
CorePCI 5.32 Release Notes

This document describes the new features and enhancements in the
CorePCI5.32 release. CorePCI5.32 is a patch release that MUST be installed on
top of the CorePCI5.3 or CorePCI5.31 release; it provides a complete new set
of VHDL source files that resolve four key issues.

1. PCI compliance relating to FRAME de-assertion when STOP is asserted by
a target while the core is in carrying out master transfers.

2. The number of logic levels on the PCI inputs has been reduced to allow the
place and route to easily meet the PCI setup requirements. This change is
recommended to meet PCI timing for master functions in the RTSX-S
family.

3. A second release structure is included to allow the core to be easily loaded
into the Libero Environment.

4. A simplified user testbench is provided to reduce simulation run times
within the Libero Environment.

WARNING: This patch only updates the VHDL source files;
customers using Verilog source code should contact Actel
customer support.

Installation Instructions
You must install the CorePCI5.3 or CorePCI5.31 release before installing the
CorePCI5.32 patch release. The CorePCI5.3 software and installation
instructions are included on the CorePCI5.32 CD.

If you have already installed the CorePCI5.3 or CorePCI 5.31 software, you are
ready to proceed with the installation of CorePCI5.32. To do so:

1. Copy the CorePCI5.32 update zip file from the CorePCI5.32
CD or electronic delivery (ftp or email) to a temporary
location on the hard disk and unzip the files.

2. In the CorePCI5.3/vhdl directory rename the src directory to
src_old.

3. In the CorePCI5.3/vhdl directory rename the wrappers
directory to wrappers_old.
519-00019-1 1 4 June, 2003

4. In the CorePCI5.3 directory rename the tbench directory to
tbench_old.

5. Copy the unzipped vhdl/src directory to
CorePCI5.3/vhdl/src.

6. Copy the unzipped vhdl/wrappers directory to
CorePCI5.3/vhdl/wrappers.

7. Copy the unzipped tbench directory to CorePCI5.3/tbench

8. Copy the unzipped Libero directory to CorePCI5.3/Libero

Other Changes
Required

CorePCI5.32 uses an additional low-level library file cm8dxe.vhd. The
Synplicity project files must be updated manually to add this file to the synthesis
project.

You have now updated the vhdl/src, vhdl/wrappers and tbench directories to the
5.32 release. You can now perform simulation and synthesis using the new
VHDL files (as described in the CorePCI5.3 Users Guide).

Supported Tool Flows
Use Libero 2.3-SP2 or Designer R1-2003 SP2 (or later) with the CorePCI5.32
release.

Resolved Issues
Table 1 lists all the updates and fixes for the CorePCI5.32 software release.

Table 1. Software Action Requests (SARs) Resolved in the CorePCI5.32 Release

SAR No Description

23711 lib_xxx directories are inconsistent

24027 Target/Master Fails timing in Designer R1-2003

24542 Core does not disconnect at Memory (BAR) Boundaries
4 June, 2003 2 519-00019-1

Known Issues
Table 2 lists unresolved SARs in the CorePCI5.32 release.

25059 PCI Circuitry can fail when GRANT removed for a single cycle (Illegal)

25061 No reset on the signal IRDYND1 in ad_phase64.vhd

25139 If a PCI target ends in an illegal way the core may carry on driving the
bus

25466 tdma64 non SDRAM wrapper is incorrect

25582 Wrapper files have missing ports on internal blocks

25960 Latency Timer violates the PCI Specification

26030 BE_REQ input is not honored whilst PCI bus is busy to other devices

27141 Need to create Libero data structures in the release

27143 Core violates STOP to FRAME de-assertion specification

27956 Code uses inefficient if else-if structures in configuration logic

28369 Watchdog not reset if a disconnect after 7-cycles occurs

28370 PCI input signals have to many logic levels for RTSX silicon

28390 PCI core testbench to have a resolution of 1ps. (LiberoSP2 Compatibil-
ity)

Table 1. Software Action Requests (SARs) Resolved in the CorePCI5.32 Release (Continued)

SAR No Description

Table 2. Unresolved Software Action Requests (SARs) in the CorePCI5.32 Release

SAR No Description

12131 The verilog_setup.do script for MTI does not work on PC
519-00019-1 3 4 June, 2003

SAR24964 is a PCI compliance issue, and only effects 64 bit versions of the
core when plugged into 32 bit PCI buses. All other issues relate either to the
Verilog source files (not provided with this patch), pin location files (not
provided with this patch), are enhancements to the simulation environment, or
are corrections to the full release structure.

