
Core1553 BRT
User Guide

core1553.book Page i Thursday, October 10, 2002 9:39 AM

For more information about Actel’s products, call 888-99-ACTEL
or visit our Web site at http://www.actel.com

Actel Corporation • 955 East Arques Avenue • Sunnyvale, CA USA 94086
U.S. Toll Free Line: 888-99-ACTEL • Customer Service: 408-739-1010 • Customer Service FAX: 408-522-8044
Customer Applications Center: 800-262-1060 • Customer Applications FAX: 408-739-1540

Actel Europe Ltd. • Maxfli Court, Riverside Way • Camberley, Surrey GU15 3YL • Tel: +44 (0)1276.401452 •
Fax: +44 (0)1276.401490

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Toyko 150 • Japan
Tel: +81 (0)334-457-671 Fax: +81 (0)334-457-668 5029140-0

core1553.book Page ii Thursday, October 10, 2002 9:39 AM

core1553.book Page i Thursday, October 10, 2002 9:39 AM
Core1553BRT
User Guide

core1553.book Page ii Thursday, October 10, 2002 9:39 AM
Actel Corporation, Sunnyvale, CA 94086
© 2002 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5029140-0

Release: October 2002

No part of this document may be copied or reproduced in any form or by
any means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims
any implied warranties of merchantability or fitness for a particular pur-
pose. Information in this document is subject to change without notice. Ac-
tel assumes no responsibility for any errors that may appear in this
document.

This document contains confidential proprietary information that is not to
be disclosed to any unauthorized person without prior written consent of
Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of
Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of
Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered
trademarks of their respective holders.
ii

core1553.book Page iii Thursday, October 10, 2002 9:39 AM
Table of Contents

Introduction . 1
Document Organization . 2

1 Running Simulation. . 3
Verification Environment. . 3

2 Running Synthesis. . 7
Synthesis for Netlists . 7
Synthesis for RTL. . 7

3 Running Layout . 9

4 Verification Testbench. . 11
Interactive Operation . 15
Verification Tests . 16

5 VHDL Testbench. . 19
Using the VHDL QTBEncDec Module 21

6 Verilog Testbench. . 27
Using the Verilog QTBENCDEC Module. 29

7 Implementation Hints . 35
External Command Word Legality Example 37
Modifying the Backend Address Map 40
Modifying the Backend Interrupt Vector. 44
Connecting the Backend to Internal FPGA Memory 47
Buffer Management . 47

A VHDL Testbench Procedure and Function Calls 49

B Product Support . 53
Actel U.S. Toll-Free Line . 53
Customer Service . 53
iii

Table of Contents

core1553.book Page iv Thursday, October 10, 2002 9:39 AM
Customer Applications Center . 54
Guru Automated Technical Support 54
Web Site. . 54
FTP Site . 55
Contacting the Customer Applications Center 55
Worldwide Sales Offices . 56
iv

core1553.book Page 1 Thursday, October 10, 2002 9:39 AM
Introduction

Core1553BRT provides a 1553B Remote Terminal, compliant with MIL-STD-
1553B that you can implement in various Actel FPGA families (including the
RTSX-S radiation-tolerant devices). Three versions of the core are available: an
evaluation version that allows core simulation with the Actel Libero toolset or
Modelsim, a netlist version that provides netlists and pre-compiled test benches
and finally, an RTL version with full access to the source code. The directory
structure is shown in Figure 1.

Figure 1. Core1553BRT Directory Structure

All the above directories are provided with the RTL version. The netlist version
includes all directories apart from the RTL directories and the evaluation
version only includes the mti and docs directories.

The netlist directory contains thirty-two netlists, eight for each supported family.
This core release supports the SX-A, RTSX-S, AX and APA families. For each
family 12MHz and 16MHz netlist versions are provided with I/O and without
I/O pads in both VHDL and Verilog formats. The SX-A netlists may also be
used with the SX and RTSX families.

The “with I/O” netlists are used to create the layout databases provided in the
layout directory; these databases may be used to program an FPGA device. If
necessary, you can alter the pin locations within the Designer layout tool.

The “without I/O” netlists are intended for use when the core is instantiated in
a user design. During the synthesis process the synthesis tool inserts the I/O
pads.

The source directory contains the top level VHDL code for the testbenches and
also some example support source files to ease design integration.

docs (documentation)

layout (example layout databases)

mti (simulation environments)

netlist (Core1553BRT netlists)

source (top-level testbench and support files)

rtl (complete source code)

release
1

Introduction

core1553.book Page 2 Thursday, October 10, 2002 9:39 AM
The rtl directory is provided to RTL licensees of the core. This directory
contains VHDL and Verilog subdirectories containing the RTL source files.

Document Organization
The Core1553BRT User Guide contains the following chapters:

Chapter 1 - Running Simulation

Chapter 2 - Running Synthesis describes how to run two types of
synthesis, netlist and RTL.

Chapter 3 - Running Layout

Chapter 4 - Verification Testbench describes the VHDL based
verification testbench architecture.

Chapter 5 - VHDL Testbench describes the customizable VHDL
testbench architecture.

Chapter 6 - Verilog Testbench describes your customizable Verilog
testbench architecture.

Chapter 7 - Implementation Hints provides tips on how to integrate the
Core1553BRT into your system.

Appendix A - VHDL Testbench Procedure and Function Calls
provides an overview of Actel's Core1553BRT testbench and a guide to
procedures. It also describes the syntax for a variety of existing procedures and
functions.

Appendix B - Product Support
2

core1553.book Page 3 Thursday, October 10, 2002 9:39 AM
1
Running Simulation

Core1553BRT has three separate simulation testbenches, a full verification
environment for the 1553B core, and two user testbenches (one in Verilog and
the other in VHDL). You can modify the user testbenches for Core1553BRT
integration in your system. Details of these testbenches are provided in
Chapters 4, 5, and 6.

Verification Environment
Seven separate directories provided within the mti directory enable you to rerun
core verification (Figure 1-1).

Figure 1-1. mti Library Directories

The Core1553BRT verification testbench is provided as pre-compiled
ModelSim library files.

To run the verification testbench:

1. Start ModelSim.

2. Change the directory to the mti/verif_xxx directory. For
example:

mti/verif_rtl

3. Refresh the simulation library with “do refresh.do”
command.

4. Run the simulation with the “do runsim.do” command. The
simulation starts and prompts for which test to run. Enter 2 to run the
complete verification suite (may take several hours) or 1 to run for a short
time.

verif_rtl (verification testbench using VHDL source code)

mti

verif_sxa (verification testbench using SX-A netlists)

verif_rtsxs (verification testbench using RTSX-S netlists)

verif_ax (verification testbench using Axcelerator netlists)

verif_apa (verification testbench using APA netlists)

user_vhdl (VHDL user testbench)

user_vlog (Verilog user testbench)
3

Chapter 1: Running Simulation

core1553.book Page 4 Thursday, October 10, 2002 9:39 AM
If you use any of the netlist versions then you need to set up the Vital Libraries
within the Actel Libero/Designer system (See the Libero User’s Guide). The
verif_rtsxs directory uses the SX-A Vital library. Netlist simulation runs are
much longer than the RTL simulation run.

RTL licensees can use the compvhdl.do script instead of the “refresh.do” script
to recompile the core and testbenches from the provided VHDL source code.
The verif_rtl directory also has a “compvlog.do” script that simulates the Verilog
source code rather than the VHDL source code within the VHDL test harness.
If you wish to use the “compvlog” script, you must have a dual-language
Modelsim license.

VHDL
Testbench

This is provided as a pre-compiled ModelSim library (the top-level source files
are provided in the source directory). The pre-compiled files are in the mti/
user_vhdl directory.

To run the user testbenches:

1. Start ModelSim.

2. Change the directory to the mti/user_vhdl directory.

3. Refresh the simulation library with the “do refresh.do”
command.

4. Run the simulation “do runsim.do”. The simulation starts and runs
several 1553B messages.

RTL licensees can use the compvhdl.do script instead of the refresh.do script
to recompile the testbenches from the provided VHDL source code.

Verilog
Testbench

This testbench is provided as a pre-compiled ModelSim library (the top-level
source files are provided in the source directory). The pre-compiled files are in
the mti/user_vlog directory.
4

Verification Environment

core1553.book Page 5 Thursday, October 10, 2002 9:39 AM
To run the user testbenches:

1. Start ModelSim.

2. Change the directory to the mti/user_vlog directory.

3. Refresh the simulation library with the “do refresh.do”
command.

4. Run the simulation with the “do runsim.do” command. The
simulation starts and runs several 1553B messages.

RTL licensees can use the “compvlog.do” script instead of the refresh.do script
to recompile the testbenches from the provided Verilog source code.
5

core1553.book Page 6 Thursday, October 10, 2002 9:39 AM

core1553.book Page 7 Thursday, October 10, 2002 9:39 AM
2
Running Synthesis

This chapter describes how to run synthesis for both netlists and RTL.

Synthesis for Netlists
The release contains both 16MHz and 12MHz versions of the core for the
supported families. Instantiate the Core1553BRT netlist in your design. The
top-level entity/module names for the cores are as follows:

• 16MHz - RT1553B12

• 12MHz - RT1553B16

To simplify instantiation the component declarations are provided in the source
directory (rtcomps.vhd and rtcomps.v).

