
CorePCI Target, Master, and Master/Target
Version 5.3 User’s Guide

corepci.book Page i Tuesday, August 6, 2002 10:29 AM

For more information about Actel’s products, call 888-99-ACTEL
or visit our Web site at http://www.actel.com

Actel Corporation • 955 East Arques Avenue • Sunnyvale, CA USA 94086
U.S. Toll Free Line: 888-99-ACTEL • Customer Service: 408-739-1010 • Customer Service FAX: 408-522-8044
Customer Applications Center: 800-262-1060 • Customer Applications FAX: 408-739-1540

Actel Europe Ltd. • Daneshill House, Lutyens Close • Basingstoke, Hampshire RG24 8AG • United Kingdom
Tel: +44 (0)125-630-5600 • Fax: +44 (0)125-635-5420

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Toyko 150 • Japan
Tel: +81 (0)334-457-671 Fax: +81 (0)334-457-668 5029114-5

corepci.book Page ii Tuesday, August 6, 2002 10:29 AM

corepci.book Page iii Tuesday, August 6, 2002 10:29 AM
CorePCI Target, Master, and Master/Target
Version 5.3 User’s Guide

corepci.book Page iv Tuesday, August 6, 2002 10:29 AM
Actel Corporation, Sunnyvale, CA 94086
© 2002 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5029114-5

Release: August 2002

No part of this document may be copied or reproduced in any form or by
any means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims
any implied warranties of merchantability or fitness for a particular pur-
pose. Information in this document is subject to change without notice. Ac-
tel assumes no responsibility for any errors that may appear in this
document.

This document contains confidential proprietary information that is not to
be disclosed to any unauthorized person without prior written consent of
Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of
Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of
Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered
trademarks of their respective holders.
iv

corepci.book Page v Tuesday, August 6, 2002 10:29 AM
Table of Contents

Introduction . vii
Document Organization . vii
Document Assumptions . viii
Naming Conventions . ix
CorePCI Documentation . x
Actel Manuals . x

1 Macro and TestBench Descriptions 1
Macro Description . 1
VHDL Testbench Description . 6
Macro and testbench File Information 8

2 Design Flow . 15
Supported Design Flows . 15
Design Flow Overview . 15
Create Your Own CorePCI Application 17

3 Customizing . 21
General Configuration . 21
Configuration Registers . 22
Memory and I/O Address Space . 23
Target+DMA Settings . 24
Back-End Interface Data Flow Customizing 24

4 Behavioral Simulation . 27
Compiling a VITAL VHDL Library for ModelSim 27
Simulating the CorePCI Macros Using ModelSim 28

5 Synthesis . 31
General Synthesis Guidelines . 31
Synthesizing Using Synopsys . 31
Synthesizing Using Synplicity . 33
v

Table of Contents

corepci.book Page vi Tuesday, August 6, 2002 10:29 AM
6 Design Layout . 35
Compiling a PCImacro Using Designer 36
Assigning Pin Layout Constraints . 37
Design Layout. . 37
Compiling a Design Using Tcl Scripts 41

7 Static Timing Analysis . 43

A CorePCI 5.3 Testbench . 45
Hierarchy of Testbench. . 45
General Description of the Procedural Testbench 47
Testing an Application-Specific PCI Macro 56
Command Syntax . 58
Defined Types . 63

B Product Support . 69
Actel U.S. Toll-Free Line . 69
Customer Service . 69
Customer Applications Center . 70
Guru Automated Technical Support 70
Web Site. . 70
FTP Site . 70
Contacting the Customer Applications Center 71
Worldwide Sales Offices . 72
vi

corepci.book Page vii Tuesday, August 6, 2002 10:29 AM
Introduction

The CorePCI Target, Master, and Master/Target User’s Guide contains information
for the Actel CorePCI Target-Only, Master/Target and Master-Only macros.
This includes macros and associated testbench descriptions, a description of
the design flow, and associated information about customizing the macro. Also
included are procedures for simulating, synthesizing, placing-and-routing, and
performing static-timing analysis of the macros.

Use this guide in conjunction with the CorePCI Target, Master, and Master/Target
DataSheet. The DataSheet provides low-level details and functions of the
macros not covered in this guide and information about the capabilities and the
implementation of the macros.

Document Organization
The CorePCI Target, Master, and Master/Target User’s Guide contains the following
chapters:

Chapter 1 - Macro and TestBench Descriptions describes the
CorePCI macros, the HDL organization of the macros, and the testbench files
included with the them.

Chapter 2 - Design Flow describes the design flow for implementing the
CorePCI macros.

Chapter 3 - Customizing contains information about modifying the
CorePCI macros to meet specific design criteria.

Chapter 4 - Behavioral Simulation describes the procedure for
performing a behavioral simulation of the CorePCI.

Chapter 5 - Synthesis describes the procedure for synthesizing the
CorePCI macros.

Chapter 6 - Design Layout describes the procedure for implementing the
CorePCI macros using Designer.

Chapter 7 - Static Timing Analysis describes the procedure for
performing static-timing analysis of the CorePCI macros using the Designer
Embedded Timing tool. This chapter also includes a brief section regarding
where to find information about timing simulation.
vii

Introduction

corepci.book Page viii Tuesday, August 6, 2002 10:29 AM
Appendix A - CorePCI 5.3 Testbench provides an overview of Actel's
CorePCI testbench and a guide to modifying existing and building new
procedures. It describes the hierarchy of the testbench and provides the syntax
for a variety of procedures and functions.

Appendix B - Product Support provides information about contacting
Actel for customer and technical support.

Document Assumptions
This document assumes the following:

1. You have installed and are familiar with Actel’s Designer or Libero software.

2. You have installed your HDL-synthesis and simulation software.

3. You are familiar with the VHDL or Verilog hardware description
language.

4. You are familiar with UNIX workstations and operating systems or
PCs and Windows operating systems.
viii

Introduction

corepci.book Page ix Tuesday, August 6, 2002 10:29 AM
Naming Conventions
This document uses naming conventions to distinguish between the various
PCI functions, sizes, and targeted architectures as shown in Table 1:

For example, ‘targ32sdram’ means the macro can support functions of a 32-bit
Target-only PCI with an SDRAM interface. Other variables, such as <device>
and <package> refer to the target device and package of a specific FPGA
family.

The “$ALSDIR” variable used in this guide represents the Actel installation
directory. PC users should substitute the full path name of the Actel installation
directory for “$ALSDIR” when this variable appears throughout this guide.

Table 1.PCI Naming Conventions

Variable Value Description

<act_fam>

pa or a500k ProASIC A500K device family

apa ProASICPLUS APA device family

sx or 54sx A54SX device family

sxa or 54sxa A54SX-A device family

sxs or rtsxs RTSX-S device family

ax or axcelerator Axcelerator device family

<PCI-Macro>

targ Target-Only macro

tdma Target+DMA macro

tmst Master/Target macro

32 32-bit macro

mast Master-Only macro

64 64-bit macro

sdram PCI macro includes an SDRAM interface
ix

Introduction

corepci.book Page x Tuesday, August 6, 2002 10:29 AM
CorePCI Documentation
The CorePCI macros include a printed and online version of the CorePCI
Target, Master, and Master/Target User’s Guide, which contains information and
procedures for using the CorePCI Target-Only, Master/Target and Master-
Only macros. The guide is in PDF format on the CD-ROM in the “\doc”
directory. To view the online manual, you must have Adobe® Acrobat Reader®
installed. Actel provides Reader on the Designer CD-ROM.

Actel Manuals
Actel Designer software includes printed and online manuals. The online
manuals are in PDF format on the CD-ROM in the “/manuals” directory.
These manuals are also installed onto your system when you install the
Designer software. To view the online manuals, you must install Adobe®
Acrobat Reader® from the CD-ROM.

Designer includes the following manuals, which provide additional information
on designing Actel FPGAs:

Getting Started User’s Guide. This manual contains information for using the
Designer Series Development System software to create designs for, and
program, Actel devices.

Designer User’s Guide. This manual provides an introduction to the Designer
series software as well as an explanation of its tools and features.

PinEdit User’s Guide. This guide provides a detailed description of the PinEdit
tool in Designer. It includes cross-platform explanations of all the PinEdit
features.

ChipEdit User’s Guide. This guide provides a detailed description of the ChipEdit
tool in Designer. It includes a detailed explanation of the ChipEdit
functionality.

Timer User’s Guide. This guide provides a detailed description of the Timer tool
in Designer. It includes a detailed explanation of the Timer functionality.

SmartPower User’s Guide. This guide provides a detailed description of using the
SmartPower tool to perform power analysis.
x

Introduction

corepci.book Page xi Tuesday, August 6, 2002 10:29 AM
A Guide to ACTgen Macros. This Guide provides descriptions of macros that can
be generated using the Actel ACTgen Macro Builder software.

Actel HDL Coding Style Guide. This guide provides preferred coding styles for
the Actel architecture and information about optimizing your HDL code for
Actel devices.

Silicon Expert User’s Guide. This guide contains information to assist designers in
the use of Actel’s Silicon Expert tool.

Synopsys®Synthesis Methodology Guide. This guide contains preferred HDL coding
styles and information to assist designers in the design of Actel devices using
Synopsys CAE software and the Designer Series software.

VHDL Vital Simulation Guide. This guide contains information to assist
designers in simulating Actel designs using a Vital compliant VHDL simulator.

Verilog Simulation Guide. This guide contains information to assist designers in
simulating Actel designs using a Verilog simulator.

Silicon Sculptor User’s Guide. This guide contains information about how to
program Actel devices using the Silicon Sculptor software and device
programmer.

Flash Pro User’s Guide. This guide contains information about how to program
Actel ProASIC and ProASIC PLUS devices using the Flash Pro software and
device programmer.

Silicon Explorer II. This guide contains information about connecting the Silicon
Explorer diagnostic tool and using it to perform system verification.

Macro Library Guide. This guide provides descriptions of Actel library elements
for Actel device families. Symbols, truth tables, and module count are included
for all macros.

ProASICPLUS Macro Library Guide. This guide provides descriptions of Actel
library elements for Actel ProASIC and ProASICPLUS device families. Symbols,
truth tables, and tile usage are included for all macros.
xi

corepci.book Page xii Tuesday, August 6, 2002 10:29 AM

corepci.book Page 1 Tuesday, August 6, 2002 10:29 AM
1
Macro and TestBench Descriptions

This chapter contains a description of the CorePCI macros and
associated testbenches.

Macro Description
This guide provides information regarding nomenclature, file
organization, file description, and the use of the CorePCI product in
various design flows. There are also instructions on simulation,
synthesis, layout, and timing verification. The document includes some
technical information about macros, but the primary source for macro
information is the CorePCI datasheet.

Product
Organization

The CorePCI product consists of three basic components:

1. The CorePCI VHDL macro

2. The CorePCI Verilog macro

3. The testbench used to verify functionality

The VHDL (Verilog) macro is located in the “\vhdl\src (\verilog\src)”
and the “\vhdl\wrapper (\verilog\wrapper)” subdirectories.

The "src" files define the master and target functionality of the macro.

The "wrapper" files define the top- or chip-level of the macro and
instantiate the master function, the target function, and the back-end
function.
1

Chapter 1: Macro and TestBench Descriptions

corepci.book Page 2 Tuesday, August 6, 2002 10:29 AM
The testbench files are in the “\tbench\vhdl” subdirectory. Figure 1-1
illustrates the complete file organization for the CorePCI macro.

Figure 1-1. File Organization for the CorePCI Macro

In Figure 1-1, <act_fam> is one of the 54SX (SX), 54SX-A (SXA), RTSX-S
(SXS), Axcelerator (AX), A500K (PA), or APA (APA) device familiy.

DOC (Documentation)

SCRIPTS

PCI.scr (Generic Synopys synthesis script)

PCI_timing_spec.scr (Generic PCI timing for Synopsys Synthesis)

TBENCH (Test-Bench Source and Simulation Scripts)

VHDL (Test-Bench Source)

MTI_SX (ModelSim Scripts for A54SX)

MTI_PA (ModelSim Scripts for A500K)

MTI_APA (ModelSim Scripts for APA)

MTI_AX (ModelSim Scripts for Axcelerator)

VHDL (VHDL Source, Synthesis Scripts, and Constraint Information)

SRC (CorePCI Source Files)

TDMA (Source Files Specific to DMA Functions)

MASTER (Source Files Specific to Master-only Function)

LIB_SX (Low-Level Structural Blocks for A54SX)

LIB_SXA (Low-Level Structural Blocks for A54SX-A)

LIB_RTL (RTL Equivalents for Structural Blocks)

SDRAM (Source for PCI Specific SDRAM Controller)

MTI_SXA (ModelSim Scripts for A54SX-A)

WRAPPER (Chip-Level Source Files)

SYNOPSYS (Synthesis using Synopsys)

<act_fam> (Actel Device Family)

<PCImacro> (PCImacro Synthesis Scripts)

SYNPLICITY (Synthesis Using Synplify)

VERILOG (Verilog Source, Synthesis Scripts, and Constraint Information)

LIB_AX (Low-Level Structural Blocks for Axcelerator)

LIB_PA (Low-Level Structural Blocks for A500K)

LIB_APA (Low-Level Structural Blocks for APA)

CorePCI5.3

<device>_<package> (Targeted Actel Post-layout Files)

<act_fam> (Actel Device Family)

<PCImacro> (PCImacro Synthesis Scripts)

<device>_<package> (Targeted Actel Post-layout Files)
2

Macro Description

corepci.book Page 3 Tuesday, August 6, 2002 10:29 AM
PCI Functions There are 14 wrapper files that define the various CorePCI functions.
The naming conventions are as follows:

The following four-character prefixes define the function types of the
"wrapper" files: "targ," "tdma," "tmst," and "mast" (defined in Table 1-1).

The PCI target function is defined in the "target64" module and the PCI
master function is defined in the "dma" module.

All wrappers instantiate the "target64" module and all but the "targ"
instantiate the "dma" module.

The 32/64 value in the "wrapper" name defines the width of the PCI
and back-end data bus.

Finally, the "sdram" wrappers are examples of complete CorePCI
applications and include an SDRAM ("sdramctrl”) and SSRAM
controller. These wrappers are used in the testbench to verify the function of
the macro.

The generic wrapper (i.e., no SDRAM) is the bare macro with no
application-specific back end. You can use either type of wrapper as a
starting point for your application-specific design.

