microsemi SmartFusion2 system-on-chip (SoC) field programmable gate array (FPGA)
[reference 2] SF2-DEV-KIT board (by default targeting RevB/ES/M2S050T_ES896FBGA device).

2. Supports Modbus serial line ASCII and RTU modes.

3. Supports RS-232 (point-to-point master and single slave) and RS-485 (bus based multi-drop
master and multiple slaves—half-duplex 2/3 wire bus) physical communication mediums.

4. Includes the complete Libero SoC (v11.0/SmartFusion2 MSS v1.0.100) hardware project, which
includes the SoftConsole (v3.4[.0.5]) firmware workspace and applications or library projects
implementing the reference design Modbus slave which can be exercised using any third party
Modbus master (including the PC hosted ones mentioned in [reference 6]) and which can be
adapted and extended for customer specific requirements.

5. Supports Modbus functions. Being based on the FreeModbus communications stack the
reference design supports the following Modbus functions out of the box:

– Read Input Register (function code 0x04)

– Read Holding Registers (function code 0x03)

– Write Single Register (function code 0x06)

– Write Multiple Registers (function code 0x10)

– Read/Write Multiple Registers (function code 0x17)

– Read Coils (function code 0x01)

– Write Single Coil (function code 0x05)

– Write Multiple Coils (function code 0x0F)

– Read Discrete Inputs (function code 0x02)

– Report Slave ID (function code 0x11)

Refer to the FreeModbus API documentation [reference 5.1] for information about extending the slave to
support additional Modbus function codes.
Revision 0 5

SmartFusion2 Modbus Reference Design
6. Supports a variety of single bit read-only discrete input registers, single bit read-write coils
registers, 16-bit read-only input registers and 16-bit read-write holding registers connected to
board resources such as memory (holding), light emitting diode (LED)s coils, dual in-line package
(DIP) switches (discrete inputs), pushbuttons (discrete inputs), real time counter (RTC), and tick
counter (inputs). The number and type of registers can be extended by the end user.

Installing and Using the Reference Design

Installing the Reference Design
Design files are available for download at:

http://soc.microsemi.com/download/rsc/?f=SF2_Modbus_Reference_DF

This reference design is delivered as a .zip file, whose contents should can be extracted to a suitable
folder on disk. Once extracted the following folders are available as shown in Figure 1-1.

Table 1-1 briefly explains the contents of each folder.

To get started with the reference design, follow these steps:

1. Run FlashPro v11.0 standalone and program

...\Microsemi_SmartFusion2_Modbus_Reference_Design_v1.0\programming_fil
e\modbus_top.stp to program the SF2-DEV-KIT board.

or

Run Libero SoC v11.0 and open
...\Microsemi_SmartFusion2_Modbus_Reference_Design_v1.0\project\sf2_mod
bus.prjx

2. If necessary bring the design through the design flow and program the SF2-DEV-KIT board from
within Libero SoC.

Figure 1-1 • Folder Contents

Table 1-1 • Folder Contents

Folder Description

documentation Contains documentation relating to the reference design - including this user's guide.

programming_file Contains programming files for the reference design with the default configuration outlined.
The programming files target the SF2-DEV-KIT board. Two different programming files are
provided for the two different devices that can be present on the SF2-DEV-KIT board: one for
RevB/ES/M2S050T_ES 896FBGA devices (modbus_sf2_dev_kit_m2s050t_es_896fbga.stp)
and one for RevC/PP/M2S050T 896FBGA devices
(modbus_sf2_dev_kit_m2s050t_896fbga.stp). It is critical to use the correct STAPL file for the
relevant device.

project Contains the Libero SoC v11.0 project for the reference design. It also contains the
SoftConsole v3.4 firmware workspace and projects in the project folder structure.
6 Revision 0

http://soc.microsemi.com/download/rsc/?f=SF2_Modbus_Reference_DF

SmartFusion2 Modbus Reference Design
3. Note that while using the project, care should be taken to reconfigure the SmartFusion2 MSS
ENVM data storage client named Firmware in order to point it at the reference design firmware
Intel Hex file which is located here (if required):
...\Microsemi_SmartFusion2_Modbus_Reference_Design_v1.0\project\SoftCon
sole\modbus_MSS_CM3\modbus_MSS_CM3_app\Release\modbus_MSS_CM3_app.hex

Power cycle the SF2-DEV-KIT board and we can see LED8 blinking every second to indicate that the
Modbus reference design was programmed successfully and the firmware is running correctly. Use a
suitable Modbus master utility so that the information provided in the following sections would help in
interacting with the Modbus reference design.