Use either the Verilog or VHDL netlist without I/O cells. For example, the
VHDL netlist for SX-A devices operating at 16MHz is
rt1553b_withoutio_sxa_16.vhd, which is found in the netlists directory.

Tie the configuration inputs (WRTTSW, WRTCMD, EXTMDATA, ASYNCIF,
TESTTXTOUT, BCASTEN, SA30LOOP & INTENBBR) high or low as
desired. During synthesis the synthesis tool optimizes the netlist by removing
unnecessary logic. You can also drive these inputs with logic if required, but the
core implementation is slightly larger.

Use a clock network to drive the CLK input to the core. Do not use a clock
network to drive the RSTINn input, since it is gated internally.

When using Synplicity with a Verilog flow you need to include the Synplicity
supplied macro library in the source file list. These libraries are located in the
following directories:

synplify_install_dir/lib/actel
synplify_install_dir/lib/proasic

Use the macro library file that corresponds to your target architecture.

Synthesis for RTL
Instantiate the Core1553BRT top-level entity/module in your design. The top-
level entity/module names for the cores are as follows:
7

Chapter 2: Running Synthesis

core1553.book Page 8 Thursday, October 10, 2002 9:39 AM
• RTL - RT1553B

• 16MHz - RT1553B12

• 12MHz - RT1553B16

You can use an additional top-level option with the RTL version; there is a
generic to set the operating frequency to 12MHz or 16MHz. To ease
instantiation the component declarations are provided in the source directory
(rtcomps.vhd and rtcomps.v)

The VHDL example below shows the included files for a 16MHz core
Synplicity project. If the RT1553B is instantiated at the top level in your design
then you do not need the RT1553B12 or RT1553B16 files.

add_file -vhdl -lib work "rtl/vhdl/core/backend.vhd"
add_file -vhdl -lib work "rtl/vhdl/core/cwlegalsyn.vhd"
add_file -vhdl -lib work "rtl/vhdl/core/decoder.vhd"
add_file -vhdl -lib work "rtl/vhdl/core/encoder.vhd"
add_file -vhdl -lib work "rtl/vhdl/core/RT1553B.vhd"
add_file -vhdl -lib work "rtl/vhdl/core/RT1553B16.vhd"

The Verilog example below is associated with a 12MHz core Synplicity project.
If the RT1553B is instantiated as the top level in your design then you do not
need the RT1553B12 or RT1553B16 files.

add_file -verilog -lib work "rtl/verilog/core/backend.v"
add_file -verilog -lib work "rtl/verilog/core/cwlegalsyn.v"
add_file -verilog -lib work "rtl/verilog/core/decoder.v"
add_file -verilog -lib work "rtl/verilog/core/encoder.v"
add_file -verilog -lib work "rtl/verilog/core/RT1553B.v"
add_file -verilog -lib work "rtl/verilog/core/RT1553B12.v"

Tie the configuration inputs (WRTTSW, WRTCMD, EXTMDATA, ASYNCIF,
TESTTXTOUT, BCASTEN, SA30LOOP & INTENBBR) high or low as
desired. During Synthesis the synthesis tool optimizes the netlist, removing the
unused logic. You can also drive these inputs with logic if required, but the core
implementation is slightly larger.

Use a clock network to drive the CLK input to the core. Do not use a clock
network drive the RSTINn input, since it is gated internally.
8

core1553.book Page 9 Thursday, October 10, 2002 9:39 AM
3
Running Layout

Once synthesized, run the core through the Designer layout tool to produce the
programming files for the FPGA. The Core1553BRT meets timing in all
supported families, so you can use standard layout flows. Actel recommends
that you set the 1553B clock input to 12MHz or 16 MHz and enable timing-
driven layout.

The release contains a layout directory with a fully placed-and-routed core for
each of the four supported families in both the 12MHz and 16MHz core
versions. The netlists directory contains the matching eight netlists (for example,
rt1553b_withio_sxa_16.v). These netlists have IO pads inserted around the
core; do not use them when the core is integrated in another design.
9

core1553.book Page 10 Thursday, October 10, 2002 9:39 AM

core1553.book Page 11 Thursday, October 10, 2002 9:39 AM
4
Verification Testbench

Actel has developed a 1553B verification testbench that you can use to verify
the core performance per the 1553B specification. The testbench is coded in
VHDL and contains four Core1553B Remote Terminals connected to a bus
control function and backend interfaces. A procedural testbench controls the
various blocks and implements the tests. The source code is not made available
with netlist licenses of the core (Figure 4-1).

Figure 4-1. Verification Testbench

The testbench includes four remote terminals (RTs) to test core variants, each
with different setups of the core configuration inputs (Table 4-1).

Table 4-1. Verification Testbench RT Configuration

RT Clock Speed Memory Interface Command Word Legalitya

a. All command word legality interfaces are external for netlist simulation.

0 12 MHz Synchronous Internal

1 16 MHz Asynchronous Internal

2 16 MHz Synchronous Internal

3 16 MHz Asynchronous External

1553B Buses

Procedural
1553B

Testbench

Core1553B
RT 0

TCV TCV

Back-
end

CW
Legality

Core1553B
RT 1

TCV TCV

Back-
end

CW
Legality

Core1553B
RT 2

TCV TCV

Back-
end

CW
Legality

Core1553B
RT 3

TCV TCV

Back-
end

CW
Legality

Bus Control
(Encoder and Decoder)

Bus Control
(Encoder and Decoder)

Bus
Monitor

Bus
Monitor
11

Chapter 4: Verification Testbench

core1553.book Page 12 Thursday, October 10, 2002 9:39 AM
The testbench uses a command word legality module that disables sub-address
26 & 27 for transmit commands. For receive commands sub-address 25 is
disabled and sub-address 27 is only enabled for word counts 1 to 9. Page 37
shows the source code for a command legality module implementing this
behavior.

The procedural testbench has direct control of the bus control modules, the
transceivers, and the backend interfaces (including all the backend core inputs).
This direct control allows the testbench to initialize the backend RAM contents,
and to verify the contents after each transfer. The bus controller function has
the capability to inject errors and vary the data rate to verify the 1553B decoder
behavior.

During operation, the testbench verifies all command, data, and status words.
All memory accesses are verified and the resultant transfer status word for
every message is checked

During invocation the top-level generics may be set to alter the simulation.
These generics are specified in Table 4-2.

Table 4-2. Verification Testbench RT Configuration

Generic Type
Default
Value

Function

ENBUSMON Boolean False Enables the Bus monitor function. The testbench displays every
1553B word that is transmitted on the buses

ENRAMMON Boolean False Enables the RAM monitor function. The testbench displays all the
memory reads and writes performed by each of the cores

RUNTEST Integer 0

Allows the Testbench to run without user input. Forces the Test-
bench to run the test number as defined by the menus (see below);
if RUNTEST is greater than 10, then the testbench runs test num-
ber (n-10) and quits (for example, if n=12, then the testbench runs
test number (12-10=2), which is the Actel Tests - Standard Mode,
and then quits the simulation)

NETLIST Boolean False

When TRUE all cores use an external command word legality
module. The testbench expects some of the sub-addresses to be
disabled. The netlists provided for the core enable all of the sub-
addresses in the RT.
12

core1553.book Page 13 Thursday, October 10, 2002 9:39 AM
When you run the testbench it asks which tests you want to run. The options
are as follows (the options are summarized in Table 4-3):

1553B Test Harness - Actel IP Solutions Group
Production Version 22Aug02

Test Options
1 : Quick Run
2 : Actel Tests - Standard Mode
3 : Actel Tests - Address Mapper Enabled
4 : RT Test Plan
5 : Actel Tests - Short mode (i.e. fewer tests)
9 : Do Everything
A : Do Everything, Monitors Off and Quit
B : Turn On Bus Monitors
R : Turn On RAM Monitors
P : Pause Simulation - allows waves to update
X : Run for a single 1553B Word; i.e. 20µs
M : Send a message M BUS RT TX SA WC [SEED INC]
D : Display RT Memory D RT TX SA
S : Set RT Memory S RT TX SA SEED INC
Q : Quit

Enter Option, for demo use 1 ?

Table 4-3. Verification Testbench Menu Summary

Menu Command Action

Quick Run This runs a few simple 1553B command sequences to
demonstrate that the core is functioning

Actel Tests -
Standard Mode

This runs the complete set of Actel verification tests. For the
RTL code (verif_rtl directory) this takes several hours
depending on the computer used. For the netlist versions the
simulation time is significantly longer.

RT test plan

This implements a subset of the protocol tests specified in
the MIL-HDBK-1553A handbook. This takes a very long
time to run as thousands of 1553B command words need to
transmitted and verified.
13

Chapter 4: Verification Testbench

core1553.book Page 14 Thursday, October 10, 2002 9:39 AM
Do Everything Runs the three options listed above; i.e. Quick, Actel, and the
Test plan

Actel Tests -
Address Mapper
Enabled

This runs the Standard Mode tests but uses an address map-
ping function (as on page 41)

Actel Tests - Short
Mode

This runs a subset of the Standard Mode tests; the run time
is much shorter than for the standard tests

Do Everything &
Quit

This runs the three options above and then quits the simula-
tion. Setting the RUNTEST generic to 9 can automatically
run this test option

RAM Monitors

The testbench can display a message every time the backend
RAM's are written to or read from. This option enables or
disables the RAM monitors. When enabled the testbench
runs more slowly due to the printing overhead in VHDL

Bus Monitors

The testbench includes 1553B Bus monitors that display
every word transmitted on the 1553B buses. This option
enables or disables the BUS monitors. When enabled the
testbench will run slower due to the printing overhead in
VHDL.

