

Power over Ethernet PD690xx Auto Mode Registers Map

Rev 1.3

Table of Contents

	3
GENERAL NOTE EXAMPLE 1 EXAMPLE 2 GENERAL CONFIGURATION INSTRUCTIONS	3 3
I ² C PROTOCOL STRUCTURE WITH HOST	5
SYSTEM INITIALIZATION REGISTERS	6
PORTS INITIALIZATION / CONFIGURATION REGISTERS (PORT SETTING)	9
SYSTEM STATUS / MONITORING	9
PORT STATUS MONITORING	12
PORT COMMANDS	16
INTERRUPT REGISTERS	17
PD690XX DETAILED REGISTERS LIST AND DESCRIPTION	19
OPENING A CONFIGURATION REGISTER FOR WRITE OPERATION	37
	EXAMPLE 1 EXAMPLE 2 GENERAL CONFIGURATION INSTRUCTIONS I ² C PROTOCOL STRUCTURE WITH HOST SYSTEM INITIALIZATION REGISTERS PORTS INITIALIZATION / CONFIGURATION REGISTERS (PORT SETTING) SYSTEM STATUS / MONITORING PORT STATUS MONITORING PORT COMMANDS INTERRUPT REGISTERS LIST AND DESCRIPTION

1. Introduction

This Register Mapping Matrix comprises internal registers description for the PD690xx (RTOEM) PoE device.

1.1. General Note

PD690xx communication protocol is based on dual byte format (16 bit data), as illustrated in Section 2 below.

Each Read or Write transaction is framed in a dual byte packet. Registers of 8 bits or less are used as Read and Write pairs (two registers in a single packet). When calling a single 16 bit register, or two 8 bit registers, user (Host) should use a single "even" address, as specified in this document. There is no need to perform dual read/write transactions.

Note that writing/reading from an "odd" address will not be executed.

1.2. Example 1

To read Port 1 I_{cut} 8 bit register, user should access both Port 0 and Port 1 simultaneously through address "1000". Note that register in address "1001" **CANNOT** be accessed directly, but only through address "1000".

1.3. Example 2

To write into "System Power Budget 0" register, user should access "138C" address via 16 bit wide register. Register in address "138D" cannot be accessed directly.

If user attempts to read or write from "138D" address, data transfer will be corrupted and might damage IC configuration.

Addresses marked in brackets "(...)" cannot be accessed directly!

1.4. General Configuration Instructions

To protect PoE system from incorrect configuration sequencing, PD69012 has a dedicated software protection mechanism that ensures sensitive configuration registers are modified only when PoE ports are OFF.

This mechanism also ensures that PoE system is initialized properly after modifying those registers.

Important: Set PoE system configuration registers (such as AT/AF mode, Res/Legacy Detection mode, I_{CUT} currents levels etc.) only when system is initializing and ports are OFF.

The recommended sequence is:

- 1. Disable all ports (via Disable pin or via Disable Port Register)
- 2. Change mode to **config** mode (see instructions below)
- 3. Perform all necessary changes (Registers Set)
- 4. Return to normal operational Auto mode
- 5. Enable PoE ports power

To enter CONFIG mode, do the following:

1. DisPortsCmd register (address 0x1332) → Write data = 0x03FF

or disable each port in Portx_CR register (addresses 0x131A to 0x1330) bits [1:0] → Data = 00

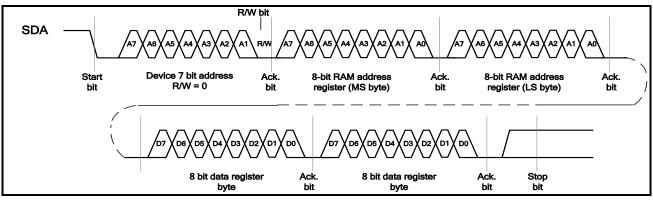
- 2. Change mode:
 - a. SW_ConfigReg (address 0x139E) → Write data = 0xDC03
 - b. I2C_ExtSyncType (address 0x1318) → Write data = 0x0020 (Mode Event Sync)
 - c. EXT_EV_IRQ (address 0x1144) → Write data = 0x0020 (Mode Event IRQ Sync)

d. To ensure this command was properly performed, user may read SW_ConfigReg register (go to address 0x139E) → Expected Read Data = 0x0003

Note: At this point, RAM space (address 0x1000 to the end) is open for Write operations. In this mode user can make changes to relevant registers.

3. After completing Write operation, return to operational Auto mode:

- a. SW_ConfigReg (address 0x139E) → Write data = 0xDC00
- b. I2C_ExtSyncType (address 0x1318) → Write data = 0x0020
- c. EXT_EV_IRQ (address 0x1144) → Write data = 0x0020


To ensure that command was performed properly, user can read SW_ConfigReg register:

- (address 0x139E) → Expected Data = 0x0000
- 4. Enable all PoE ports:
 - DisPortsCmd register (address 0x1332) → Write data = 0x0000, or enable each port in the Portx_CR register (addresses 0x131A to 0x1330) bits [1:0] → Write data = 01

2. I²C Protocol Structure with Host

Figure 1 illustrates the sequence structure for Write cycles. Each packet ends with an Ack bit sent from the PoE system.

Sequence structure for Read cycles (see_Figure 2): Second start bit indicates a read cycle is following. The PoE system issues all Acknowledge bits, except for those issued by the Host as part of the reply from the PoE Device. The Host provides a stop bit.

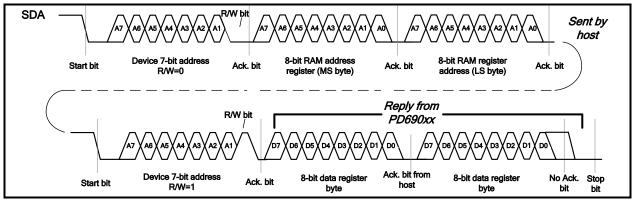


Figure 2: Sequence Structure for Read Cycles

3. System Initialization Registers

Register Name	Register Description	Address (HEX)	Default Value	Register Width (BITS)	Read/ Write
	Timer Value for Overload	Conditions	1		
Tovld_AF	Formula: • 1 LSB bit = 125µs	100E	208H (65 ms)	16	R/W
Tovld_AT	 Range: 0 to 522ms <i>Example:</i> For 10ms 10 / .125 = 80 (decimal) 	1010	208H (65 ms)	16	R/W
Ма	aximum V _{main} Voltage Level Threshold (Be	fore Power	ing Off All Ports)	
VmainHighTh	Formula: • 1 bit = 61mV, Range: 0 to 1023 = 0 to 59.392V Example: For 50V max 50V / 61mV = 820 (decimal)	12FE	10'h3bc	10	R/W
Mi	nimum V _{main} Voltage Level Threshold (Be	fore Power	ing Off All Ports)	
VmainATLowTh	Formula: • 1 bit = 61mV, Range: 0 to 1023 = 0 to 59.392V	1300	10'h313	10	R/W
VmainAFLowTh	Example: For 45V min 45V / 61mV = 738 (decimal) (Hysteresis of V _{main} Thresholds = 1V)	1302	10'h2b0	10	R/W
	Power Budget Guard Band Value for t	he Master F	PoE Device		
N/A – Irrelevant	PD69012 has a Dynamic Guard Band instead of a Static Guard Band See <i>PD690xx Technical Note TN-144</i> for Auto Mode Power Management's mechanism description.	N/A	N/A	N/A	N/A
Total Pow	er Budget – Sets the Maximum Power Le	vel, Availab	le for All Ports (System)	
Master Configuration for SysPowerBudget0	Master IC configuration for system power budget Supports up to eight power banks levels. Power budgets 000 to 111 (according to	138C 138E 1390 1392 1394 1396	8700 (3456W) 10E0 (432W) BB8 (300W) 898 (220W) 7D0 (200W) 5DC (150W)	16	R/W
7	power good I/Os) 1 Bit LSB = 0.1W	1398 1398 139A	4B0 (120W) 3E8 (100W)		

