

Migrating Designs Between SmartFusion2 M2S025, M2S050, and M2S090 in FG484 Package

Table of Contents

Introduction	 	. 1
Design and Device Evaluation		
I/O Banks and Standards		
Pin Migration and Compatibility Power Supply and Board-Level Considerations		
Software Flow		
Conclusion	 	17
List of Changes	 	18

Introduction

This document describes how to migrate designs within the SmartFusion[®]2 system-on-chip (SoC) field programmable gate array (FPGA) device family between M2S025, M2S050,and M2S090 devices within the FG484 package. It addresses restrictions and specifications that need to be considered while moving a design between M2S025, M2S050,and M2S090 devices. This includes pin compatibility between the devices, design and device resources evaluation, I/O banks, standards, and so on. This document also describes the software flow behavior during the migration.

Design Migration

SmartFusion2 family devices are architecturally compatible with each other. However, attention must be paid to some key areas while migrating a design from one device to another. Following are the specific points discussed in this document:

- · Design and Device Evaluation
- · I/O Banks and Standards
- · Pin Migration and Compatibility
- Power Supply and Board-Level Considerations
- Software Flow

Design and Device Evaluation

One of the initial and main tasks while migrating a design should be to compare the available resources between the devices. The device resources can be grouped into three different categories:

- Microcontroller Subsystem
- Fabric Resources
- SERDES
- · On-Chip Oscillators

In addition, necessary design timing analysis and simulations should be performed while migrating designs from one device to another.

Each of the following sections focuses on the different aspects of the design and device evaluation categories.

Microcontroller Subsystem

Table 1 provides a high-level summary of the differences between the M2S025, M2S050, and M2S090 MSS blocks. Based on the different MSS resources and features, migration from one device to another can be planned to avoid any resource conflicts or issues.

Table 1 • MSS Features Per Package or Device

		FG484 Package	
Feature	M2S025 and M2S025T	M2S050 and M2S050T	M2S090 and M2S090T
ARM [®] Cortex [™] -M3 processor + instruction cache	Yes	Yes	Yes
Fabric interfaces (FIC)	1 (FIC_0)	2 (FIC_0 and FIC_1)	1 (FIC_0)
MSS DDR (MDDR)	X18 ¹	X18 ²	X18 ¹
eNVM (Kbytes)	256	256	512
eSRAM (Kbytes)	64	64	64
eSRAM (non-SECDED) (Kbytes)	80	80	80
CAN, 10/100/1000 Ethernet	1	1	1
High-speed USB	1 (UTMI or ULPI)	-	1 (UTMI or ULPI)
Multi-Mode UART, SPI, I2C, Timer	2	2	2
SDRAM through SMC_FIC	Yes (AHBLite interface only)	Yes (AXI or AHBLite Interfaces)	Yes (AHBLite Interface only)

Notes:

- 1. DDR supports x18, x16, x9, and x8 modes
- 2. DDR supports x18 and x16 modes

The following sections highlight the differences in the MSS supported features within the three SmartFusion2 devices.

Soft Memory Controller (SMC) Fabric Interface (SMC FIC)

The MSS, as a master, through the SMC_FIC and an SMC in the FPGA fabric can access external bulk memories other than the DDR, such as SDRAM. Instantiate a soft AMBA high-performance bus (AHB) or advanced extensible interface (AXI) SDRAM memory controller in the FPGA fabric and connect I/O ports to 3.3 V MSIO.

The SMC_FIC can be configured using the MDDR configurator part of the MSS to use either an AXI 64-bit bus interface or a single 32-bit AHB-Lite (AHBL) bus interface. The M2S025 and M2S090 devices only support the AHBLite interface. For vertical migration between the M2S025, M2S050,and M2S090 devices, design using the common AHBL SMC_FIC interface configuration to avoid any conflicts or issues while migrating from one device to another.

USB Controller

The USB is not supported on the M2S050 devices.

The USB controller provides two types of interfaces: UTMI and ULPI. The USB ULPI interface is connected to four separate groups of MSIO pads on the device. Depending on the size of the device, the group is labeled as ULPI (I/Os) A, ULPI (I/Os) B, ULPI (I/Os) C, and ULPI (I/Os) D interfaces. The set of signals available in each of the four alternative I/O sets are the same. The USB I/Os are overlaid and common with other MSS peripherals. The different sets of I/Os groups are provided to maximize the flexibility of having the USB operational in the system, regardless of the other MSS peripherals.

Table 2 shows a summary of the different supported interfaces between the M2S025, M2S050, and M2S090 in the FG484 package.

Table 2 • USB Supported Interfaces Per Device

		FG484 Package							
Device	ULPI (I/Os) A	ULPI (I/Os) B	ULPI (I/Os) C	ULPI (I/Os) D	UTMI				
M2S025	Yes	Yes	Yes	No	Yes				
M2S050	No	No	No	No	No				
M2S090	Yes	Yes	Yes	No	Yes				

Fabric Resources

Table 3 gives a high-level summary of the differences between M2S025, M2S050, and M2S090 fabric resources. Based on the differences, effective logic count, RAM size, and number of I/Os, migration can be evaluated and planned from one device to another without any resource conflicts or issues.