Pause Simulation

Exits the simulation and returns to the vsim environment.
This may be required to cause the waves window to update.
Simulation can be simply restarted using the “run -all” com-
mand

Run 1553B Word Simply allows the simulation to run for 20us.

Send a Message Allows interactive 1553B message creation

Set RT memory Allows the values in one of the RT memories to be set

Display RT Memory Displays the contents of one of the RT memories

Table 4-3. Verification Testbench Menu Summary (Continued)

Menu Command Action
14

Interactive Operation

core1553.book Page 15 Thursday, October 10, 2002 9:39 AM
Interactive Operation
The verification testbench allows you to create 1553B messages and transmit
from the simulator command line. Three commands are provided that support
this feature (M, S and D), their parameters are given below. All parameters are
decimal integers separated by spaces or commas. If a number begins with a
“#”, “A-F” or “a-f ” then it is interpreted as a hexadecimal value. Basic error
checking is performed on the entered values.

Message
Parameter M

Consider the following example:

M BUS RT TX SA WC [SEED [INC]]

• M - Transmit a message

• BUS - Specifies the Bus to use, 0 or 1

• RT - Specifies the RT number, 0-31

• TX - RT transmit or receive, 1=Transmit 0= Receive

• SA - Sub-address to use, 0-31

• WC - Number of words to transmit or receive, 0-32

• SEED - Sets the first data used for the message to this value. If the RT is to
receive data, then the bus controller transmits the data. If the RT is to
transmit, then the testbench initializes the RT backend RAM for the
appropriate sub-address. If no data is provided then the RT receive data is
0000 and the transmit data is whatever the RT memory contains

• INC - Increments each data word in the message by this value. If not
specified defaults to zero so all data words contain the same value

Message
Parameter S

Consider the following example:

S RT TX SA SEED [INC]

• S - Set RT memory

• RT - Specifies the RT number, 0-31

• TX - RT transmit or receive memory, 1=Transmit 0= Receive
15

Chapter 4: Verification Testbench

core1553.book Page 16 Thursday, October 10, 2002 9:39 AM
• SA - Which Sub-address, 0-31

• SEED - Sets the first data value.

• INC - Increments each data word in the message by this value. If not
specified defaults to zero so all data words contain the same value

Message
Parameter D

Consider the following example:

D RT TX SA

• D - Display RT memory

• RT - Specifies the RT number, 0-31

• TX - RT transmit or receive memory, 1=Transmit 0= Receive

• SA - Which Sub-address, 0-31

Verification Tests
The verification testbench includes test procedures to check the following:

Simple Messages BC-RT and RT-BC

• Sub-address Word-Count Combinations

RT-to-RT Messages

Mode codes

• Verifies all codes

Broadcast

• Status word settings
• All mode codes verified

Illegal Commands (legality interface)

• Mode code
• Disabled sub-addresses
• Normal, RT-to-RT and Broadcast
• Internal and External legality logic
16

Verification Tests

core1553.book Page 17 Thursday, October 10, 2002 9:39 AM
Special Features

• Sub-address 30 loopback
• TSW enabled and disabled
• Command word memory write enabled and disabled
• Address Mapping Functions
• Interrupt Vector Extension Functions

Error Conditions

• Variable bit rates +/- 10,000Hz (1%)
• Variable backend GNT and WAIT delays
• Parity and Manchester Encoding errors
• Synchronization pattern corruption
• RT-to-RT illegal command words
• Word count errors
• Word gaps
• Transmitter time-out
• Status Word flag bits
• Superseding command acceptance
• RT address parity logic
• Receive on disabled bus
• Transmitter overrun
• BIT word values
• Loopback logic
• Extra Command and Data Words
• Noise on the data bus
• Superseding Commands on second bus
17

core1553.book Page 18 Thursday, October 10, 2002 9:39 AM

core1553.book Page 19 Thursday, October 10, 2002 9:39 AM
5
VHDL Testbench

Actel provides an example testbench that you can use as the starting point for
design verification of the core in your design. A block diagram of the testbench
is shown in Figure 5-1.

Figure 5-1. VHDL Testbench

The testbench creates an RT System (QRTSystem) by adding the transceivers,
backend interface and command legality interface to the core. The top level
(Qtbench) includes four of these cores. All the cores in this case are identical.
The source code modules used are listed in Table 5-1.

RT SystemRT SystemRT SystemRT System

1553B Buses

Core1553B
RT 0

TCV TCV

Back-
end

CW
Legality

Core1553B
RT 1

TCV TCV

Back-
end

CW
Legality

Core1553B
RT 2

TCV TCV

Back-
end

CW
Legality

Core1553B
RT 3

TCV TCV

Back-
end

CW
Legality

Bus Control
(Encoder and Decoder)

Bus Control
(Encoder and Decoder)

Bus
Monitor

Bus
Monitor

User Control Circuit
19

Chapter 5: VHDL Testbench

core1553.book Page 20 Thursday, October 10, 2002 9:39 AM
Table 5-1. VHDL Testbench Modules

Entity
Source

Provided
Description

Qtbench Yes The testbench top level. This contains the bus con-
trol function and several remote terminals

QTBEncDec No

Test block that emulates a bus controller. Transmits
1553B command words and data words, and then
decodes the status and data words generated by an
RT in response

QBusmon No 1553B bus monitor. Monitors the bus and reports on
the bus traffic

QRTsystem Yes
Hierarchical block with the core plus transceiver,
backend and command word legality blocks to the
core

QBusTransceiver No
This simply takes the six unidirectional signals from
the core and models a Transceiver connected to a
bus

QTBBackend No

This connects to core backend interface and pro-
vides the following functions:
1) Implements a asynchronous 2Kx16 or 8Kx16
memory block, which provides the 32 receive and
transmit sub-addresses
2) Has a built-in address mapping function
3) Loops back the receive sub-address locations to
the transmit memory. On a good message received
interrupt the correctly received words are copied
from RX sub-address to the TX sub-address. If the
address mapping function is enabled then the syn-
chronize with data word is copied to the transmit
vector word memory location
4) Generates the interrupt acknowledge.

CWLegality Yes Implements the external command validity checking
20

Using the VHDL QTBEncDec Module

core1553.book Page 21 Thursday, October 10, 2002 9:39 AM
The testbench uses a command-word legality module that disables sub-address
26 & 27 for transmit commands. For receive commands sub-address 25 is
disabled and sub-address 27 is only enabled for word counts 1 to 9. Page 37
shows the source code for a command legality module implementing this
behavior.

The Core1553B ModelSim library (in the mti/verif_rtl directory) contains
compiled models for the complete environment. Design source code of the
top-level blocks is provided in the source directory to enable you to create your
own simulation environment using this testbench as a starting point. Examine
the source files for QTbench and QRTSystem to obtain a full understanding of
the core operation.

The QTbench has a top level generic CMODE that you can set to 0 or 1. When
0, the core is configured with WRTTSW, WRTCMD and EXTMDATA as
“100”. When 1 these values are “011” and the backend module implements an
address mapper function as described in “Implementation Hints” on page 35.

Using the VHDL QTBEncDec Module
You can instantiate the QTBEncDec module in your design and use it to
initiate 1553B messages. The top level of the module is shown in the code
below, along with a description of these ports (Table 5-2).

entity QTBENCDEC is
 port (CLK16 : in std_logic;
 RSTn : in std_logic;
 STOPCLK : in BOOLEAN;
 START : in BOOLEAN;
 QMSG : in TQMSGREQ;
 BUSY : out BOOLEAN;
 QOUT : out TQMSGOUT;
 BUSPOS : inout std_logic;
 BUSNEG : inout std_logic
);
end QTBENCDEC;
21

Chapter 5: VHDL Testbench

core1553.book Page 22 Thursday, October 10, 2002 9:39 AM
To initiate a message a simple record structure is set up and the START input is
strobed. The module asserts BUSY until the 1553B message is completed and
then de-asserts BUSY. The QOUT record structure contains the data sent and

Table 5-2. TBEncDec Port Descriptions

Port Dir Type Function

CLK16 In std_logic Clock source for the encoder and decoder.
Must be 16MHz

RSTn In std_logic Active low asynchronous reset, must be pulsed
low at the start of simulation

STOPCLK In Boolean

The encoder has an internal clock generator;
when this input is TRUE the clock generator is
halted. This allows the simulator to exit grace-
fully. This input can be tied permanently
FALSE to disable the STOPCLK feature

START In Boolean

This input is pulsed TRUE to start a 1553B
message. If it is not synchronized to a clock
and only needs pulsed for a simulation delta
cycle, use the following code:
START <= TRUE;
wait for 0 ns
START <= FALSE;

QMSG In TQMSGREQ Input record structure that defines the mes-
sage that will be transmitted, see below.