Register Name	Register Description	Address (HEX)	Default Value	Register Width (BITS)	Read/ Write
	Power Management	Mode		•	
PM mode – sys Flag	 Set power management calculation method for IC: "0": Static Mode; according to Class or Port Power Allocation Level (PPL) → PPL is set through Address Registers 1334 to 134A "1": Dynamic Mode; according to actual (real time) power consumption 	1160 Bit [6]	0 = Static	1	R/W
	General User Regis	ters	1	T	r
General User register	General User register for user's use	0318	16'h0000	16	R/W
Legacy CAP Detection	Legacy CAP Detection Enable register BIT[2] • "1" = Cap Detection disabled • "0" = Cap Detection enabled	1160 Bit[2]	1= Disabled	16	R/W
Software Configuration register	Software Configuration & Change Mode Protection register Bits [2:0] = SW Configuration Key • 000: Stand alone master \ slave • 001: Macro mode slave • 010: Manual mode • 011: Config. mode Bits [7:3] = Spare = Not Used Bits [15:8] = Special Change Mode Key Verification key for the mode change → Only if 0xDC enable mode changes	139E	16'h0003	16	R/W
I2C Communication External Sync register	This register defines the type of external sync event expected by I2C communication • 0x01: Detection Sync • 0x02: Startup Sync • 0x04: Update PB Sync • 0x08: Read Indications Sync • 0x10: Macro Sync • 0x20: Mode Sync • 0x20: Mode Sync • 0x40: Interrupt Out Sync • 0x80: Read PM Indications Sync 0x100: Masters Sync (for Host use)	1318	16'h0000	16	R/W

Register Name	Register Description	Address (HEX)	Default Value	Register Width (BITS)	Read/ Write
External Event: Interrupt register for SYNC	This register defines the type of external sync, Interrupt Request Signal event expected by I2C communication • 0x01: Detection Sync • 0x02: Startup Sync • 0x04: Update PB Sync • 0x08: Read Indications Sync • 0x10: Macro Sync • 0x20: Mode Sync • 0x40: Interrupt Out Sync • 0x80: Read PM Indications Sync • 0x100: Masters Sync (for host use)	1144	16'h0000	16	R/W

4. Ports Initialization / Configuration Registers (Port Setting)

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write					
	Set / Updates Icut Value – According to Class Level									
ICUT mode – sys Flag	 Set I_{cut} level according to CLASS "0": Set I_{cut} according to CLASS "1": Set I_{cut} to maximum value according to power allocation limits (for more information see address registers 1334 to 134A) 	1160 Bit[4]	1 = I _{cut} MAX	1	R/W					
	Per Port Configuration	on								
Per Port Configuration: (12 registers) Port0_CR Port11_CR	BITS [0;1] = Port Enable "00": Port Disable "01": Port Enable "10": Force Power "11": Reserved (future use) BITS [2;3] = Port Pair Control "00": Reserved (future use) "01": ALT A "10": ALT B (back off enable) "11": Reserved (future use) BITS [4;5] = AF/AT Port type "00": AF "00": AF "01": AT "10": Reserved (future use) "11": Reserved (future use) BITS [6;7] = Port Priority "00": Critical = Highest priority level "11": Reserved (future Use)	131A 131C 131E 1320 1322 1324 1326 1328 132A 132C 132E 1330	DFLT= 01-EN 01-ALTA 01-AT 00-Critical	16	R/W					

5. System Status / Monitoring

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write		
V _{main} Voltage Measurement Register							
V _{main}	V _{main} voltage measurement register						
	1 LSB Bit =61 mV Range = 0 to 1023 = 0 to 62 V	105c	10'h0	10	Read		
Hardware Configuration & Mode Register							

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write
System INIT register	Internal Register: Latched from ASIC_INI and I2C_INI I/Os after Power Up Bits[0;3] = ASIC_INI Value Bits[4;7] = I2C_INI Value Bits[8;15] = Version Register Value	1164	16'h0	16	Read
	Averaged Junction Tempera	ture Level			
Averaged Junction Temperature	Averaged Junction Temperature, as constantly calculated and monitored by two temperature sensors, located on PD69012 Die. Typical accuracy is \pm -5° C Temperature formula = Deg C = (reg_value: 684) / (-1.514)) - 40 (1 LSB = ~0.66C)	130A	10'h0	10	Read
	Device Version Control R	egister	T		
CFGC_ICVER	IC HW & SW version; it is an internal / read only register. This register identifies chip type and internal analog, digital code, and ROM versions, based on the following coding: BITS [15-11]: Microsemi PoE Family Indication (5 MSB bits): • 5'b00010 = PD64004 • 5'b00110 = PD64012 • 5'b00111 = PD69012 (default) • 5'b01000 = PD69004 BITS [10-8]: Analog version (3 bits) = 1 dec BITS [7-5]- Digital version (3 bits) = 1 dec BITS [4-0]: SW ROM version (5 LSB bits) = 2 dec System Total Power Monitoring (Rea	031A	16'b001 11,001, 001,00 010	16	Read

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write
SysTotalRealPowerC ons	Total power consumption of the whole system (Master + 7 Slaves)	12E8	16'h0	16	Read
	1 LSB = 0.1 Watt				
	Power consumption monitoring – as read from Master IC.	12EC 12EE			
TotalPowerConsSlav e0 to Slave7	16 bits register Per IC From Slave 0, address 12EC (Master), to Slave 7 – Add 12FA	12F0 12F2 12F4 12F6	16'h0	16	Read
	1 LSB = 0.1W	12F8 12FA			
	Local Total Power Level (Read	from Slave	IC)		
	Power consumption monitoring, as read from Slave IC.				
LocalTotalRealPower Cons	Real total power consumption ∑(PortXPowerCons)	12AA	16'h000 0	16	Read
	1 LSB = 0.1W				
	Bit [0]: V _{main} is above upper threshold				
	Bit[1]: Junction temperature is above threshold (150° C)				
Additional IC Status	Bit [2]: Disable ports I/O is active				
Indications	Bit [3]: V _{main} is below AT low threshold	1314	16'h00	16	Read
	Bit [4]: V _{main} is below AF low threshold				
	Bit [5]: The temperature is above alarm threshold				

6. Port Status Monitoring

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write
	Port Classification Results	Status		-	
Port0_class Port1_class	Port CLASS Status Monitoring: [3:0]: First finger result [7:4]: Second finger result [15:8]: Final detected class • 000: Class 0 • 001: Class 1 • 010: Class 1 • 010: Class 2 • 011: Class 3 • 100: Class 4 • 101: Reserved • 110: Reserved • 111: Class not defined	11C2 11C4 11C6 11C8 11CA 11CC 11CE 11D0 11D2 11D4 11D6 11D8	7'h7	16	Read
	Port Power Consumption	Value			
Port0PowerCons Port11PowerCons	Real Time (actual) port power consumption. Calculated based on I _{port} * V _{port} 12 registers per IC: Port 0 to Port 11 LSB = 0.1W	12B4 12B6 12B8 12BA 12BC 12BE 12C0 12C2 12C4 12C6 12C8 12CA	16'h0	16	Read
	AC Disconnect Status Re	gister	T		-
Port Disconnection Status	See port status registers address 11AA – 11C0				Read
	Port Power Status Due to DC I	Disconnect	T		
	See port status registers Address 11AA – 11C0				
	Port Overload Statu	S	T	1	·
Port Overload Status	See port status registers Address 11AA – 11C0				
F	Port Off Due to Disable_Ports pin or V	<mark>main Out o</mark>	f Range		
Port Off due to Disable	See port status registers Address 11AA – 11C0				