Important Notes
Timing Driven layout - Clock to Out timing fails after layout

Occasionally the core fails to meet the PCI clock-to-output delays. The
constraints provided in the user guide do not take into account that the enables
for the I/O buffers enable the buffers and clock cycle early and therefore the
path is non-critical. If the Timer shows the clock-to-out timing failing through
the I/O pad ENABLE pin then disable the path. The turnoff time is also non-
critical since the PCI bus allows a complete clock cycle for the bus turnaround
cycle.

12160 SX32A-BG329 with JTAG pins restricted causes an error with the pin
file

22631 APA FG456 Pin out, INTAN at wrong end of device

24553 MTI scripts do not compile the non DMA wrappers

24755 Pin definitions for A54SXA devices should be upward compatible to
SX72A

24964 64 bit cores do not operate correctly when plugged into 32 bit buses

25205 Users Guide should mention the break set on the pad enable pins

27825 RTSXS Implementations can violate PCI hold times

28076 Disconnect occurs instead of target abort when ERROR asserted for a
single clock cycle

Table 2. Unresolved Software Action Requests (SARs) in the CorePCI5.32 Release

SAR No Description
4 June, 2003 4 519-00019-1

In the Timer GUI go to the Breaks tab and select Global Stops. In the Filter
box type “*PAD*:E” and click Set, followed by Select All and then Add. This
adds all the I/O pad enable pins to the breaks, allowing the Timer to ignore the
timing through the I/O pad enable pins.

SAR24542: Core does not disconnect at Memory (BAR)
Boundaries

The core maintains the previous non-compliant behavior and does not
disconnect at memory boundaries. However, if the EN_BAR_OVERFLOW
constant in ADD_PHASE.VHD (line 111) is changed to '1' the core becomes
PCI complaint and disconnect at memory boundaries. When enabled the core
may also disconnect at address locations within 4 dwords of the actual address
boundary (this may lower the PCI bus throughput).

SAR24976: Testbench clocking may cause non-SDF netlist
simulation to fail

If you perform gate-level simulations then you must back-annotate SDF timing
onto the netlist or the simulation will fail (due to clock skew within the
testbench).

SAR24964: 64 Bit Cores

The core does not support 32 bit operations when in 64-bit mode. If a 32-bit
cycle is carried out then the core treats it as 64-bit operation, even though no
data is provided on the upper 32 data bits. This implies that a 64-bit core should
be used only in systems that are known to operate exclusively in 64-bit mode.

SAR28390: PCI testbench to have a resolution of 1ps. (LiberoSP2
Compatibility)

The testbench generates an internal clock that is delayed to match the delay on
the clock buffer that is instantiated in the core. In the Verilog and Vital libraries
before Libero2.3SP2 this delay was set to 1 ns for all supported families. In
Libero 2.3SP2 this delay was changed to 0.1 ns for the SX-A, APA and AX
families. The testbench is now set to 0.1 ns to match these families. If the SX or
A500K families are being used then this delay needs to change back to 1 ns.
This can easily be accomplished by changing the generic DELAY1 in
system32.vhd or system64.vhd to TRUE.
519-00019-1 5 4 June, 2003

SAR27825: RTSXS Implementations can violate hold times

When implemented in RTSXS devices the core may violate the PCI hold times
(0 ns), in particular on the AD inputs. This can be resolved by inserting BUFD
cells between the I/O pads and the AD registers either in the RTL code or gate
level netlists. Alternatively, this can also be corrected by moving the registers
away from the I/O pad post layout using the chip edit tool within Designer.
Increasing the delay from PAD to register will remove the hold violations.

Note: To verify the external setup and hold times the Timer Report in
Tools->Reports->Timer can be used within Designer; the reported hold
times should be less than 0 ns.

Libero Support
The 5.32 release includes an additional release directory structured to allow the
Core to be easily implemented using the Libero environment.

Setting up a
Libero Project

1. Create a new Libero project

2. In the Libero File Manager pane import all the files in the
$corepci532/Libero/HDL_pack directory into the VHDL
Packages Files section

3. In the Libero File Manager pane import all the files in the
$corepci532/Libero/hdl_xxx directory into the HDL files
section. “xxx” should be SX-A, APA, RTSX-S or AX depending
on your target library

4. In the Libero File Manager pane import all the files in the
$corepci532/Libero/Stimulus directory into the Stimulus
Files section.