BUSY Out Boolean Indicates that the encoder/decoder is busy

QOUT Out TQMSGOUT Output record structure containing message
data transmitted on the bus

BUSPOS Inout std_logic Connects to the positive side of the 1553B bus

BUSNEG Inout std_logic Connects to the negative side of the 1553B bus
22

Using the VHDL QTBEncDec Module

core1553.book Page 23 Thursday, October 10, 2002 9:39 AM
received on the bus. The two record structures used here are shown in Table 5-
3 and Table 5-4.

Table 5-3. TMSGREQ Record Structure

 Element Type Default Function

RT INTEGER, 0 to 31 0 Command word RT value. Broadcast is supported
when the RT number is 31

TX INTEGER, 0 to 1 0 Command word TX value

SA INTEGER, 0 to 31 0 Command word SA value

MCWC INTEGER, 0 to 32 0
Word count or mode code value. For data transfers
values 1 to 32 should be used, for mode codes val-
ues 0 to 31

RTRT Boolean FALSE
If TRUE a RT-to-RT command pair is transmitted.
The transmit command word uses the RT, TX and
SA elements

RT2 INTEGER, 0 to 31 0 RT command word value for the receive RT in RT-
to-RT messages

SA2 INTEGER, 0 to 31 0 SA command word value for the receive RT in RT-
to-RT messages

DATA PACKET Unknowns
i.e. 'U’

Data to be transmitted for an RT receive message
This is an array(0 to 31) of WORD;
WORD is std_logic_vector(15 downto 0).
Index 0 is used for mode code data. For example:
DATA(0) <= "0000111100001111";
DATA(1) <= to_word(16#1234#)
DATA <= initdata(16#1000#);
DATA <= initdata(16#5555#,0);
The first example sets the first data word using
standard VHDL assignments to std_logic_vector.
The second example uses a function provided in
one of the underlying Core1553B packages to set
the word to the hexadecimal value 1234. The third
example uses another function call to set the com-
plete data pattern to an incrementing value starting
at 1000 hex. The final example sets the complete
data pattern to 5555 hex; the second argument is
the increment between consecutive data words.
23

Chapter 5: VHDL Testbench

core1553.book Page 24 Thursday, October 10, 2002 9:39 AM
Table 5-4. TQMSGOUT Record Structure

Structure
Element

Type Function

OKAY Boolean Indicates that the message was correctly processed
with no errors

COUNT INTEGER Number of words received

CW1 WORD First command word

CW2 WORD Second command word. If no second command word
it will contain '-' in all 16 bits

SW1 WORD First status word. If no status word it will contain '-' in
all 16 bits

SW2 WORD Second status word. If no status word it will contain '-'
in all 16 bits (only for RTRT messages)

DATA PACKET

Data packet for the message. When the RT is receiving
it will contain a copy of the transmitted data, when
transmitting the data the RT transmitted. On RT-to-
RT messages the data transferred between the RT's
will be provided. For mode codes the data word will in
the first location i.e. DATA(0)
24

Using the VHDL QTBEncDec Module

core1553.book Page 25 Thursday, October 10, 2002 9:39 AM
The VHDL code below shows a simple code fragment that generates a 10 word
BC-to-RT 1 sub-address 5 message with data incrementing from 1200 hex, and
then displays the message. The “print_msgout” is a procedure provided in the
underlying Core1553B package that displays the message details; it needs to be
passed the two record structures described above.

signal BUSASTART : BOOLEAN;
signal BUSAMSG : TQMSGREQ;
signal BUSABUSY : BOOLEAN;
signal BUSAOUT : TQMSGOUT;
begin
process
 begin
 BUSAMSG.RT <= 1;
 BUSAMSG.TX <= 0;
 BUSAMSG.SA <= 5;
 BUSAMSG.MCWC <= 10;
 BUSAMSG.RTRT <= FALSE;
 BUSAMSG.DATA <= initdata(16#1200#);

 -- Do the message
 BUSASTART <= TRUE;
 wait for 0 ns;
 BUSASTART <= FALSE;
 wait for 0 ns;
 while BUSABUSY loop
 wait for 1 us;
 end loop;

 -- Display The Data Transmitted
 print_msgout(BUSAMSG,BUSAOUT);
 wait;
end process;
25

core1553.book Page 26 Thursday, October 10, 2002 9:39 AM

core1553.book Page 27 Thursday, October 10, 2002 9:39 AM
6
Verilog Testbench

Actel provides an example Verilog testbench that you can use as the starting
point for design verification of the core within your design. A block diagram of
the testbench is shown in Figure 6-1.

Figure 6-1. Verilog Testbench

The testbench creates an RT System (QRTSYSTEM) by adding the backend
interface and command legality interface to the core. The top level
(QTBENCH) includes four of these cores. All the cores in this case are
identical. Table 6-1 lists the source code modules.

RT SystemRT SystemRT SystemRT System

1553B Buses

Core1553B
RT 0

TCV TCV

Back-
end

CW
Legality

Core1553B
RT 1

TCV TCV

Back-
end

CW
Legality

Core1553B
RT 2

TCV TCV

Back-
end

CW
Legality

Core1553B
RT 3

TCV TCV

Back-
end

CW
Legality

Bus Control
(Encoder and Decoder)

Bus Control
(Encoder and Decoder)

Bus
Monitor

Bus
Monitor

User Control Circuit
27

Chapter 6: Verilog Testbench

core1553.book Page 28 Thursday, October 10, 2002 9:39 AM
The testbench uses a command word legality module that disables sub-address
26 & 27 for transmit commands. For receive commands sub-address 25 is
disabled and sub-address 27 is only enabled for word counts 1 to 9. “External

Table 6-1. Verilog Testbench Modules

Module
Source

Provided
Description

QTBENCH Yes
The testbench top level. This contains the
bus control function and several remote ter-
minals

QTBENCDEC No

Test block that emulates a bus controller.
Transmits 1553B command words and data
words, and then decodes the status and data
words generated by an RT in response.

QRTSYSTEM Yes
Hierarchical block with the core plus a trans-
ceiver, backend and command word legality
block to the core.

QTBBACKEND Yes

This connects to the core backend interface
and provides the following functions:
1) Implements an asynchronous 2Kx16 or
8Kx16 memory block providing the 32
receive and transmit sub-addresses
2) Has an in-build address mapping function
3) Loops back the receive sub-address loca-
tions to the transmit memory. On a good
message received interrupt the correctly
received words are copied from RX sub-
address to the TX sub-address. If the address
mapping function is enabled then the syn-
chronize with data word is copied to the
transmit vector word memory location.
4) Generates the interrupt acknowledge

CWLEGALITY Yes Implements the external command validity
checking
28

Using the Verilog QTBENCDEC Module

core1553.book Page 29 Thursday, October 10, 2002 9:39 AM
Command Word Legality Example” on page 37 the source code for a
command legality module implementing this behavior.

The Core1553B ModelSim library (in the mti/user_vlog directory) contains
compiled models for the complete environment. Design source code of the
top-level blocks is provided (in the source directory) to enable you to create
your own simulation environment using this testbench as a starting point.
Examine the source files for QTBENCH and QRTSYSTEM to obtain a full
understanding of the core operation.

The QTBENCH has a top-level parameter CMODE that can be set to 0 and 1.
When 0 the core is configured with WRTTSW, WRTCMD and EXTMDATA
as “100”. When 1 these values are “011” and the backend module implements
an address mapper function as described in “Implementation Hints” on page
35.

Using the Verilog QTBENCDEC Module
You can instantiate the QTBENCDEC module in your design and use it to
initiate 1553B messages. The top level of the module is shown below, along
with a description of these ports (Table 6-2).

module QTBENCDEC (CLK, RSTN,
 BUSPOS, BUSNEG,
 TXSTROBE, TXCW, TXDATA,
 RXSTROBE, RXSTAT, RXDATA,
 BUSY
);
input CLK;
input RSTN;
inout BUSPOS;
inout BUSNEG;
input TXSTROBE;
input TXCW;
input [15:0] TXDATA;
output RXSTROBE;
output [3:0] RXSTAT;
output [15:0] RXDATA;
output BUSY;
29

Chapter 6: Verilog Testbench

core1553.book Page 30 Thursday, October 10, 2002 9:39 AM
Table 6-2. Verilog TBENCDEC Port Descriptions

Port Direction Function

CLK in

16MHz clock source for the encoder
and decoder. All inputs are sampled
on the rising clock edge, and outputs
are registered on the rising clock edge

RSTn in Active low asynchronous reset, must
be pulsed low at the start of simulation

BUSPOS inout Connects to the positive side of the
1553B bus

BUSNEG inout Connects to the negative side of the
1553B bus

TXSTROBE in
This input is pulsed high for a clock
cycle to load a 1553B word into the
encoder

TXCW in
0: The encoder transmits a data word
1: The encoder transmits a command
word

TXDATA in[15:0] Transmit word

RXSTROBE out Indicates that the RXSTAT and
RXDATA outputs contain valid data

RXSTAT out[3:0]
Provides status information on the
RXDATA output; see Table 6-3 for a
summary

RXDATA out[15:0] Received word

BUSY out

Indicates that either the encoder or
decoder is busy. It is active when
Transmit data is queued in the trans-
mit FIFO or is being transmitted
30

Using the Verilog QTBENCDEC Module

core1553.book Page 31 Thursday, October 10, 2002 9:39 AM
The QTBENCDEC contains a 1553B encoder and decoder. A transmit FIFO
is provided, enabling 64 words of transmit data to be loaded into the module.
The maximum 1553B message length that the encoder is required to transmit is
33 words. Receive data is strobed out of the module. All 1553B data words are
output from this module.