Table 3 • Summary of the Fabric Features Supported Per Device

		FG484 Package				
Fabric Features (Logic,	DSP, and Memory)	M2S025 and M2S025T	M2S050 and M2S050T	M2S090 and M2S090T		
Logic/DSP	Logic Modules (4-Input LUT)	27,696	56,340	86,316		
	Mathblocks	34	72	84		
	PLLs and CCCs	6	6	6		
Fabric Memory	LSRAM 18 K blocks	31	69	109		
	uSRAM 1K blocks	34	72	112		
User I/Os	MSIO (3.3 V max)	157	105	157		
	MSIOD (2.5 V max)	40	40	40		
	DDRIO (2.5 V max)	70	122	70		
	Total user I/Os per package	267	267	267		

SERDES

SmartFusion2 "T" devices has up to four 5 Gbps high speed serial interfaces (SERDES) transceivers. The high-speed serial features are same between the M2S025T and M2S050T devices in the FG484 package where as M2S090T has one extra PCle endpoint, as shown in Table 4.

Table 4 • High-Speed Serial Support Per Device

	FG484 Package				
Feature	M2S025T	M2S050T	M2S090T		
5G SERDES lanes (SERDES_IF_0)	4	4	4		
PCIe endpoints	1	1	2		

On-Chip Oscillators

Table 5 shows the summary of SmartFusion2 on-chip oscillators that are the primary sources for generating free-running clocks.

Table 5 • On-Chip Oscillator Support Per Device

	FG484 Package				
Feature	M2S025	M2S050	M2S090		
1 MHz RC oscillator	1	1	1		
50 MHz RC oscillator	1	1	1		
Main crystal oscillator (32 KHz - 20 MHz)	1	1	1		
Auxiliary crystal oscillator (32 KHz - 20 MHz)	1	-	1		

The auxiliary crystal oscillator is dedicated for real-time counter (RTC) clocking as an alternative clock source. Refer to the *SmartFusion2 Clocking Resources User's Guide* for more information.

I/O Banks and Standards

SmartFusion2 I/Os are partitioned into multiple I/O voltage banks. The number of banks depends on the device. There are seven (7) I/O banks in M2S025 and M2S090 while there are eight I/O banks in the M2S050 device. Table 6 shows a summary of organization of the I/O banks between M2S025, M2S050, and M2S090 FPGA devices.

Table 6 • Organization of the I/O Banks in SmartFusion2 Devices

I/O	FG484 Package					
Banks	M2S025T	M2S050T	M2S090T			
Bank 0	DDRIO: MDDR or fabric	DDRIO: MDDR or fabric	-			
Bank 1	MSIO: MSS or fabric	MSIO: MSS or fabric	DDRIO: MDDR or fabric			
Bank 2	MSIO: MSS or fabric	-	MSIO: MSS or fabric			
Bank 3	MSIO: JTAG/SWD	MSIO: MSS or fabric	MSIO: MSS or fabric			
Bank 4	MSIO: fabric	MSIO: JTAG/SWD	MSIO: JTAG/SWD			
Bank 5	MSIOD: SERDES_0 or fabric	DDRIO: fabric	MSIO: fabric			
Bank 6	MSIOD: SERDES_0 or fabric	MSIOD: SERDES_0 or fabric	MSIOD: SERDES_0 or fabric			
Bank 7	MSIO: fabric	MSIOD: fabric	MSIOD: fabric			
Bank 8	-	MSIO: fabric	MSIO: fabric			

Package pins VDDIx are the bank power supplies where x indicates the bank number. For example, VDDI0 is bank0 power supply. Figure 1, Figure 2, and Figure 3 on page 6 show the different I/O bank locations and numbers per device in the FG484 package.

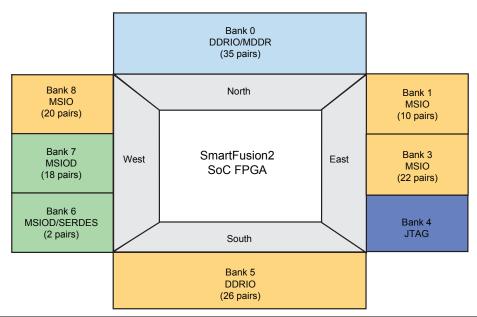


Figure 1 • SmartFusion2 M2S050T FG484 I/O Bank Locations

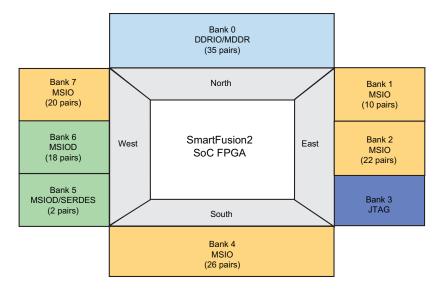


Figure 2 • SmartFusion2 M2S025T FG484 I/O Bank Locations

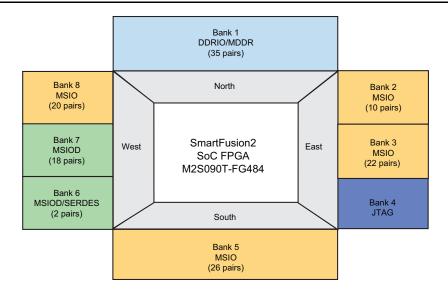


Figure 3 • SmartFusion2 M2S090T FG484 I/O Bank Locations

An MSIO bank supports 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V voltage standards. MSIOD or DDRIO bank supports 1.2 V, 1.5 V, 1.8 V, or 2.5 V voltage standards. The 3.3 V is not supported for MSIOD or DDRIO I/Os. For more details on user I/O pins (MSIO, MSIOD, and DDRIO) and supported voltage standards, refer to the "Supported Voltage Standards" table in the *SmartFusion2 FPGA Fabric Architecture User's Guide*.