Table 1-1. PCI “Wrapper” Functions

Prefix
Function

Name
Description

targ Target-Only Strictly acts as target (i.e., slave) on the PCI
bus.

tdma Target+DMA

Can behave as either a target or initiator.
The registers that control the initiator (i.e.,
master) functions are only accessible from
the PCI bus via either I/O or configuration
commands.

tmst Target+Master

Can behave as either a target or initiator.
The registers that control the initiator (i.e.,
master) functions are only accessible from
the back-end bus.
3

Chapter 1: Macro and TestBench Descriptions

corepci.book Page 4 Tuesday, August 6, 2002 10:29 AM
For example:

• The "targ64sdram_wrp" file is a 64-bit Target-Only macro that includes an
SDRAM and SSRAM controller. This file is used in the testbench for
functional verification.

• The "tmst32_wrp" is a 32-bit Target+Master macro with the PCI and
generic back-end signals pinned out.

The complete list of chip-level wrapper files is as follows:

The source files for the "target64" component are in the “\vhdl\src”
and “\verilog\src” subdirectories. The source files for the "dma"
component are in the “\vhdl\src\tdma (\verilog\src\tdma)” subdirectory.
Low-level, family-specific components are defined in the “\lib_sx, \lib_sxa,
\lib_ax, \lib_pa,” and “\lib_rtl” subdirectories. Note that the RTSX-S
implementation uses the same subdirectories as the SX.

Synthesis
Scripts

A variety of sythesis scripts are also included to simplify using CorePCI.
They use the naming conventions in Table 1-1.

mast Master-Only

Strictly acts as a master (i.e., initiator) on the
PCI bus. The registers that control the mas-
ter functions are only accessible from the
back-end bus.

targ32_wrp
tdma32_wrp
tmst32_wrp
targ64_wrp
tdma64_wrp
tmst64_wrp
mast32sdram_wrp

targ32sdram_wrp
tdma32sdram_wrp
tmst32sdram_wrp
mast64sdram_wrp
targ64sdram_wrp
tdma64sdram_wrp
tmst64sdram_wrp

Table 1-1. PCI “Wrapper” Functions

Prefix
Function

Name
Description
4

Macro Description

corepci.book Page 5 Tuesday, August 6, 2002 10:29 AM
Testbench The CorePCI testbench tests each of the functions using the "sdram" wrapper
files. The source for the testbench is in the “\tbench\vhdl” subdirectory. The
models for the SDRAM and SSRAM used by the testbench are in the
“\tbench\micron” subdirectory. A detailed description of the testbench is in
Appendix A.

HDL
Organization

The functional HDL models of the macros are written in generic VHDL
and Verilog and allow easy customization of the macro. Refer to the
CorePCI Target, Master, and Master/Target User’s Guide Datasheet for additional
information. Figure 1-2 on page 6 illustrates the organization of the CorePCI
model.

A top-level wrapper is used to merge the “target64,” “dma” (used for
Target+DMA and Master-Only), and the back-end control logic (for
example, an SDRAM controller). As illustrated, the “target64” is
composed of 6 functional blocks plus the “TARGPACK,” which is used
for setting the customization constants.

“Dataphase” and “add_phase64” provide state-machine control for the
CorePCI Target.

“Datapath” consists of the logic that steers data and address between
the PCI bus and the back end.

“Config” contains the configuration registers and “parity64” is
responsible for the generation and checking of parity.

“Addr_cntr64” loads and increments the address counter and
configuration pointer.

“Burst64” controls the flow of data between the PCI bus and the back
end.

For Target-Only functions, the “dma” module is not required. For
Master-Only, the “config” block in “target64” is not needed. For
Target+DMA and Master/Target macros, all modules are required.
5

Chapter 1: Macro and TestBench Descriptions

corepci.book Page 6 Tuesday, August 6, 2002 10:29 AM
Figure 1-2. CorePCI HDL Organization

VHDL Testbench Description
The PCI testbench consists of a master controller, a PCI monitor, an arbiter,
and devices under test. The master model is used for generating configuration
cycles and for performing basic read-and-write tests of the macro when
operating as a PCI target. The PCI monitor checks for and flags abnormal PCI
bus activity. The arbiter determines PCI bus ownership. You can use the
testbench for behavioral or timing simulation and modify the testbench to test
any custom functions added to the macros.

WRAPPER

Back-End Control
Logictarget64

datapath add_phase64

addr_cntr64

config parity64

TARGPACK

dma

burst64
6

VHDL Testbench Description

corepci.book Page 7 Tuesday, August 6, 2002 10:29 AM
Figure 1-3 illustrates the organization of the testbench.

Figure 1-3. Testbench Organization

When you first invoke the testbench, the master (mast_cfg64) does a
configuration cycle to PCI slots 1-6 to determine which slots are
occupied, which type of macro is used(Target-Only, Master/Target, or Master-
Only), and which base-address registers are enabled. The testbench then uses
this information to perform a variety of tests described in the following section.

The testbench master is a dynamic 32-bit or 64-bit master. The master always
attempts to run 64-bit transfers for memory-burst transactions; however, it
automatically defaults to a 32-bit transfer if the addressed device does not
respond with an ACK64n. All I/O and configuration cycles are 32-bit.

There are two basic configurations for the testbench included with the
CorePCI product:

The first configuration, the 32-bit test (system32), puts a 32-bit Target
macro in slots 2 and 3, a 32-bit Target+DMA macro in slot 4, a
Target+Master in slot 5, and a 32-bit master in slot 6.

The second configuration, the 64-bit test (system64), puts a 64-bit
Target macro in slots 2 and 3, a 64-bit Target+DMA macro in slots 4, a
64-bit Target+Master in slot 5, and a 64-bit master in slot 6.

 Target-Only
Controller

Arbiter

SDRAM/SRAM

PCI Bus

SDRAM/SRAM

 Master-Only
Controller

Master/Target
Controller

SDRAM/SRAM

PCI
Monitor

Master
+ Testbench

Controller
7

Chapter 1: Macro and TestBench Descriptions

corepci.book Page 8 Tuesday, August 6, 2002 10:29 AM
These configurations quickly test a variety of macro combinations. The
user is free to add or delete macros from the slots and the testbench should still
run correctly.

Macro and testbench File Information
The PCI macros and testbenches consist of a variety of files. This section
describes the files and the directory structure for the macros and testbenches.
The testbenches are designed to work with the directory structure that Actel
has created. Actel recommends that you maintain the directory and file
structure described in this section.

“\vhdl\src” and “\verilog\src” Directories

These directories contain the VHDL and Verilog source files and
directories with source files for the Target, Master and Target/Master
macros. The “target64,” “add_phase64,” “datapath,” “config,”
“addr_cntr64,” and “parity64” signals are generic to both the Target and
Master functions. The “targpacks” are custom for the various CorePCI
functions and are in the “\tdma”, “\master”, and “\target” subdirectories:

target/target64.vhd
target64.v

Top level of the Target macro that interconnects all the lower-
level blocks.

master/
master_target.vhd
master_target.v

This master_target file is equivalent to the target64 except that
the config module is eliminated. This module is only used in
Master-Only functions.

target/targpack.vhd
targpack.v

Customization package that contains user-configurable values to
set the address widths, PCI-configuration space values, etc.
File defining configuration space-ID-constant values.

add_cntr64.vhd
add_cntr64.v

Loads and increments the address counter and configuration
pointer.

add_phase64.vhd
add_phase64.v

Address phase state machine. This logic monitors the PCI bus
and determines if the device is being addressed.

datapath.vhd
datapath.v Main data path for the PCI macro.
8

Macro and testbench File Information

corepci.book Page 9 Tuesday, August 6, 2002 10:29 AM
“*\lib_pa; *\lib_apa; *\lib_sx; *\lib_sxa; *\lib_ax” Directories

Several low-level cells are available for each device family in the \vhdl or
\verilog directories. For example, the APA Verilog directory is
“\verilog\lib_apa”. These blocks are necessary because synthesis tools are
unable to meet PCI performance requirements using generic VHDL or Verilog
code. These blocks are shown in the following table

burst64.vhd
burst64.v

State machine that controls the flow of data between the back
end and the PCI bus.

config.vhd
config.v PCI-configuration register logic.

tdma/dma.vhd
dma.v

DMA master state machine that controls all DMA interactions
and direction.

tdma/dma_reg.vhd
dma_reg.v

DMA register information including the PCI Start Address, the
RAM (or back-end) Start Address, and the DMA Control regis-
ter.

parity64.vhd
parity64.v Parity generation and check logic.

cbe_par.vhd
cbe_par.v Parity generation logic.

cm8d.vhd
cm8d.v
cm8dp.vhd
cm8dp.vcm
cm8dx.vhd
cm8dx.v
dfe1b

Special multiplexed flip-flop. This function is
used extensively in the burst state machine to
help control setup for IRDYn and FRAMEn.

datapath_registers.vhd
datapath_registers.v

The data-path registers for the CorePCI macro.
This logic provides the data path between the
PCI bus and the back-end logic.
9

Chapter 1: Macro and TestBench Descriptions

corepci.book Page 10 Tuesday, August 6, 2002 10:29 AM
Note: Please refer to the release directory for the actual file list.

“\vhdl\src\sdram” or “\verilog\src\sdram” Directory

This directory contains the SDRAM back-end controller.

“\vhdl or verilog\synopsys” Directory

This directory contains Synopsys-related compilation files for the
CorePCI macro.

“\vhdl or verilog\synplicity” Directory

This directory contains Synplicity-related compilation files for the CorePCI
macro.

framen_buf Buffer for the framen input to help control setup on
framen

mustclock
targclock
tdmaclock

Clock buffers for the targeted family

mux4_8.vhd
mux4_8.v An 8-bit, 4:1 mux.

vhdl_macros32.do
vhdl_macros64.do

Scripts to compile the VHDL 32-bit or 64-bit CorePCI
macros. This includes the Target-Only, Master-Only,
Target+DMA, and Target/Master.

vhdl_setup.do Script to set up the library environment for VHDL
simulation

verilog_macros32.do
verilog_macros64.do

Scripts to compile the VHDL 32-bit or 64-bit CorePCI
macros. This includes the Target-Only, Master-Only,
Target+DMA, and Master/Target.

verilog_setup.do Script to set up the Verilog library environment and
compile the Verilog libraries.

comptb32.do Script to compile the 32-bit PCI test.
10

Macro and testbench File Information

corepci.book Page 11 Tuesday, August 6, 2002 10:29 AM
“\tbench\vhdl” Directory

This directory contains the HDL files for the testbench.

comptb64.do Script to compile the 64-bit PCI test.

run.do Script to run the testbench.

wave.do Top-level testbench ports for waveform display.

system32.vhd Top-level testbench containing the 32-bit PCI macro
instances.

system64.vhd Top-level testbench containing the 64-bit PCI macro
instances.

mast_cfg64.vhd 64-bit Master PCI model to initiate the tests, etc.

pci64_mon.vhd PCI bus monitor that detects basic protocol errors and
displays the PCI cycles.

arbiter.vhd Basic PCI bus arbiter allowing the multiple masters to
share the PCI bus.

misc.vhd Package of support procedures.

pci_pack.vhd Package of PCI formats and conversion functions.

mcfgpack.vhd Package of procedures to perform read-and-write
cycles.

components.vhd Package of top component definitions.

be_control.vhd Special testbench block used to control back-end signals like
the interrupt, ready, and error signals.

io_block.vhd 32-bit SRAM used in the testbench to exercise the base
address register 1 logic.

startup_pack.vhd Test routines to determine the existence and type of
macros present.
11

Chapter 1: Macro and TestBench Descriptions

corepci.book Page 12 Tuesday, August 6, 2002 10:29 AM
Tests Carried
Out

The testbench tests basic PCI configuration reads, configuration writes,
memory reads, memory writes, and DMA transfers. The top-level module of
the testbench is called “system.” Two “target” or “targdma” macros are
instantiated in the testbench with instance names SLOT2, and SLOT3 for
“target” or SLOT4, and SLOT5 for “targdma.” Each “target” or “targdma” has
an SDRAM mapped to base-address register 0 and an SRAM module mapped
to base-address register 1 on the back end. The following is a list of functions
the current version of the testbench simulates. Detailed information on tests is
provided in Appendix A.

Target-Only and Target+DMA Tests

1. The PCI configuration space is read and checked so that it matches the
expected values at reset.

2. The PCI macro is configured and reread to verify the configuration write
cycles.

3. The PCI configuration Command and Status register DWORD is written
and read using byte transfers to verify the byte-enable logic.

4. A simple burst-transfer write followed by read-transfer cycles are carried
out using zero-wait state-transfer modes.

5. A PCI cycle with an address-phase parity error is generated. The testbench
verifies that the target ignores the request and registers the parity error in its
status register.

sdram_mu.vhd Micron SDRAM model (located in the
“\tbench\micron\sdram” directory).

components32_wr
p.vhd
components64_wr
p.vhd

Component packages for the top-level CorePCI mac-
ros used in the testbench.

tests_t1.vhd Package of tests, mainly target based.

tests_t2.vhd Package of tests, mainly target based.

tests_t3.vhd Package of tests, complex DMA and Master tests.
12

Macro and testbench File Information

corepci.book Page 13 Tuesday, August 6, 2002 10:29 AM
6. Various read-and-write memory cycles are carried out with different burst
lengths and different master transfer rates (IRDYn inactive). All the data
writes are verified by rereading the test data that has pattern changes with
every cycle.

7. PCI I/O read-and-write cycles are carried out. The operation of the
I/O decode logic is tested.

8. The system-interrupt logic for the macro is tested. This test checks the
external interrupt-control bits in the DMA control register and checks to
verify that the EXT_INT pin will cause the PCI INTAn signal to become
active.

9. Read-and-write memory transfers are carried out with data-parity errors.
The PCI command and status configuration bits relating to parity are tested.

10. Multiple read-and-write transfers are carried out, with assorted burst
lengths with both master IRDYn and BE_RDY deassertions to verify that
no data corruption occurs.

11. Target abort test. The back end asserts the ERROR signal, which should
initiate a Target abort cycle on the PCI bus.

12. Target retry and disconnect without data test. For the retry test, the
BE_REQ signal is asserted prior to a transaction and gains control of the
back end. When a PCI cycle is run to the Target, a PCI retry cycle should
be performed. For the disconnect with data, a PCI burst transaction is
initiated. At some point, the RD_BE_RDY\WR_BE_RDY signals are
deasserted. The controller then times out (after 8 cycles) and performs a
PCI disconnect cycle.