Default Communication Settings
The default communication settings are as follows:

• Modbus serial RTU mode.

• Modbus slave address 0x01.

• SmartFusion2 MSS MMUART_1/RS-232 physical layer communications.

• 19200 baud rate.

• 8 data bits - as required by Modbus RTU mode. If the firmware is reconfigured to run in ASCII
mode then the Modbus master must be configured to use 7 data bits as required by Modbus
ASCII mode.

• Even parity.

• 1 stop bit.

• While using MSS MMUART_1/RS-232 the following jumpers must be installed:

– J197:1-2 (RS232_ROUT)

– J188:1-2 (RS232_DIN)

• While connecting a Modbus master to the reference design slave connect a serial cable from the
PC to the SF2-DEV-KIT board's MSS MMUART_1 J198 DB9_RS232 connector. Note down the
port number that is used on the PC configuring the master Modbus and communication settings.

If the firmware is used to reconfigure MSS MMUART_0/RS-485, then please refer to
"RS-485 Communications" section on page 19.

Using Modpoll
Modpoll® is a simple command line read-only freeware Modbus master available from proconX Pty Ltd.
[reference 6.1]. Download and install/extract Modpoll, open a command shell and change directory to the
folder containing the modpoll.exe executable. modpoll.exe -h displays help about the different
command line options supported.

Read Input Registers
To query the reference design slave's two 16-bit read-only input registers which store the RTC in
seconds and a 16-bit representation of the firmware's 100ms systick counter, use the following
command:

modpoll.exe -m rtu -a 1 -r 1 -c 2 -t 3 -b 19200 -d 8 -p even COM1
Revision 0 7

SmartFusion2 Modbus Reference Design
The command line parameters are listed in Table 1-2.

Modpoll continuously polls the two 16-bit input registers implemented by the reference design slave: RTC
1 second counter and 100ms systick counter. You can see the first register (RTC) counting up in seconds
and the second register (100ms systick counter) counting up in 1/10th of a second.

Read Discrete Input Registers
To query the 16 single bit read-only discrete input registers, run Modpoll again with the following
command line options:

modpoll.exe -m rtu -a 1 -r 1 -c 16 -t 1 -b 19200 -d 8 -p even COM1

Table 1-2 • Command Line Parameters

Command Line Options Description

-m rtu Use RTU mode.

-a 1 Modbus target slave address.

-r 1 Offset from start of the relevant Modbus register block (as determined by the -t
command line option) from which it would start reading.

-c 2 Number of values to poll.

-t 3 Poll 16-bit read-only input registers - "Reference Design Slave Modbus Register Map"
section on page 17 provides information about the Modbus register map supported by the
reference design slave.

-b 19200 Baud rate.

-d 8 RTU mode uses 8 data bits. ASCII mode uses 7 data bits.

-p even Even parity.

COM1 The PC COM port for connecting to the SF2-DEV-KIT board. Modify this according to your
local setup.

Figure 1-2 • Read Input Registers
8 Revision 0

SmartFusion2 Modbus Reference Design
This time use -t 1 -c 16 to read the 16 single bit read-only discrete inputs supported by the reference
design slave. "Reference Design Slave Modbus Register Map" section on page 17 provides information
about the Modbus register map supported by reference design slave.

As Modpoll polls the slave, toggle the SF2-DEV-KIT board's SW1-SW5 pushbuttons and SW10 DIP
switches to see the effect that it has on the results reported by Modpoll.

Read Holding Registers
The reference design implements 16x16 bit holding registers stored in RAM (and hence volatile). The
firmware initializes them to the values 0x01 to 0x10 at start up and thereafter they can be read or written.
Modpoll is a read-only Modbus master. To read these registers, run Modpoll using the following
command:

modpoll.exe -m rtu -a 1 -r 1 -c 16 -t 4:hex -1 -b 19200 -d 8 -p even COM1

In this case -c 16 tells Modpoll to read 16 registers, -t 4:hex tells it to read the 16-bit holding
registers and display them in hex and -1 tells it to poll once rather than continuously.