Pin Migration and Compatibility

Although the SmartFusion2 devices and packaging have been designed to allow footprint compatibility for smoother migration, some of the pins have a reduced compatibility feature set between M2S025, M2S050, and M2S090 devices in the FG484 package. This section addresses the different aspects of the pin compatibility. The differences can be grouped into three categories:

- Global Versus Regular Pins
- Available versus No Connect Pins
- · I/Os Technology Compatibility Per Pin or Bank
- Oscillator Pins
- Probe Pins

Global Versus Regular Pins

When migrating designs between SmartFusion2 devices, it is important to evaluate the different types of pins that are available per device. The functionality of the same pin can be different between devices. This section focuses on highlighting and comparing the global pins in one device against the other devices. Thus, migration can be evaluated and planned from one device to another without any resource conflicts or issues.

- Moving from a device, where the I/O is a global pin to a device where the same I/O is a regular
 pin. In this case, replace the global clock (for example, CLKBUF) with a regular input buffer (for
 example, INBUF) and then internally promote the signal to a global resource using a CLKINT or
 synthesis options.
- Moving from a device, where the I/O is a regular pin to a device where the same I/O is a global
 pin. In this case, replace the INBUF with a CLKBUF or keep the INBUF and internally promote the
 signal to a global using a CLKINT or synthesis options.

Table 7 provides a comparison between the global pins available in M2S025, M2S050,and M2S090 devices. The unused global pins are configured as inputs with pull-up resistors by Libero[®] System-on-Chip (SoC) software.

For more information, refer to the "FPGA Fabric Global Network Architecture" chapter of the SmartFusion2 Clocking Resources User's Guide.

Table 7 • Non-Equivalent Global Pins Comparison Per Device

			FG484 Packag	е		
Package Pin	M2S025	Bank No	M2S050	Bank No	M2S090	Bank No
A6	DDRIO65NB0/GB4/ CCC_NW1_CLKI2	0	DDRIO66NB0	0	DDRIO92NB1/ GB4/ CCC_NW1_CLKI2	1
A7	DDRIO62PB0/MDD R_DQ_ECC1	0	DDRIO87PB0/CCC_ NW1_CLKI3/MDDR_ DQ_ECC1	0	DDRIO89PB1/MDD R_DQ_ECC3	1
AA11	MSIO124PB4	4	DDRIO152PB5/GB3/ CCC_SW0_CLKI3	5	MSIO203PB5	5
AA13	MSIO130PB4/VCC C_SE0_CLKI	4	DDRIO162PB5	5	MSIO209PB5/VCCC _SE0_CLKI	5
AB11	MSIO124NB4	4	DDRIO152NB5/ GB7 / CCC_SW1_CLKI2	5	MSIO203NB5	5
AB13	MSIO129PB4/CCC_ SW1_CLKI3	4	DDRIO161PB5/ GB11 /VCCC_SE0_CLKI	5	MSIO208PB5/CCC_ SW1_CLKI3	5
AB15	DDRIO164PB5/VCC C_SE1_CLKI	5	MSIO134PB4/VCCC _SE1_CLKI	4	MSIO213PB5/VCCC _SE1_CLKI	5
B6	DDRIO65PB0/GB0/ CCC_NW0_CLKI3	0	DDRIO66PB0	0	DDRIO92PB1/ GB0/ CCC_NW0_CLKI3	1
D9	DDRIO61PB0/CCC _NW1_CLKI3	0	DDRIO88PB0	0	DDRIO88PB1/CCC_ NW1_CLKI3	1
U13	MSIO131PB4/ GB11 /VCCC_SE0_CLKI	4	DDRIO166PB5	5	MSIO210PB5/GB11/ VCCC_SE0_CLKI	5
V11	MSIO125PB4/GB3/ CCC_SW0_CLKI3	4	DDRIO156PB5	5	MSIO201PB5/GB3/C CC_SW0_CLKI3	5
W11	MSIO125NB4/GB7/ CCC_SW1_CLKI2	4	DDRIO156NB5	5	MSIO201NB5/GB7/ CCC_SW1_CLKI2	5
W12	MSIO128PB4	4	DDRIO159PB5/CCC _SW1_CLKI3	5	MSIO206PB5	5
Y14	MSIO133PB4/GB15 /VCCC_SE1_CLKI	4	DDRIO169PB5	5	MSIO212PB5/GB15/ VCCC_SE1_CLKI	5
Y9	MSIO120NB4/CCC_ SW0_CLKI2	4	DDRIO148NB5/PRO BE_B	5	MSIO196NB5/CCC_ SW0_CLKI2	5

Table 8 shows the list of global pins that are similar between the three devices.