The code below shows a simple code fragment that generates a 30 word BC to
RT 1 sub-address 10 message with data incrementing from 4096 decimal.

Table 6-3. RXSTAT Value Definitions

Bit Function Description

0 Type 0: Data Word 1: Command/Status Word

1 Burst Indicates that the data word was contiguous with the
previous one

2 Error Indicates that an encoding error was detected in the word

3 From us Indicates that the QTBENCDEC transmitted the word
31

Chapter 6: Verilog Testbench

core1553.book Page 32 Thursday, October 10, 2002 9:39 AM
/**/
// The Bus Controller Modules
//

QTBENCDEC BCA
 (.CLK(CLK),
 .RSTN(RSTN),
 .BUSPOS(BUSAPOS),
 .BUSNEG(BUSANEG),
 .TXSTROBE(BCA_TXSTB),
 .TXCW(BCA_TXCW),
 .TXDATA(BCA_TXDATA),
 .RXSTROBE(BCA_RXSTB),
 .RXSTAT(BCA_RXSTAT),
 .RXDATA(BCA_RXDATA),
 .BUSY(BCA_BUSY)
);

/**/
// Store the data output by the decoder
//
// STAT[3:0] = FROMUS BURST ERROR CW

always @(posedge CLK)
 begin
 if (BCA_INIT==1'b1) BCA_COUNT = 0;
 if (BCA_RXSTB == 1'b1)
 begin
 BCA_STORE[BCA_COUNT] = {BCA_RXSTAT, BCA_RXDATA };
 BCA_COUNT = BCA_COUNT+1;
 end
 end

/**/
// Main Test Procedure
//

reg [15:0] CW;
reg [15:0] DW;
reg [4:0] RT5BIT;
integer i;
integer RT;

initial
 begin
 RSTN = 1'b0;
 BCA_TXSTB = 1'b0;// Used to load a word into the transmitter
 BCB_TXSTB = 1'b0;
 BCA_INIT = 1'b1;// Used to reset the store pointer on the Decoder
 BCB_INIT = 1'b1;
 #312700;
 @(negedge CLK);
 RSTN = 1'b1;

 $display("Core1553BRT Verilog Test Harness Production 22Aug02");

 $display("Receive BC-RT 1 SA 10 WC 8 Message on BUS A");
32

Using the Verilog QTBENCDEC Module

core1553.book Page 33 Thursday, October 10, 2002 9:39 AM
 CW = { 5'b00001, 1'b0, 5'b01010, 5'b01000 };
 transmit_CW(0,CW);
 for (i=1; i<=8; i=i+1) transmit_DW(0,4095+i);
 wait_to_complete(0);
 display_bus(0);
 #9000000;

$display("Transmit RT-BC 1 SA 10 WC 6 Message on BUS B");
CW = { 5'b00001, 1'b1, 5'b01010, 5'b00110 };
transmit_CW(1,CW);
wait_to_complete(1);
display_bus(1);
#9000000;

$display("Get the Vector Word from each RT");
for (RT=0; RT<=3;RT=RT+1)
begin

RT5BIT = RT;
CW = { RT5BIT, 1'b1, 5'b00000, 5'b10000 };
transmit_CW(0,CW);
wait_to_complete(0);
$display("RT %0d Got SW %h Got VW %h",

 RT,BCA_STORE[1][15:0],BCA_STORE[2][15:0]);
#9000000;
end

#4000000;
$display(" ");
$display("Simulation complete");
$display(" ");
$stop;
end

endmodule
33

core1553.book Page 34 Thursday, October 10, 2002 9:39 AM

core1553.book Page 35 Thursday, October 10, 2002 9:39 AM
7
Implementation Hints

You can configure the Core1553BRT to provide backend interfaces for a
variety of hardware and software requirements.

The backend interface has been designed to simplify backend hardware design;
the core supports both synchronous and asynchronous backends with bus
arbitration and variable read and write strobe pulse widths.

To accommodate software requirements, you can modify the backend address
map and interrupt vectors with simple address mapping functions implemented
in hardware (explained below).

Table 7-1 shows some typical applications and the core configurations required.

Table 7-1. Typical Core Implementations

Type Description Core Inputs

Standard-CW

A 2Kx16 memory buffer is used with 32
words of memory allocated for each TX and
RX sub-address. The 1553B command word
is written to memory locations unused by
the mode code sub-addresses. The system
can read the command word value to deter-
mine the number of words that were
received.

WRTTSW = '0'
WRTCMD= '1'
EXTMDATA= '0'
Address Mapper = No
CW Legality = No

Standard-TSW

A 2Kx16 memory buffer is used with 32
words of memory allocated for each TX and
RX sub-address. The Core1553B TSW word
is written to memory locations unused by
the mode code sub-addresses. The system
can read the TSW value to determine the
number of words that were received. This
implementation provided extra status infor-
mation such as the bus on which the mes-
sage was received.

WRTTSW = '1'
WRTCMD= '0'
EXTMDATA= '0'
Address Mapper = No
CW Legality = No
35

Chapter 7: Implementation Hints

core1553.book Page 36 Thursday, October 10, 2002 9:39 AM
Direct Device

No memory is used; the Core1553BRT
backend directly connects to the device. In
this case all the unused 1553B sub-addresses
should be invalidated. If the device only
accepts a fixed number of data words then
only that word count should be legal for the
sub-address in use. Should an error be
detected this will be indicated by the inter-
rupt vector and the data should be dis-
carded. No command words or TSW values
are written to memory.

WRTTSW = '0'
WRTCMD= '0'
EXTMDATA= '0'
Address Mapper = No
CW Legality = Yes

Compatibility
Mode

The memory allocation emulates another
1553B remote terminal allowing software
drivers to be reused.A backend address map-
ping function is implemented that reads and
writes command and data words to the
memory addresses used by the remote ter-
minal that the Core1553BRT is replacing.

WRTTSW = '0'
WRTCMD= '1'
EXTMDATA= '1'
Address Mapper = Yes
CW Legality = Maybe

Table 7-1. Typical Core Implementations (Continued)

Type Description Core Inputs
36

External Command Word Legality Example

core1553.book Page 37 Thursday, October 10, 2002 9:39 AM
External Command Word Legality Example
The core provides three ports (USEEXTOK, CMDVAL and CMDOKAY)
that allow the legal command word set to be modified. When USEEXTOK is
low, the core internally decides command words are legal (the legal command
word set is defined in the CORE1553BRTdatasheet). When USEEXTOK is
high, an external block decodes the CMDVAL output and generates a
CMDOKAY input to indicate legal command words.
The following VHDL and Verilog code blocks implement an external legality
checker that:
• Legalizes mode codes as per the Core1553B datasheet
• Disables transmits from sub-address 26 and 27
• Disables receives to sub-address 25
• Only enables word counts 1 to 9 receives to sub-address 27

The source files for these modules are provided in the source directory.

The core allows 3µs for the legality block to decode CWVAL and generate the
CMDOKAY value; this can be implemented within the FPGA, as shown
below.

VHDL Example
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity CWLEGALITY is
 port (CWVAL : in std_logic_vector(11 downto 0);
 CMDOKAY : out std_logic
);
end CWLEGALITY;

architecture RTL of CWLEGALITY is
signal BROADCAST : std_logic;
signal ISMCODE : std_logic;
signal TX : std_logic;
signal SA : std_logic_vector(4 downto 0);
signal WCMC : std_logic_vector(4 downto 0);

begin

-- Decode incoming Value
BROADCAST <= CWVAL(11);
TX <= CWVAL(10);
SA <= CWVAL(9 downto 5);
WCMC <= CWVAL(4 downto 0);
37

Chapter 7: Implementation Hints

core1553.book Page 38 Thursday, October 10, 2002 9:39 AM
ISMCODE <= '1' when (SA="00000" or SA="11111") else '0';

-- This process decodes the Command Word and sets CMDOKAY for legal command words

PLEGAL:
process(BROADCAST,TX,SA,WCMC,ISMCODE)
 variable OK : std_logic;
 variable MUXSEL : std_logic_vector(5 downto 0);
 begin

 if (ISMCODE='0') then
 -- Data Transfers
 MUXSEL := TX & SA;
 OK := '0'; -- Default is disabled
 --
 -- This case statement legalizes Data transfers to certain sub addresses
 case MUXSEL is
 when "111010" => OK := '0'; -- SA 26 Disabled for TX
 when "111011" => OK := '0'; -- SA 27 Disabled for TX
 when "011001" => OK := '0'; -- SA 25 Disabled for RX
 when "011011" => if WCMC>0 and WCMC <10 then -- SA 27 Disabled for RX if WC>9
 OK := '1';
 end if;
 when others => OK := '1'; -- legalize all other sub addresses
 end case;
 --
 -- Broadcast transmits are not allowed, overrides above case statement
 if BROADCAST='1' and TX='1' then
 OK := '0'; -- Broadcast Transmit is not allowed
 end if;

 else
 --
 -- This case statement legalizes Mode Codes
 MUXSEL := TX & WCMC;
 OK := '1'; -- Default is OKAY
 case MUXSEL is
 when "100000" => --Dynamic Bus Control
 OK := '0'; -- since we cant do it we message error
 when "100001" => --Synchronise
 when "100010" => --Transmit Status Word
 OK := not BROADCAST;
 when "100011" => --Initiate Self Test, we set this because we provide BIT word
 OK := '1';
 when "100100" => --Transmitter ShutDown
 when "100101" => --Override Transmitter Shutdown
 when "100110" => --Inhibit terminal flag
 when "100111" => --Override inhibit terminal flag
 when "101000" => --Reset Remote Terminal
 when "110000" => --Transmit Vector Word
 OK := not BROADCAST;
 when "010001" => --Synchronise with data
 when "110010" => --Transmit last command
 OK := not BROADCAST;
 when "110011" => --Transmit bit word
 OK := not BROADCAST;
38