5. Using Windows Explorer copy the four files from
$corepci532/Libero/Simulation directory to the simulation
directory in the Libero project.

6. If necessary, edit the simulation scripts copied in the
previous step. Instructions are provided in the script files describing the
simple edits that are required. The compile.do file is set up for 32 bit cores
using the SX, SX-A, RTSXS & AX families. For 64 bit cores and other
4 June, 2003 6 519-00019-1

FPGA families this file needs to be edited. The run.do script is set up for
SX-A, APA, RTSXS, and AX families, for other families this needs to be
edited.

7. Alter the Libero Simulation Options in
Tools->Options->Simulation, disable the Use Automatic Do
File option.

Running the
Simulation

1. In the Libero Design Hierarchy pane set the design root as
required. For TDMA32_WRP, you should see 16 possible design roots,
the four variations of the core, 32 and 64 bit versions and additional
versions that include the SDRAM controller. (For simulation it does not
matter what the root is set to as long as it is set).

2. In the Libero Design Hierarchy pane select the design root
and right-click and select Run Pre-Synthesis Simulation. If a
pop-up window appears select Start Modelsim without loading stimulus
and click OK.

3. When the Modelsim window appears type “do compile.do”.
This compiles all the source files, no ERRORS or WARNING should
occur.

4. When the compilation finishes, type “do run.do”. This runs the
complete simulation.

Running
Synthesis

1. In the Libero Design Hierarchy pane set the design root as
required. For TDMA32_WRP, you should see 16 possible design roots,
the four variations of the core, 32 and 64 bit versions and additional
versions that include the SDRAM controller.

2. In the Libero Design Hierarchy pane select the design root
and right-click and select Synthesize. When Synplicity appears click
on RUN.
519-00019-1 7 4 June, 2003

Simplified Testbench
Included with the CorePCI5.32 release is a BETA version of a simplified
testbench. This testbench is not intended to verify core compliance against the
PCI specification but instead to provide an easy way for you to verify
integration of the core into the end system. The source for this testbench is
provided in the $corePCI532/Libero/BetaSim directory. To use this testbench,
follow the steps below.

Set up a Libero
Project

1. Create a new Libero project

2. In the Libero File Manager pane import all the files in the
$corepci532/Libero/HDL_pack directory into the VHDL
Packages Files section.

3. In the Libero File Manager pane import all the files in the
$corepci532/Libero/hdl_xxx directory into the HDL files
section. “xxx” should be SX-A, APA, RTSX-S or AX depending
on your target library. Remove all nine “*sdram*” files from
the Libero project.

4. In the Libero File Manager pane import all the files from the
$corepci532/Libero/BetaStimulus directory into the Stimulus
Files section

5. Using Windows Explorer copy the three files from
$corepci532/Libero/BetaSimulation directory to the
simulation directory in the Libero project.

6. If necessary, edit the simulation scripts copied in the
previous step. The compile.do file is set up for 32 bit cores using the SX,
SX-A, RTSX-S & AX families, for 64 bit cores and other FPGA families
this file needs to be edited. The run.do script is set up for SX-A, APA,
RTSX-S, and AX families, for other families this needs to be edited.
Instructions are provided in the script files describing the simple edits that
are required.

7. Alter the Libero Simulation Options in
Tools->Options->Simulation, disable the Use Automatic Do
File option.
4 June, 2003 8 519-00019-1

Run the
Simulation

1. In the Libero Design Hierarchy pane set the design root as
required. For TDMA32_WRP. (For simulation it does not matter what
the root is set to as long as it is set.)

2. In the Libero Design Hierarchy pane select the design root
and right click and select Run Pre-Synthesis Simulation. If a
pop-up window appears select Start Modelsim without loading stimulus
and click on OK.

3. When the Modelsim window appears type “do compile.do”.
This compiles all the source files, no ERRORS or WARNING should
occur.

4. When the compilation finishes, type “do run.do”. This runs the
complete simulation.

Updating from 5.21
The top-level generic types on the 5.3 and 5.31 core use INTEGER types,
previous versions (5.21 and earlier) used std_logic. The instantiation of the core
in your design needs to be updated. This change was made to make the code
compatible with Synopsys Design Compiler.
519-00019-1 9 4 June, 2003

	CorePCI 5.32 Release Notes
	Installation Instructions
	Supported Tool Flows
	Resolved Issues
	Known Issues
	Important Notes
	Libero Support
	Simplified Testbench
	Updating from 5.21