Table 8 • Equivalent Global Pins Per Device

			FG484 Pin Names			
Package Pin	M2S025	Bank No	M2S050	Bank No	M2S090	Bank No
A14	DDRIO50PB0/GB12/CC C_NE1_CLKI2/MDDR_ DQ12	0	DDRIO76PB0/GB1 2/CCC_NE1_CLKI2 /MDDR_DQ12	0	DDRIO77PB1/GB1 2/CCC_NE1_CLKI2 /MDDR_DQ12	1
B13	DDRIO52PB0/GB8/CC C_NE0_CLKI3/MDDR_ DQS1	0	DDRIO78PB0/GB8/ CCC_NE0_CLKI3/ MDDR_DQS1	0	DDRIO79PB1/GB8/ CCC_NE0_CLKI3/ MDDR_DQS1	1
D12	DDRIO53PB0/CCC_NE 0_CLKI2/MDDR_DQ10	0	DDRIO79PB0/CCC _NE0_CLKI2/MDD R_DQ10	0	DDRIO80PB1/MDD R_DQ10/CCC_NE0 _CLKI2	1
D14	DDRIO49PB0/CCC_NE 1_CLKI3/MDDR_DQ14	0	DDRIO75PB0/CCC _NE1_CLKI3/MDD R_DQ14	0	DDRIO76PB1/CCC _NE1_CLKI3/MDD R_DQ14	1
F8	DDRIO66NB0/CCC_N W0_CLKI2	0	DDRIO92NB0/CCC _NW0_CLKI2	0	DDRIO93NB1/CCC _NW0_CLKI2	1
G19	MSIO28PB1/GB14/VCC C_SE1_CLKI/MMUART _1_CLK/GPIO_25_B/U SB_DATA4_C	1	MSIO42PB1/GB14/ VCCC_SE1_CLKI/ MMUART_1_CLK/ GPIO_25_B/USB_ DATA4_C	1	MSIO55PB2/GB14/ VCCC_SE1_CLKI/ MMUART_1_CLK/ GPIO_25_B/USB_ DATA4_C	2
G22	MSIO26PB1/CCC_NE1 _CLKI1/MMUART_1_RI /GPIO_15_B	1	MSIO40PB1/CCC_ NE1_CLKI1/MMUA RT_1_RI/GPIO_15 _B	1	MSIO53PB2/CCC_ NE1_CLKI1/MMUA RT_1_RI/GPIO_15 _B	2
H1	MSIO96PB7/GB6/CCC_ NW1_CLKI1	7	MSIO114PB8/GB6/ CCC_NW1_CLKI1	8	MSIO156PB8/GB6/ CCC_NW1_CLKI1	8
H20	MSIO27PB1/GB10/VCC C_SE0_CLKI/USB_XCL K_C	1	MSIO41PB1/GB10/ VCCC_SE0_CLKI/ USB_XCLK_C	1	MSIO54PB2/GB10/ VCCC_SE0_CLKI/ USB_XCLK_C	2
J1	MSIO98PB7/CCC_NW1 _CLKI0	7	MSIO116PB8/CCC _NW1_CLKI0	8	MSIO158PB8/CCC _NW1_CLKI0	8
J20	MSIO25PB1/CCC_NE0 _CLKI1/MMUART_1_C _TS/GPIO_13_B	1	MSIO39PB1/CCC_ NE0_CLKI1/MMUA RT_1_CTS/GPIO_1 3_B	1	MSIO52PB2/CCC_ NE0_CLKI1/MMUA RT_1_CTS/GPIO_ 13_B	2
J22	MSIO20NB2/GB13/VCC C_SE1_CLKI/GPIO_26 _A	2	MSIO20NB3/GB13/ VCCC_SE1_CLKI/ GPIO_26_A	3	MSIO20NB3/GB13/ VCCC_SE1_CLKI/ GPIO_26_A	3
J3	MSIO97PB7/GB2/CCC_ NW0_CLKI1	7	MSIO115PB8/GB2/ CCC_NW0_CLKI1	8	MSIO157PB8/GB2/ CCC_NW0_CLKI1	8
K1	MSIOD103PB6/CCC_S W0_CLKI0	6	MSIOD121PB7/CC C_SW0_CLKI0	7	MSIOD178PB7/CC C_SW0_CLKI0	7
K22	MSIO20PB2/GB9/VCC C_SE0_CLKI/GPIO_25 _A	2	MSIO20PB3/GB9/V CCC_SE0_CLKI/G PIO_25_A	3	MSIO20PB3/GB9/V CCC_SE0_CLKI/G PIO_25_A	3