External Command Word Legality Example

core1553.book Page 39 Thursday, October 10, 2002 9:39 AM
 when "010100" => --Selected Transmitter Shutdown
 OK := '0';
 when "010101" => --Override Selected Transmitter Shutdown
 OK := '0';
 when others => --All other commands all illegal
 OK := '0';
 end case;
 end if;
 CMDOKAY <= OK;
end process;

end RTL;

Verilog
Example module CWLEGALITY (CWVAL, CMDOKAY);

 input[11:0] CWVAL;
 output CMDOKAY;
 reg CMDOKAY;
 wire BROADCAST, ISMCODE, TX;
 wire[4:0] SA, WCMC;

 assign BROADCAST = CWVAL[11] ; // Decode incoming Value
 assign TX = CWVAL[10] ;
 assign SA = CWVAL[9:5] ;
 assign WCMC = CWVAL[4:0] ;
 assign ISMCODE = (SA == 5'b00000 | SA == 5'b11111) ? 1'b1 : 1'b0 ;

 always @(BROADCAST or TX or SA or WCMC or ISMCODE)
 begin : PLEGAL
 reg OK;
 reg[5:0] MUXSEL;
 if (ISMCODE == 1'b0)
 begin
 MUXSEL = {TX, SA}; // Data Transfers
 OK = 1'b0;
 // This case statement legalizes Data transfers to certain sub addresses
 case (MUXSEL)
 6'b111010 : OK = 1'b0; // SA 26 Disabled for TX
 6'b111011 : OK = 1'b0; // SA 27 Disabled for TX
 6'b011001 : OK = 1'b0; // SA 25 Disabled for RX
 6'b011011 : OK = (WCMC > 0 & WCMC < 10); // SA 27 Disabled for RX if WC>9
 default : OK = 1'b1; // legalize all other sub addresses
 endcase
 // Broadcast transmits are not allowed, overrides above case statement
 if (BROADCAST == 1'b1 & TX == 1'b1)
 OK = 1'b0; // Broadcast Transmit is not allowed
 end
 else
 begin
 //--
 // This case statement legalizes Mode Codes
 MUXSEL = {TX, WCMC};
 OK = 1'b1;
 case (MUXSEL)
39

Chapter 7: Implementation Hints

core1553.book Page 40 Thursday, October 10, 2002 9:39 AM
 6'b100000 : //Dynamic Bus Control
 OK = 1'b0; // since we cant do it we message error
 6'b100001 : //Synchronize
 6'b100010 : //Transmit Status Word
 OK = ~BROADCAST;
 6'b100011 : //Initiate Self Test, we set this because we provide BIT word
 OK = 1'b1;
 6'b100100 : //Transmitter Shutdown
 6'b100101 : //Override Transmitter Shutdown
 6'b100110 : //Inhibit terminal flag
 6'b100111 : //Override inhibit terminal flag
 6'b101000 : //Reset Remote Terminal
 6'b110000 : //Transmit Vector Word
 OK = ~BROADCAST;
 6'b010001 : //Synchronise with data
 6'b110010 : //Transmit last command
 OK = ~BROADCAST;
 6'b110011 : //Transmit bit word
 OK = ~BROADCAST;
 6'b010100 : //Selected Transmitter Shutdown
 OK = 1'b0;
 6'b010101 : //Override Selected Transmitter Shutdown
 OK = 1'b0;
 default : //All other commands all illegal
 OK = 1'b0;
 endcase
 end
 CMDOKAY <= OK ;
 end
endmodule

Modifying the Backend Address Map
The default setting of the Core1553BRT creates 32 receive and 32 transmit sub-
addresses each with 32 words of memory, which in turn requires 2048 words of
memory. Receive sub-addresses 0 and 31 are used for storing either the 1553B
command word or the TSW value.

You may use an external address mapping function to modify the backend
address map to match the software models of legacy 1553B remote terminals,
allowing software drivers to be reused (Figure 7-1). You can use the CMDVAL
output to generate the mapped address function; however, it must be externally
40

Modifying the Backend Address Map

core1553.book Page 41 Thursday, October 10, 2002 9:39 AM
latched using the ADDRLAT signal (ADDRLAT is an active high enable for an
external D type flip flop).

Figure 7-1. External Address Mapper Circuit

A typical address mapping function given below (page 41) re-maps the backend
memory map to an 8K-word memory. Each sub-address is allocated 64 words
and separate buffers are provided for both broadcast and non-broadcast
receive/transmit.

Each non-mode code sub-address consists of 64 words, the command word or
TSW value is written to location 0, and the associated data words are stored at
locations 32 to 63.

For the mode code sub-addresses, the command word or TSW value is written
to location 0 plus the mode code value, and the data word is stored at location
32 plus the mode code value. For the transmit vector word command, the
command word is stored in location 16 and the vector word read from location
48. For the synchronize with data command, the command word is stored at
location 17 and the data written to location 49. Note that separate address
spaces exist for transmit and receive mode codes and broadcast transmit and
receive mode codes.

This mapping function is very small; it requires only 23 logic modules in the
Actel SXA/RTSX-S families. Consider the code below.

Q

Q
SET

CLR

D

L

Address
Mapper
Function

CMDVAL
CLK1553

ADDRLAT

MEMADDR
MEMOPER

MAPPED
ADDRESS
41

Chapter 7: Implementation Hints

core1553.book Page 42 Thursday, October 10, 2002 9:39 AM
VHDL Address
Mapping
Function

entity ADDRESSMAPPER is
 port (CLK : in std_logic;
 ADDRLAT : in std_logic;
 CMDVAL : in std_logic_vector(11 downto 0);
 MEMADDR : in std_logic_vector(10 downto 0);
 MEMOPER : in std_logic_vector(1 downto 0);
 MAPADDR : out std_logic_vector(12 downto 0)
);
end ADDRESSMAPPER;

architecture RTL of ADDRESSMAPPER is
signal CMDADDR : std_logic_vector(11 downto 0);
begin

process(CLK)
 begin
 if CLK'event and CLK='1' then
 if ADDRLAT='1' then
 CMDADDR <= CMDVAL;
 end if;
 end if;
end process;

process(CMDADDR,MEMADDR,MEMOPER)
variable SA : std_logic_vector(4 downto 0);
variable WCCW : std_logic_vector(4 downto 0);
variable WCAD : std_logic_vector(4 downto 0);
variable MC : std_logic;
variable BCAST : std_logic;
variable TX : std_logic;
variable MSEL : std_logic_vector(2 downto 0);
begin
 SA := CMDADDR(9 downto 5);
 WCCW := CMDADDR(4 downto 0);
 WCAD := MEMADDR(4 downto 0);
 BCAST := CMDADDR(11);
 TX := CMDADDR(10);
 if (SA="00000" or SA="11111") then
 MC := '1';
 else
 MC := '0';
 end if;
 MSEL := MEMOPER & MC;
 case MSEL is
 when "100" => MAPADDR <= BCAST & TX & SA & '0' & "00000"; -- CW Data Transfer
 when "101" => MAPADDR <= BCAST & TX & SA & '0' & WCCW; -- CW Mode Code
 when "000" => MAPADDR <= BCAST & TX & SA & '1' & WCAD; -- DW Transfer
 when "001" => MAPADDR <= BCAST & TX & SA & '1' & WCCW; -- DW Mode Code
 when others => MAPADDR <= (others => '-');
 end case;
end process;
end RTL;
42

Modifying the Backend Address Map

core1553.book Page 43 Thursday, October 10, 2002 9:39 AM
Verilog Address
Mapping
Function

module ADDRESSMAPPER (CLK, ADDRLAT, CMDVAL, MEMADDR, MEMOPER, MA-
PADDR);

 input CLK;
 input ADDRLAT;
 input[11:0] CMDVAL;
 input[10:0] MEMADDR;
 input[1:0] MEMOPER;
 output[12:0] MAPADDR;

 reg[12:0] MAPADDR;
 reg[11:0] CMDADDR;

 always @(posedge CLK)
 begin
 if (ADDRLAT == 1'b1) CMDADDR <= CMDVAL ;
 end

 always @(CMDADDR or MEMADDR or MEMOPER)
 begin
 reg[4:0] SA;
 reg[4:0] WCCW;
 reg[4:0] WCAD;
 reg MC;
 reg BCAST;
 reg TX;
 reg[2:0] MSEL;
 SA = CMDADDR[9:5];
 WCCW = CMDADDR[4:0];
 WCAD = MEMADDR[4:0];
 BCAST = CMDADDR[11];
 TX = CMDADDR[10];
 if (SA == 5'b00000 | SA == 5'b11111)
 MC = 1'b1;
 else
 MC = 1'b0;
 MSEL = {MEMOPER, MC};
 case (MSEL)
 3'b100 : MAPADDR <= {BCAST, TX, SA, 1'b0, 5'b00000} ; // Command Data Transfer
 3'b101 : MAPADDR <= {BCAST, TX, SA, 1'b0, WCCW} ; // Command Mode Code
 3'b000 : MAPADDR <= {BCAST, TX, SA, 1'b1, WCAD} ; // Data Data Transfer
 3'b001 : MAPADDR <= {BCAST, TX, SA, 1'b1, WCCW} ; // Data Mode Code Transfer
 default : MAPADDR <= {13{1'bx}} ;
 endcase
 end
endmodule
43

Chapter 7: Implementation Hints

core1553.book Page 44 Thursday, October 10, 2002 9:39 AM
Modifying the Backend Interrupt Vector
The default setting of the Core1553BRT creates a six-bit interrupt vector
indicating whether or not a good message was received and for a transmitter
sub-address. If the INTENBBR (Interrupt Enable Bad Block Received) is high,
then interrupts are generated for good and bad 1553B messages. When
INTENBBR is low interrupts are only generated for messages that are received
or transmitted correctly.