Target+DMA Tests Only

1. A simple DMA master transfer between the two targets is carried out. Both
DMA read-and-write transfers are carried out.

2. DMA master transfers are started and at the same time the testbench polls
the DMA status registers within the macro. During this test, the macro is
simultaneously carrying out DMA cycles and having its status registers read.

3. Multiple DMA master transfers are carried out with various lengths to
verify that the correct numbers of DWORDS are transferred during a DMA
cycle. This test is carried out in zero-wait state-transfer mode.
13

Chapter 1: Macro and TestBench Descriptions

corepci.book Page 14 Tuesday, August 6, 2002 10:29 AM
4. DMA master transfer cycles are carried out with short bus-grant periods.
This causes the DMA master to stop the transfer and restart it. The target
macro in the transfer will also issue a target disconnect causing the DMA
transfer to stop. This test checks that the macro correctly restarts the DMA
transfer under these conditions. This test is carried out in zero-wait state-
transfer mode.

5. Two macros are set up to carry out simultaneous DMA transfers between
each other. During this test, each macro carries out DMA transfers while
the other macro performs target accesses to it. At the end of the test, the
data is checked to verify that no data corruption has occurred. This test is
carried out in zero-wait state-transfer mode.

Master-Only Tests

1. Configuration read-and-write cycles are tested.

2. Test I/O read-and-write cycles are tested.

3. Memory transfers of various lengths, including single-DWORD transfers
and bursts, are tested.

4. Target Retry and Disconnects are tested.

5. Target Abort are tested.
14

corepci.book Page 15 Tuesday, August 6, 2002 10:29 AM
2
Design Flow

This chapter describes the design flow for creating an Actel design using the
CorePCI macros. This includes information about supported design flows and
a design flow overview.

Supported Design Flows
Actel provides guidelines for using theCorePCI macros with the following:

• Model Technology V-System simulator 5.5e or later
• Synopsys FPGA Compiler 99.04 or later
• Synplicity Synplify 7.1a or later synthesis tool
• Designer Series Development System R1-2002 or later
The macros are VITAL 95 VHDL- and industry standard Verilog OVI-
compliant and should operate with any simulator that supports these standards.
However, Actel has only tested the macros with the previously mentioned tools.
Although other synthesis tools should work, Actel recommends using one of
the previously mentioned synthesis tools because performance results have not
been verified using other synthesis tools and may not meet the PCI
requirements.

Design Flow Overview
The design flow for generating a PCI-compliant Target-Only or Master/Target
Controller using synthesis and simulation tools and Designer has six main
steps:

1. Customizing

2. Behavioral Simulation

3. Synthesis

4. Design Layout

5. Static-Timing Analysis

6. Timing Simulation

These steps are described in the following sections.
15

Chapter 2: Design Flow

corepci.book Page 16 Tuesday, August 6, 2002 10:29 AM
Customizing The CorePCI macros have a variety of constants that help customize the macro
to meet a variety of needs. These constants are used to set memory and I/O
space sizes, as well as PCI-device ID information. The first step in the design
process is to understand these constants and to customize them to meet the
specific needs of an application. The constants are in the chip-level wrapper
files and the “targpack.vhd” or the “targpack.v” files.

Note: Actel highly recommends using the unmodified macro throughout the
various steps in the design flow prior to attempting any customizing.

Behavioral
Simulation

After you have customized the macro, you can simulate it to verify functionality
before you perform synthesis. If you find any problems, you can quickly
address them at the behavioral level and simulate the design again. Typically,
you use unit delays and include the test bench with the macro used to drive the
simulation.

If you use a test bench, you can automate the verification process. A test bench
is a behavioral design with built-in functions to provide stimulus to the DUT
(device under test) inputs and monitor the outputs. You can set up the test
bench to report any functional or timing errors that occur during simulation.
Refer to “Behavioral Simulation” on page 27 and the documentation included
with your simulation tool for information about performing behavioral
simulation.

Synthesis After customizing and performing a behavioral simulation of the macro, you
must synthesize it before placing-and-routing it in Designer. After synthesizing
the macro, you must generate an EDIF netlist for use in Designer. Refer to
“Synthesis” on page 31 and the documentation included with your synthesis
tool for information about generating an EDIF netlist.

Design Layout Use Designer to lay out all supported Actel devices for CorePCI designs. Make
sure to use GENERIC for the Edif flavor and VHDL or Verilog for the
Naming Style when importing the EDIF netlist into Designer. Refer to “Design
Layout” on page 35 and the Designer User’s Guide for information about using
Designer.
16

Create Your Own CorePCI Application

corepci.book Page 17 Tuesday, August 6, 2002 10:29 AM
Static-Timing
Analysis

Use the timer tool in Designer to perform static timing analysis on your design.
Refer to “Static Timing Analysis” on page 43 for information about using
Timer to perform static-timing analysis.

Timing
Simulation

Perform a timing simulation of your customized macro after placing-and-
routing it. Timing simulation is optional if you have performed static-timing
analysis. Timing simulation requires information extracted from Designer,
which overrides unit delays in the Actel libraries.

Create Your Own CorePCI Application
To create your own custom CorePCI application, perform the following steps:

1. Copy an existing wrapper file (“\vhdl\wrapper”) to a new file
name. You can begin with either an “sdram” wrapper or a generic
wrapper.

•For a Target application, begin with a “targ” wrapper
•For a Target+DMA, begin with a “tdma” wrapper
•For a Target+Master application, begin with a “tmst” wrapper
•For a Master application, begin with a “mast” wrapper

2. Set customization constants. Define the constants in the chip-level
wrapper (generics in VHDL and parameters in Verilog) and the “targpack”
file to meet the needs of your application.

3. Interface your application to the back-end interface
described in the datasheet. You can define the code in the
wrapper or in a separate component that is instantiated in
the wrapper.

4. Modify the port list in the wrapper to reflect the new back-
end application. PCI ports should not be altered.

Test Your
CorePCI
Application

Test the new application after you create it. You can test the new application
with the existing test bench or in a test bench you have created. Testing with the
existing test bench is covered in detail in Appendix A, “CorePCI 5.3
Testbench”. The following steps summarize the procedure.
17

Chapter 2: Design Flow

corepci.book Page 18 Tuesday, August 6, 2002 10:29 AM
1. Modify the top-level “system32.vhd” or “system64.vhd” file to
include your new chip-level wrapper and any external
devices the wrapper will connect to. You can add the wrapper into
a new slot (e.g., Slot #1) or modify an existing slot.

2. Create a component declaration for your application
wrapper in a package file. You can find existing declarations in the
“\tbench\vhdl” subdirectory under the “components32_wrp.vhd” or
“components64_wrp.vhd” files.

3. Modify the “vhdl_macros32,” “vhdl_macros64,”
“verilog_macros32,” or “verilog_macros64” to include your
new wrapper and any additional files required for
compilation.

4. Create the libraries (“vhdl_setup”).

5. Compile the macros (“vhdl_macros32”).

6. Compile the test bench (“comptb32”).

7. Run the simulator (run file).

The default test bench should be able to locate the new slot and will attempt to
run tests on the slot that are appropriate for the function. Tests are called from
the “mast_cfg64.vhd” file. You can delete existing tests and create and add new
tests. For more information on this step, refer to Appendix A, “CorePCI 5.3
Testbench”.

Synthesize Your
New CorePCI
Application

Copy a synthesis script of the same function type to a new name. Modify the
script to point to the correct targpack, new wrapper, and any additional files
required by the application. You do not need to compile the component
package created for simulation.

Layout Your
New
Application
and Verify
Timing

To layout your new application and verify timing, perform the following steps:

1. Open Designer

2. Import the netlist and set the device, package, and speed
grade.

3. Import the PCI pin definitions or constraints, if required.
18

Create Your Own CorePCI Application

corepci.book Page 19 Tuesday, August 6, 2002 10:29 AM
4. 66MHz designs will require constraints on CLK-OUT and the
Input Setup for TRDYn, IRDYn, and FRAMEn. You will then need
to run timing-driven layout. 33MHz does not require constraints and you
can run it in standard layout mode.

5. Verify Reg-Reg and CLK-OUT timing using Timer.

6. Verify input setup with Timer.
19

corepci.book Page 20 Tuesday, August 6, 2002 10:29 AM

corepci.book Page 21 Tuesday, August 6, 2002 10:29 AM
3
Customizing

This chapter describes in detail the customizing options for the CorePCI
macros. This includes information about configuration registers, memory
address space, I/O space, data-transfer options, user-interface options, and
back-end interface considerations.

The macros are written in generic VHDL and Verilog, allowing for flexibility
and quick modification of the macros. Several customization constants have
been defined to control the overall behavior of the macro. These constants are
defined in the “targpack” files and in the chip-level wrapper files. The constants
are defined in terms of parameters in Verilog.

General Configuration
This section describes the constants (described in the previous sections) and
their functions. The following two constants are defined in the chip-level
wrapper files.

MHz_66

When this constant is set to a “1”, the macro indicates that it is 66 MHz
capable, otherwise only 33 MHz is supported. The only impact of this constant
is to set bit 5 in the configuration status register.

BIT_64

When combined with the appropriate top-level wrapper, this constant creates
either a 32-bit or 64-bit PCI controller. For VHDL, when this constant is set to
a “1,” the macro runs in 64-bit data mode. Otherwise it runs in 32-bit data
mode. This is accomplished by a variety of VHDL-generate statements in
various parts of the code.

For Verilog, the same function is accomplished by either defining or not
defining the “BIT_64” constant. Correct selection of functions in the code is
then controlled by ifdef - else - endif statements.
21

Chapter 3: Customizing

corepci.book Page 22 Tuesday, August 6, 2002 10:29 AM
Configuration Registers
There are eight configuration-register constants that you can modify in the
macros. These constants are defined in the “targpack” file or the chip-level
wrapper file.

USER_DEVICE_ID

Setting the “USER_DEVICE_ID” constant to the desired value modifies the
“DEVICE-ID” (02H) configuration register.

USER_VENDOR_ID

Setting the “USER_VENDOR_ID” constant to the desired value modifies the
“VENDOR-ID” (00H) configuration register.

USER_REVISION_ID

Setting the “USER_REVISION_ID” constant to the desired value modifies
the “REVISION-ID” (08H) configuration register.

USER_BASE_CLASS

Setting the “USER_BASE_CLASS” constant to the desired value modifies the
“Class_Code” (08H) configuration register.

USER_SUB_CLASS

Setting the “USER_SUB_CLASS” constant to the desired value modifies the
“Class_Code” (08H) configuration register.

USER_PROGRAM_IF

Setting the “USER_PROGRAM_IF” constant to the desired value modifies
the “Class_Code” (08H) configuration register.

USER_SUBSYSTEM_ID

Setting the “USER_SUBSYSTEM_ID” constant to the desired value modifies
the “Subsystem_Id” (2CH) configuration register. You must set this constant to
comply with PCI Local Bus Specification 2.2 PCI Special Interest Group, PCI
Local Bus Specification v2.2 (Hillsboro, OR. PCISIG, 1999). For information on
how to obtain this specification, go to the PCI SIG web site
(http:\\www.pcisig.org).
22

Memory and I/O Address Space

corepci.book Page 23 Tuesday, August 6, 2002 10:29 AM
USER_SUBVENDOR_ID

Setting the “USER_SUBVENDOR_ID” constant to the desired value
modifies the “Subsystem_Vendor_Id” (2CH) configuration register. You must
set this constant to comply with PCI Local Bus Specification 2.2 (PCISIG).

HOT_SWAP_ENABLE

Setting this bit to a ‘1’b will implement the Hot Swap extended capability (at
address “80”h) and cause the Capability Pointer in configuration space to have
a value of ‘80’h.

Memory and I/O Address Space
This section describes constants for memory and I/O address space. The
following constants are defined in the “targpack” file or the top-level wrapper
file.

MADDR_WIDTH

The amount of memory-address space in base-address register 0 supported by
the macros is determined by the “MADDR_WIDTH” constant. This constant
determines the width of the address generated. The number of bits of Memory
Base Registers (defined by the configuration register at address 10h) that can be
written to is also controlled by “MADDR_WIDTH.”

BAR1_ENABLE

If a second base-address register is required, then this constant should be set to
a “1” and will be at address 14h in configuration space.

BAR1_IO_MEMORY

If “BAR1_ENABLE” is set to a “1,” then this constant defines the base
address to be an I/O (set to a “0”) or a memory (“1”).

BAR1_ADDR_WIDTH

The integer that defines the address space for the base-address register at 14h.

BAR1_PREFETCH

If the base address register is a memory, this bit defines whether or not the
memory is prefetchable.
23

Chapter 3: Customizing

corepci.book Page 24 Tuesday, August 6, 2002 10:29 AM
Target+DMA Settings
This section describes the Target+DMA settings. The settings can be modified
in the chip-level wrapper file.

DMA_IN_IO

There are three DMA registers that are associated with Target+DMA macros.
The user has the option of locating these registers in the configuration space at
40h, 44h, and 48h or in I/O space. For the I/O space option, the
“DMA_IN_IO” must be set to a “1.” For this case, a new base-address register
is defined in configuration space 18h and is defined to be I/O. It has a default
address space of 256 bytes and the registers are located at 40h, 44h, and 48h
within the space.

DMA_CNT_EN

In this revision of the CorePCI macro, you can, as an option, make the PCI
Start Address, RAM Start Address, and Transfer Count registers to be counters.
This feature allows the Master to terminate a cycle when it loses GNTn and
allows for incremental transfers. You can disable this feature for PCI macros
that perform single-DWORD or short bursts in order to save resources for
other functions.