Table 8 • Equivalent Global Pins Per Device

		FG484 Pin Names							
Package Pin	M2S025	Bank No	M2S050	Bank No	M2S090	Bank No			
K4	MSIOD100PB6/GB5/CC C_SW1_CLKI1	6	MSIOD118PB7/GB 5/CCC_SW1_CLKI 1	7	MSIOD175PB7/GB 5/CCC_SW1_CLKI 1	7			
K6	MSIO99PB7/CCC_NW0 _CLKI0	7	MSIO117PB8/CCC _NW0_CLKI0	8	MSIO159PB8/CCC _NW0_CLKI0	8			
K8	MSIOD101PB6/GB1/CC C_SW0_CLKI1	6	MSIOD119PB7/GB 1/CCC_SW0_CLKI 1	7	MSIOD176PB7/GB 1/CCC_SW0_CLKI 1	7			
M7	MSIOD102PB6/CCC_S W1_CLKI0	6	MSIOD120PB7/CC C_SW1_CLKI0	7	MSIOD177PB7/CC C_SW1_CLKI0	7			
P22	MSIO11PB2/CCC_NE0 _CLKI0/I2C_1_SDA/GP IO_0_A/USB_DATA3_A	2	MSIO11PB3/CCC_ NE0_CLKI0/I2C_1_ SDA/GPIO_0_A/US B_DATA3_A	3	MSIO11PB3/CCC_ NE0_CLKI0/I2C_1_ SDA/GPIO_0_A/US B_DATA3_A	3			
R22	MSIO11NB2/CCC_NE1 _CLKI0/I2C_1_SCL/GPI O_1_A/USB_DATA4_A	2	MSIO11NB3/CCC_ NE1_CLKI0/I2C_1_ SCL/GPIO_1_A/US B_DATA4_A	3	MSIO11NB3/CCC_ NE1_CLKI0/I2C_1_ SCL/GPIO_1_A/US B_DATA4_A	3			

Refer to the "Dedicated Global I/O Naming Conventions" section in the SmartFusion2 Pin Descriptions.

Available versus No Connect Pins

There are pins that have one specific function in one device while those same pins are "no connect" (NC) in the other device. Table 9 lists the summary of these pins.

For example, pin AA20 functions as the XTLOSC_AUX_EXTAL pin in the M2S025 while it is an NC in the M2S050 device. Similarly, T11 pin is an NC in the M2S025 but it is a VREF5 pin in the M2S050 device.

When moving from a device, where the I/O is an NC pin to a device where the I/O has a defined functionality and it is not used. Follow the recommended methods for connecting the unused I/Os depending on the functionality of that I/O. Refer to "SmartFusion2 Unused Pin Configurations" in the SmartFusion2 Board Design Guidelines Application Note.

When moving from a device, where the I/O has a defined functionality to a device where the I/O is an NC, then the NC pins can be driven to any voltage or can be left floating with no effect on the operation of the device. NC indicates that the pin is not connected to circuitry within the device.

Table 9 · Available versus NC Pins

	FG484 Pin Names						
Package Pin	M2S025	M2S050	M2S090				
AA20	XTLOSC_AUX_EXTAL	NC	XTLOSC_AUX_EXTAL				
AB20	XTLOSC_AUX_XTAL	NC	XTLOSC_AUX_XTAL				
T11	NC	VREF5	NC				
T12	NC	VREF5	NC				

I/Os Technology Compatibility Per Pin or Bank

Table 10 shows the list of I/Os that would lead to incompatibility with the different technology support while migrating between the M2S025, M2S050, and MS090 within the FG484 package. The difference is the type of I/O technology (MSIO versus DDRIO) that is supported on those regular I/Os.

Table 10 • I/O Standards Compatibility Per Device or Package Pins

Package		FG484 P				
Pin	M2S025	Bank No	M2S050	Bank No	M2S090	Bank No
AA10	MSIO 122PB4	4	DDRIO149PB5	5	MSIO198PB5	5
AA12	MSIO127PB4	4	DDRIO157PB5	5	MSIO204PB5	5
AA15	MSIO134NB4	4	DDRIO164NB5	5	MSIO213NB5	5
AA16	MSIO138PB4	4	DDRIO167PB5	5	MSIO222PB5	5
AA17	MSIO138NB4	4	DDRIO167NB5	5	MSIO222NB5	5
AA18	MSIO137NB4	4	DDRIO174NB5	5	MSIO221NB5	5
AB10	MSIO122NB4	4	DDRIO149NB5	5	MSIO198NB5	5
AB14	MSIO129NB4	4	DDRIO161NB5	5	MSIO208NB5	5
AB17	MSIO137PB4	4	DDRIO174PB5	5	MSIO221PB5	5
AB18	MSIO142PB4	4	DDRIO177PB5	5	MSIO230PB5	5
AB19	MSIO142NB4	4	DDRIO177NB5	5	MSIO230NB5	5
T13	MSIO131NB4	4	DDRIO166NB5	5	MSIO210NB5	5
T16	MSIO143NB4	4	DDRIO186NB5	5	MSIO232NB5	5
U10	MSIO123PB4	4	DDRIO154PB5	5	MSIO199PB5	5
U11	MSIO123NB4	4	DDRIO154NB5	5	MSIO199NB5	5
U14	MSIO136PB4	4	DDRIO176PB5	5	MSIO218PB5	5
U15	MSIO136NB4	4	DDRIO176NB5	5	MSIO218NB5	5
U16	MSIO143PB4	4	DDRIO186PB5	5	MSIO232PB5	5
U17	MSIO144NB4	4	DDRIO189NB5	5	MSIO234NB5	5

Table 10 • I/O Standards Compatibility Per Device or Package Pins (continued)