An external interrupt mapping function may be used to add extra information
to the interrupt vector (Figure 7-2), such as the received word count and
whether the command was broadcast. The CMDVAL output can be used to
generate this extra information however it must be externally latched using the
INTLAT signal (INTLAT is an active high enable for an external D-type flip
flop).

Figure 7-2. External Interrupt Vector Extender Circuit

The interrupt mapping function below creates vector information, indicating
broadcast and the received word count value. If an extended interrupt vector is
generated then, the need for the system to read the TSW or Command word
from the memory is removed; the interrupt vector provides sub-address, word
count data and an indication that the message was good. In this case the
WRTTSW and WRTCMD inputs can be tied low.

Q

Q
SET

CLR

D

L

Interrupt
Vector

Extender

CMDVAL
CLK1553

INTLAT

INTVECT
Extended
Interrupt
Vector
44

Modifying the Backend Interrupt Vector

core1553.book Page 45 Thursday, October 10, 2002 9:39 AM
Consider the Verilog Extended Interrupt vector generation example below:

module INTVECTEXTENDER (CLK, INTLAT, CMDVAL, INTVECT, MAPVECT);

 input CLK;
 input INTLAT;
 input[11:0] CMDVAL;
 input[6:0] INTVECT;
 output[12:0] MAPVECT;
 reg[12:0] MAPVECT;
 reg[11:0] CMDINT;

 always @(posedge CLK)
 begin
 if (INTLAT == 1'b1)
 CMDINT <= CMDVAL ;
 end

 always @(CMDINT or INTVECT)
 begin
 reg[4:0] SA;
 reg[4:0] WC;
 reg BCAST;
 reg TX;
 reg GBR;
 WC = CMDINT[4:0];
 BCAST = CMDINT[11];
 GBR = INTVECT[6];
 TX = INTVECT[5];
 SA = INTVECT[4:0];
 MAPVECT <= {GBR, BCAST, TX, SA, WC} ;
 end
45

Chapter 7: Implementation Hints

core1553.book Page 46 Thursday, October 10, 2002 9:39 AM
Or, if you are using VHDL, consider the VHDL Extended Interrupt
Generation function example code:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity INTVECTEXTENDER is
 port (CLK : in std_logic;
 INTLAT : in std_logic;
 CMDVAL : in std_logic_vector(11 downto 0);
 INTVECT : in std_logic_vector(6 downto 0);
 MAPVECT : out std_logic_vector(12 downto 0)
);
end INTVECTEXTENDER;

architecture RTL of INTVECTEXTENDER is
signal CMDINT : std_logic_vector(11 downto 0);
begin

process(CLK)
 begin
 if CLK'event and CLK='1' then
 if INTLAT='1' then
 CMDINT <= CMDVAL;
 end if;
 end if;
end process;

process(CMDINT,INTVECT)
variable SA : std_logic_vector(4 downto 0);
variable WC : std_logic_vector(4 downto 0);
variable BCAST : std_logic;
variable TX : std_logic;
variable GBR : std_logic;
begin
 WC := CMDINT(4 downto 0);
 BCAST := CMDINT(11);
 GBR := INTVECT(6);
 TX := INTVECT(5);
 SA := INTVECT(4 downto 0);
 MAPVECT <= GBR & BCAST & TX & SA & WC;
end process;

end RTL;
46

Connecting the Backend to Internal FPGA Memory

core1553.book Page 47 Thursday, October 10, 2002 9:39 AM
Connecting the Backend to Internal FPGA Memory
When implementing the core in ProASIC or Axcelerator devices you can
directly connect the core to the ProASIC or Axcelerator memory blocks. Use
two memory blocks (1Kx16 each - one for transmit and the other for receive
memory) as shown in Figure 7-3.

Figure 7-3. Using Internal FPGA RAM Modules

The core must be in Synchronous mode (ASYNCIF inactive (Low)). The
MEMGNTn input should be tied active (Low) and the MEMWAITn input
inactive (High). This allows the backend to have immediate access to the
memory blocks.

Buffer Management
The core implements basic buffer management techniques for the 1553B
message protocol; receive and transmit buffers are provided. This approach
requires the backend system to empty and fill the buffers promptly. For a
broadcast receive command, the core generates an interrupt, indicating that a
receive buffer is available as the last data word is written to memory. At the
same time, another receive command to the same sub-address could be on the

Actel FPGA

BUSAINEN
BUSAINP
BUSAINN

BUSAINH
BUSAOUTP
BUSAOUTN

BUSBINEN
BUSBINP

BUSBIN

BUSAINH
BUSBOUTP
BUSBOUTN

RX
Memory

Read
 Write

B
ac

ke
nd

In
te

rf
ac

e

Core1553BRT

C
om

m
an

d
Le

ga
lit

y
In

te
rf

ac
e

TX
Memory

Write
 Read

C
om

m
an

d
Le

ga
lit

y
C

he
ck

er
47

Chapter 7: Implementation Hints

core1553.book Page 48 Thursday, October 10, 2002 9:39 AM
bus, which causes the first word in the memory to be overwritten within 20µs,
depending on the backend request grant times. This time could be reduced to
less than 5µs if the backend delays the core’s access to the memory for the last
data word and allows immediate access for the first data word in the following
message.

The following implementation (Figure 7-4) implements an extra buffer level in
the backend. The core writes the received data to the small 32x16 memory
block. At the end of the transfer, the backend RX state machine captures the
TSW value, then bursts the complete receive packet into main memory. This
system enables the complete message to be copied to main memory, once
completely validated. It will stay intact in main memory until the complete
following message is received, at least 40µs.

Figure 7-4. Buffer Management Circuit

Buffer management techniques are system dependent and depend on the bus
traffic scheduling by the bus controllers. The Core1553BRT implementation is
intended to provide a flexible interface that can be adapted to the system
requirements.

BUSAINEN
BUSAINP
BUSAINN

BUSAINH
BUSAOUTP
BUSAOUTN

BUSBINEN
BUSBINP

BUSBIN

BUSAINH
BUSBOUTP
BUSBOUTN

RX
Buffer
32*16

Read
 Write

B
ac

ke
nd

In
te

rf
ac

e

Core1553BRT

TX
Memory
2K*16

Write
 Read

RX
State

Machine

C
o
m

m
an

d
Le

g
al

it
y

In
te

rf
ac

e

C
om

m
an

d
Le

ga
lit

y
C

he
ck

er
48

core1553.book Page 49 Thursday, October 10, 2002 9:39 AM
A
VHDL Testbench Procedure and Function Calls

Both the verification and VHDL user testbenches provided with the core
include some low-level support routines that you can use to verify your
1553BRT. These are available in the three packages that can be accessed by
adding the following four lines to your VHDL source code:

Library Core1553B;
use Core1553B.misc.all;
use Core1553B.textio.all;
use Core1553B.test1553b.all;

These routines make use of the following types that are also declared in these
packages:

subtype INT1BIT is integer range 0 to 1;
subtype INT5BIT is integer range 0 to 31;
subtype NIBBLE is std_logic_vector (3 downto 0);
subtype BYTE is std_logic_vector (7 downto 0);
subtype WORD is std_logic_vector (15 downto 0);
type BYTE_ARRAY is array (INTEGER range <>) of BYTE;
type WORD_ARRAY is array (INTEGER range <>) of WORD;
type PACKET is array (INTEGER range 0 to 31) of WORD;