Figure 1-3 • Read Discrete Input Registers
Revision 0 9

SmartFusion2 Modbus Reference Design
Read Coils Registers
To read the 8 1-bit read-write coils registers (7 of which are connected to the SF2-DEV-KIT board's
LEDs) run Modpoll using the following command:

modpoll.exe -m rtu -a 1 -r 1 -c 8 -t 0 -1 -b 19200 -d 8 -p even COM1

Note that the LEDs are active Low, so a ’0’ means that the LED is ON, while ’1’ means that it is OFF.

Using Automated Solutions Inc's MiniHMI
Automated Solutions Inc [reference 6.2] provides commercial software solutions for HMI and SCADA
developers including various Modbus solutions. Their product range includes a Modbus RTU/ASCII
Master ActiveX Control and some example applications. Please contact Automated Solutions Inc or refer
to their website for details of their commercial tool offerings and prices.

Automated Solutions Inc. also provide a free fully featured 30 day trial version of the Modbus RTU/ASCII
Master ActiveX Control and example applications which can be used to exercise and demonstrate the
features of the Microsemi SmartFusion2 Modbus reference design slave.

Figure 1-4 • Read Holding Registers

Figure 1-5 • Read Coils Registers
10 Revision 0

SmartFusion2 Modbus Reference Design
Obtain and install the demo or full version of the Automated Solutions Inc. Modbus RTU/ASCII Master
ActiveX Control package.

Refer to the documentation and help provided with the package and on the Automated Solutions Inc.
website for more details about the capabilities of the ActiveX component and example applications.

The MiniHMI example application can be run from:
Start > All Programs > Automated Solutions ActiveX > Modbus Master > MiniHMI Example
Application.

Read Input Registers
Run the MiniHMI example application. Click on the Read Registers tab. Ensure that the
Communications settings are configured appropriately to match your the slave setup. For default
settings refer to "Default Communication Settings" section on page 7. The MiniHMI settings with the
possible exception of Communications Port match the reference design slave default settings. Select the
Modbus > Function > Input Registers radio button and in the Quantity field enter 2. Check the Auto
Poll check box and MiniHMI should start continuously polling the one second RTC and 100ms systick
counter input registers whose values are updated as time passes. Uncheck the Auto Poll check box to
stop continuous polling.

Read/Write Holding Registers
On the Read Registers tab select the Modbus > Function > Output Registers radio button and in the
Quantity field enter 16. Click the Async Read or Sync Read button and MiniHMI should read back the
16 RAM based holding registers.

Figure 1-6 • MiniHMI Example Application
Revision 0 11

SmartFusion2 Modbus Reference Design
To write to the holding registers select the Write Registers tab. As above shown in Figure 1-7 ensure
that the Communications settings are configured correctly. Note that the Communications settings are
set independently on each tab and are not retained between runs.

Select the Modbus > Function > Multiple Out Regs radio button and enter a value between 1 and 16 in
the Quantity field according to the number of many registers to be written. In the register
grid/spreadsheet view enter the number of values to be written to the holding registers. Click the Async
Write or Sync Write to flush the new values to the reference design Modbus slave. Note that the 16-bit
values are treated as signed so the values must be between xxx and -32768 and +32767.

Figure 1-7 • MiniHMI Example Application - Async Read

Figure 1-8 • MiniHMI Example Application - Sync Write
12 Revision 0

SmartFusion2 Modbus Reference Design
Read Discrete Inputs/Coils
To read the discrete inputs and coils go to the Read Discretes tab, ensure that the Communications
settings are set correctly, choose to read 8 or fewer coils or 16 or fewer discrete inputs and then click
Async Read or Sync Read to read once or Auto Poll to poll continuously. While reading the 16 discrete
inputs the MiniHMI GUI's State view reflects the changes due to manual toggling of the SF2-DEV-KIT
board's SW1-5 pushbuttons or SW10 DIP switches.