Package						
Pin	M2S025	Bank No	M2S050	Bank No	M2S090	Bank No
U18	MSIO146NB4	4	DDRIO190NB5	5	MSIO238NB5	5
V12	MSIO128NB4	4	DDRIO159NB5	5	MSIO206NB5	5
V13	MSIO132PB4	4	DDRIO171PB5	5	MSIO211PB5	5
V14	MSIO132NB4	4	DDRIO171NB5	5	MSIO211NB5	5
V16	MSIO139NB4	4	DDRIO184NB5	5	MSIO224NB5	5
V17	MSIO144PB4	4	DDRIO189PB5	5	MSIO234PB5	5
V18	MSIO146PB4	4	DDRIO190PB5	5	MSIO238PB5	5
W14	MSIO133NB4	4	DDRIO169NB5	5	MSIO212NB5	5
W15	MSIO135NB4	4	DDRIO172NB5	5	MSIO216NB5	5
W16	MSIO139PB4	4	DDRIO184PB5	5	MSIO224PB5	5
W17	MSIO140NB4	4	DDRIO182NB5	5	MSIO226NB5	5
W19	MSIO145NB4	4	DDRIO187NB5	5	MSIO236NB5	5
Y12	MSIO127NB4	4	DDRIO157NB5	5	MSIO204NB5	5
Y13	MSIO130NB4	4	DDRIO162NB5	5	MSIO209NB5	5
Y15	MSIO135PB4	4	DDRIO172PB5	5	MSIO216PB5	5
Y17	MSIO140PB4	4	DDRIO182PB5	5	MSIO226PB5	5
Y18	MSIO141PB4	4	DDRIO181PB5	5	MSIO228PB5	5
Y19	MSIO141NB4	4	DDRIO181NB5	5	MSIO228NB5	5
Y20	MSIO145PB4	4	DDRIO187PB5	5	MSIO236PB5	5

The DDRIOs do not support single ended $3.3\ V$ I/O standards and differential LVPECL, LVDS $3.3\ V$, LVDS $2.5\ V$, RSDS BLVDS, MLVDS, and Mini-LVDS I/O standards, as shown in Table 11. To migrate between M2S025, M2S050,and M2S090 successfully, ensure that the correct VDDI power supply is used to power the equivalent banks. Only I/Os with compatible standards can be assigned to the same bank.

Table 11 • Technology Support Difference Between Different I/O Types

	I/O Types		
I/O Standards	MSIO	DDRIO	
Single-Ended I/O	•	•	
LVTTL 3.3V	Yes	_	
LVCMOS 3.3V	Yes	_	
PCI	Yes	_	
LVCMOS 1.2V	Yes	Yes	
LVCMOS 1.5V	Yes	Yes	
LVCMOS 1.8V	Yes	Yes	
LVCMOS 2.5V	Yes	Yes	
Voltage-Referenced I/O	•		
HSTL 1.5V	Yes	Yes	
SSTL 1.8	Yes	Yes	
SSTL 2.5	Yes	Yes	
SSTL 2.5 V(DDR1)	Yes	Yes	

Table 11 • Technology Support Difference Between Different I/O Types (continued)

	I/O Types		
I/O Standards	MSIO	DDRIO	
SSTL 1.8 V(DDR2)	Yes	Yes	
SSTL 1.5 V (DDR3)	Yes	Yes	
Differential I/O	<u> </u>	•	
LVPECL (input only)	Yes	_	
LVDS 3.3 V	Yes	-	
LVDS 2.5 V	Yes	-	
RSDS	Yes	-	
BLVDS	Yes	-	
MLVDS	Yes	-	
Mini-LVDS	Yes	-	

Note: Even though the VDDI might be the same (for example, MSIO 2.5 V and DDRIO 2.5 V), the attributes and features supported might be different between different I/O types (MSIO versus DDRIO). Refer to the "I/O Programmable Features" section in the *SmartFusion2 FPGA Fabric Architecture User's Guide* for more information on the list of features supported per I/O type.

Oscillator Pins

SmartFusion2 devices include two crystal oscillators, Main crystal oscillator and Auxiliary crystal oscillator, except the M2S050 devices. SmartFusion2 M2S050 devices do not have an auxiliary crystal oscillator.

The auxiliary crystal oscillator is dedicated for RTC clocking as an alternative clock source. Both the main and auxiliary crystal oscillators have two I/O pads, as shown in Table 12 on page 12, which can be connected externally to a crystal, a ceramic resonator, or an RC circuit.

When moving from a device, where the I/O is an NC pin to a device where the I/O has a defined functionality and it is not used, follow the recommended methods for connecting the unused I/Os depending on the functionality of that I/O. Refer to "SmartFusion2 Unused Pin Configurations" in the SmartFusion2 Board Design Guidelines Application Note.

When moving from a device, where the I/O has a defined function to a device where the I/O is an NC, the NC pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

Table 12 • Crystal Oscillator Pins Per Device

	FG484 Pin Names				
Package Pin	M2S025	M2S050	M2S090		
AB20	XTLOSC_AUX_XTAL	NC	XTLOSC_AUX_XTAL		
AA20	XTLOSC_AUX_EXTAL	NC	XTLOSC_AUX_EXTAL		
AB21	XTLOSC_MAIN_XTAL	XTLOSC_MAIN_XTAL	XTLOSC_MAIN_XTAL		
AA21	XTLOSC_MAIN_EXTAL	XTLOSC_MAIN_EXTAL	XTLOSC_MAIN_EXTAL		

Probe Pins

Probe pins locations are not compatible between the M2S025 and M2S050 devices. They are not compatible also between the M2S050 and M2S090 devices. The probe pins are compatible between the M2S025 and the M2S090 devices. Table 13 shows the different probe I/Os location per device within the FG484 package. By default, probe pins are reserved for the probe functionality. Unreserve these pins by clearing the **Reserve Pins for Probes** check box in the "Device I/O Settings" under Project Setting in Libero SoC software. When the pins are not reserved, the probe I/Os can be used as regular I/Os.