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write
	OVL During Startup)			
Over Load during Startup	See port status registers addresses 11AA – 11C0				
	Port Start up Stage is Con	npleted			
Start Up Completed	See port status registers addresses 11AA – 11C0				
	Port Over Power Consumptie	on Status			
Port Over Power	See port status registers addresses 11AA – 11C0				
	Read Port Status Regis	ster	-		-
Port Status [0-7] Port Status [8-10] Port Status [11]	 Port status indication is based on real-time snapshot of port status. Status Indication Coding Bits are NOT latched and may be changed to reflect real-time (True) port status at Read Operation time slot. The indication is based on two fields: Bits [7-0]: Coded into 21 different status indications as listed below: Decimal Value = 0 (zero): Port is on; Port was turned on due to a valid signature (res or cap) Decimal Value = 1: Port is On; Port was turned on due to Force Power command Decimal Value 2: Port is in Starting Up stage Decimal Value 3: Port is powered up due to Force Power command Decimal Value 4: Searching; Port is waiting for detection, or during detection phase Decimal Value 5: Invalid Signature; Invalid signature (detection) has been detected Decimal Value 6: Class Error; Error in classification has been detected 	11AA 11AC 11AE 11B0 11B2 11B4 11B6 11B8 11BA 11BC 11BE 11C0	16'h00	16	Read

Auto Mode PD690xx Registers Map

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write
	Decimal Value 7: Test Mode; Port is waiting to be turned on in Test Mode Force Power				
	Decimal Value 8: Valid Signature; A valid signature has been detected (Detection Pass)				
	Decimal Value 9: Disabled; Port is disabled				
	Decimal Value 10: Startup OVL; Over-load during startup				
	Decimal Value 11: Startup UDL; Under-load during startup				
	Decimal Value 12: Startup Short; Short during startup				
	Decimal Value 13: DvDtFail; Failure in the Dv/Dt algorithm				
	Decimal Value 14: Test Error; Port was turned on as Test Mode (Force Power) and has error				
	Decimal Value 15: OVL; Overload detected				
	Decimal Value 16: UDL; Under-load detected				
	Decimal Value 17: Short Circuit; Short circuit detected				
	Decimal Value 18: PM; Port was turned off due to Power Management Mechanism				
	Decimal Value 19: System Disabled; Chip level error				
	Decimal Value 20: Unknown; General chip error				
	Bits [10-8]: Additional 3 bits coding for 8 additional status indications				
	BITS [8-10] Coding:				

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write
	 000: Disabled 001: Searching 010: Delivering Power 011: Test Mode 100: Test Error 101: Implementation Specific* 110: Reserved 111: Reserved BIT[11]: 0: Port in AF Mode after Class 1: Port in AT Mode after Class 				

7. Port Commands

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write				
Port Bypass Resistor (Res) Detection									
	No Bypass or Disable Res Detection function in Auto mode								
Port Bypass Classification									
	No Bypass or Disable Classification function in Auto mode								
	Port Enable Contro	bl							
Port Disable/Enable – Fast Port Off in 1 register	One single register to disable ports (bit per port) 0: Port Enable 1: Port Disable	1332	16'h0	16	R/W				
	Turns off Main Switching FET (Port OFF)								
Port0_CR Port11_CR	Per Port Control register: Bits [0;1] 00: Port Disabled 01: Port Enabled 10: Force Power 11: Reserved	131A 131C 131E 1320 1322 1324 1326 1328 132A 132C 132E 1330	2'h01 Enable	2	R/W				
	Port Test Mode Force ON Com	mand (even	t)						
Port0_CR Port11_CR	Per Port Control register – Bits [0 ;1] • 00: Port Disabled • 01: Port Enabled • 10: Force Power • 11: Reserved	131A 131C 131E 1320 1322 1324 1326 1328 132A 132C 132E 1330	2'h01 Enable	2	R/W				

8. Interrupt Registers

Port Interrupt Out register	Interrupt Register This 12 bits register has a bit per port indication corresponding to the port that had an interrupt out event. BIT [011] = Ports 0 to 11 This bit switches LSD I/O between LED stream data functionality output and interrupt (INT) functionality output (enabling the INTERRUPT OUT I/O at the LSD pin)	13A6	12'd000	12	RO
Port Interrupt Out register	port indication corresponding to the port that had an interrupt out event. BIT [011] = Ports 0 to 11 This bit switches LSD I/O between LED stream data functionality output and interrupt (INT) functionality output (enabling the INTERRUPT OUT		12'd000	12	RO
	LED stream data functionality output and interrupt (INT) functionality output (enabling the INTERRUPT OUT				
Interrupt I/O Enable	BIT [5] "1" = LED Stream Data (LSD) Out "0" = INT Out	1160 BIT 5	1 = Disable	16	R/W
	Each bit in this INT MASK register refers to a specific event MASKED or ENABLED to be latched in INT register. "1" = Event enabled (not masked) "0" = Masked The events are: [0] Port Power Up [1] Port Power Down [2] Detection Fail [3] OVL or Short [4] UDL or Disconnect [5] OVL During Start [6] Port Off due to PM [7] Port Off at Start Up [8] Over Temperature [9] Temperature Alarm [10] V _{main} < AF limit [11] V _{main} < AT limit [12] V _{main} > Lim [13] Reserved Event	13A4	16'd000	16	R/W
	Power Up – Interrupt E	vent			

Register Name	Register Description	Address (HEX)	Default Value	Register Width	Read/ Write
Port Power Up	Per Port Power Up event. Logic "1" indicates that the specific port was switched on (including force power command) • [0] Port #1 • [1] Port #2 • [2] Port #3 • [3] Port #4 Formula: • "1" = Event was detected • "0" = Event was not detected or was cleared	01AE	4'd0	4	RO
	Interrupt – Clear On Read C	ommand	•		
Port Power Up - Clear On Read register	Read Operation of this register clears up specific bit in associated interrupt register. Logic "1": clears specific bit. • [0] Port #1 • [1] Port #2 • [2] Port #3 • [3] Port #4 Formula: "1" = Clears event operation "0" = Does not clear operation	01AF	4'd0	4	RO

9. PD690xx Detailed Registers List and Description

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
Port [0 to 11] Current Sense register (I _{sense})	Per Port Current Consumption (I _{sense}) Level Port 0 = Address 1044 Port 1 = Address 1046 Port 11 = Address 105 A I _{sense} level is the port real time current monitoring (value) as measured on the external Sense Resistor (Sense pin). Register can range from 0 to 1.25A Register Resolution = 305µA per LSB I _{sense} value is automatically averaged and updated every ~1ms Reset value = 0 Typical accuracy of this Current Monitoring register is ±5%	1044 1046 1048 104A 104C 104E 1050 1052 1044 1056 1058 105A	0	[11:0]	RO
V _{main} Measurement register	Main Power Supply: Voltage Measurement register V _{main} voltage is measured on V _{main} pin Register can range from 0 to ~63V Register Resolution = 61mV per LSB V _{main} value is automatically averaged and updated every ~20 ms Reset value = 0 Typical accuracy is ±3%	105C	0	[9:0]	RO
l ² C External Sync Control register	IC Interrupt Signal (pin) is driven by an internal Interrupt register. This register is doubled buffered . This prevents skipping (missing) any internal event while busy with the Interrupt Handling Routine. For Host to update the Interrupt register, Microsemi recommends using the following routine: 1. Set Register 1318 to the desired (expected)	1318	0	[15:0]	R/W