Back-End Interface Data Flow Customizing
There are a variety of signals that control the flow of data between the PCI
controller and the back end. The “RDY” inputs inform the PCI controller that
the back end is prepared to transfer data. The “NOW” signals indicate that data
is being transferred during the cycle that the “NOW” signal is asserted. This is
true for all cases except during the initial start-up when the “pipe_full_cnt” is
nonzero. The back-end flow control is defined at the wrapper level of the PCI
macro.

rd_be_rdy

This input to the PCI macro is from the back-end memory controller and
indicates the back-end memory controllers’ readiness to service the PCI
controllers request for data.
24

Back-End Interface Data Flow Customizing

corepci.book Page 25 Tuesday, August 6, 2002 10:29 AM
rd_be_now

This output of the PCI macro informs the back-end memory controller that
data on the MEM_DATA bus will be read on the next rising clock edge.

wr_be_rdy

This signal is driven from the back end. It indicates that the back end is ready to
receive data.

wr_be_now

This signal is driven by the PCI macro to the back-end memory controller. It
tells the back-end memory controller that data on the MEM_DATA bus is
valid.

pipe_full_cnt[2:0]

In some cases, the back-end controller has a start-up latency and needs the
address incremented prior to data being available. This is true on any type of
read to a synchronous device (such as a synchronous SRAM). The
“pipe_full_cnt” indicates the number of increments that should be performed
prior to data being available. The PCI controller drives the “NOW” signals
during this period. However, “NOW” is read until after the number of cycles
defined by the “pipe_full_cnt” signal. The “pipe_full_cnt” should be defined
following the assertion of DP_START and should remain valid throughout the
cycle.
25

corepci.book Page 26 Tuesday, August 6, 2002 10:29 AM

corepci.book Page 27 Tuesday, August 6, 2002 10:29 AM
4
Behavioral Simulation

This chapter describes in detail the procedures for performing a behavioral
simulation of the CorePCI macros controller using the MTI V-System
simulator. Also included is information about compiling an Actel VITAL
VHDL library for use in simulation. Refer to the documentation included with
your simulation tool for additional information about performing behavioral
simulation.

Compiling a VITAL VHDL Library for ModelSim
To simulate the CorePCI macros targeted for the A54SX, A54SX-A, RTSX-S,
and Axcelerator device families, you must first compile the Actel VITAL
VHDL library. If you are targeting ProASIC devices, library primitive
compilation is not required and you may skip this section. The following steps
describe the compilation procedure:

1. Create a directory called “mti” in the “$ALSDIR\lib\vtl\95”
directory.

2. Invoke the V-System simulator.

3. Change to the “$ALSDIR\lib\vtl\95\mti” directory.

4. Create an Actel family library directory. Type the following
command at the prompt:

vlib <act_fam>

For example:

vlib a54sx

Possible choices for <act_fam> are a54sx, a54sxa, axcelerator (ax), a500k
and apa. Note that behavioral simulation for the RTSX-S utilizes the
A54SX-A library. Refer to Table 1 on page ix for more information.

5. Compile the Actel VITAL VHDL library. Type the following command
at the prompt:
vcom -work <act_fam> ..\<act_fam>.vhd

For example, to compile the 54SX library, type the following command:
vcom -work a54sx ..\54sx.vhd
27

Chapter 4: Behavioral Simulation

corepci.book Page 28 Tuesday, August 6, 2002 10:29 AM
Simulating the CorePCI Macros Using ModelSim
Use the following procedures to simulate the VHDL and Verilog versions of
the CorePCI macros.

VHDL Once you have compiled the VHDL library, compile the testbench and simulate
the PCI macro. The following steps describe the procedure:

Note: If you have to customize the macro, make sure you have modified the
customization constants before simulating the macro. Refer to
“Customizing” on page 21 for information about customizing the
macros.

1. Invoke the V-System simulator.

2. Change to one of the MTI directories under \tbench. These
directories contain the MTI script files for simulation. They are mti_sx,
mti_sxa, mti_apa, mti_pa, and mti_ax.

3. Create the “work” libraries. This step creates the required library
directories. Type the following command at the prompt:

do vhdl_setup.do

4. Map the Actel VITAL VHDL library to the family library
directory. Type the following command at the prompt:

vmap <act_fam> $ALSDIR\lib\vtl\95\mti\<act_fam>

For example, to map the 54SX library, type the following command:

vmap a54sx $ALSDIR\lib\vtl\95\mti\a54sx

5. Compile the macro and the testbench. Type one of the following
commands at the prompt:

do vhdl_macros32.do <32-bit macros>

or

do vhdl_macros64.do <64-bit macros>
28

Simulating the CorePCI Macros Using ModelSim

corepci.book Page 29 Tuesday, August 6, 2002 10:29 AM
6. Compile one of the following testbenches. Type one of the
following commands at the prompt:

do comptb32.do <32-bit testbench>

or

do comptb64.do <64-bit testbench>

7. Simulate the testbench. Type the following command at the prompt:

do run.do

8. Follow the menu options in the testbench.

Verilog The following steps describe the compilation of the testbench and the
simulation of the Verilog macro.

Note: If you have to customize the macro, make sure you have modified the
customization constants before simulating the macro. Refer to
“Customizing” on page 21 for information about customizing the
CorePCI macros.

1. Invoke the V-System simulator.

2. Change to one of the MTI directories under \tbench. These
directories contain the MTI script files for simulation. They are mti_sx,
mti_sxa, mti_apa, mti_pa, and mti_ax.

3. Create the ALSDIR variable. To correctly compile the Verilog A54SX
library, you must set the ALSDIR variable to point to the Actel Designer
root directory. Type the following command in the V-System simulator:

set ALSDIR <designer path>

4. Create the “work” libraries. This step creates the required library
directories and compiles the verilog library primitives. Type the following
commands at the prompt:

do verilog_setup.do

5. Add the “\verilog\src” directory. From the Compile menu, select the
Verilog Compile Options and include the “\verilog\src” and the
29

Chapter 4: Behavioral Simulation

corepci.book Page 30 Tuesday, August 6, 2002 10:29 AM
“\verilog\src\lib_<act_fam>” directories before accepting. This includes
the directory for the “targpack” file for compilation. When possible ensure
that the “targpack” file used in simulation is the same one that will be used
during synthesis. This prevents discrepancies in function between
simulation and hardware.

6. Compile the macro. Type the following commands at the prompt:

do verilog_macros32.do <32-bit macros>

or

do verilog_macros64.do <64-bit macros>

7. Compile one of the following testbenches. Type the following
command at the prompt:

do comptb32.do <32-bit testbench>

or

do comptb64.do <64-bit testbench>

8. Simulate the testbench. Type the following command at the prompt.

do run.do

9. Follow the menu options in the testbench.
30

corepci.book Page 31 Tuesday, August 6, 2002 10:29 AM
5
Synthesis

This chapter describes the procedures for synthesizing the CorePCI macros
using the Synopsys Design Compiler, Exemplar Leonardo Spectrum, or
Synplicity Synplify synthesis tool. Also included are guidelines to follow when
synthesizing the macros. Refer to the documentation included with your
synthesis tool for additional information about synthesizing a design.

General Synthesis Guidelines
The macros have been designed so that most synthesis tools can meet the PCI
design requirements. The challenge with synthesis is meeting the PCI setup
requirement of 3 ns, clock to out of 6 ns, and clock period of 15 ns for 66 MHz
PCI designs. To meet this requirement, you must use synthesis constraints.

Actel recommends placing the following constraints on the design during
synthesis. The instance names will vary with different tools.

• Clock period of 15 ns for 66 MHz and 30 ns for 33 MHz

• Constrain the input setup times for all PCI inputs to be 3 ns for 66 MHz and
7 ns for 33 MHz

• Constrain the output valid times for all PCI outputs to be 6 ns for 66 MHz
and 11 ns for 33 MHz. This is most important because these are the most
critical paths in the design.

• In VHDL synthesis, the “targpack” files are called out explicitly

• In Verilog synthesis, the “targpack” files are included and each synthesis tool
uses different search strategies to locate the included files

You need to ensure that your synthesis tool is using the correct “targpack.” To
prevent differences between implementation and model simulation, ensure that
the “targpack” used by synthesis and simulation are the same file.

Synthesizing Using Synopsys
This section describes the use of Design Compiler from Synopsys to synthesize
the CorePCI macro. A set of global variables are used to configure the CorePCI
macro for simulation and synthesis.
31

Chapter 5: Synthesis

corepci.book Page 32 Tuesday, August 6, 2002 10:29 AM
Synopsys
Synthesis
Directory
Structures

Synopsys scripts are provided with the PCI macros to enhance synthesis results.
These files can be found in the “vhdl\synopsys” or “verilog\synopsys”
directories. The Synopsys synthesis is organized using the directory structures
shown in Figure 5-1.

Figure 5-1. Synopsys Synthesis Directory Structure

Please refer to “PCI Naming Conventions” on page ix for possible choices for
<act_fam> and <PCImacro>. Refer to the Actel FPGA Package and Selector
Guide for choices for <device> and <package>. The synthesis scripts and
synthesized netlist (*.edn in EDIF format) are located in the <PCImacro>
directory. The main Synopsys script to invoke is called <PCImacro>.scr, and
the files under the <device>_<package> directory contain the post-layout
data.

To compile, perform the following steps:

1. Modify the parameters in the script file to compile the
appropriate design. There are several parameters that you must set to
compile the macro correctly. These include pci_width, pci_func, and
pci_frequency. Options for these variables are given next to their
declarations in the script file.

2. Verify that both “bit_64” and “maddr_width” customization
constants are set correctly.

3. Invoke Design Compiler.

4. Execute the script file.

synopsys

*.scr

*.edn

*.gcf

<act_fam>

<PCImacro>

<device>_<package>

VHDL
32

Synthesizing Using Synplicity

corepci.book Page 33 Tuesday, August 6, 2002 10:29 AM
Notes on Using
Synopsys

The scripts are set up in a general fashion to include pad and timing
information for all macros. Consequently, depending on which macro you
configure, you may see that some of the pad and timing information is
irrelevant and will be reported as an error. These errors should not affect the
netlist and may be manually removed.

Note: For Verilog compilations, Synopsys uses the “TARGPACK.v” in the
“\verilog\synopsys” directory, so ensure that its settings reflect the
desired functional intent of the macro.

Synthesizing Using Synplicity
Project files have been defined to assist in the compilation of the CorePCI
macro into the different Actel FPGAs. We recommend you compile the designs
using Synplicity version 7.1a or later.

Synplicity
Synthesis File
Structure

Sample Synplicity project files (with macros) are provided in the
“\vhdl\synplicity” or “\verilog\synplicity” directories.

Figure 5-2. Synplicity Synthesis Directory Structure

Please refer to “PCI Naming Conventions” on page ix for possible choices for
<family> and <PCImacro>. Refer to the Actel FPGA Package and Selector Guide
for choices for <device> and <package>. The Synplicity synthesis project file
(<act_fam>.prj), Synplicity design constraint file (<act_fam>.sdc) are located
in the <act_fam> directory. The synthesized netlist is stored in the directorey
<rev_1>; post-layout data is stored in the <device>_<package> directory.

synplicity

*.prj

*.sdc

<act_fam>

<PCImacro>

<device>_<package>

<rev_1>

VHDL

*.edn

*.ssr
33

Chapter 5: Synthesis

corepci.book Page 34 Tuesday, August 6, 2002 10:29 AM
To compile, perform the following steps:

1. Invoke Synplify.

2. Settings Verification. The script file was created to automatically set up
the synthesis environment and all of the design constraints for the
uncustomized macro. However, verification of the technology, device,
speed-grade, and clock-frequency settings for your particular design is
suggested. Only change the Results File if the output directory and file
name are different than the default.

3. Modify the project file. Move the desired chip-level function to the last
position of the wrapper list (files with “wrp” extension). Refer to naming
conventions in this chapter for proper selection.

4. Open the <PCImacro>.prj file in Synplify.

5. Compile and map the design. Click the Run button. Synplicity
compiles and maps the design and writes an EDIF netlist and an SDF
constraint file with the same name as the project file to the default directory
or any directory of choice.

6. Review the synthesis results. Synplify provides a suite of tools to
analyze the results of the synthesis run. A quick summary of design
utilization, warning messages, maximum clock frequency, and a list of
longest paths can be viewed in the log file by clicking the view log button.
HDL Analyst allows the designer to look at the RTL and schematic views
of the results and do some pre-layout timing analysis.
34

corepci.book Page 35 Tuesday, August 6, 2002 10:29 AM
6
Design Layout

This chapter describes how to use Actel Designer software to perform design
layout on the synthesized CorePCI macros. This includes information about
compiling the design netlist, assigning pins, and design layout. Refer to the
Designer User’s Guide for additional information about using Designer. Sample
designer scripts and data files are provided with the PCI macros to enhance
your place-and-route results. You can find these files in the following directory:

Figure 6-1 shows the default VHDL directory structure.

Figure 6-1. Design Layout Directory Structure

Please refer to “PCI Naming Conventions” on page ix for possible choices for
<act_fam> and <PCImacro>. Refer to the Actel FPGA Package and Selector
Guide for choices for <device> and <package>. The files relevant files are as
follows:

• ADB files - (default name is <PCImacro>_wrp.adb) contain all the design
layout information, including netlists, constraints, and post-layout designs

• Tcl file - (default name is <PCImacro>_wtp.tcl) is a Tcl script you may use
to reproduce the ADB file

• GCF file - Layout constraint file for ProASIC and ProASICPLUS family
devices

• PIN file - Pin assignment map for the targeted device and package for non-
ProASIC families.

\vhdl[or verilog]\synopsys[or synplicity]\<family>\<PCImacro>\<device>_<package>

synplicity

*.adb

*.tcl

*.gcf

*.pin

<act_fam>

<PCImacro>

<device>_<package>

VHDL

*.pin

*.gcf
35

Chapter 6: Design Layout

corepci.book Page 36 Tuesday, August 6, 2002 10:29 AM
Compiling a PCImacro Using Designer
Before performing any task on the design in Designer, you must first import a
netlist and compile the design into an ADB file. The following steps describe
the procedure:

1. Invoke Designer.

• For PC, choose Designer from the Designer Program Group in the
Programs menu under the Start menu.

• For UNIX, type the following command at the prompt:

designer &

The Designer Main window is displayed.

2. Open the Import Netlist dialog box. From the File menu, choose
Import and select the Netlist File command. Click the New button in the
Import or Open dialog box. The Import Netlist dialog box is displayed.

3. Specify netlist options. Specify EDIF as the Netlist type. Select your
netlist by typing the full path name or clicking the Browse button. Select
GENERIC as Edif Flavor and VHDL or Verilog as the Naming Style. Click
OK.