Table 13 • Probe Pins Per Device

	FG484 Pin Names					
Package Pin	M2S025	Bank No	M2S050	Bank No	M2S090	Bank No
W10	MSIO121PB4/PROB E_A	4	DDRIO151PB5	5	MSIO197PB5/PROBE_A	5
W9	MSIO120PB4	4	DDRIO148PB5/ PROBE_A	5	MSIO196PB5	5
Y9	MSIO120NB4/CCC_ SW0_CLKI2	4	DDRIO148NB5 /PROBE_B	5	MSIO196NB5/CCC_SW0 _CLKI2	5
Y10	MSIO121NB4/PROB E_B	4	DDRIO151NB5	5	MSIO197NB5/PROBE_B	5

For vertical migration between the devices, one way of maintaining the compatibility is to use the reserve pin option. Select the **User Reserved** option in the **Package Pins** tab which is part of the I/O Editor in Libero SoC, on the pins that are not probe pins. When a pin is reserved, that pin is not assigned to any port. For example, if M2S025 design will be migrated to M2S050 where the probes (PROBE_A and PROBE_B) pins are used in the M2S050, reserve pins W9 and Y9 in the M2S025. When the design is moved up to M2S050, the pins are already probe pins and will be reserved for probes by default. That is one way to achieve the design compatibility in regard to the probe pins migration. Another option is to reserve all four pins and route all these four pins to a connector on the PCB.

Power Supply and Board-Level Considerations

I/O power supply requirements are one of the key aspects to consider for design migrations. Since the migration is within the SmartFusion2 family, there is no issue regarding the core voltage (VDD), charge pumps voltage (VPP), and analog sense circuit supply of the eNVM voltage (VPPNVM). The ground pins (VSS) are also equivalent between M2S025, M2S050,and M2S090 devices. Refer to the *SmartFusion2 Pin Descriptions* for more details. The bank supply voltages VDDI pins must be connected appropriately. All the bank supplies that are located on the east-side must be powered even if the associated bank I/Os are not used. Refer to the "Recommendation for Unused Bank Supplies" connections table in the *SmartFusion2 Board Design Guidelines Application Note* for more information in case where the specific banks are not used. An MSIO bank supports 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V voltages and an MSIOD and DDRIO bank supports 1.2 V, 1.5 V, 1.8 V, or 2.5 V voltages. For more details on user I/O pins (MSIO, MSIOD, and DDRIO) and supported voltage standards, refer to the "Supported Voltage Standards" table in the *SmartFusion2 FPGA Fabric Architecture User's Guide*.

The banks have dedicated supplies. Therefore, only I/Os with compatible voltage standards can be assigned to the same I/O voltage bank. The correct bank supply must be used when migrating between the different devices per the appropriate voltages (I/O Standards) selected for the bank. Table 14 shows the different banks power supply compatibility per device in the FG484 package.

Table 14 • Power Supply Compatibility Per Device

	FG484 Pin Names				
Package Pin	M2S025	M2S050	M2S090		
AA19	VDDI4	VDDI5	VDDI5		
AB12	VDDI4	VDDI5	VDDI5		

Table 14 • Power Supply Compatibility Per Device (continued)

	FG484 Pin Names				
Package Pin	M2S025	M2S050	M2S090		
B12	VDDI0	VDDI0	VDDI1		
B16	VDDI0	VDDI0	VDDI1		
B20	VDDI0	VDDI0	VDDI1		
B8	VDDI0	VDDI0	VDDI1		
C10	VDDI0	VDDI0	VDDI1		
C14	VDDI0	VDDI0	VDDI1		
C2	VDDI7	VDDI8	VDDI8		
C6	VDDI0	VDDI0	VDDI1		
D17	VDDI0	VDDI0	VDDI1		
E11	VDDI0	VDDI0	VDDI1		
E20	VDDI1	VDDI1	VDDI2		
F1	VDDI7	VDDI8	VDDI8		
F13	VDDI0	VDDI0	VDDI1		
F22	VDDI1	VDDI1	VDDI2		
F7	VDDI0	VDDI0	VDDI1		
F9	VDDI0	VDDI0	VDDI1		
G4	VDDI7	VDDI8	VDDI8		
H12	VDDI0	VDDI0	VDDI1		
H14	VDDI0	VDDI0	VDDI1		
H18	VDDI1	VDDI1	VDDI2		
J21	VDDI1	VDDI1	VDDI2		
J7	VDDI7	VDDI8	VDDI8		
K3	VDDI6	VDDI7	VDDI7		
L17	VDDI2	VDDI3	VDDI3		
L6	VDDI6	VDDI7	VDDI7		
M20	VDDI2	VDDI3	VDDI3		
N2	VDDI6	VDDI7	VDDI7		
P5	VDDI6	VDDI7	VDDI7		
R19	VDDI2	VDDI3	VDDI3		
T14	VDDI4	VDDI5	VDDI5		
T22	VDDI2	VDDI3	VDDI3		
U2	VDDI5	VDDI6	VDDI6		
V10	VDDI4	VDDI5	VDDI5		
W13	VDDI4	VDDI5	VDDI5		
W21	VDDI3	VDDI4	VDDI4		
Y16	VDDI4	VDDI5	VDDI5		

For the other bank supplies that are equivalent, refer to the provided recommendations in the *SmartFusion2 Pin Descriptions*.