				REGIST	
REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	ER WIDTH (BITS)	READ/ WRITE
	Sync Type (see below). 2. Perform Write Command to Register 1144 (which updates the actual Double Register).				
	This register defines the type of external sync Interrupt Request Signal event expected by I ² C communication				
	 0x01: Detection Sync 0x02: Startup Sync 0x04: Update PB Sync 0x08: Read Indications Sync 0x10: Macro Sync 0x20: Mode Sync 0x40: Interrupt Out Sync 0x80: Read PM Indications Sync 				
	0x100: Masters Sync (for Host use)				
Update Interrupt Event register	Write to this register. The access operation itself to this register (address 1144) creates an internal SYNC signal which activates (updates) External Sync Type – address 1318)	1144	0	[15:0]	wo
System Configuration and Control	 Bit 0 = DC Disconnect Enable 0: AC Disconnect mode (all ports) 1: DC Disconnect mode (all ports) Bit 1 = Internal Use (should be set to 0) Bit 2 = Legacy PD Detection Mode (Capacitor Det) 0: Legacy PD Detection Enable 1: Legacy PD Detection Disable Bit 3 = Internal Use (should be set to 0) Bit 4 = Set I_{cut} Level 0: Set I_{cut} Current Level according to Power Management and Power Budget algorithm 1: Set I_{cut} Current Level to Maximum Level according to AF and AT modes Bit 5 = Internal Use (should be set to 0) 	1160	0	[14:0]	R/W

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
	total power is calculated according to port power consumption (in real time)				
	Bit 7 = Internal Use (should be set to 0) Bit 8 = Internal Use (should be set to 0)				
	 Bit 9 = V_{main} Under Voltage Protection in AT mode 0: AT Ports are not disconnected when V_{main} is under 51V (not protected) 1: AT Ports are disconnected when V_{main} drops below 51V 				
	Bit 10 = Detection of class 0 indicates AF operation mode.0: If Class 0 is detected, port is				
	 configured as AT 1: If Class 0 is detected, port is configured as AF 				
	Bit 11 = This bit interprets classes 1, 2 and 3 configuration:				
	 0: Classes 1, 2 or 3 are considered AT 1: Classes 1, 2 or 3 are considered AF 				
	Bit 12 = Internal Use (should be set to 0) Bit 13 = Internal Use (should be set to 0) Bit 14 = Internal Use (should be set to 0)				
	This register can be used to monitor and debug IC Internal CPU Core or internal RAM or EEPROM.				
	When IC is powered-up, internal CPU Core is initialized through the following boot sequence. Boot sequence is based on 10 different phases (each phase duration is ~100µs) Bit 9 in used for Boot Sequence Completion indication.				
Software Boot	Real Time Boot State Bits [7 to 0]:				
State Monitoring	Dec. value 1: Verified ASIC_INI read	1168	0	[14:0]	RO
	Dec. value 2: Verified I2C_INI read				
	Dec. value 3: Master configured on enhanced chip				
	Dec. value 4: Waiting for enhanced mode verification key				
	Dec. value 5: ASIC_INI configured manual mode				
	Dec. value 6: EEPROM Read				
	Dec. value 7: Master held by disable ports				

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
	line				
	Dec. value 8: Slave in initial config. mode				
	Dec. value 9: Boot done				
	Internal CPU Core Register Monitoring, indicating last SW error Bits [13 to 8] 00000: No SW error since last reset				
	00001: Empty memory space				
	00010: Illegal bus access				
	00100: Write in ROM space				
	01000: Instruction fetch in register space				
	Valid EEPROM Indication: Bit [14]				
	"0" – No EEPROM found or Invalid data				
	"1" – Valid EEPROM found and data updated successfully				
Startup Completed Voltage Threshold	Voltage threshold for early startup completion phase. If V_{port} reaches a specific threshold, then Startup phase is completed. Port proceeds to Ongoing state, releasing current limit from AF lim to AT lim while activating real time protections mechanisms (Overload, Disconnect, Power Management, etc) Threshold voltage is useful for High Power PD's that need to release Higher Current Limit as fast as possible, without waiting 70ms as defined in standard. Threshold is calculated by: [$V_{main} + 1.2V$ - register value x 59.3mV] For example, if $V_{main} = 48V$ and this register is set to dec. value 100, threshold level will be 48 + 1.2 - 5.9 = 43.3V Note that DFLT value is 0. Hence by default this Early Start Up Completion is not activated. Start Up phase will be completed only ~65ms after Port Power Up command. Register Range = 0 to 60V LSB = 59.3mV	11A8	0	[9:0]	R/W
Port [0 to 11] Status	Internal Status Bits [7 to 0]: Note that these 8 bits are not latched (non-sticky). Value of this 8 bit field is updated momentarily (real-time) by internal logic. Therefore it does not	11AA 11AC 11AE	9 [disable]	[11:0]	RO

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
Port 0 = 11AA Port 11 = 11C0	 necessarily reflect Port Status when actual read command is performed. For a better Port Status Visibility, it is recommended to use bits [10 to 8] which are more stable/practical. 0 (dec) = Port On. Port was turned on due to a valid signature (res or cap) 1 (dec) = Force On Port. Port was turned on due to Force Power 2 (dec) = Startup. Port is starting up 3 (dec) = Force Power StartupTM. Port is starting up by force power 4 (dec) = Searching Phase. Port is waiting for detection or during detection phase 5 (dec) = Invalid Signature. Invalid signature has been detected 6 (dec) = Class Error. Error in classification has been detected (For example: Class Finger 1 is different than Finger 2) 7 (dec) = Test mode. Port turned on in Test mode – Force Power 8 (dec) = Valid Signature. A valid signature has been detected 9 (dec) = Disabled. Port is disabled 10 (dec) = StartupOVL. Overload during startup 11 (dec) = StartupShort: Short during startup 12 (dec) = Test Error. Port was turned on in Test mode and has an error 15 (dec) = OVL. Overload detected 16 (dec) = UDL. Under-load detected 16 (dec) = StartupShort: Short during startup 12 (dec) = StartupShort: Short during startup 13 (dec) = Port Start Up Fail. Failure in Start Up (dv/dt) algorithm 14 (dec) = Test Error. Port was turned on in Test mode and has an error 15 (dec) = OVL. Overload detected 16 (dec) = UDL. Under-load detected 16 (dec) = Short Circuit. Short circuit detected 18 (dec) = Power Management Off – port was turned off due to Power Management 19 (dec) = Sys. Disabled. Chip level error (over voltage or over temp.) 20 (dec) = Unknown. General chip error 	11B0 11B2 11B4 11B6 11B8 11BC 11BE 11C0			