4. Set up the design. In the Design Setup dialog box specify the design
name, if not specified, and select the family.

5. Select the appropriate device, package, and speed grade from
the Device Setup Wizard.

6. Use the default Device Variations and Operating Conditions.

7. Set the PCI-compliancy mode check box if it is an option. Or,
for Axcelerator, select the PCI technology for the IO banks in ChipEdit.

8. Compile your design. Click the Compile button in the Designer Main
window.

9. Save the Design.
36

Assigning Pin Layout Constraints

corepci.book Page 37 Tuesday, August 6, 2002 10:29 AM
Assigning Pin Layout Constraints
For Actel antifuse FPGA devices, you must assign pins manually with the
PinEdit tool or import them directly into Designer from the corresponding pin
file.

For Actel Flash FPGA devices, you must import layout constraints (as a GCF
file) in order to constrain the place-and-route.

Import
Constraint File

Pins may be assigned using PinEdit. To do so, perform the following steps:

1. Import the constraint file. Select the Import command from the File
menu and choose the Auxiliary File command. The Import Auxiliary File
dialog box is displayed.

2. From the File Type menu, select Browse to locate the pin or
GCF file. Pin files are in the
\<act_fam>\<PCImacro>\<device>_<package> directory.

Note: In some cases, an error reading the pin file may occur because the
“DEF” name in the pin file does not match the design name in
Designer. To correct this problem, simply modify the “DEF” name
in the pin file and re-import the file.

Assigning Pins
Manually

For information on assigning pins manually, refer to the Designer Online help
and the PinEdit User’s Guide.

After compiling, use PinEdit to assign and fix the pins of your design. The pin
files contain optimal placement of the PCI pins and are already placed along
one side of the device in a manner that matches the signal order on the PCI
PCB connector.

Design Layout
For 33 MHz designs that use the antifuse families (SX, SX-A, or Axcelerator),
only standard layout is required. You may use timing-driven layout if you wish
to do so. For Flash to achieve 66 MHz performance, Actel recommends timing-
driven layout.
37

Chapter 6: Design Layout

corepci.book Page 38 Tuesday, August 6, 2002 10:29 AM
Standard
Layout

Use the following procedure to perform standard layout:

1. Click the Layout button in the Designer Main window. The
Layout dialog box is displayed.

2. Select Standard Mode only and leave all other options OFF.

3. Click OK. Designer performs standard layout on the design.

4. Extract timing information by clicking the Back-Annotate
button. Specify the post-layout netlist and SDF file name.

5. Save the design.

Timing-Driven
Layout for
Antifuse
Families

Use the following procedure to perform timing-driven layout for A54SX,
A54SX-A, RT54SX-S and Axcelerator devices. Signal names vary depending on
the synthesis tool you use. If you are unable to determine what signals to set,
contact Actel’s Customer Applications Center.

1. Invoke Timer. Click the Timer button in the Designer Main window.
This displays the Timer window.

2. Specify a clock period of 15 ns in the Period field.

3. Set Input to Register path constraints on all the PCI inputs. If
some of the PCI signals fail to meet input setup times, set the delay for these
paths to 3 ns plus the clock delay for the targeted device. To do so, click the
Path tab and from the Edit menu, select Add a set of paths. Then select All
PCI Inputs to All Register paths and set your max delay accordingly.

4. Set Register to PCI Output constraints on all the PCI signals to
6 ns minus the clock delay. To do so, click the Path tab again, and
from the Edit menu choose Add a set of paths. Then select All Registers to
All PCI Output paths and set your max delay accordingly.

5. Save the design and commit to the timing constraints.

6. Click the Layout button in the Designer Main window. This
displays the Layout dialog box.

7. Select Timing Driven only and leave all other options off.

8. Extract timing information. Click the Back-Annotate button. Make
sure to specify the post-layout netlist and SDF and filename.
38

Design Layout

corepci.book Page 39 Tuesday, August 6, 2002 10:29 AM
9. Save the design.

You can now examine and verify the postlayout timing information using
Timer or perform timing simulation using the postlayout timing information
extracted from the design.

Timing-Driven
Layout for Flash
Families

Use the following procedure to perform timing-driven layout for ProASIC and
ProASICPLUS devices. You must set timing constraints in a GCF file (*.gcf).
Sample settings are provided below:

// Timing Constraints 30 ns for PCI clock
create_clock -period 30 CLK;

// Assume minimum clock routing delay of 3 ns
// 7 ns - 0.7 ns + 3 ns = 9.3 ns for max input to register delay
set_input_to_register_delay 9.3 -from AD*;
set_input_to_register_delay 9.3 -from CBE*;
set_input_to_register_delay 9.3 -from PAR;
set_input_to_register_delay 9.3 -from FRAMEN;
set_input_to_register_delay 9.3 -from IRDYN;
set_input_to_register_delay 9.3 -from STOPN;
set_input_to_register_delay 9.3 -from IDSEL;
set_input_to_register_delay 9.3 -from DEVSELN;
set_input_to_register_delay 9.3 -from GNTN;
set_input_to_register_delay 9.3 -from PERRN;

// Assume maximum clock routing delay of 3.1 ns
// 11 ns - 3.1 ns -0.7 ns = 7.2 ns for max register to output
// delay
set_register_to_output_delay 7.2 -to AD*;
set_register_to_output_delay 7.2 -to CBE*;
set_register_to_output_delay 7.2 -to PAR;
set_register_to_output_delay 7.2 -to FRAMEN;
set_register_to_output_delay 7.2 -to IRDYN;
set_register_to_output_delay 7.2 -to TRDYN;
set_register_to_output_delay 7.2 -to STOPN;
set_register_to_output_delay 7.2 -to DEVSELN;
set_register_to_output_delay 7.2 -to REQN;
set_register_to_output_delay 7.2 -to PERRN;
set_register_to_output_delay 7.2 -to SERRN;

In order to use a GCF file, you must import the constraint file. To do so, follow
the instructions in “Import Constraint File” on page 37. After you import the
39

Chapter 6: Design Layout

corepci.book Page 40 Tuesday, August 6, 2002 10:29 AM
constraint file successfully, complete the following steps to perform timing-
driven layout.

1. Click the Layout button in the Designer Main window. This
displays the Layout dialog box.

2. Select Timing Driven only and leave all other options off.

3. Extract timing information. Click the Back-Annotate button. Make
sure to specify the post-layout netlist and SDF and filename.

4. Save the design.

Meeting Setup
and Hold Times
Using
Axcelerator

To meet the PCI setup and hold timing at both 33 and 66MHz using AX you
must use the the Programmable input delay elements (Table 6-1).

After layout is complete, examine the setup and hold timing values (Tools,
reports, timing). The setup times must be less than the value in Table 6-1 and
the hold time less than 0ns (positive values indicate a hold violation). This may
indicate that the PCI hold times have been violated; it varies, depending on the
actual layout, but you may see violations of up to 1.5 ns, especially on the AD
signals.

To correct for this, set the programmable input delay on the IO bank to the
worst hold time violation (such as 1.5 ns). Use PinEdit to set the IO bank.
Right-click the colored IO bank in the GUI to open the configure IO bank
GUI. You must set the IO bank on all the IO banks used for the PCI pins.
Once you set the bank delays, enable the input delay on all the PCI pins.

Regenerate your setup and hold report. The 33MHz cores should meet all setup
and hold times. For 66MHz cores the some of the setup times (TRDY, IRDY,
FRAME and STOP) may violate the 3 ns requirement (by a small amount),
disable the input delay on just these pins to correct the setup times. Ensure that
the hold times remain within specification at these pins.

Table 6-1. Programmable Input Delay Elements

Setup Setup GNTn Hold

33 Mhz 7 ns 10 ns 0 ns

66 MHz 3 ns 5 ns 0 ns
40

Compiling a Design Using Tcl Scripts

corepci.book Page 41 Tuesday, August 6, 2002 10:29 AM
Compiling a Design Using Tcl Scripts
Tcl script samples are provided in the <device>_<package> directory for both
Verilog and VHDL (see Figure 6-1 on page 35 for more information on the
directory structure). To run the Tcl script, type the following command at the
DOS prompt:

designer script:<PCImacro>_wrp.tcl

Please refer to the Scripting section of the Actel Designer User’s Guide for
instructions on how to compile a design using a Tcl script.
41

corepci.book Page 42 Tuesday, August 6, 2002 10:29 AM

corepci.book Page 43 Tuesday, August 6, 2002 10:29 AM
7
Static Timing Analysis

This chapter contains information and procedures for performing static-timing
analysis on the design. Included in this chapter is information about verifying
setup times, internal delays, and output delays. This chapter also provides a
short section regarding where to find more information about the sixth step in
design flow process, timing simulation.

Before you perform Static timing analysis, you must set all the timing
constraints as described in “Timing-Driven Layout for Antifuse Families” on
page 38.

To perform Static timing analysis:

1. Invoke Timer. Click the Timer button in Designer.

2. Check the maximum clock frequency. Click the Summary tab. The
Summary tab reports the maximum clock frequency (calculated from the
longest paths between two internal registers). The maximum clock
frequency must meet the 33MHz or 66MHz requirements.

3. Identify the clock buffer delay. Add another path set from the Clock
Input to All Registers (from the Edit menu, select Add Path Set). The timing
report shows the clock buffer delay.

4. Determine the maximum delay from All PCI Inputs to All
Registers. To do so, select the Path tab, and view all PCI Inputs to All
Registers (this value was defined when you set the timing-driven place-and-
route constraints). Set the max delay to 7 ns (for 33MHz PCI) or 3 ns (for
66MHz PCI), as required.

Note: Be sure you calculate the actual clock delay accurately; it is the max
delay allowed plus the clock buffer delay (i.e. max delay = 7 ns (3 ns)
+ clock buffer delay).

5. Determine the maximum delay from all registers to all PCI
outputs. Select the Path tab and view the path values for All Registers to
All PCI Outputs (defined when you set the timing-driven place-and-route
constraints). Target values for Max delay are 11 ns for 33MHz PCI and 6 ns
for 66MHz PCI.

Note: Be sure you calculate your actual clock delay accurately; for outputs,
it is the max delay allowed minus the clock buffer delay (i.e. max
delay = 11 ns (6 ns) - clock buffer delay).
43

corepci.book Page 44 Tuesday, August 6, 2002 10:29 AM

corepci.book Page 45 Tuesday, August 6, 2002 10:29 AM
A
CorePCI 5.3 Testbench

This appendix provides an overview of Actel's CorePCI testbench and a guide
to modifying existing and building new procedures. It describes the hierarchy of
the testbench and provides the syntax for a variety of procedures and functions.

Hierarchy of Testbench
The testbench is based on a standard motherboard design with a system master
occupying slot 0 of the PCI bus. PCI macros are then “plugged” into one of
eight PCI sockets on the motherboard. The macros are distinguished from each
other by two mechanisms. For configuration transfers, each slot has a unique
IDSEL as an identifier. For all other transfers, address spaces in the base-
address registers (BARs) of each slot must be defined to ensure that there are
no address conflicts.

A “procedural” testbench is also defined to exercise the CorePCI macros. The
procedural testbench initiates configuration, I/O, and memory transfers. In
addition, it has some control over the back end of each slot via the “back-end
test control” module.

The arbiter function assigns ownership of the bus to the various masters.
Arbitration is accomplished via a simple REQn/GNTn scheme defined by
the PCI specification. The PCI monitor continuously checks the PCI bus
and reports errors and unusual activity.
45

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 46 Tuesday, August 6, 2002 10:29 AM
The default testbench has two target macros in slots #2 and #3, a
Target+DMA function in slot #4, a Target+Master function in slot #5,
and a Master-Only function in slot #6 (Figure 7-1).

Figure 7-1. Testbench Block Diagram

testbench Hierarchy

• System - defined in system32.vhd or system64.vhd files
• Master_sim - defined in mast_cfg64.vhd and contains both the system

master and procedural testbench
• Pci_arbiter - system arbiter defined by arbiter.vhd
• Pci_monitor - PCI monitor defined by pci64_mon.vhd
• Targ32/64sdram_wrp - top-level chip definition of the Target macro
• Tdma32/64sdram_wrp - top-level chip definition of the Tar-

get+DMA macro
• Tmst32/64sdram_wrp - top-level chip definition of the Tar-

get+DMA macro
• Mast32/64sdram_wrp - top-level chip definition of the Master macro
• Sdram_mu - SDRAM model
• Ssram_mu - SSRAM model
• Be_sys_ctl - Back-end module under testbench control used to exercise

back-end signals. Defined in the “be_control.vhd” file.

Target Macro

SLOT 2

SDRAM
and

SSRAM

Back-End
Test

Control

Target Macro

SLOT3

SDRAM
and

SSRAM

Back-End
Test

Control

Target+DMA Macro

SLOT4

SDRAM
and

SSRAM

Back-End
Test

Control

Target+Master Macro

SLOT5

SDRAM
and

SSRAM

Back-End
Test

Control

Master Macro

SLOT6

SDRAM
Back-End

Test
Control

Testbench
Master
SLOT 0

PCI
Monitor

PCI
Arbiter

Procedural Testbench

PCI BUS
46

General Description of the Procedural Testbench

corepci.book Page 47 Tuesday, August 6, 2002 10:29 AM
Support Packages

• “Tests_t1.vdh,” “Tests_t2.vhd,” “Tests_t3.vhd” - packages defining
user tests

• Startup.vhd - package defining system start-up procedures
• Misc.vhd - miscellaneous types, functions, and procedures
• Pci_pack.vhd - PCI specific types, functions, and procedures
• Mcfgpack.vhd - type, function, and low-level procedure definitions

General Description of the Procedural Testbench
The procedural test process is in the mast_cfg64.vhd file. This process
begins with a power-on reset. Once the reset is complete, the system
master (master_sim in the system32.vhd or system64.vhd file) is instructed
to strobe each slot with a configuration-read command. Populated slots
respond and the test process stores this information in the slot-
information (“slot_info”) record array. Additional configuration cycles are
applied to populated slots to determine what BARs (base-address registers)
are enabled, if the slot has DMA capabilities, and how the DMA registers
can be accessed (configuration space, I/O space, or back end). Finally, the
enabled BARs are assigned addresses according to Table A-1:

Table A-1. PCI Address Assignments

Slot
Bar0 -

Memory
Bar1 - I/O

Bar1 -
Memory

Bar2 - I/Oa

1 10000000h 10000000h 11000000h 10000000h or
11000000h

2 20000000h 20000000h 22000000h 20000000h or
22000000h

3 30000000h 30000000h 33000000h 30000000h or
33000000h

4 40000000h 40000000h 44000000h 40000000h or
44000000h
47

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 48 Tuesday, August 6, 2002 10:29 AM
The procedures that check and configure the system are in the
“startup_pack.vhd” file. Table A-2 describes the procedures.