Write Coils
To write the coils (LEDs) go to the Write Discretes tab, ensure that the Communications settings are
configured appropriately, select Single Coils or Multiple Coils and enter a Quantity between 1 and 8
(only coils 1-7 are actually connected to board resources/LEDs by default), toggle any of the first seven
coils (00-06) in the State view and then clock the Async Write or Sync Write to change the status of the
LEDs. You should see the changes reflected on the SF2-DEV-KIT board.

Figure 1-9 • MiniHMI Example Application - Read Discretes

Figure 1-10 • MiniHMI Example Application - Write Discretes
Revision 0 13

SmartFusion2 Modbus Reference Design
Using Other Modbus Masters
Similar to the proconX Pty Ltd Modpoll and Automated Solutions Inc Modbus RTU/ASCII ActiveX
Component MiniHMI example applications can be used to interact with the Microsemi SmartFusion2
reference design sample Modbus slave, any other Modbus compatible PC hosted or other master can
also be used. Ensure that the master Modus and serial communications settings match the slave target
settings.

SoftConsole Firmware Project
The SoftConsole firmware workspace and projects are bundled with the Libero SoC v11.0 project
because they are created using the Libero embedded firmware flow. Open the reference design project
in Libero SoC v11.0, go to Project > Tool Profiles... and ensure that the Tools > Software IDE tool
profile is configured correctly to run SoftConsole v3.4. Then, right-click on Design Flow > Develop
Firmware > Write Application Code and choose Open Interactively. SoftConsole should launch and
open the reference design SoftConsole workspace.

Project Layout
Figure 1-11 outlines the structure of the firmware project.

When Libero generates the firmware for a project the workspace contains two projects - an "app" project
(modbus_MSS_CM3_app) for the main application and a library project
(modbus_MSS_CM3_hw_platform) for the common firmware drivers relevant to the target hardware
configuration. Whenever the hardware design is modified and regenerated Libero updates the latter
project to keep it in sync with the target hardware.

Figure 1-11 • Directory Structure of the Firmware Project
14 Revision 0

SmartFusion2 Modbus Reference Design
Table 1-3 summaries the contents and purpose of each folder.

Slave Firmware Configuration #defines
The following manifest constants control various aspects of the firmware operation and can be modified
by specifying new values in the SoftConsole project properties (Properties > C/C++ Build > Settings >
GNU C Compiler > Symbols or by editing the #defines in
FreeModbus_demo/demo/Microsemi_SmartFusion/demo.c directly before recompiling the
firmware.

Table 1-3 • Folder Contents

Folder/File Description

modbus_MSS_CM3_app The Modbus reference design application project.

modbus_MSS_CM3_app/Includes Project level include files/folders.

modbus_MSS_CM3_app/demo/Microsemi_SmartFusion2/
port

FreeModbus porting layer files targeting Microsemi
SmartFusion2 device.

modbus_MSS_CM3_app/demo/Microsemi_SmartFusion2/
demo.c

Reference design slave implementation program file
containing main(), default slave firmware configuration
#defines, Modbus register and callback
implementations etc.

modbus_MSS_CM3_hw_platform Libero generated library project containing all common
firmware drivers for the target hardware platform.

modbus_MSS_CM3_hw_platform/Includes Project level include files/folders.

modbus_MSS_CM3_hw_platform/CMSIS The CMSIS part of the SmartFusion2 CMSIS
hardware abstraction layer.

modbus_MSS_CM3_hw_platform/drivers Various SmartFusion2 firmware drivers.

modbus_MSS_CM3_hw_platform/drivers/mss_gpio SmartFusion2 MSS GPIO driver.

modbus_MSS_CM3_hw_platform/drivers/mss_hpdma SmartFusion2 MSS HPDMA driver - not used here.

modbus_MSS_CM3_hw_platform/drivers/mss_nvm SmartFusion2 MSS eNVM driver - not used here.

modbus_MSS_CM3_hw_platform/drivers/mss_rtc SmartFusion2 MSS RTC driver.

modbus_MSS_CM3_hw_platform/drivers/mss_sys_services SmartFusion2 MSS System Services driver - not used
here.

modbus_MSS_CM3_hw_platform/drivers/mss_timer SmartFusion2 MSS Timer driver.

modbus_MSS_CM3_hw_platform/drivers/mss_uart SmartFusion2 MSS MMUART driver.

modbus_MSS_CM3_hw_platform/drivers_config Hardware target configuration information required for
building firmware (For example clock speeds etc.)