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH	READ/ WRITE
	Status Change by internal logic. These 3 bits better reflect Port Status when actual read command is performed. • 000: Port Is Disabled (Port Off) • 001: Port is Searching for PD Detection • 010: Port is Delivering Power (Port On) • 011: Port is in Test mode • 100: Reserved • 101: Reserved • 111: Reserved • 111: Reserved • 011: Port is an AF or an AT • 0: port is detected as AF			(BITS)	
Port [0 to 11] Class Status Port 0 = 11C2 Port 11 = 11D8	 1: port is detected as AT First Finger Class Results: Bits [3 to 0] Second Finger Class Results: Bits [7 to 4] Final Class Results: Bits [15 to 8] 000: Class 0 001: Class 1 010: Class 2 011: Class 3 100: Class 4 101: Class Error (>50mA) or Finger 1 different than Finger 2 110: Reserved 111: Class is not Defined 	11C2 11C4 11C6 11C8 11CA 11CC 11CC 11CE 11D0 11D2 11D4 11D6 11D8	7 (dec)	[15:0]	RO
Per Port Class Status register	Bit Per port: Overall result for classification Bit 0 = Port 0 Bit 1 = Port 1 Bit 11 = Port 11 0: class is completed okay 1: class fail	11DA	0	[11:0]	RO
Port Last Disconnection Event Port 0 = 11DC	 Reason for last port disconnection 9 (dec) = Port was disabled 10 (dec) = Port was overloaded during startup 11 (dec) = Port was under-loaded during startup 12 (dec) = Port was shorted during 	11DC 11DE 11E0 11E2 11E4 11E6 11E8 11EA	0	[7:0]	RO

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
Port 11 = 11F2	 startup 13 (dec) = A port failure in startup algorithm 14 (dec) = Port was turned on as Test, Mode and has an error 15 (dec) = Overload detected 16 (dec) = Under-load detected 17 (dec) = Short circuit detected 18 (dec) = Port was turned off due to Power Manager 19 (dec) = Chip level error 20 (dec) = General chip error 	11EC 11EE 11F0 11F2			
Port Counter for Invalid Detection Events Port 0 = 11F4 Port 11 = 120A	Per Port 8 Bit Counter: Counts the number of Invalid Detection Events (Wrong Signature) from IC's last power up This Counter is cyclic: When it is full (FF) it goes back to 0 and restarts counting.	11F4 11F6 11F8 11FA 11FC 11FE 1200 1202 1204 1206 1208 1208 120A	0	[7:0]	RO
Port Counter for Power Denied Events Port 0 = 120C Port 11 = 1222	Per Port 8 Bit Counter. Counts the number of Power Denied Events (Due To Power Management) from IC last power up. When counter is full (FF) it goes back to 0 and restarts counting.	120C 120E 1210 1212 1214 1216 1218 121A 121C 121E 1220 1222	0	[7:0]	RO
Port Counter for Over Load Events Port 0 = 1224 Port 11 = 123A	Per Port 8 Bit Counter. Counts the number of Overload Events from IC last power up. When counter is full (FF) it goes back to 0 and restarts counting.	1224 1226 1228 122A 122C 122E 1230 1232 1234 1236 1238 123A	0	[7:0]	RO

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
Port Counter for Under Load Events Port 0 = 123C Port 11 = 1252	Per Port 8 Bit Counter. Counts the number of Under-Load Events from IC last power up. When counter is full (FF) it goes back to 0 and restarts counting.	123C 123E 1240 1242 1244 1246 1248 124A 124C 124E 1250 1252	0	[7:0]	RO
Port Counter for Short Events Port 0 = 1254 Port 11 = 126A	Per Port 8 Bit Counter. Counts the number of Short Events from IC last power up. When counter is full (FF) it goes back to 0 and restarts counting.	1254 1246 1258 125A 125C 125E 1260 1262 1264 1266 1268 1268 126A	0	[7:0]	RO
Port Counter for Class Error Events Port 0 = 126C Port 11 = 1282	Per Port 8 Bit Counter. Counts the number of Class Error Events from IC last Power Up. When counter is full (FF) it goes back to 0 and restarts counting.	126C 126E 1270 1272 1274 1276 1278 127A 127C 127E 1280 1282	0	[7:0]	RO
Per Port Status Indication Port 0 = 1284 Port 11 = 129A	Per Port Status Indication Sticky Bits with Double Buffer Original bits are cleared on read To read this register → users need to perform Indication Sync: 1. Write to 1364 – Port Select 2. Perform Sync Read Indication (Type) 1318 3. Write to 1144 Bit 0 = Under Load (Disconnect) detected • 0: No under-load detected • 1: Under-load detected	1284 129A	0	[8:0]	RO

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
	Bit 1 = Overload detected0: No overload detected1: Overload detected				
	Bit 2 = Short Detected • 0: No short detected • 1: Short detected				
	 Bit 3 = invalid PD Resistor Signature detected 0: No Invalid signature detected 1: Invalid signature detected 				
	 Bit 4 = Valid PD Resistor Signature detected 0: No Valid PD signature detected 1: Valid PD signature detected 				
	 Bit 5 = Power Was Denied 0: Power has not been denied 1: Power has been denied 				
	 Bit 6 = Valid Capacitor signature detected 0: No Valid Capacitor detected 1: Valid capacitor detected 				
	 Bit 7 = Back off state has occurred 0: No Back off was made 1: Back off was done 				
	 Bit 8 = Class Error has occurred 0: No class error detected 1: Class error detected 				
	Bit per port: Indicates a power management event				
	Bit 0 = Port 0				
Ports Power Management	Bit 11 = Port 11	129C	0	[11:0]	RO
Indication	 0: Port is not marked to be a candidate for power management disconnection in case of missing budget 1: Port is marked to be a candidate for power management disconnection in case of a missing budget 	1230	5	[11.0]	

				REGIST	
REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX) DEFAULT VALUE (HEX)		ER WIDTH (BITS)	READ/ WRITE
Port Real Time (Actual) Power Consumption Port 0 = 12B4 Port 11 = 12CA	Port power consumption (Actual Real Time Power Consumption) Port Power is calculated based on: I _{port} x V _{port} LSB = 0.1W Range = 0 to FF For example: Register Decimal Value = 100 = 10W	12B4		[15:0]	RO
ChipTotalCurre ntCons	IC total port current (summary of all 12 ports); based on port actual current (load) LSB = 4.88mA For example: Register Value = AA (hex) = 170 (dec) = 0.8 amp	12D2 0 [1		[15:0]	RO
Total System Calculated Power Consumption	Sum of the whole system calculated power consumption (including all IC's, masters and slaves, that are currently connected to this master IC) This calculated power consumption is based on Port Requested Power by Class and AF/AT mode Note that this register should be read from master only. Before reading this register it is recommended to update its content by writing "1" to register address 139C LSB = 0.1W Range = 0 to FF For example: Register Decimal Value = 500 = 50W	12E2	0	[15:0]	RO
Total System Real Time / Actual Power Consumption	Sum of whole system real time power consumption Power consumption is based on All Active Ports Power Consumption Note that this register should be read from master only. Before reading this register it is recommended to update its content by writing "1" to register address 139C LSB = 0.1W Range = 0 to FF For example: Register Decimal Value = 500 = 50W	12E8 0		[15:0]	RO

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
Active Slave List Register	 First 8 LSBits [7 to 0] represent a bit per Active Slave IC Bit 0 = Slave 0 Bit 7 = Slave 7 1 = Slave IC is active 0 = Slave IC is not active Note that this register should be read from master IC only. Before reading this register it is recommended to update its content by writing "1" to register address 139C Other 8 MSBits [15 to 8] represent a bit per detected slave IC on power up Bit 8 = slave 0 Bit 15 = Slave 7 1 = Slave IC was detected on Power Up 0 = Slave IC was not detected 	12EA	0	[15:0]	RO
Total (Actual) Power Consumption Per Slave IC Slave 0 = 12EC Slave 7 = 12FA	Total real time / actual power consumption of slave 0 (master) Note that this register should be read from master only. Before reading this register it is recommended to update its content by writing "1" to register address 139C LSB = 0.1W Range = 0 to FF For example: Register Decimal Value = 100 = 10W	12EC - 0 - 12FA		[15:0]	RO