5 50000000h 50000000h 55000000h 50000000h or
55000000h

6 60000000h 60000000h 66000000h 60000000h or
66000000h

7 70000000h 70000000h 77000000h 70000000h or
77000000h

8 80000000h 80000000h 88000000h 80000000h or
88000000h

a. The second address is used when Bar1 is an I/O to prevent address
space conflicts

Table A-2. Testbench Start-Up Procedures

Procedure/
Function

Description

Check_slots Performs configuration read cycles to each slot
to determine which slots are present.

Check_target_reset Checks the value of Target configuration registers
after reset.

Check_tdma_reset Checks the value of Target+DMA or Tar-
get+Master configuration registers after reset.

Check_bars Determines which BARs are enabled and their
type (I/O or memory).

Setup_target_config Generates the BAR values (see previous Table).

Table A-1. PCI Address Assignments (Continued)

Slot
Bar0 -

Memory
Bar1 - I/O

Bar1 -
Memory

Bar2 - I/Oa
48

General Description of the Procedural Testbench

corepci.book Page 49 Tuesday, August 6, 2002 10:29 AM
User-Defined
Tests

Once the start-up procedures are complete, the testbench is ready to run user-
defined tests. A variety of tests are included with the standard testbench and
can be run interactively from a menu in the test routine. These tests are defined
in Table A-3 and are in the files “tests_t1.vhd,” “tests_t2.vhd,” and
“tests_t3.vhd.” The main test process uses information in the slot information
(“slot_info”) record to determine the appropriateness of each test. For
example, if BAR1 is defined to be I/O space, then the “Test_io_cycles” is an
appropriate test.

Config_target Writes the BAR values into Target configuration
space.

Config_tdma Writes the BAR values into Target+DMA and
Target+Master configuration space.

Table A-2. Testbench Start-Up Procedures (Continued)

Procedure/
Function

Description

Table A-3. Listing of User-Defined Tests

Test Description

Test_byte_enable_cfg Tests the use of byte enables.

Simple_test Memory read/write test using a single burst.

Read_write_test Memory read/write tests using bursts transfers of various lengths.

Test_devsel Test the timing of DEVSELn.

Addr_parity_error
Generates address parity errors and ensures that the Target macro
responds with a SERRn correctly depending on settings in its con-
trol register.

Test_io_cycles I/O read/write test. Only valid if BAR1 is enabled to be an I/O.
49

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 50 Tuesday, August 6, 2002 10:29 AM
Test_interrupts Generates an interrupt on the back end and ensures that the inter-
rupt is correctly posted on the INTAn signal.

Parity_test_target
Generates data parity errors and ensures that the Target macro
responds with a PERRn correctly depending on settings in its con-
trol register.

Tdma_target_mode Tests deassertion of IRDYn during a memory read/write burst.

Test_two_targets Test to ensure that only a single target responds to any given
address.

Target_retry_test Tests retry function using both the BUSY and BE_REQ back-end
signals. Only valid if BAR1 is enabled to be memory or I/O.

Ready_variation_test

Target-wait state test. Target-wait states are inserted on the PCI
bus (deassertion of TRDYn) by toggling the RD_BE_RDY and
WR_BE_RDY back-end signals. An additional test combines both
IRDYn and TRDYn deassertion in the same transfer. Only valid if
BAR1 is enabled to be memory or I/O.

Target_abort
Tests the target-abort response of a target by asserting the back-end
ERROR signal during a transfer. Only valid if BAR1 is enabled to
be a memory or I/O.

Tdma_dma_single_transfer Simple DMA transfer in both the read and write directions.

Tdma_dma_single_transfer_break
Tests the maximum burst-length DMA capability (bits 29-31 of the
DMA control register). Only valid if the DMA_CNT_EN is set to
a '1'.

Tdma_dma_single_transfer_wait Tests the response of the DMA master to target-injecting wait
states on TRDYn.

Tdma_dma_single_transfer_abort Tests the response of the DMA master to a target issuing a target-
abort cycle.

Tdma_dma_poll_status Tests operation of the DMA master using a polling method to
determine when the DMA is complete.

Table A-3. Listing of User-Defined Tests (Continued)

Test Description
50

General Description of the Procedural Testbench

corepci.book Page 51 Tuesday, August 6, 2002 10:29 AM
Procedures
and Functions
Used to Build
Tests

There are a variety of predefined procedures and functions that are used to
build a PCI test. These predefined structures break down into the
following categories:

• PCI Transfer Commands (Table A-4)
• DMA Commands (Table A-5)
• Data Generation/Checking (Table A-6)

Tdma_dma_counts Tests the operation of the DMA master for transfer lengths of 1 - 5.
Only valid id DMA_CNT_EN is set to a '1'.

Tdma_mega_tests Tests the operation of multiple macros being configured to per-
form DMA operations simultaneously.

Master32/64_test Tests the operation of the Master-Only function.

Table A-3. Listing of User-Defined Tests (Continued)

Test Description

Table A-4. PCI Transfer Commands

Procedure Description

Config_write Directs the system master (Master_sim) to execute a
configuration write command.

Config_read Directs the system master (Master_sim) to execute a
configuration read command.

Write_cycle Directs the system master (Master_sim) to execute a
memory write command.

Read_cycle Directs the system master (Master_sim) to execute a
memory read command.

Iowrite_cycle Directs the system master (Master_sim) to execute an
I/O write command.

Ioread_cycle Directs the system master (Master_sim) to execute an
I/O read command.
51

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 52 Tuesday, August 6, 2002 10:29 AM

Table A-5. DMA Commands

Procedure Description

DMA_setup

Directs the system to configure and enable a DMA with
the information provided in the procedure call. If the
DMA is mapped to configuration space, then this proce-
dure executes Config_write commands. If the DMA is
mapped to I/O space (DMA_IN_IO = '1'), then this
procedure executes Iowrite_cycle commands. If the
DMA is mapped to the back end (Master or Tar-
get+Master), then the procedure directs the back-end
processor (BE_SYS_CTL) to execute a write cycle to the
DMA registers.

Read_DMA_status

Reads the current values of the DMA-address and
control registers. If the DMA is mapped to configura-
tion space, then this procedure executes Config_read
commands. If the DMA is mapped to I/O space
(DMA_IN_IO = '1'), then this procedure executes
Ioread_cycle commands. If the DMA is mapped to
the back end (Master or Target+Master), then the pro-
cedure directs the back-end processor (BE_SYS_CTL)
to execute a read cycle from the DMA registers.

Print_DMA_satus Prints the value of the PCI address, RAM address, and
DMA control register to the standard output device

Table A-6. Data Generation/Checking

Command Description

Init_data Generates an array of DWORD data that is sequential
from the initial seed defined.

Compare_data Compares the value of two DWORD arrays and reports
any mismatches
52

General Description of the Procedural Testbench

corepci.book Page 53 Tuesday, August 6, 2002 10:29 AM
System
Information

There are two defined record types that contain system information.
The first record, “slot_info,” contains static information about each slot
including presence, BAR types, and assigned addresses. The second
record, status, contains dynamic information that is updated during
each transfer. The information contained in the records useful to
building tests is defined in the Table A-7 and Table A-8.

Table A-7. Description of the “Slot_info” Record

Valuea Description

Slot_info(i).present When true, indicates that a macro is present in
this slot.

Slot_info(i).cap_list
When true, indicates that the macro capability
list is enabled. This typically means that the hot
swap extended capability is enabled.

Slot_info(i).mhz66 When true, indicates that the macro can operate
at 66MHz.

Slot_info(i).pci_function
Values are either TARGET or TDMA. TAR-
GET indicates a Target-Only. TDMA indicates
a Target+DMA or a Target+Master.

Slot_info(i).dma_count When true, indicates that the count feature of
the DMA-address registers is enabled.

Slot_info(i).bar1

Values are NONE, IO, or MEMORY. NONE
indicates that bar1 is not enabled, IO indicates
that bar1 is enabled to be I/O space, and MEM-
ORY indicates that bar1 is enabled to be mem-
ory space.

Slot_info(i).bar2

Values are NONE or IO. NONE indicates that
bar2 is not enabled, IO indicates that bar1 is
enabled to be I/O space. This only occurs when
the DMA_IN_IO global constant is set to a '1'.

Slot_info(i).bar0_addr DWORD address mapping for BAR0.

Slot_info(i).bar1_addr DWORD address mapping for BAR1.
53

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 54 Tuesday, August 6, 2002 10:29 AM

Slot_info(i).bar2_addr DWORD address mapping for BAR2.

Slot_info(i).bar0_integer Integer address mapping for BAR0.

Slot_info(i).bar1_integer Integer address mapping for BAR1.

Slot_info(i).bar2_integer Integer address mapping for BAR2.

Slot_info(i).dma_loc

Values are CONFIG, IO, and BACKEND.
CONFIG indicates that the DMA registers are
mapped to configuration space, IO indicates
mapping to I/O space, and BACKEND indi-
cates back-end control of the DMA registers.

a. i is the array index for the various slots (1-8).

Table A-8. Description of the Status Record

Value Description

Status.perr When true, indicates that the PERRn signal was driven
low during the previous command.

Status.tabort When true, indicates that a target terminated the previous
transfer with a target abort.

Status.retry When true, indicates that a target responded with at least
one retry cycle during the previous transfer.

Status.no_devsel When true, indicates that a target did not respond to a
command and the cycle terminated with a master abort.

Status.interrupt When true, indicates that the INTAn line is being driven
low by a macro.

Table A-7. Description of the “Slot_info” Record (Continued)

Valuea Description
54

General Description of the Procedural Testbench

corepci.book Page 55 Tuesday, August 6, 2002 10:29 AM
Additional
Control of the
System Master
and Back End

To control wait states on the PCI bus, each PCI transfer command passes
two integer variables, “ilatency” and “tlatency.” When “ilatency” is
defined as a positive integer, the system master inserts the number of
wait states (on “IRDYn”) defined by “ilatency” between each transfer.
When “tlatency” is defined to be a positive integer, the BE_SYS_CTL
block uses this to insert wait states on the back end by toggling the
RD_BE_RDY or WR_BE_RDY signals. Toggling these signals results in
a toggling action on the “TRDYn” signals during burst transfers.

To control back-end signals, the PCI transfer commands pass a
T_ERRORTYPE variable (“errortype”) and an INTEGER variable
(“errorpos”). These two variables can be used to control a variety of
master and back-end control signals. “Errortype” defines the type of
control and “errorpos” indicates at what point in the cycle the control
should be activated. Table A-9 defines the values of “errortype” and their
impact on PCI and back-end control signals.

Status.serr When true, indicates that the SERRn signal was asserted
during the previous command.

Table A-8. Description of the Status Record

Value Description

Table A-9. Errortype and Back-End Control Signals

Error Type Description

None Default. No action.

Par_addr
Causes the system master to generate a parity error during
the address phase. “Errorpos” has no impact on this func-
tion.

Par_data Causes the system master to generate a data parity error on
the cycle defined by “errorpos.”

Terror
Causes the back-end ERROR signal (output of
BE_SYS_CTL) to be asserted on the nth cycle defined by
“errorpos.”
55

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 56 Tuesday, August 6, 2002 10:29 AM
Testing an Application-Specific PCI Macro
The existing testbench tests the following macros:

• Target-Only with back-end SDRAM and SSRAM (slots #2 and #3)

• Target+DMA with back-end SDRAM and SSRAM (slot #4)

• Target+Master with back-end SDRAM and SSRAM (slot #5)

• Master-Only with back-end SDRAM (slot #6)

The testbench is designed to detect which slots are present and the type of
macro. Appropriate tests are then run to exercise these functions.

Modifying the
System32.vhd
or
System64.vhd
Top Level

To test your application-specific macro, you can either add a new slot
(e.g. slot #1) or you can modify an existing slot. To improve run times,
you can also remove any slots that you are not interested in. When
building a modified “system” file, you should note the following:

1. You should always populate at least two slots. One of the target tests
(“test_two_targets”) and all of the DMA tests use at least two macros
to exchange data.

2. If you add a Master-Only function, you need to hardwire the
“slot_info(i).dma_loc <= BACKEND” in the “mast_cfg64.vhd” file
because the testbench does not have visibility to these functions.

3. Most or all of the tests that control back-end signals do not work
correctly on your application because these signals are typically not
available.

Tbusy_cycle Causes the back-end BUSY signal (output of BE_SYS_CTL)
to be asserted on the nth cycle defined by “errorpos.”

Table A-9. Errortype and Back-End Control Signals

Error Type Description (Continued)
56

Testing an Application-Specific PCI Macro

corepci.book Page 57 Tuesday, August 6, 2002 10:29 AM
Creating a New
Test

The easiest method to create a new test is to modify an existing test that is
close to what you need. This section provides a very basic overview to
creating a new test. Many test examples are in the “tests_t1.vhd,”
“tests_t2.vhd,” and “tests_t3.vhd” files. Test procedures are called from the
“mast_cfg64.vhd” file. The basic steps for adding a test are as follows:

1. Create a new test name and decide what information needs to
be passed to the test procedure. Basic information includes slot
number, address, and “slot_info.” Errors, status, and control should
always be passed by all tests.

2. Instantiate the test in the “mast_cfg64.vhd” file. There is an
existing interactive framework to run individual tests or groups of
tests. You can use this structure, modify it, or create your own.

3. Create and define the test procedure in one of the existing
test packages (“tests_t1.vhd,” etc.) or create your own test file.
If you create your own, you need to reference this package in the
“mast_cfg64.vhd” file.

The basic steps to test a Target function are as follows:

1. Initialize data to read and write using the “init_data” function.

2. Execute a write command using a configuration, memory, or
I/O command. Memory and I/O only need an address.
Configuration commands requires an address and a slot number.