The two record structures used in the encoder decoder module are:

type TQMSGREQ is
 record
RT : INT5BIT;
TX : INT1BIT;
SA : INT5BIT;
MCWC : INTEGER range 0 to 32;
RTRT : BOOLEAN;
RT2 : INT5BIT;
SA2 : INT5BIT;
DATA : PACKET;

end record;

type TQMSGOUT is
 record
OKAY : BOOLEAN;
COUNT : INTEGER;
CW1 : WORD;
CW2 : WORD;
SW1 : WORD;
SW2 : WORD;
DATA : PACKET;

end record;
49

Appendix A: VHDL Testbench Procedure and Function Calls

core1553.book Page 50 Thursday, October 10, 2002 9:39 AM
The following type conversion routines are provided to convert between
integers, std_logic and Boolean types:

function to_slv1bit(x: INT1BIT) return std_logic_vector;
function to_sl1bit(x: INT1BIT) return std_logic;
function to_slv5bit(x: INT5BIT) return std_logic_vector;
function to_int1bit(x: boolean) return INT1BIT;
function to_int1bit(x: std_logic) return INT1BIT;
function to_int1bit(x: std_logic_vector) return INT1BIT;
function to_int5bit(x: std_logic_vector) return INT5BIT;
function to_byte (x : INTEGER) return BYTE;
function to_word (x : INTEGER) return WORD;

The following function call is provided to create data patterns. This returns a
data packet whose first value is set to the seed value and the subsequent values
are incremented by the delta value. If the delta value is zero then all values are
the same. For example:

function initdata(SEED : INTEGER; DELTA : INTEGER) return PACKET;

A procedure is provided that compares data packets and displays the error
when the compare fails. For example:

procedure ComparePacket(STR : STRING;
EXP : Packet;
GOT : Packet;
LEN : Integer;
ERRCNT : inout INTEGER);

The first parameter is a text string that is printed when a failure occurs; the
second parameter is the expected data and the third parameter the actual data.
The fourth parameter indicates how many of the words are to be compared
(the packet contains 32 words). Finally, the fifth parameter is a global error
counter that is incremented if a compare fails.

A procedure is provided that displays the received message record structure.
This procedure requires both the message request and output record structures
so that it can format the printed data correctly. For example:

procedure print_msgout(QMSG : TQMSGREQ; Q : TQMSGOUT);

To support general printing, a printf routine is provided, which supports
printing std_logic, boolean, integer, and std_logic_vector types. The syntax is
slightly different than the c-language ‘printf ’ function. For example:
50

core1553.book Page 51 Thursday, October 10, 2002 9:39 AM
printf("Hello World Decimal %d Hex %x Hex4 %04x Bits %04b A
string %s",

fmt(256)&fmt(WORD)&fmt(WORD)&fmt(NIBBLE)&fmt(STRING));

prints "Hello World Decimal 256 Hex 100 Hex4 0100 Bits 1010 A string
thestring”.
51

core1553.book Page 52 Thursday, October 10, 2002 9:39 AM

core1553.book Page 53 Thursday, October 10, 2002 9:39 AM
B
Product Support

Actel backs its products with various support services including Customer
Service, a Customer Applications Center, a web site, an FTP site, electronic
mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Actel U.S. Toll-Free Line
Use the Actel toll-free line to contact Actel for sales information, technical
support, requests for literature about Actel and Actel products, Customer
Service, investor information, and using the Action Facts service.

The Actel toll-free line is (888) 99-ACTEL.

Customer Service
Contact Customer Service for nontechnical product support, such as product
pricing, product upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call (408) 522-4480.
From Southeast and Southwest U.S.A., call (408) 522-4480.
From South Central U.S.A., call (408) 522-4434.
From Northwest U.S.A., call (408) 522-4434.
From Canada, call (408) 522-4480.
From Europe, call (408) 522-4252 or +44 (0) 1256 305600.
From Japan, call (408) 522-4743.
From the rest of the world, call (408) 522-4743.
Fax, from anywhere in the world (408) 522-8044.
53

Appendix B: Product Support

core1553.book Page 54 Thursday, October 10, 2002 9:39 AM
Customer Applications Center
Actel staffs its Customer Applications Center with highly skilled engineers who
can help answer your hardware, software, and design questions. The
Applications Center spends a great deal of time creating application notes and
answers to FAQs. So, before you contact us, please visit our online resources. It
is very likely we have already answered your question(s).

Guru Automated Technical Support
Guru is a web-based automated technical support system accessible through
the Actel home page (http://www.actel.com/guru/). Guru provides
answers to technical questions about Actel products. Many answers include
diagrams, illustrations, and links to other resources on the Actel web site. Guru
is available 24 hours a day, seven days a week.

Web Site
Actel has a World Wide Web home page where you can browse a variety of
technical and nontechnical information. Use a Net browser (Netscape
recommended) to access Actel’s home page.

The URL is http://www.actel.com. You are welcome to share the resources
provided on the Internet.

Please visit the Intellectual Property portion of our web site. It lists supported
cores, documention, and development boards for use with these cores.

There is also a Technical Documentation area on our website that contains
information regarding products, technical services, current manuals, and release
notes.

You can visit the Product Support area of the Actel website from your Designer
software. Click the Product Support button in your Designer Main Window to
access the latest datasheets, application notes, and more.
54

FTP Site

core1553.book Page 55 Thursday, October 10, 2002 9:39 AM
FTP Site
Actel has an anonymous FTP site located at ftp://ftp.actel.com. Here you
can obtain library updates, software patches, design files, and data sheets.

Contacting the Customer Applications Center
Highly skilled engineers staff the Customer Applications Center from 7:30 A.M.
to 5:00 P.M., Pacific Time, Monday through Friday. Several ways of contacting
the Center follow:

Electronic Mail You can communicate your technical questions to our e-mail address and
receive answers back by e-mail, fax, or phone. Also, if you have design
problems, you can e-mail your design files to receive assistance. We constantly
monitor the e-mail account throughout the day. When sending your request to
us, please be sure to include your full name, company name, and your contact
information for efficient processing of your request.

The technical support e-mail address is tech@actel.com.

Telephone Our Technical Message Center answers all calls. The center retrieves
information, such as your name, company name, phone number and your
question, and then issues a case number. The Center then forwards the
information to a queue where the first available application engineer receives
the data and returns your call. The phone hours are from 7:30 A.M. to 5:00 A.M.,
Pacific Time, Monday through Friday.

The Customer Applications Center number is (800) 262-1060.

European customers can call +44 (0) 1256 305600.
55

Appendix B: Product Support

core1553.book Page 56 Thursday, October 10, 2002 9:39 AM
Worldwide Sales Offices

Headquarters
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
Toll Free: 888.99.ACTEL
Tel: 408.739.1010
Fax: 408.739.1540

US Sales
Offices

California

Bay Area
Tel: 408.328.2200
Fax: 408.328.2358

Irvine
Tel: 949.727.0470
Fax: 949.727.0476

Newbury Park
Tel: 805.375.5769
Fax: 805.375.5749

Colorado

Tel: 303.420.4335
Fax: 303.420.4336

Florida

Tel: 407.977.6846
Fax: 407.977.6847

Georgia

Tel: 770.277.4980
Fax: 770.277.5896

Illinois

Tel: 847.259.1501
Fax: 847.259.1575

Massachusetts

Tel: 978.244.3800
Fax: 978.244.3820

Minnesota

Tel: 651.917.9116
Fax: 651.917.9114

New Jersey

Tel: 609.517.0304

North Carolina

Tel: 919.654.4529
Fax: 919.674.0055

Pennsylvania

Tel: 215.830.1458
Fax: 215.706.0680

Texas

Tel: 972.235.8944
Fax: 972.235.965

International Sales
Offices

Canada
235 Stafford Rd. West,
Suite 106
Nepean, Ontario K2H 9C1
Tel: 613.726.7575
Fax: 613.726.8666

France
Actel Europe S.A.R.L.
361 Avenue General de Gaulle
92147 Clamart Cedex
Tel: +33 (0)1.40.83.11.00
Fax: +33 (0)1.40.94.11.04

Germany
Lohweg 27
85375 Neufahrn
Tel: +49 (0)8165.9584.0
Fax: +49 (0)8165.9584.1

Italy
Via de Garibaldini, No. 5
20019 Settimo Milanese,
Milano, Italy

Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150
Tel: +81 (0)3.3445.7671
Fax: +81 (0)3.3445.7668

Korea
30th Floor, ASEM Tower,
159-1 Samsung-dong,
Kangam-ku,
Seoul, Korea
Tel: +82.2.6001.3382
Fax: +82.2.6001.3030

United Kingdom
Maxfli Court,
Riverside Way
Camberley,
Surrey GU15 3YL

Tel: +44 (0)1276.401452
Fax: +44 (0)1276.401490
56

	User Guide
	Core1553 BRT
	Core1553BRT
	User Guide

	Actel Corporation, Sunnyvale, CA 94086
	Introduction
	Document Organization

	Running Simulation
	Verification Environment

	Running Synthesis
	Synthesis for Netlists
	Synthesis for RTL

	Running Layout
	Verification Testbench
	Interactive Operation
	Verification Tests

	VHDL Testbench
	Using the VHDL QTBEncDec Module

	Verilog Testbench
	Using the Verilog QTBENCDEC Module

	Implementation Hints
	External Command Word Legality Example
	Modifying the Backend Address Map
	Modifying the Backend Interrupt Vector
	Connecting the Backend to Internal FPGA Memory
	Buffer Management

	VHDL Testbench Procedure and Function Calls
	Product Support

	Actel U.S. Toll-Free Line
	Customer Service
	Customer Applications Center
	Guru Automated Technical Support
	Web Site
	FTP Site
	Contacting the Customer Applications Center
	Electronic Mail
	Telephone

	Worldwide Sales Offices
	Headquarters
	US Sales Offices
	International Sales Offices