modbus_MSS_CM3_hw_platform/hal The HAL part of the SmartFusion2 CMSIS hardware
abstraction layer.
Revision 0 15

SmartFusion2 Modbus Reference Design
Table 1-4 • Manifest Constants

Manifest Constant Description - Default Value

MODBUS_SERIAL_MODE FreeModbus communication stack mode of serial operation

• MB_RTU- RTU mode

• MB_ASCII - ASCII mode

• Default: MB_RTU

• Note that in RTU/ASCII mode the Modbus master serial communications must
be configured for 8/7 data bits respectively

MODBUS_SLAVE_ADDR Modbus slave address

• 1 - 247 (0x01 - 0xF7)

• Default: 1 (0x01)

MODBUS_PORT Serial port used

• 0 = MSS MMUART_1/RS-485

• 1 = MSS MMUART_0/RS-232

• Default: 1

MODBUS_BAUD_RATE Baud rate

• Default: 19200

MODBUS_PARITY Parity

• MB_PAR_EVEN

• MB_PAR_ODD

• MB_PAR_NONE

• Default: MB_PAR_EVEN

MODBUS_SLAVEID Modbus slave id - one byte id followed by an optional number of bytes of device
specific data.

• Default: 0x55 0xC0 0xFF 0xEE

REG_DISCRETE_START Offset (from Modbus register address 10000) of first discrete input register
implemented.

• Default: 1

REG_DISCRETE_NREGS Number of discrete input registers implemented

• Default: 2

REG_COILS_START Offset (from Modbus register address 0) of first coil register implemented

• Default: 1

REG_COILS_NREGS Number of discrete input registers implemented

• Default: 1

REG_INPUT_START Offset (from Modbus register address 30000) of first input register implemented

• Default: 1

REG_INPUT_NREGS Number of input registers implemented

• Default: 2

REG_HOLDING_START Offset (from Modbus register address 40000) of first holding register implemented

• Default: 1

REG_HOLDING_NREGS Number of holding registers implemented

• Default: 16
16 Revision 0

SmartFusion2 Modbus Reference Design
Default Configuration
By default the reference design SoftConsole firmware project is configured to use the following Modbus
and serial settings:

• Modbus serial RTU mode

• Modbus slave address 0x01

• Modbus slave id 0x55 with three optional data bytes 0xC0 0xFF 0xEE

• MSS MMUART_1/RS-232 physical layer communications

• 19200 baud rate

• 8 data bits (as required by Modbus RTU mode - Modbus ASCII mode uses 7 data bits)

• Even parity

• 1 stop bit

Linker Scripts
By default the project it set up to use the following SmartFusion2 CMSIS-HAL sample linker scripts:

• Debug target:CMSIS/startup_gcc/debug-in-microsemi-smartfusion2-esram.ld

• Release target:CMSIS/startup_gcc/production-execute-in-place.ld

The debug target supports downloading to and debugging from SmartFusion2 MSS Embedded SRAM
(eSRAM). The release target creates an Intel HEX file suitable for loading into the “Firmware” MSS
eNVM data storage client when while programming the board using Libero/FlashPro. Once this is done
the release firmware runs from reset.

As with any SmartFusion2 firmware project other build/link and memory configurations are possible (for
example, booting from eNVM, copying/relocating to eSRAM or external RAM and continuing to run from
there or more sophisticated “scatter loading” of portions of the firmware image to disparate memory
regions etc.) but are beyond the scope of this document.

FreeModbus Configuration Options
See the FreeModbus API documentation [reference 5.1] for information about manifest constants (in
SmartFusion_demo/modbus/include/mbconfig.h) that control the configuration of the
FreeModbus communications stack itself.

Reference Design Slave Modbus Register Map
The reference design slave firmware supports the Modbus registers listed in Table 1-5.