3. Execute a read command from the same address.

4. Compare the written data to the read data using the
“compare_data” procedure.

During a test, if you are expecting some event to occur, like a target
abort, then you may test this target event two ways. First, the monitor
reports unusual activity on the standard output device like target abort,
retry, master abort, parity errors, etc. You check the monitor visually
during a test or you can use the values in the “status” record to confirm
an event.

The basic steps to test a DMA/Master are as follows:

1. Initialize data to read and write using the Init_data function.
57

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 58 Tuesday, August 6, 2002 10:29 AM
2. Using a memory write command, write this data into a
known location.

3. To initiate a DMA command, use the “DMA_setup” procedure
by defining the PCI address to be the address from Step 2. The
first DMA should move the known data to the Master's back end.

4. To verify completion of the DMA, use the “Read_dma_status”
and “check_dma_status.” You can also view the contents of the
DMA register using the “print_dma_status.”

5. Test the DMA write function. The new data can be read from the
back-end memory and placed in a new location out on the PCI bus.
Again, this is initiated using the “DMA_setup” procedure and
checked using the “read_dma_status,” “check_dma_status,” and
“print_dma_status.”

6. Verify correct transfer. To do so, use a memory read command
to read the data from the newest address location.

7. Use the “compare_data” procedure to check the data.

Command Syntax
The following sections define the syntax for the most commonly used
procedures and functions.

Config_read This reads data from configuration space. “Config_read” reads the
number of DWORDs defined by “words” from the slot # defined by
“slot” beginning from the byte address defined by “addr.” The read
data is stored in the dword_array “data.” “Errortype” and “errorpos” are
optional in this procedural call.

procedure config_read (slot : in integer range 1 to 7;

addr : in integer range 0 to 511;

words : in integer range 1 to 16;

data : out dword_array;

signal control : out T_MCFG_CONTROL;

signal status : in T_MCFG_STATUS;
58

Command Syntax

corepci.book Page 59 Tuesday, August 6, 2002 10:29 AM
errortype : T_ERRORTYPE := none;

errorpos : INTEGER := -1);

Config_write This writes data to configuration space. “Config_write” writes data
defined in the “dword_array” “data” to the slot # defined by “slot”
beginning at the address defined by “addr.” The length of the write is
defined by the integer “words.” Cbe, errortype, and errorpos are
optional in this procedural call. Cbe defines byte-lane enables for the
write and is active high.

procedure config_write (slot : integer range 1 to 7;

addr : integer range 0 to 511;

words : integer range 1 to 16;

data : dword_array;

signal control : out T_MCFG_CONTROL;

signal status : in T_MCFG_STATUS;

cbe : nibble := "1111";

errortype : T_ERRORTYPE := none;

errorpos : INTEGER := -1);

DMA_setup The “DMA_setup” procedure writes information defined in the
procedural call to the DMA registers and initiates a DMA transfer.
“Slot” is the slot # of the DMA/Master that executes the transfer.
“Slot_info” is used to inform the procedure where the DMA registers
are located (configuration space, I/O space, or back-end). “Pciaddr” is
the byte address on the PCI bus for the transfer and is written into the
PCI Address Register. “Ramaddr” is the back-end byte address.
“Cyc_type” defines the type of cycle to be either configuration
(“config”), I/O, (io), memory (memory), or interrupt acknowledge
(“int_ack”). Count defines the number of DWORDs to be transferred.
“Direct” defines the direction of the transfer. A DMA read is defined to
be “PCI_SRAM” and a DMA write is defined to be “SRAM_PCI”.
“Length” is optional and is used to define the maximum burst-length
bits in the DMA control register. “Errortype” and “errorpos” are both
optional.

procedure dma_setup (slot : integer range 1 to 7;
59

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 60 Tuesday, August 6, 2002 10:29 AM
slot_info : T_SLOT_INFO_ARRAY;

pciaddr : integer;

ramaddr : integer;

cyc_type : T_MASTER_CYC;

count : integer range 0 to 1023;

direct : T_DMADIRECTION;

signal control : out T_MCFG_CONTROL;

signal status : in T_MCFG_STATUS;

length : integer := 0;

errortype : T_ERRORTYPE := none;

errorpos : INTEGER := -1);

Read_DMA_
status

The” read_DMA_status” procedure reads the contents of the DMA
registers and stores the value in the “dma” record. “Slot” defines which
slot to read from. “Slot_info” defines the location of the DMA registers
(configuration, I/O, or back-end). “Errortype” and “errorpos” are
optional.

procedure read_dma_status(dma : out T_DMA_RECORD;

slot : integer range 1 to 7;

slot_info : T_SLOT_INFO_ARRAY;

signal control : out T_MCFG_CONTROL;

signal status : in T_MCFG_STATUS;

errortype : T_ERRORTYPE := none;

errorpos : INTEGER := -1);

Check_DMA_
status

The “check_DMA_status” procedure checks the information stored in
the dma record to determine if the DMA transfer completed correctly.
For normal transfers, the “discon” variable should be set to false. If you
anticipate that the DMA will not complete correctly because of a target
or master abort, then “discon” should be set to true. If an incorrect
termination occurs, then the procedure prints the “pciaddr,” “ramaddr,”
and “count” values to the standard output device.

procedure check_dma_status (errors : inout INTEGER;

dma : T_DMA_RECORD;
60

Command Syntax

corepci.book Page 61 Tuesday, August 6, 2002 10:29 AM
pciaddr : INTEGER;

ramaddr : INTEGER;

count : INTEGER := 0;

discon : BOOLEAN := FALSE);

Compare_data The “compare_data” procedure compares two DWORD_ARRAYs
(“exp” and “got”) and reports any mismatches to the standard output
device.

procedure compare_data (errors : inout integer;

msg : STRING;

exp : DWORD_ARRAY;

got : DWORD_ARRAY);

Print_DMA_
status

The “print_dma_status” procedure prints the information stored in the
dma record to the standard output device.

procedure print_dma_status (slot : INTEGER;

dma : T_DMA_RECORD);

Init_data This function creates a DWORD_ARRAY of sequential data. The start
address of the sequence is a type string that should be hex characters
(0-9, A-F). The size of the array is defined by size.

function init_data(seed : STRING; size : INTEGER) return
DWORD_ARRAY;

Ioread_cycle This reads data from I/O space. “Ioread_cycle” executes an I/O read
command (“0010”) on the PCI bus and read the number of DWORDs
defined by “burst” beginning with the PCI address defined by “addr”.
The read data is stored in the “dword_array” “data.” “Tlatency,”
“ilatency,” “errortype,” and “errorpos” are optional in this procedural
call.

procedure ioread_cycle (addr : in integer;

burst : in integer range 0 to 511;
61

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 62 Tuesday, August 6, 2002 10:29 AM
data : out dword_array;

signal control : out T_MCFG_CONTROL;

signal status : in T_MCFG_STATUS;

tlatency : in INTEGER := DEF_TLATENCY;

ilatency : in INTEGER := DEF_ILATENCY;

errortype : T_ERRORTYPE := none;

errorpos : INTEGER := -1);

Iowrite_cycle This writes data to I/O space. “Iowrite_cycle” executes an I/O write
command (“0011”) on the PCI bus and writes the data stored in the
“dword_array” “data” to the PCI address defined by “addr.” The length
of the write in DWORDs is defined by the integer “burst.” “Tlatency,”
“ilatency,” “errortype,” and “errorpos” are optional in this procedural
call.

procedure iowrite_cycle (addr : integer;

burst : integer range 0 to 511;

data : dword_array;

signal control: out T_MCFG_CONTROL;

signal status : in T_MCFG_STATUS;

tlatency : in INTEGER := DEF_TLATENCY;

ilatency : in INTEGER := DEF_ILATENCY;

errortype : T_ERRORTYPE := none;

errorpos : INTEGER := -1);

Read_cycle This reads data from memory space. “Read_cycle” executes a memory
read command (“0110”) on the PCI bus and reads the number of
DWORDs defined by “burst” beginning with the PCI address defined
by “addr”. The read data is stored in the “dword_array” “data.”
“Tlatency,” “ilatency,” “errortype,” and “errorpos” are optional in this
procedural call.

procedure read_cycle (addr : in integer;

burst : in integer range 0 to 511;

data : out dword_array;

signal control : out T_MCFG_CONTROL;
62

Defined Types

corepci.book Page 63 Tuesday, August 6, 2002 10:29 AM
signal status : in T_MCFG_STATUS;

tlatency : in INTEGER := DEF_TLATENCY;

ilatency : in INTEGER := DEF_ILATENCY;

errortype : T_ERRORTYPE := none;

errorpos : INTEGER := -1);

Write_cycle This writes data to memory space. “Write_cycle” executes a memory
write command (“0111”) on the PCI bus and writes the data stored in
the “dword_array” “data” to the PCI address defined by “addr.” The
length of the write in DWORDs is defined by the integer “burst.”
“Tlatency,” “ilatency,” “errortype,” and “errorpos” are optional in this
procedural call.

procedure write_cycle (addr : integer;

burst : integer range 0 to 511;

data : dword_array;

signal control : out T_MCFG_CONTROL;

signal status : in T_MCFG_STATUS;

tlatency : in INTEGER := DEF_TLATENCY;

ilatency : in INTEGER := DEF_ILATENCY;

errortype : T_ERRORTYPE := none;

errorpos : INTEGER := -1);

Defined Types
The following information defines the various types used by the testbench.
These definitions are for reference only.

Data Types • type T_ABORT_TYPE is (retry, abort);

• subtype BYTE is “std_logic_vector (7 downto 0)”;

• type BYTE_ARRAY is array (INTEGER range <>) of BYTE;

• type BOOLEAN_VECTOR is array (INTEGER range <>) of
BOOLEAN;
63

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 64 Tuesday, August 6, 2002 10:29 AM
• type DMA_REG is (NONE, IO, CONFIG, BACKEND);

• subtype DWORD is “std_logic_vector (31 downto 0)”;

• type DWORD_ARRAY is array (INTEGER range <>) of DWORD;

• type FUNCTION_TYPE is (TARGET,TDMA);

• type INTEGER_ARRAY is array (INTEGER range <>) of INTEGER;

• type IO_OR_MEM is (IO, MEMORY, NONE);

• subtype NIBBLE is “std_logic_vector (3 downto 0)”;

• type T_PCI_COMMAND is (IACK,SPECIAL, IOREAD, IOWRITE,
MEMREAD,MEMWRITE,CFGREAD, CFGWRITE, MRDMULT,
DUALADDR, MRDLINE, MEMWINVAL, RESERVED, UNKNOWN);

• subtype WORD is “std_logic_vector (15 downto 0)”;

• type WORD_ARRAY is array (INTEGER range <>) of WORD;

Record Types • type T_ARB_CONTROL is

record

max_time : INTEGER;

backtoback : BOOLEAN;

end record;

• type T_BE_CONTROL is

record

LATENCY : INTEGER range -23 to 23;

SET_BUSY : INTEGER range -1 to 31;

SET_ERROR : INTEGER range -1 to 31;

SET_FATAL_ERROR : INTEGER range -1 to 31;

BUSY_CYCLE : INTEGER range -1 to 31;

ARB_LENGTH : INTEGER range -1 to 256;

ARB_WAIT : INTEGER range -1 to 256;

ARB_INIT : BOOLEAN;

SET_INTERRUPT : BOOLEAN;

MASTER_LOAD : BOOLEAN;

MASTER_READ : BOOLEAN;
64

Defined Types

corepci.book Page 65 Tuesday, August 6, 2002 10:29 AM
MASTER_DATA : DWORD_ARRAY (0 to 3);

end record;

• type T_BE_CONTROL_ARRAY is array (INTEGER range <>) of
“T_BE_CONTROL” ;

• type T_BE_STATUS is

record

RETRY : BOOLEAN;

LAST_ADDRESS : INTEGER;

DATA : DWORD_ARRAY (0 to 3);

MASTER_READ_DONE : BOOLEAN;

MASTER_LOAD_DONE : BOOLEAN;

end record;

• type T_BE_STATUS_ARRAY is array (INTEGER range <>) of
“T_BE_STATUS” ;

• type t_CONFIGURATION is

record

DeviceID : WORD;

VendorID : WORD;

Status : WORD;

Command : WORD;

ClassCode : STD_LOGIC_VECTOR(23 downto 0);

RevisionId : BYTE;

BIST : BYTE;

HeadType : BYTE;

Latentime : BYTE;

CacheSize : BYTE;

BaseAddress: DWORD_ARRAY(1 to 6);

CardBusPtr : DWORD;

SubSysID : WORD;

SubSysVID : WORD;

ExpanROM : DWORD;

CapPtr : DWORD;

Reserved2 : DWORD;

MaxLatency : BYTE;
65

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 66 Tuesday, August 6, 2002 10:29 AM
MinGrant : BYTE;

IntPin : BYTE;

Intline : BYTE;

end record;

• type T_DMADIRECTION is (SRAM_PCI , PCI_SRAM);

• type T_DMA_RECORD is

record

PCI_ADDRESS : INTEGER;

RAM_ADDRESS : INTEGER;

WAIT_STATE : BOOLEAN;

DIRECTION : T_DMADIRECTION;

CONFIG_CYC : BOOLEAN;

INT_ACK_CYC : BOOLEAN;

IO_CYC : BOOLEAN;

COUNT : INTEGER range 0 to 1023;

ENABLE : BOOLEAN;

ABORT : BOOLEAN;

CLEARDONE : BOOLEAN;

INT_ENABLE : BOOLEAN;

INT_ACTIVE : BOOLEAN;

EINT_ENABLE : BOOLEAN;

EINT_ACTIVE : BOOLEAN;

CYCLE64 : BOOLEAN;

ERROR : BOOLEAN;

DONE : BOOLEAN;

REQUEST : BOOLEAN;

BURST_LENGTH : INTEGER range 0 to 64;

end record;

• type T_ERRORTYPE is (none, par_addr, par_data, tbusy, tferror,
terror, tbusy_cycle, addr_cache, addr_01,addr_11, backtobackWR,
backtobackWW, no_devsel, maskerror);

• type T_MASTER_CYC is (memory, config, io, int_ack);

• type T_MCFG_CONTROL is

record
66

Defined Types

corepci.book Page 67 Tuesday, August 6, 2002 10:29 AM
START : BOOLEAN;

WORDS : NATURAL range 0 to 511;

CYCLE_TYPE : T_PCI_COMMAND;

ADDRESS : INTEGER;

DATA : DWORD_ARRAY (0 to 511);