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
	Maximum V _{main} Threshold Above this level all ports are disconnected to protect PD from overvoltage This policy is always activated.				
V _{main} High (MAX) Threshold	LSB = 61mV Range = 0 to 62V	12FE	3BC	[9:0]	R/W
	For example: Register DFLT Value = 3BC (hex) = 956 (dec) = 58V				
	Minimum V _{main} threshold for AT mode. Below this level "AT" ports are disconnected to comply with AT standard.			[9:0]	
AT mode V _{main} Low (MIN)		1300	313		R/W
Threshold	LSB = 61mV Range = 0 to 62V	=			
	For example: Register DFLT Value = 313 (hex) = 787 (dec) = 48V				
	Minimum V _{main} Threshold for AF Mode. Below this level "AF" ports are disconnected to comply with AF standard.		2B0		
AF mode V _{main} High (MAX) Threshold	This policy is always activated. Range = 0 to 62V	1302		[9:0]	R/W
meshoù	For example: Register DFLT Value = 2B0 (hex) = 688 (dec) = 42V				
	Junction average temperature, based on two temperature sensors located on Die.				
Junction Averaged	Temperature (deg C) = ((reg_value: 684) / (-1.514)): 40	130A	0	[9:0]	RO
Temperature	Range = ~-200°C to ~400°C				
	For example: Register value = 500 (dec) = 82°C				

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
Junction Max. Temperature Threshold for Ports Disconnect	Junction maximum temperature for ports operation. Above this value ports are disconnected to protect IC from temperature damage. For example: Register DFLT Value = 184 (hex) = 155°C	130C	184	[9:0]	R/W
Junction Max. Temperature Threshold for Alarm	Junction maximum temperature for activating temperature alarm. Above this value temperature alarm is activated to protect IC (see address 1314 bit 5). For example: Register DFLT Value = 184 (hex) = 155°C	130E	184	[9:0]	R/W
Junction Max. Temperature Capture	Junction maximum temperature captured and latched. This register is reset on power up or reset	1312	3FF	[9:0]	RO
General System Errors Flags register	Bit 0 = V_{main} is over the upper threshold Bit 1 = Temperature is over threshold Bit 2 = Disable ports pin is active Bit 3 = V_{main} is under AF low threshold Bit 4 = V_{main} is under AT low threshold Bit 5 = Temperature is over alarm threshold	1314	0	[5:0]	RO

Company Confidential

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
Port Configuration register Port 0 = 131A Port 11 = 1330	Bits [1:0] = Port Enable Status • 00: Port Disabled • 01: Port Enabled (DFLT) • 10: Force Power • 11: Reserved Bits [3:2] = Port Pair Control 00: Reserved • 01: Alternative A (DFLT) • 10: Alternative B (Back-off Enable) • 11: Reserved Bits [5:4] = Port Type Definition • 00: AF mode enable • 01: AT mode enable (DFLT) • 10: Reserved • 11: Reserved Bits [7:6] = Port Priority Level • 00: Critical – Highest Priority (DFLT) • 01: High • 10: Low • 11: Reserved	131A 1330	21 (dec)	[7:0]	R/W
Port Enable / Disable register	Bit Per Port: External disable port command Bit 0 = Port 0 Bit 11 = Port 11 • 0: Port enabled • 1: Port disabled	1332	0	[11:0]	R/W

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX) DEFAULT VALUE (HEX)		REGIST ER WIDTH (BITS)	READ/ WRITE
Port Power Allocation Limit register Port 0 = 1334 Port 11 = 134A	Port Power Allocation Limit (PPL) for Power Management Mechanism. These registers' values are set automatically (write) by the Power Management Mechanism, according to a predefined algorithm. This algorithm monitors and distributes power for each port based on system power budget, port priority, port status, and port class. When power budget is limited, a port that exceeds this power level is disconnected due to power management. In Auto mode, content of these registers is set periodically by master (every ~20ms). Therefore it is not practical to set (write) a different value by an external CPU. LSB = 0.1W Default Value = 140 (hex) = 320 (dec) = 32W	1334 134A	140	[15:0]	R/W
Port Power Allocation Limit register For Layer 2 Support Port 0 = 134C Port 11 = 1362	Port Power Allocation Limit Register for Layer 2 Classification Support (TPPL). These registers can be used for setting (writing) by an external CPU (Host), to set port power allocation for Power Management Mechanism. When these registers are manually set by an external CPU/Host (usually after port is powered up), Power Management will use its value for Port Power control. When power budget is limited, a port that exceeds this power level might be disconnected due to power management LSB = 0.1W Default Value = 0W	134C 1362	0		R/W
Port Indication Clear	Port number to be cleared using an indications clear sync event n 0000 = Port 0 is selected to clear 0001 = Port 1 is selected 1011 = Port 11 is selected [3:0]		[3:0]	R/W	

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
Total System Power Budget for Emergency Bank 0	System power budget for state 000 of Power Good lines LSB = 0.1W Default = 36W x 96 = 3456W	138C	8700	[15:0]	R/W
Total System Power Budget for Emergency Bank 1	System power budget for state 001 of Power Good lines LSB = 0.1W Default: 36W x 12 = 432W	138E	10E0	[15:0]	R/W
Total System Power Budget for Emergency Bank 2	System power budget for state 010 of Power Good lines LSB = 0.1W Default: 36W x 8 = 300W	1390	BB8	[15:0]	R/W
Total System Power Budget for Emergency Bank 3	System power budget for state 011 of Power Good lines LSB = 0.1W Default: 36W x 6 = 220W	1392	898	[15:0]	R/W
Total System Power Budget for Emergency Bank 4	System power budget for state 100 of Power Good lines LSB = 0.1W Default: 200W	1394	7D0	[15:0]	R/W
Total System Power Budget for Emergency Bank 5	System power budget for state 101 of Power Good lines LSB = 0.1W Default: 150W	1396	5DC	[15:0]	R/W
Total System Power Budget for Emergency Bank 6	System power budget for state 110 of Power Good lines LSB = 0.1W Default: 15.4W x 8 = 120W	1398	4B0	[15:0]	R/W
Total System Power Budget for Emergency Bank 7	System power budget for state 111 of Power Good lines LSB = 0.1W Default: 15.4W x 6 = 100W	139A	3E8	[15:0]	R/W