Table 1-5 • Modbus Registers

Coils Registers – Single Bit Read-Write

Modbus Address Physical Resource

1 SF2-DEV-KIT LED D1

2 SF2-DEV-KIT LED D2

3 SF2-DEV-KIT LED D3

4 SF2-DEV-KIT LED D4

5 SF2-DEV-KIT LED D5

6 SF2-DEV-KIT LED D6

7 SF2-DEV-KIT LED D7

8 Not connected - reads as 0, writes are ignored. Note that SF2-DEV-
KIT LED D8 is used as a “heartbeat” to indicate that the firmware is
executing normally when the LED blinks on/off every 1 second.
Revision 0 17

SmartFusion2 Modbus Reference Design
Adding New Registers
New registers can be added by redefining the relevant REG_<Modbus-register-class>_NREGS
configuration manifest constant where <Modbus-register-class> is one of DISCRETE, COILS,
INPUT or HOLDING. Once defined the slave allocates sufficient buffer memory for storing the registers.

Connecting these registers up to hardware board resources requires the modification of the relevant
FreeModbus register access handler callback function eMBRegDiscreteCB(), eMBRegCoilsCB(),
eMBRegInputCB() or eMBRegHoldingCB() as well as the possible modification of the Libero IDE
hardware project to support the necessary hardware resources.

Adding Support for Additional Modbus Function Codes
By default the reference design slave provides support for the following Modbus function codes:

• Read Input Register (function code 0x04)

• Read Holding Registers (function code 0x03)

• Write Single Register (function code 0x06)

• Write Multiple Registers (function code 0x10)

• Read/Write Multiple Registers (function code 0x17)

• Read Coils (function code 0x01)

• Write Single Coil (function code 0x05)

• Write Multiple Coils (function code 0x0F)

Discrete Input Registers – Single Bit Read-Only

Modbus Address Physical Resource

10001 SF2-DEV-KIT pushbutton SW1

10002 SF2-DEV-KIT pushbutton SW2

10003 SF2-DEV-KIT pushbutton SW3

10004 SF2-DEV-KIT pushbutton SW4

10005 SF2-DEV-KIT pushbutton SW5

10006 Not connected - reads as 0

10007 Not connected - reads as 0

10008 Not connected - reads as 0

10009 SF2-DEV-KIT DIP switch SW10:1

10010 SF2-DEV-KIT DIP switch SW10:2

10011 SF2-DEV-KIT DIP switch SW10:3

10012 SF2-DEV-KIT DIP switch SW10:4

10013 Not connected - reads as 0

10014 Not connected - reads as 0

10015 Not connected - reads as 0

10016 Not connected - reads as 0

Input Registers – 16 bit Read-Only

Modbus Address Physical Resource

30001 RTC counter value in seconds (0 to 65535)

30002 100ms systick counter (0 to 65535)

Holding Registers – 16 bit write

Modbus Address Physical Resource

40001 .. 40017 16 x 16 bit read-write holding registers implemented in RAM (and
hence volatile across reboots).

Table 1-5 • Modbus Registers (continued)
18 Revision 0

SmartFusion2 Modbus Reference Design
• Read Discrete Inputs (function code 0x02)

• Report Slave ID (function code 0x11)

See the FreeModbus API documentation [reference 5.1] for information about adding support for other
Modbus functions by adding callback to handle the relevant function codes. Libero IDE hardware project.

Libero SoC Hardware Project
The Libero SoC v11.0 Beta SP1 project using the SmartFusion2 MSS v0.0.720 MSS is provided. It
implements the hardware design on which the reference design slave firmware runs.

MSS Resources
The reference design Libero hardware project uses the following SmartFusion2 MSS resources by
default:

1. Clock configuration: An external 50 MHz reference clock source is used and a 100 MHz clock is
derived from this to drive the Cortex-M3 processor and MSS APB buses.

Serial communications: UART_0 for RS-232 and UART_1 for RS-485 communications on the
A2F500-DEV-KIT board.

2. Timers

– Timer 1: Used to generate a 50 us timer interrupt required by FreeModbus for Modbus
protocol timing.

– Timer 2: Used in MSS MMUART_0/RS-485 communications mode to implement an 20 ms
delay for Texas Instruments SN65HVD12 RS-485 transceiver transmit/receive turnaround
timing and to allow for appropriate settling time when toggling the transceiver's drive
enable/receive enable - DE/REn signals. If RS-485 mode is not being used then MSS Timer 2
is freed up for other use.

In addition to the resources above required for the core Modbus functionality the following resources are
used to implement the demo program and reference design slave Modbus registers:

3. Cortex-M3 SysTick: Used by the demo program to generate a 100ms timer interrupt whose ISR
is used to synchronize board hardware resources and reference design slave Modbus registers.