BYTES : STD_LOGIC_VECTOR(3 downto 0);

ERRORTYPE : T_ERRORTYPE;

ERRORPOS : INTEGER;

LATENCY : INTEGER;

MON_CONTROL : T_MON_CONTROL;

ARB_CONTROL : T_ARB_CONTROL;

BE_CONTROL : T_BE_CONTROL_ARRAY (2 to 6);

end record;

• type T_MCFG_STATUS is

record

CLK : STD_LOGIC;

BUSY : BOOLEAN;

DATA : DWORD_ARRAY (0 to 511);

PERR : BOOLEAN;

ECYCLE : INTEGER;

DEVSEL : INTEGER;

STOP : BOOLEAN;

TABORT : BOOLEAN;

RETRY : BOOLEAN;

SERR : BOOLEAN;

LASTADDR : INTEGER;

INTERRUPT : BOOLEAN;

NO_DEVSEL : BOOLEAN;

FRAME_ON : INTEGER;

BUS_DRIVEN : BOOLEAN;

BEND : T_BE_STATUS_ARRAY (2 to 6);

MASTER_ACTIVE : BOOLEAN;

end record;

• type T_MON_CONTROL is

record
67

Appendix A: CorePCI 5.3 Testbench

corepci.book Page 68 Tuesday, August 6, 2002 10:29 AM
TRACE_ENABLE : BOOLEAN;

PAR_CHK_ENABLE : BOOLEAN;

end record;

• type T_SLOT_INFO is

record

PRESENT : BOOLEAN;

CAP_LIST : BOOLEAN;

MHZ66 : BOOLEAN;

PCI_FUNCTION : FUNCTION_TYPE;

DMA_COUNT : BOOLEAN;

BAR0 : IO_OR_MEM;

BAR1 : IO_OR_MEM;

BAR2 : IO_OR_MEM;

BAR0_ADDR : DWORD;

BAR1_ADDR : DWORD;

BAR2_ADDR : DWORD;

BAR0_INTEGER : INTEGER;

BAR1_INTEGER : INTEGER;

BAR2_INTEGER : INTEGER;

DMA_LOC : DMA_REG;

end record;

• type T_SLOT_INFO_ARRAY is array (1 to 8) of “T_SLOT_INFO”;
68

corepci.book Page 69 Tuesday, August 6, 2002 10:29 AM
B
Product Support

Actel backs its products with various support services including Customer
Service, a Customer Applications Center, a web site, an FTP site, electronic
mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Actel U.S. Toll-Free Line
Use the Actel toll-free line to contact Actel for sales information, technical
support, requests for literature about Actel and Actel products, Customer
Service, investor information, and using the Action Facts service.

The Actel toll-free line is (888) 99-ACTEL.

Customer Service
Contact Customer Service for nontechnical product support, such as product
pricing, product upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call (408) 522-4480.
From Southeast and Southwest U.S.A., call (408) 522-4480.
From South Central U.S.A., call (408) 522-4434.
From Northwest U.S.A., call (408) 522-4434.
From Canada, call (408) 522-4480.
From Europe, call (408) 522-4252 or +44 (0) 1256 305600.
From Japan, call (408) 522-4743.
From the rest of the world, call (408) 522-4743.
Fax, from anywhere in the world (408) 522-8044.
69

Appendix B: Product Support

corepci.book Page 70 Tuesday, August 6, 2002 10:29 AM
Customer Applications Center
Actel staffs its Customer Applications Center with highly skilled engineers who
can help answer your hardware, software, and design questions. The
Applications Center spends a great deal of time creating application notes and
answers to FAQs. So, before you contact us, please visit our online resources. It
is very likely we have already answered your question(s).

Guru Automated Technical Support
Guru is a web-based automated technical support system accessible through
the Actel home page (http://www.actel.com/guru/). Guru provides
answers to technical questions about Actel products. Many answers include
diagrams, illustrations, and links to other resources on the Actel web site. Guru
is available 24 hours a day, seven days a week.

Web Site
Actel has a World Wide Web home page where you can browse a variety of
technical and nontechnical information. Use a Net browser (Netscape
recommended) to access Actel’s home page.

The URL is http://www.actel.com. You are welcome to share the resources
provided on the Internet.

Be sure to visit the Technical Documentation area on our web site, which
contains information regarding products, technical services, current manuals,
and release notes.

You can visit the Product Support area of the Actel website from your Designer
software. Click the Product Support button in your Designer Main Window to
access the latest datasheets, application notes, and more.

FTP Site
Actel has an anonymous FTP site located at ftp://ftp.actel.com. Here you can
obtain library updates, software patches, design files, and data sheets.
70

Contacting the Customer Applications Center

corepci.book Page 71 Tuesday, August 6, 2002 10:29 AM
Contacting the Customer Applications Center
Highly skilled engineers staff the Customer Applications Center from 7:30 A.M.
to 5:00 P.M., Pacific Time, Monday through Friday. Several ways of contacting
the Center follow:

Electronic Mail You can communicate your technical questions to our e-mail address and
receive answers back by e-mail, fax, or phone. Also, if you have design
problems, you can e-mail your design files to receive assistance. We constantly
monitor the e-mail account throughout the day. When sending your request to
us, please be sure to include your full name, company name, and your contact
information for efficient processing of your request.

The technical support e-mail address is tech@actel.com.

Telephone Our Technical Message Center answers all calls. The center retrieves
information, such as your name, company name, phone number and your
question, and then issues a case number. The Center then forwards the
information to a queue where the first available application engineer receives
the data and returns your call. The phone hours are from 7:30 A.M. to 5:00 A.M.,
Pacific Time, Monday through Friday.

The Customer Applications Center number is (800) 262-1060.

European customers can call +44 (0) 1256 305600.
71

Appendix B: Product Support

corepci.book Page 72 Tuesday, August 6, 2002 10:29 AM
Worldwide Sales Offices

Headquarters
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
Toll Free: 888.99.ACTEL
Tel: 408.739.1010
Fax: 408.739.1540

US Sales
Offices

California

Bay Area
Tel: 408.328.2200
Fax: 408.328.2358

Irvine
Tel: 949.727.0470
Fax: 949.727.0476

Newbury Park
Tel: 805.375.5769
Fax: 805.375.5749

Colorado

Tel: 303.420.4335
Fax: 303.420.4336

Florida

Tel: 407.977.6846
Fax: 407.977.6847

Georgia

Tel: 770.277.4980
Fax: 770.277.5896

Illinois

Tel: 847.259.1501
Fax: 847.259.1575

Massachusetts

Tel: 978.244.3800
Fax: 978.244.3820

Minnesota

Tel: 651.917.9116
Fax: 651.917.9114

New Jersey

Tel: 609.517.0304

North Carolina

Tel: 919.654.4529
Fax: 919.674.0055

Pennsylvania

Tel: 215.830.1458
Fax: 215.706.0680

Texas

Tel: 972.235.8944
Fax: 972.235.965

International Sales
Offices

Canada
235 Stafford Rd. West,
Suite 106
Nepean, Ontario K2H 9C1
Tel: 613.726.7575
Fax: 613.726.8666

France
Actel Europe S.A.R.L.
361 Avenue General de Gaulle
92147 Clamart Cedex
Tel: +33 (0)1.40.83.11.00
Fax: +33 (0)1.40.94.11.04

Germany
Lohweg 27
85375 Neufahrn
Tel: +49 (0)8165.9584.0
Fax: +49 (0)8165.9584.1

Italy
Via de Garibaldini, No. 5
20019 Settimo Milanese,
Milano, Italy

Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150
Tel: +81 (0)3.3445.7671
Fax: +81 (0)3.3445.7668

Korea
30th Floor, ASEM Tower,
159-1 Samsung-dong,
Kangam-ku,
Seoul, Korea
Tel: +82.2.6001.3382
Fax: +82.2.6001.3030

United Kingdom
Maxfli Court,
Riverside Way
Camberley,
Surrey GU15 3YL

Tel: +44 (0)1276.401452
Fax: +44 (0)1276.401490
72

Index

corepci.book Page 73 Tuesday, August 6, 2002 10:29 AM
$ALSDIR variable ix

A
Actel

FTP Site 70
Manuals x
Web Based Technical Support 70
Web Site 70

ALLOW_IO_BURST 25
Assigning Pins 37
Assumptions viii

B
Back Annotation 38, 40
Behavioral Simulation 16, 27

C
Check_DMA_status 60
Command Syntax 58–63

Check_DMA_status 60
Compare_data 61
Config_read 58
Config_write 59
DMA_setup 59
Init_data 61
Ioread_cycle 61
Iowrite_cycle 62
Print_DMA_status 61
Read_cycle 62
Read_DMA_status 60
Write_cycle 63

Compare_data 61
Compiling

Design 36
VITAL VHDL Library 27

Config_read 58
Config_write 59
Configuration Register 22
Constant

ALLOW_IO_BURST 25
USER_DEVICE_ID 22
USER_REV_ID 22
USER_VENDOR_ID 22

Constraints
Designer 38
Synthesis 31

Contacting Actel
Customer Service 69
Electronic Mail 71
Technical Support 70
Toll-Free 69
Web Based Technical Support 70

Conventions
$ALSDIR variable ix

Creating a New Test 57
Customer Service 69
Customizing 16

Configuration Register 22
Files 21
Memory Address Space 23

D
Data Generation and Checking 52
Data Types 63
Defined Types 63–68

Data Types 63
Record Types 64

Design Flow 15–17
Behavioral Simulation 16
Customizing 16
Design Layout 16
Static Timing Analysis 17
73

Index

corepci.book Page 74 Tuesday, August 6, 2002 10:29 AM
Synthesis 16
Timing Simulation 17

Design Layout 16, 36–39
Standard 38
Timing Driven 38

Designer
ChipEdit 38
Constraints 38
GENERIC Option 16, 36
Static Timing Analysis 17
Timer 17
Verilog Option 16, 36
VHDL Option 16, 36

Directory Structure 8
DMA Commands 52
DMA_setup 59
Document

Assumptions viii
Organization vii

DT Layout 38

E
EDIF Netlist 16
Electronic Mail 71
Extracting Timing information 38, 40

F
File Organization 8

G
Gate-Level Netlist 16
Generating

EDIF Netlist 16
Gate-Level Netlist 16

GENERIC Option 16, 36
74
I
Init_data 61
Ioread_cycle 61
Iowrite_cycle 62

L
Layout 16, 36–39

Standard 38
Timing Driven 38

M
Memory Address Space 23

N
Netlist Generation

EDIF 16
Gate-Level 16

O
Option 16, 36
Organization,File 8

P
Parameter. See Constant
PCI Transfer Commands 51
Pinouts 37
Pins, Assigning 37
Place-and-Route 36–39
Print_DMA_status 61
Procedural, Testbench 47
Product Support 69–72

Customer Applications Center 70
Customer Service 69
Electronic Mail 71
FTP Site 70

Index

corepci.book Page 75 Tuesday, August 6, 2002 10:29 AM
Technical Support 70
Toll-Free Line 69
Web Site 70

R
Read_cycle 62
Read_DMA_status 60
Recommended Pinouts 37
Record Types 64
Related Manuals x
Required Software 15

S
Simulation

Behavioral 16
Post-Synthesis 17
Timing 17

Slot_info Record 53
Software Requirements 15
Standard Layout 38
Static Timing Analysis 17, 43
Status Record 54
Synthesis 16–34

Constraints 31
Guidelines 31
Synplify 33

System Information 53
System Master Control 55

T
Target 13
Target+DMA 6, 12
Target+Master 8
Technical Support 70
Testbench 45–68

Back-End Control Signals 55
Build Tests 51
Command Syntax 58
Creating a New Test 57
Data Generation and Checking 52
DMA Commands 52
Errortype Control Signals 55
Hierarchy 45
PCI Transfer Commands 51
Procedural 47
Procedures 51
Slot_info Record 53
Status Record 54
System Information 53
System Master Control 55
System32.vhd, Modifying 56
System64.vhd, Modifying 56
Testing a PCI Macro 56
Tests, User Defined 49
User Defined Tests 49

Testbench Description 6
Testing a PCI Macro 56
Timing Analysis 17
Timing Driven Layout 38
Timing Information 38, 40
Timing Simulation 17
Toll-Free Line 69

U
Unit Delays 16
USER_DEVICE_ID 22
USER_REV_ID 22
USER_VENDOR_ID 22

V
variables

$ALSDIR ix
75

Index

corepci.book Page 76 Tuesday, August 6, 2002 10:29 AM
Verilog Option 16, 36
VHDL Library 27
VHDL Option 16, 36
VITAL Library 27

W
Web Based Technical Support 70
Write_cycle 63
76

	Version 5.3 User’s Guide
	CorePCI Target, Master, and Master/Target
	CorePCI Target, Master, and Master/Target
	Version 5.3 User’s Guide

	Actel Corporation, Sunnyvale, CA 94086
	Introduction
	Document Organization
	Document Assumptions
	Naming Conventions
	CorePCI Documentation
	Actel Manuals

	Macro and TestBench Descriptions
	Macro Description
	VHDL Testbench Description
	Macro and testbench File Information

	Design Flow
	Supported Design Flows
	Design Flow Overview
	Create Your Own CorePCI Application

	Customizing
	General Configuration
	Configuration Registers
	Memory and I/O Address Space
	Target+DMA Settings
	Back-End Interface Data Flow Customizing

	Behavioral Simulation
	Compiling a VITAL VHDL Library for ModelSim
	Simulating the CorePCI Macros Using ModelSim

	Synthesis
	General Synthesis Guidelines
	Synthesizing Using Synopsys
	Synthesizing Using Synplicity

	Design Layout
	Compiling a PCImacro Using Designer
	Assigning Pin Layout Constraints
	Design Layout
	Compiling a Design Using Tcl Scripts

	Static Timing Analysis
	CorePCI 5.3 Testbench
	Hierarchy of Testbench
	General Description of the Procedural Testbench
	Testing an Application-Specific PCI Macro
	Command Syntax
	Defined Types
	Product Support

	Actel U.S. Toll-Free Line
	Customer Service
	Customer Applications Center
	Guru Automated Technical Support
	Web Site
	FTP Site
	Contacting the Customer Applications Center
	Electronic Mail
	Telephone

	Worldwide Sales Offices
	Headquarters
	US Sales Offices
	International Sales Offices