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX) DEFAULT VALUE (HEX)		REGIST ER WIDTH (BITS)	READ/ WRITE
Monitoring Power Good Input Pins (0:2)	Read Power Good Input Pins Logic State (PG0 to PG2) This register monitors IC Active Power Budget (Real-Time State), from Budget 0 to 7 (see Master Configuration for SysPowerBudget07 Register) Bit 0 = PG0 Bit 1 = PG1 Bit 2 = PG2 "1" = Power Good Active "0" = Power Good Not Active	300	0	[2:0]	RO
Updated Power Management Parameters	 Parameters update request and indication 0: Parameters were updated 1: Waiting for parameters update 	139C	0	[0]	R/W
General User register	General user define byte: This register is used for detecting reset events by Host or by local CPU. User can program (write) into this register any value (different than 0). Upon Reset Event: This register returns to its DFLT value (0)	13A0	0	[7:0]	R/W
Interrupt Mask register	Interrupt Mask register. Bit Per Event, Indicating an event was captured at one (or more) ports. 0 = Event is masked (disabled) 1 = Event is enabled To trace the specific port location in which the event was traced, go to address 13A6 Bit 0 = port turned on Bit 1 = port turned off Bit 2 = detection failed Bit 3 = OVL or SC Bit 4 = Under-load Detected Bit 5 = OVL or SC during startup or dv/dt fail Bit 6 = port turned off due to PM Bit 7 = port power denied at startup Bit 8 = over temp. Bit 9 = temp. alarm Bit 10 = V _{main} low AF Bit 11 = V _{main} low AT Bit 12 = V _{main} high Bit 13 = Reserved	13A4	0	[13:0]	R/W

REGISTER NAME	REGISTER DESCRIPTION	ADDRESS (HEX)	DEFAULT VALUE (HEX)	REGIST ER WIDTH (BITS)	READ/ WRITE
Interrupt Port Location register	Bit per port indication of the port that had an Interrupt Out event 0 = Event was not captured 1 = Event was captured in this port Bit 0 = Port 0 Bit 11 = Port 11	13A6	0	[11:0]	RO

10. Opening a Configuration Register for Write Operation

To protect the PoE system from incorrect configuration sequencing, some of PD69012 Configuration Registers (from address 0x1000 to 0x1314) are locked.

If you want to unlock these locked mechanisms, use the following sequence.

Note: Set PoE system configuration registers such as AT/AF Mode, Res. Detection / Legacy Detection Mode, I CUT Currents Levels, and others, only when system is initializing and ports are **OFF**.

To Unlock Mechanisms:

- 1. Disable all ports (via Disable pin or via Disable Port register).
- 2. Change mode to CONFIG mode (see instructions below).
- 3. Perform all necessary changes (Registers Set).
- 4. Return to normal operational Auto mode.
- 5. Enable PoE ports power.

To Enter CONFIG Mode:

- 1. DisPortsCmd reg (address 0x1332) → Write Data = 0x03FF
- or disable each port in Portx_CR register (address 0x131A to 0x1330) bits [1:0] → Write Data = 00
- 2. Change mode:
 - a. SW_ConfigReg (address 0x139E) → Write Data = 0xDC03
 - a. I2C_ExtSyncType (address 0x1318) → Write Data = 0x0020 (Mode Event Sync)
 - b. EXT_EV_IRQ (address 0x1144) → Write Data = 0x0020 (Mode Event IRQ Sync)
 - c. To ensure that this command was properly performed, users may read SW_ConfigReg register (go to address 0x139E) → Expected Read Data = 0x0003
- 3. Note that at this point RAM space (from address 0x1000 to the end) is open for Write operations. In this mode users can make changes to relevant registers
- 4. Upon write operation completion it is recommended to return to operational Auto mode:
 - a. SW_ConfigReg (address 0x139E) → Write Data = 0xDC00
 - b. I2C_ExtSyncType (address 0x1318) → Write Data = 0x0020
 - c. EXT_EV_IRQ (address 0x1144) → Write Data = 0x0020
 - d. To ensure this command was performed properly, read SW_ConfigReg register (address 0x139E) → Expected Data = 0x0000
- 5. Re-enable all PoE ports:

DisPortsCmd reg (address 0x1332) → Write Data = 0x0000, or enable each port in Portx_CR register (address 0x131A to 0x1330) bits [1:0] → Write Data = 01

Appendix A:

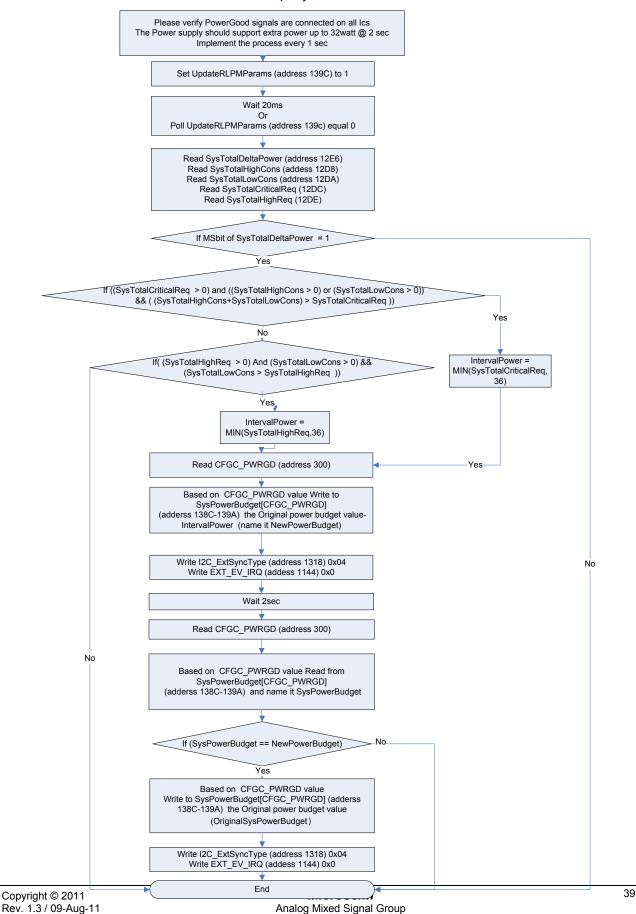
This appendix describes the flowchart implemented in Host to remove power from low priority port. This way high priority ports that were connected will be powered when power budget exceeds its max level.

The principal of the flowchart is as follows:

As a routine, the host checks if new ports with higher priority have been connected. If so, and existing power budget cannot support the new connected ports; the host increases the budget in 32 Watts.

Following, the new higher priority single port is powered. Then the host decreases the budget back to its original value, causing the lowest priority port to turn off.

For each high priority port that needs to be powered, the complete flowchart should be implemented once.


Important!

Power-supply must be able to provide extra 32 Watts above its maximum noted spec for time duration of 2 sec.

Register Name	Register Description	Address (HEX)	Default Value	Register Width (BITS)	Read/ Write
Updated Power Management Parameters	Parameters update request and indication 0: Parameters were updated 1: Waiting for parameters update 	139C	0	[0]	R/W
SysTotalDeltaPower	The power held by the system (Available power). LSB = 0.1W	12E6	0	[15:0]	
SysTotalHighCons	Calculated system power consumption of high priority ports. LSB = 0.1W	12D8	0	[15:0]	
SysTotalLowCons	Calculated system power consumption of low priority ports. LSB = 0.1W	12DA	0	[15:0]	
SysTotalCriticalReq	Total system power request for critical priority ports. LSB = 0.1W	12DC	0	[15:0]	
SysTotalHighReq	Total system power request for high priority ports. LSB = 0.1W	12DE	0	[15:0]	