4. RTC: Used to implement the RTC Modbus register.

5. GPIOs: Used to interface LEDs (x8), pushbuttons (x5), and DIP switches (x4) which are used to
implement the reference design slave Modbus discrete input and coil registers.

Adapting the Hardware Design
For the most part the only changes that might need to be made to the hardware design are those
required in order to map additional hardware resources to Modbus slave registers. As explained in the
previous section, the reference design slave comes with a set of illustrative Modus registers mapped to
specific hardware board resources.

RS-485 Communications
By the default the reference design firmware SoftConsole project is configured to use MSS
MMUART_1/RS-232 communications. To use MSS MMUART_0/RS-485 communications on the
SF2-DEV-KIT board the firmware can easily be reconfigured by defining the MODBUS_PORT manifest
constant to be 1 instead of 0. This can be done via the project properties (Properties > C/C++ Build >
Settings > GNU C Compiler > Symbols).
Revision 0 19

SmartFusion2 Modbus Reference Design
or by editing.../modbus_MSS_CM3_app/demo/Microsemi_SmartFusion/demo.c file.

For RS-485 communications an appropriate RS-485 based master and RS-485 A/B (also known as
D+/D-) plus GND differential encoding twisted pair network cabling (2/3 wire half duplex) is required -
optionally bus/multi-drop (multiple slaves connected to a single master) rather than point to point (master
to single slave). See [reference 3.2] and [reference 7] for more details about RS-485 network cabling.

In order to use RS-485 communications with the reference design the following jumpers must be
installed on the SF2-DEV-KIT.

• J209:1-2 RS485_TE

• J178:1-2 RS485_RE

• J199:1-2 RS485_TX

• J210:1-2 RS485_RX

and the RS-485 3 wire half-duplex cable must be connected to the SF2-DEV-KIT as follows:

• RS485 GND J221:1 and/or J221:2 and/or J221:7 and/or J221:8

• RS485 D-/B J221:3 and/or J221:5

• RS485 D+/A J221:4 and/or J221:6

When using a PC hosted Modbus master to exercise the reference design slave an RS-232 to RS-485
converter dongle is usually required since PCs normally do not come with an RS-485 port by default.
Examples of such dongles used during the development of the reference design include these:

• DealExtreme.com: http://www.dealextreme.com/p/rs232-to-rs485-converter-6040

• FocalPrice.com:
http://www.focalprice.com/CN051B/Data_Communication_Product_RS232RS485_Converter_Bl
ack.html

When using Modbus over RS-485 appropriate and timely control of the transceiver's drive/receive enable
signals for half-duplex transmit/receive turnaround is critical. Refer to the following Netrino® article for
some background on this in a general (non-Modbus specific) context:

• http://www.netrino.com/Embedded-Systems/How-To/RS-485-Transmit-Enable-Signal

Figure 1-12 • Tool Settings - Symbols

Figure 1-13 • Demo File
20 Revision 0

http://www.dealextreme.com/p/rs232-to-rs485-converter-6040
http://www.focalprice.com/CN051B/Data_Communication_Product_RS232RS485_Converter_Black.html
http://www.focalprice.com/CN051B/Data_Communication_Product_RS232RS485_Converter_Black.html
http://www.focalprice.com/CN051B/Data_Communication_Product_RS232RS485_Converter_Black.html
http://www.focalprice.com/CN051B/Data_Communication_Product_RS232RS485_Converter_Black.html
http://www.netrino.com/Embedded-Systems/How-To/RS-485-Transmit-Enable-Signal

SmartFusion2 Modbus Reference Design
In the reference design the SF2-DEV-KIT board's Texas Instruments SN65HVD12 RS-485 transceiver
transmit/receive (DE/REn -drive/receive enable) signals are managed by the firmware using the MSS
UART_1 modem control RTSn (inverted) and DTRn signals and the MSS Timer 2 is used to allow for
settling time on these signals. The approach taken to transmit/receive turnaround management
corresponds to option 5 in the Netrino article.