Any other board-level considerations are common among the three devices. Refer to the *SmartFusion2 Board Design Guidelines Application Note* for more details.

Software Flow

The Libero® SoC Software provides the option of reserving pins for moving between different devices within the SmartFusion2 family where pins within the current device that are not bonded in the destination device can be automatically reserved. This option is available in I/O Constraints Editor which can be accessed from the Design Flow window as shown in Figure 4. This is done in the early stages of the design cycle.

Follow the procedure given below to reserve pins:

1. After finishing the **Compile** process, select the **I/O Constraints** option from the Design Flow window as shown in Figure 4.

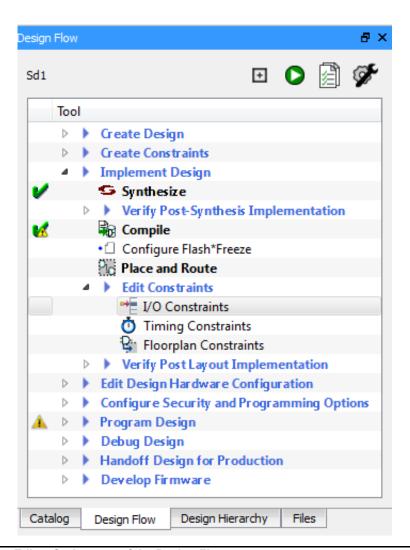


Figure 4 • I/O Constraint Editor Option part of the Design Flow

2. Select the **Reserve Pins for Device Migration** option from the Tools menu. The window shown below in Figure 5 is displayed.

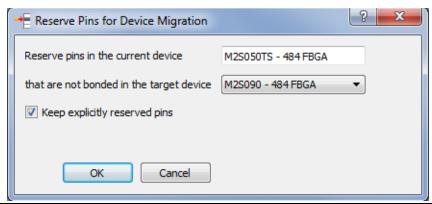


Figure 5 • Reserve Pins for Device Migration

The first option shows the device that is currently being used in the Libero SoC project. From the drop-down list select the device that eventually will be migrated to as the target device. Refer to the Libero Soc software online help for more details on this window and other options.

The Libero SoC software provides the option of moving between different devices within the SmartFusion2 family by changing the device selection using the Project Settings option in the Libero SoC software. Upon changing the device, Libero SoC validates the features that are used within the design against the supported features within the new targeted device and package. Feedback messages are provided as part of the Libero SoC software flow listing the different actions taken by Libero SoC and the action required.

The first step that Libero SoC performs upon changing the device is to invalidate the original design components and the design flows. The message is displayed as shown in Figure 6.

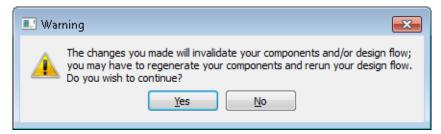


Figure 6 • Invalidating Component and Design Flow Message

As part of rerunning the design flow, Libero SoC checks the different steps needed to be performed for completing and updating the design flow. Furthermore, Libero SoC converts the MSS configurations to be compatible with the selected device and package combination. Libero SoC displays the message as shown in Figure 7.

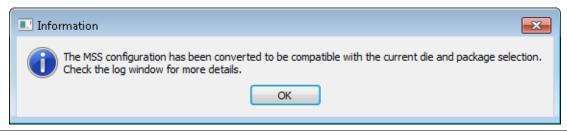


Figure 7 • Converting the MSS Configurations

As part of the MSS conversion, any changes that were made automatically to be compatible with the device and package selected will be printed to the log window. Libero SoC disables or defaults to different options if the current selected options are not supported in the new targeted device and package.

Conclusion

This application note describes the design migration among SmartFusion2 family devices focusing on migration between M2S025, M2S050,and M2S090 within the FG484 package. SmartFusion2 family devices share many common architectural features. During design migration, architecture differences between devices should be kept in mind to ensure seamless migration flow. Additionally, a key requirement is to run the functional simulation and timing analysis before and after the migration using Microsemi[®] tools.

List of Changes

The following table lists critical changes that were made in the current version of the document.

Revision	Changes in Current Version (51900145-2/2.08*)	Page
Revision 1 January 2014	The following tables are updated to include the M2S090 and M2S090T device values: Table 1, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 12, Table 13, and Table 14.	N/A
	The section FDDR Controller is removed	N/A
	Figure 3 is added for SmartFusion2 M2S090T FG484 I/O Bank Locations	6
	In Table 11, the values for Single-Ended I/O are updated.	11
	The section Software Flow is updated with the feature of reserving pins for the purpose of device migration from one device to another.	15

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.