2381 Morse Avenue, Irvine, CA 92614, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308

References code how to implement the flowchart:

```
protected System.Threading.Timer timerIgnoreHighPriority; // Tick every 1 second (call
IgnoreHighPriority function)
int byIgnorePriorityStep = 0;
ushort wOriginalSysPowerBudget dW = 0;
ushort MAX_POWER_PER_PORT_dW = 360;
private void IgnoreHighPriority(object[] objArgsArr)
{
   byte[] byaRxData = new byte[16];
  byte byActivePowerBank;
   short wSysTotalHighCons_dW;
  ushort wSysTotalLowCons dW;
   ushort wSysTotalCriticalReq_dW;
   ushort wSysTotalHighReq_dW;
  ushort wSysTotalDeltaPower Reg;
  bool bSysTotalDeltaPower PositiveSign;
   ushort wHighestPriorityRequest_dW = 0;
  ushort wSysTotalCalcPowerCons_dW;
  ushort wPowerAvilableForStartup_dW = 0;
   short wRequestPowerForStartup dW = 0;
   ushort wMinimumPowerToReduce_dW;
  ushort wPowerToReduce_dW;
  ushort wNewPowerBudget_dW = 0;
   switch (byIgnorePriorityStep)
   {
     case -1:
     {
        byIgnorePriorityStep = 0;
        break;
     }
     case 0:
     {
        /* sync command */
        SendWriteRegisterCommand("UpdateRLPMParams", chipData[0].Address,
                                 (int)PD690xxRegistersAddress.PM MASTER CFG.UpdateRLPMParams, 1,
                                 false);
        Thread.Sleep(20);
        //read registers
        int NumberOFBytesToRead = 16;
        poEPD690xxAutoModeEndPoint.SendReadCommand(ref tMsg, "GetPM parameters",
                                chipData[0].Address, (int)
                                PD690xxRegistersAddress.PM MASTER.SysTotalHighCons,
                                NumberOFBytesToRead, false);
        //extract registers data
        wSysTotalHighCons_dW = (ushort)AccessoriesPD690xx.extractData(tMsg.RxDataArr[0],
                                tMsg.RxDataArr[1]);
        wSysTotalLowCons_dW = (ushort)AccessoriesPD690xx.extractData(tMsg.RxDataArr[2],
                                tMsg.RxDataArr[3]);
        wSysTotalCriticalReq_dW = (ushort)AccessoriesPD690xx.extractData(tMsg.RxDataArr[4],
                                   tMsg.RxDataArr[5]);
         wSysTotalHighReq_dW = (ushort)AccessoriesPD690xx.extractData(tMsg.RxDataArr[6],
                                tMsg.RxDataArr[7]);
```



```
wSysTotalCalcPowerCons_dW = (ushort)AccessoriesPD690xx.extractData(tMsg.RxDataArr[10],
                          tMsg.RxDataArr[11]);
                          (ushort)AccessoriesPD690xx.extractData(tMsg.RxDataArr[14],
wSysTotalDeltaPower_Reg =
                          tMsg.RxDataArr[15]);
/*check whether register SysTotalDeltaPower is negative or positive(the MSb is a sign bit)*/
bSysTotalDeltaPower PositiveSign = ((wSysTotalDeltaPower Reg & 0x8000) == 0) ? true : false;
if (bSysTotalDeltaPower PositiveSign)
     return;
if ((wSysTotalCriticalReq dW > 0)&&((wSysTotalHighCons dW > 0)||(wSysTotalLowCons dW > 0)))
   wHighestPriorityRequest_dW = (ushort)Math.Min(wSysTotalCriticalReq_dW,
                                  wSysTotalHighCons_dW + wSysTotalLowCons_dW);
else if ((wSysTotalHighReq dW > 0) && (wSysTotalLowCons_dW > 0))
   wHighestPriorityRequest dW = Math.Min(wSysTotalHighReq dW, wSysTotalLowCons dW);
else
   return;
 // get selected active budget
 GetSelectedBank(0);
 byActivePowerBank = (byte)chipData[0].IcRegisters.CFGC.CFGC_PWRGD;
 /* Get selected active bank power budget and save it in usOriginalSysPowerBudget varible */
wOriginalSysPowerBudget_dW = SendReadRegisterCommand("GetSysTotalActivePowerBudget",
                               chipData[0].Address, (int)
                               PD690xxRegistersAddress.PM MASTER CFG.SysPowerBudget0 + (2 *
                               byActivePowerBank), false);
wPowerAvilableForStartup dW = (ushort)(wOriginalSysPowerBudget dW -
                               wSysTotalCalcPowerCons dW);
 if (wPowerAvilableForStartup_dW >= MAX_POWER_PER_PORT_dW)
     return:
wRequestPowerForStartup_dW = Math.Min(wHighestPriorityRequest_dW, MAX_POWER_PER_PORT_dW);
 if (wRequestPowerForStartup_dW < wPowerAvilableForStartup_dW)</pre>
     return;
 wMinimumPowerToReduce dW = (ushort)(wSysTotalCalcPowerCons dW * 0.125);
wPowerToReduce dW = Math.Max(wRequestPowerForStartup dW, wMinimumPowerToReduce dW);
 /* decrement wIntervalPower dW from the selected active bank power budget and save it in
     usNewPowerBudget varible */
wNewPowerBudget_dW = (ushort)(wSysTotalCalcPowerCons_dW - wPowerToReduce_dW);
 /* write the usNewPowerBudget to the selected active bank power */
SendWriteRegisterCommand("SetSingleBankPowerBudget",
                          Globals PD690xx AutoMode.BROADCAST I2C ADDRESS, (int)
                          PD690xxRegistersAddress.PM_MASTER_CFG.SysPowerBudget0 + (2 *
                          byActivePowerBank), wNewPowerBudget_dW, false);
 // sync commands
 SendWriteRegisterCommand("I2C_ExtSyncType", Globals_PD690xx_AutoMode.BROADCAST_I2C_ADDRESS,
                           (int) PD690xxRegistersAddress.I2C_EXT_SYNC.I2C_ExtSyncType, 4,
                          false);
```


}

```
SendWriteRegisterCommand("EXT_EV_IRQ", Globals_PD690xx_AutoMode.BROADCAST_I2C_ADDRESS,
                                 (int) PD690xxRegistersAddress.GNRL_RAM.EXT_EV_IRQ, 4, false);
       byIgnorePriorityStep = 1;
       /* remain power low for one second */
       break;
 }
 case 1:
 {
    // get selected active budget
    GetSelectedBank(0);
    byActivePowerBank =(byte) chipData[0].IcRegisters.CFGC.CFGC_PWRGD;
    // write the Original power budget to the selected active bank power
    SendWriteRegisterCommand("SetSingleBankPowerBudget",
                              Globals_PD690xx_AutoMode.BROADCAST_I2C_ADDRESS,
                              (int)PD690xxRegistersAddress.PM_MASTER_CFG.SysPowerBudget0 + (2 *
                              byActivePowerBank), wOriginalSysPowerBudget_dW, false);
     // sync commands
     SendWriteRegisterCommand("I2C_ExtSyncType", Globals_PD690xx_AutoMode.BROADCAST_I2C_ADDRESS,
                              (int)PD690xxRegistersAddress.I2C_EXT_SYNC.I2C_ExtSyncType, 4,
                              false);
     SendWriteRegisterCommand("EXT_EV_IRQ", Globals_PD690xx_AutoMode.BROADCAST_I2C_ADDRESS,
                              (int)PD690xxRegistersAddress.GNRL_RAM.EXT_EV_IRQ, 4, false);
     byIgnorePriorityStep = -1;
     break;
  }
}
```


The information contained in the document is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Revision History

Revision Level / Date	Para. Affected	Description
1.0 / 30-Aug-10	-	Initial Release – First Release for PD69xx
1.2 / 21-Apr-11		Wording and Proofing
1.3 / 9-Aug-11	·	Wording and Proofing
	4	

© 2011 Microsemi Corp.

All rights reserved.

For support contact: sales_AMSG@microsemi.com

Visit our web site at: www.microsemi.com

Cat. No. 06-0475-056