References
1. Microsemi SoC Products Group System Solutions home page:

www.microsemi.com/soc/products/solutions/default.aspx

2. Microsemi SmartFusion2 SoC FPGA page:
www.microsemi.com/soc/products/smartfusion2/default.aspx

3. The Modbus organization page: http://www.modbus.org

– 3.1. FAQ: http://www.modbus.org/faq.php

– 3.2. Technical resources including specifications and links to free and commercial Modbus
tools and resources: http://www.modbus.org/tech.php

4. Wikipedia page on Modbus: http://en.wikipedia.org/wiki/Modbus

5. FreeModbus page: http://freemodbus.berlios.de/

– 5.1. API documentation: http://freemodbus.berlios.de/api/index.html

– 5.2. Examples usage using Modpoll: http://freemodbus.berlios.de/index.php?idx=1

6. Selected suggested Modbus master tools for testing and exercising the reference design:

– 6.1. proconX Pty Ltd Modpoll® - a freeware (http://www.modbusdriver.com/info/LICENSE-
FREE) PC hosted command line read-only Modbus master:
http://www.modbusdriver.com/modpoll.html

– 6.2. Automated Solutions Inc Modbus RTU/ASCII Master ActiveX Control and example
programs: http://www.automatedsolutions.com/demos/#MBACTIVEX. A 30 day trial demo
version is available for download from Automated Solutions Inc.
http://www.automatedsolutions.com/products/modbusrtu.asp

7. Modbus tutorials and overviews

– 7.1. Automation.com™ Introduction to Modbus: http://www.automation.com/resources-
tools/articles-white-papers/fieldbus-serial-bus-io-networks/introduction-to-modbus

– 7.2. National Instruments™ Introduction to Modbus:
http://zone.ni.com/devzone/cda/tut/p/id/7675

– 7.3. AutomatedBuildings.com - Introduction to the Modbus Protocol

– 7.3.1.Part 1:
http://www.automatedbuildings.com/news/sep08/articles/cctrls/080819014909cctrls.htm

– 7.3.2.Part 2:
http://www.automatedbuildings.com/news/dec08/articles/cctrls/081124120101cctrls.htm
Revision 0 21

www.microsemi.com/soc/products/solutions/default.aspx
www.microsemi.com/soc/products/smartfusion2/default.aspx
http://www.modbus.org
http://www.modbus.org/faq.php
http://www.modbus.org/tech.php
http://en.wikipedia.org/wiki/Modbus
http://freemodbus.berlios.de/
http://freemodbus.berlios.de/api/index.html
http://freemodbus.berlios.de/index.php?idx=1
http://www.modbusdriver.com/info/LICENSE-FREE
http://www.modbusdriver.com/info/LICENSE-FREE
http://www.modbusdriver.com/modpoll.html
http://www.automatedsolutions.com/demos/#MBACTIVEX
http://www.automatedsolutions.com/products/modbusrtu.asp
http://www.automation.com/resources-tools/articles-white-papers/fieldbus-serial-bus-io-networks/introduction-to-modbus
http://www.automation.com/resources-tools/articles-white-papers/fieldbus-serial-bus-io-networks/introduction-to-modbus
http://zone.ni.com/devzone/cda/tut/p/id/7675
http://www.automatedbuildings.com/news/sep08/articles/cctrls/080819014909cctrls.htm
http://www.automatedbuildings.com/news/dec08/articles/cctrls/081124120101cctrls.htm

A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the website.

Website
You can browse a variety of technical and non-technical information on the SoC home page, at
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.
Revision 0 23

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

Product Support
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms
Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select
Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR
web page.
24 Revision 0

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/

50200475-0/08.13

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog
and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com

	1 – SmartFusion2 Modbus Reference Design
	Introduction
	Change Log
	Reference Design Features
	Installing and Using the Reference Design
	Installing the Reference Design
	Default Communication Settings
	Using Modpoll
	Using Automated Solutions Inc's MiniHMI
	Using Other Modbus Masters

	SoftConsole Firmware Project
	Project Layout
	Slave Firmware Configuration #defines
	Default Configuration
	Linker Scripts
	FreeModbus Configuration Options
	Reference Design Slave Modbus Register Map
	Adding New Registers
	Adding Support for Additional Modbus Function Codes

	Libero SoC Hardware Project
	MSS Resources
	Adapting the Hardware Design

	RS-485 Communications
	References

	A – Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

